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This study is concerned with identification and quantification of environ­
mental determinants of traffic accidents and with the construction of a 
conceptual model of traffic accidents based on environmental factors. 
Dependent variables include accident numbers and rates (number of acci­
dents per million vehicle-miles of travel). Independent variables include 
physical characteristics of the road, the road frontage (adjacent land use), 
and physical and social characteristics of the region. Data are derived 
from a sample of 13 5 road segments, each 2 miles long, in Oakland County, 
Michigan. A wide range of environmental characteristics are represented. 
Automatic interaction detection, multiple classification analysis, and 
multiple regression techniques are used to construct a series of predictive 
models. Analysis indicates that the number of accidents on a road segment 
is best predicted from traffic volumes and accident rates, whereas acci­
dent rates are best predicted from the type of road, the intensity of road 
frontage development, and the percentage of population between 16 and 24. 
Inspection of the formulated models suggests a conceptual macromodel 
that is different from traditional models of traffic accidents. 

•MUCH of the previous research on traffic accidents has focused on the road itself, 
with some consideration of roadside characteristics (1, 2). Also, much of the work 
has dealt either with particular road sections or types -or- with large cross-sectional 
areas. Many of the basic relationships have been defined (such as the positive rela­
tionship between accident rates and traffic volume) although quantitative results have 
varied among studies. 

The focus here, however, was on the development of a conceptual model of traffic 
accidents based on environmental factors across a regional geographic area with a 
wide range of environmental characteristics. The hypothesized general model is shown 
in Figure 1. 

STUDY AREA AND DATA 

Oakland County, Michigan, was selected as the study site. The county has an area 
of approximately 900 square miles and a population of approximately 900,000. The 
county is totally urban in the southeast, the intensity of which diminishes through sub­
urban development to a totally rural character in the northeast. 

A stratified, systematic, unaligned sample of 135 road segments, each 2 miles long, 
was selected. Measurements were then taken for each roadway, the land use adjacent 
to the roadway, and the spatial area around the segment to a distance of 3 miles. The 
areal measurements were derived from spatially indexed data (i.e., census districts) 
and weighted by a distance decay factor based on a distribution of travel distances. 

The accident statistics came from the Oakland County accident file and included 
13,498 reported accidents from 1968 to 1970. The resultant file contained 135 road 
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segments, each with a number of dependent and independent variable measurements. 
The variables used include accident rate, accident number, road type, road volume 
(ADT), number of intersections, percentage of developed frontage, percentage of com­
mercial frontage, percentage of residential frontage, number of land use category 
changes, percentage of regional land developed, vehicle density, employment density, 
population density, residential density, value of homes, rent, and percentage of the 
population between 16 and 24. In the figure, the road, the road frontage, and the region 
are the overall environment in which travel occurs. The travel activity, constrained 
by a set of environmental factors, produc es some accident set. The underlying causal 
model logic is this: Travel activity has certain attendant characteristics; that is, it 
has an origin and destination, a mix of drivers and vehicles, a mix of dynamic param­
eters such as speed, vehicle density, and traffic volume, and a mix of physical param­
eters such as the roadway, lighting, sound, and visual appearance-all of which con­
stitute a complex set of interacting factors. These factors affect the driver and ve­
hicle and thus the accident set. 

Although many studies have focused on some subset of these factors, this study at­
tempts to look at the broader determinants of these factors. More specifically, the 
study addresses the construction of a series of mathematical predictive models of 
accident numbers and rates in a spatial, geographic context. The resultant models 
are static and descriptive and were derived from cross-sectional, spatially indexed, 
empirical data. Inspection of these models suggested an overall conceptual model. 

ANALYSES 

Methods 

Bivariate relationships were examined via correlation matrices and bivariate re­
gression plots. Second, automatic interaction detection (AID) was used to explore the 
structure of the data and to reveal interactions between variables. Then variables 
were selected for entry to multiple classification analysis (MCA) and finally to multiple 
regression analysis. 

Accident Numbers and Rates 

Initial analysis revealed two points of interest. First, the correlation between ac -
cident numbers and accident rates improved with increasing traffic volume. That is, 
variations in numbers of accidents and in traffic volumes, on which rates are calculated, 
produced less variation in rates where numbers and volumes were large. Therefore, 
rate prediction on low-volume roads was not successful. Numbers of accidents, how­
ever, were successfully predicted on all roads. 

Second, significant imercorrelations existed within type::; ui predictor variauie::; 
(e.g., road, road frontage, and regional) because several variables used were surrogates 
for the same underlying factor. For example, percentage of developed frontage, per­
centage of commercial frontage, and number of intersecting roads each related to the 
intensity of road frontage activity. Selecting variables for future study may well rely 
on convenience of data collection rather than on a search for the best predictor within 
a class of predictors. 

The first AID analysis of all 13 5 road segments showed that the type of road was the 
best overall predictor of accident rates. The AID tree is shown in Figure 2. 

The AID analysis uses analysis of variance techniques to subdivide the sample into 
a series of subgroups, which maximizes the ability to predict values of the dependent 
variable. The program operates by finding the dichotomy, based on an independent 
variable, that produces the lowest within-group sum of squares for the dependent vari­
able. This bifurcation accounts for more of the variance of the dependent variable 
than any other split. Each subgroup is further split in a similar manner until pre­
selected criteria are met (e.g., minimum N for a &ubgroup). Each box of the AID tree 
gives the name of the independent variable, variable categories or values, number of 
cases, and value of the dependent variable for that group. 

In this case, the first split was made on the type-of-road variable (categories in-
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elude two-lane, four-lane, divided, and freeway), indicating that the type of road was 
the best overall predictor of accident rate. Each road type grouping was then split on 
different predictor variables. 

This asymmetry indicated interaction among road type and the other independent 
variables. That is, different sets of environmental factors were affecting each road 
type. Figure 3 shows the means and ranges for accident rates for each of the road 
types. 

When an AID analysis was conducted with number of accidents as the dependent 
variable, three closely competing predictor variables were found: type of road, per­
centage of area developed, and percentage of commercial frontage. Interaction between 
the type of road and other predictors was again existent. Figure 4 shows the means 
and ranges for number of accidents for each road type. Each road type was analyzed 
separately in order to avoid complex interaction terms. 

Two-Lane Roads 

Accident rates varied widely on low-volume two-lane roads as expected, and thus 
accident rate prediction was unsuccessful. The numbers of accidents, however, were 
best predicted from traffic volume and measures of road frontage activity. The AID 
tree (Fig. 5) split first on traffic volume, second on percentage of developed frontage, 
and third on the number of intersecting roads. However, the latter two were closely 
competing, intercorrelated measures of road frontage activity, and thus the tree was 
essentially symmetrical. 

The conceptual model called for the inclusion of regional effects, but regional in­
tensity measures such as population and vehicle density tended to be intercorrelated 
with road frontage measures. One of the qualitative measures, the percentage of 
population between 16 and 24, had a positive correlation with number of accidents and 
no significant intercorrelation with other independent variables. Thus those three 
variables were entered into the MCA (Tables 1 and 2). 

This analysis produces a model of the form 

where Y1Jk is an individual case-dependent variable value, i, j, and k are catego1·ies on 
successive predicto1·s to which the case belongs, and aL, bi, and ck represent adjust­
ments to Y, the grand mean for the dependent variable. Hence, the effect of predictor 
A is aJ. Thus, one simply finds the three variable categories for a particular case and 
makes the appropriate adjustment to the grand mean to arrive at the estimated depen­
dent variable value. Thus, for a particular road segment, the predicted number of 
accidents wouid be th~ rr1~a.u uuu1be1~ o.f accidents for that road type plus adjustments 
for each of the independent variable categories. The unadjusted deviation considers 
only the effect of that one independent variable, whereas the adjusted deviation con­
siders the effect of that variable given the effects of the other independent variables. 
The 77 statistic is the correlation ratio and indicates the ability of the predictor to ex­
plain variation in the dependent variable. 112 indicates the proportion of the total sum 
of squares explainable by the predictor. The {3 statistics are analogous to the T1 statis­
tics but are based on adjusted means rather than raw means. 

The multiple regression is given in Tables 3 and 4. The R2 is higher in the regres­
sion models because there is no loss of information with continuous data, whereas the 
MCA divides the data into subgroups. 

Other Roads 

The same types of analyses were conducted for accident rates and numbers for each 
of the other road types. Accident rates for four-lane roads were best predicted from 
percentage of developed frontage and percentage of population between 16 and 24. Ac­
cident numbers were best predicted from traffic volume, percentage of commercial 
frontage, and percentage of population between 16 and 24. The rate prediction models 
differed from the number prediction models in that the former did not include traffic 
volume as a predictor. 



Figure 4. Means and ranges for number of accidents by road tvpe. 
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Figure 5. AID analysis of number of accidents on two-lane roads. 
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Table 1. MCA of number of accidents on two-lane roads. 

Variable Tl 11' /J {J' 

Traffic volume 0.812 0.660 0.576 0.331 
Percentage of developed 

frontage 0.695 0.483 0.310 0.096 
Percentage of population 

between 16 and 24 0.464 0.216 0.263 0.069 
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Model building for divided and freeway segments was limited by a small sample 
number. The accident rate on divided roads was best predicted from the percentage 
of commercial frontage and on freeways by the regional population density. Prediction 
of numbers was not necessary because, on high-volume roads, the rates and traffic 
volumes are relatively stable and numbers can be computed directly from those 
statistics. 

Table 5 gives a summary of all of the MCA and regression models developed in this 
study. 

ALTERNATE MODEL 

The general model of traffic accidents based on environmental factors appears to 
have been substantiated. The models exhibit operationally acceptable R2 values. The 
inclusion of regional scale variables contributed in two ways: importance in terms of 
additional specification of models and substitutability of those terms for more tradi­
tional measures. The former contribution can be measured in {1 values, which, in this 
case, ranged from 0.073 to 0.429. In the latter case, several bivariate models used 
regional variables as the best predictor. The availability and convenience of areal data 
may justify additional substitution in operational situations. 

Inspection of the models, as a group, leads us to consider the general relationship 
among accident numbers, rates, and traffic volume. Accident numbers tended to in­
crease with increasing levels of traffic volume. A positive relationship was exhibited 
for all four road types, with bivariate regression R values of 0.845, 0. 702, 0.831, and 
0. 735. Also, accident numbers tended to increase with increasing accident rates ex­
cept on two-lane roads where the variability was high because of small numbers of ac­
cidents and low traffic volumes. Bivariate regression plots of accident rates and 
numbers for the remaining three road types exhibited R values of 0.750, 0.961, and 
0.928. Accident rates, however, exhibited no significant relationship with traffic vol­
umes in this study (R of -0.033 for all roads, -0.155 for two-lane roads, and 0.149 for 
four-lane roads). 

All of this leads to the suggestion of a conceptual model that is different from the 
traditional traffic volume-accident rate model. This alternate model is based on two 
relationships: 

Number of accidents = f (traffic volume, accident rate) 
= traffic volume x accident rate 

Accident rate f (type of road, road frontage 
environment, regional environment) 

Traffic volume and accident rate determine the number of accidents on a road seg­
ment in a simple multiplicative relationship. The type of road, road frontage charac­
teristics, and percentage of the population between 16 and 24 determine the accident 
rate. Traffic volume does not directly affect the accident rate, but volume is associated 
with the variables that affect the accident rate. For instance, highly developed road 
frontage activity and heavy traffic volume tend to occur together. And traffic volume 
is, of course, closely associated with the type of road. This basic set of relationships 
is modified for two road types. First, road frontage is not an important variable for 
freeways because these roads have limited access. Second, the importance of the 16 
to 24 age group is not exhibited on divided roads and freeways, not because it does not 
exist, but because the longer trip distances on those roads reduce the effectiveness of 
a 3-mile radius areal population measurement. For these reasons, regional variables 
do not appear in the divided road model, and residential density is the best predictor 
for freeways. 

CONCLUSIONS 

This study has attempted to use a wide range of environmental variables in the pre­
diction of traffic accidents over a wide range of road types. Although cross-study 



Table 2. Deviations for variables in MCA Unadjusted Adjusted 
of numper of accidents on two-lane Deviation De'Viation 
roads. Number Class From the From the 

Independent Variable of Cases Mean Grand Mean Grand Mean 

Traffic volume (ADT) 
< 5,000 53 18.4 - 18.6 -12 .7 
5,000 to 9, 999 23 51.6 14.5 8.6 
10,000 to 14,999 9 89.3 52.2 43.4 
15,000 to 19,999 1 124.0 86.9 35.4 
20,000 to 24,999 2 84.5 47 .4 26.0 

Percentage of developed 
frontage 

0 to 19 34 15.7 -21.3 -10.3 
20 to 39 26 36.0 - 1.0 0.6 
40 to 59 14 53.2 16.1 6.2 
60 to 79 8 59.3 22.2 15.6 
80 to 99 6 95.6 58.5 20.6 

Percentage between 16 
and 24 

11.0 to 12.9 13 24.6 -12.3 1.1 
13.0 to 14.9 52 33.5 -3.5 2.5 
15.0 to 16.9 16 37.3 0.2 5.0 
17.0 to 18.9 4 83.7 46.6 26.0 
19.0+ 3 89.3 52.2 30.7 

Note: Grand mean number of accidents= 37.0; N = 88. 

Table 3. Results of multiple regression Range 
analysis of number of accidents on two- Variable Variable Standard 
lane roads. Number Name Mean Deviation 

Table 4. B, {3, and significance levels for 
regression analysis. 
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F ratio 84.97 8.49 1.413 
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Note: In the overall regression , R = 0.94, F = 231.2, and 
p ,; 0,01 . R2 = 0.89, N = 88, and constant term = 0.0. 

Table 5. Summary of statistical models. 
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Figure 6. Alternative model. 
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comparisons are difficult at best, it appears that the models developed here are at 
least as successful as previous attempts in terms of variance explained. It appears 
that the inclusion of regional variables is justified and that the underlying conceptual 
model is at least tentatively supported. 

The use of such models has been documented in numerous previous studies and need 
not be elaborated here. However, the operational tasks of problem area identification, 
factor identification, and the like may in some cases find marginal benefit in using 
these models because of the relative ease of collecting the independent variable data. 

In conclusion, although this approach is basically sound, much additional work is 
warranted in this general area. 
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