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This paper describes a new solution technique for the equilibrium traffic 
assignment problem. After existing methods of solution are reviewed and 
difficulties that have been experienced with current techniques are dis­
cussed, a mathematical programming model for the equilibrium traffic 
assignment problem is presented. The solution technique for this pro­
gramming model is one that has been proved to converge every time and 
that rapidly closes in on the equilibrium flows without excessive computa­
tional requirements. It is noted that the computational requirement of the 
proposed approach is very similar to those of currently used solution 
methods, which clearly indicates the feasibility of using the proposed ap­
proach to find the equilibrium flows on networks with hundreds of nodes. 
Numerical results for the proposed solution technique on a test network 
having 76 arcs and 24 nodes are given. A computing time (central process­
ing unit) of 6 seconds on the CDC 6400 computer is reported for accurately 
computing the equilibrium flows on the test network. 

•THIS PAPER describes an efficient method for finding the equilibrium traffic flows 
on urban transportation networks. The problem is as follows: We are given a system 
of streets and zones representing a particular urban area, and we have estimates of the 
number of travelers (amounts of flow) who will drive between each pair of zones. It is 
well known (2) that the travel time along any street experienced by each driver depends 
on the number of vehicles flowing along the street. We assume that each driver will 
take the shortest (quickest) route between his origin and destination, and we wish to 
determine the traffic density on each street that results from the interaction among 
drivers as they congest the streets by traveling to their destinations. An equilibrium 
exists when a driver (increment of flow) cannot reduce his travel time by switching to 
another route between his origin and destination. Thus we wish to determine how the 
traffic between the zone pairs will be distributed over the streets of the city. 

The equilibrium traffic assignment problem is an especially important one inasmuch 
as every metropolitan area experiences to some degree the serious problem of traffic 
congestion, notably during peak hours of movement. To improve an urban transporta­
tion system to meet projected demands for trips between each pair of zones in some 
future period requires that a model be developed for testing the proposed improvements. 
Alternatively, we may wish to determine whether the existing system can accommodate 
future increases in traffic without excessive congestion. 

A system of streets and expressways is usually modeled by a network whose nodes 
represent major intersections and interchanges; the nodes are connected by directed 
arcs so that a two-way street is modeled by two arcs in opposite directions. The net­
work is generally used to represent only the major streets of an urban area, whereas 
minor roads such as side streets in housing areas are usually not included. 

An urban area is typically divided into zones. We assume that a matrix is available 
that specifies the expected number of trips between the various zones during the time 
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period being studied. This matrix is called a trip table; the (i, j) entry equals the num­
ber of vehicles that must depart origin i to arrive at destination j. Each zone is identi­
fied by a node in the network. A node will not necessarily have any demand for trips 
associated with it; it may simply represent an intersection of two streets. All traffic 
that leaves any zone emerges into the network through its associated node or nodes, 
and traffic entering the zone leaves the network through the associated nodes. In this 
way, origin-destination estimates based on urban zones are transferred into origin­
destination estimates based on nodes in the network. The model assumes that all traffic 
enters and leaves the network through the nodes. 

The travel time experienced by a user of any road or arc, called the average travel 
time function or the volume-delay curve, is a known function of the total volume of flow 
along the road. Let A13 (xu) denote the travel time experienced by each user of arc (i, j) 
when xlJ units of vehicles flow along the arc. For example, if arc (i, j) is 1 km long and 
vehicle speed is 30 km/ h when the volume of flow on the arc is x 1J, then Au (x!J) = 2 min. 
Almost all recent studies have recognized the effect that congestion of an arc has on 
travel time and have used nonlinear, increasing travel time functions. We assume that 
A1 i{x1J) has continuous derivatives; this assumption is not at all restrictive. FHWA 
uses polynomial functions that have this property. 

The travel time functions used by FHWA are shown in Figure 1 (2). The shape of 
the function AIJ(x1J) is intuitive. As in the figure, the travel time per user increases 
very slowly at first; it remains almost constant for low levels of flow. However, as 
the flow begins to reach the level for which the arc (street) was designed, the travel 
time experienced by each user begins to increase rapidly. The a.iJ and biJ are empir­
ically determined parameters for each arc, which depend on the arc's length, speed 
limit, and number of lanes and traffic lights. If there is a significant delay in making 
a left turn at an intersection (node), then turn penalties can be incorporated by using 
dummy arcs to represent the delay in making the turn. 

Wardrop (10) has formulated two conditions that together formally characterize a 
network equilibrium. A set of flows along the arcs of a network is said to be at equi­
librium if the following two conditions are satisfied for every origin-destination r-s 
pair: 

1. If two or more routes between nodes r and s are actually traveled, then the cost 
to each traveler between r and s must be the same for each of these routes; and 

2. There does not exist an alternative unused route between nodes r and s with less 
cost than that of the routes that are traveled. 

The assumption is made that each user of the network seeks to minimize his own 
travel cost and that he experiments with different routes, eventually finding the least 
cost one. It is clear that, if 1 or 2 were not true, some drivers would switch to the 
cheaper routes, congesting them and causing a new flow pattern to evolve. Equilibrium 
is the aggregate result of individual decisions; at equilibrium, no single driver can 
reduce his own cost by choosing an alternative route in the network. 

EXISTING SOLUTION TECHNIQUES FOR THE EQUILIBRIUM TRAFFIC 
ASSIGNMENT PROBLEM 

The majority of solution techniques used today for finding the equilibrium flows on 
a network are simulation models, heuristic in nature, involving the concept of the 
shortest route between two nodes. One of the earliest techniques for this traffic assign­
ment problem is called the "all-or-nothing" assignment te.chnique. This method as­
sumes that the travel time experienced by each driver on any arc in the network is a 
simple constant, independent of the flow level along the arc, and thus it completely 
ignores the very real problem of traffic congestion. The all-or-nothing technique is 
first to determine the shortest path between each origin-destination pair and then to 
assign all of the trips between this node pair to the shortest path. The all-or-nothing 
assignment technique is unstable: A slight change in the demand matrix can cause 
radical changes in the predicted arc volumes. Changing the demand has caused an arc's 
volume to change from the heaviest in the network to too few trips to justify its con-
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Figure 1. Travel time functions used by the U.S. BPR. 

Figure 2. Test network. 
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struction. In view of the approximate nature of the demand estimates and of the travel 
time functions, this instability can seriously hinder the model's utility (3). 

A natural extension of the all-or-nothing technique is to recognize the effect of con­
gestion on the travel time on any arc. The effect of congestion is incorporated in the 
capacity restraint simulation models; these are traffic assignment procedures in which 
the travel time along an arc is adjusted according to a functional relationship between 
the design capacity and the volume of flow along the arc. An example of a capacity 
restraint model is the traffic assignment technique developed by the Chicago Area 
Transportation Study. In the CATS technique, one node is randomly selected from the 
network, and the minimum paths are determined from this node to all other nodes. All 
trips from the selected node are then assigned to the corresponding minimum paths. 
The network is then updated with new travel times calculated for the arcs in the mini­
mum paths. The procedure is repeated with the random selection of another node and 
the computation of the new shortest routes. 

The CATS procedure does not involve any iteration because the network is updated 
before the computation of each set of shortest routes, and thus the travel times are 
directly related to the volumes of flow along the arcs (6). However, the CATS proce­
dure gives different flow patterns, depending on the order of selection of the origin 
nodes (2). Also the flow pattern produced by CATS does not really ensure that all users 
follow the shortest path between their origin and destination. For example, if node s 
is randomly selected during the early stages of the procedure, then all trips originating 
at node s are assigned to the shortest paths between node s and each destination by 
using the current arc travel times. But other nodes are subsequently generated, their 
trips are assigned to routes in the network, and the arc travel times are changed. The 
result is frequently that the paths used by travelers originating at node s are no longer 
the shortest paths to their destinations. 

In an attempt to find the true equilibrium, iterative procedures are often used. 
Iterative procedures are simply continuations of the previous model; after all nodes 
have been generated, the model continues to generate nodes again. The rationale of 
these iterative models is similar to Charnes' game theoretic interpretation of the prob­
lem. Charnes associated with each origin a player who tries to choose a set of routes 
such that the correct number of vehicles will travel from the origin to each destination 
at minimum travel time. Because vehicles from the various origins interact, the 
travel times as seen by a given player depend on the actions of the other players. Thus 
an iterative technique is used to determine the equilibrium flows on the network. Each 
player chooses his routes in turn; after all the players have made their decisions, the 
resulting times along each arc are revealed to all the players, and they again take turns 
in revising their routes (4). 

If the procedure described above is iterated enough times, the sequence of flow 
vectors may converge to an equilibrium. One possible termination criterion is to stop 
when the maximum percentage change between the components of two consecutive flow 
vectors is less than some specified amount. However, this iterative technique does 
not always produce a convergent sequence; examples are known where the sequence 
oscillates around a flow pattern that is not in equilibrium. In actual applications of 
large'-scale problems, the practice is usually to terminate after four iterations (2). 

The incremental assignment technique is a variation of the all-or-nothing method in 
which only a small increment of the total number of trips between any two nodes is 
assigned to the minimum path between the two nodes. In this technique, a node pair is 
randomly selected and the shortest path between these two nodes is determined. The 
length of each arc is set equal to the value of the arc's volume-delay function evaluated 
at the current level of flow along the arc; initially, the flow is zero. Then a small 
percentage of the total required flow is sent along this path, the flow level for each arc 
in the shortest path is incremented, and the new lengths of the arc are determined. 
Another node pair is then selected, and the process repeats itself until all traffic has 
been assigned. This represents an attempt to load the network in a balanced manner 
so that all arcs of the network approach the fully loaded condition at the same time. 
Thus the effect of congestion becomes more significant, and there is a better chance 
of achieving the conditions of network equilibrium. However, the incremental assign-
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ment technique is time-consuming from a computational point of view inasmuch as a 
shortest route problem must be solved many times for each distinct origin-destination 
pair in the network (5) . Also, it has not been proved that the incremental assignment 
technique converges To the equilibrium flows ; thus for a particular problem, it may not 
produce the equilibrium flows. 

As this brief review has indicated, there are a number of solution techniques in use 
for the traffic assignment problem. However, there have been difficulties with existing 
solution techniques, as a recent study in Lancaster, Pennsylvania (9), has shown. The 
study used data for the existing network in an attempt to replicate observed flows along 
the arcs by the unrestrained all-or-nothing technique and capacity restraint versions 
of this procedure involving one, two, three, and four iterations. To determine which 
of these five algorithms produced flows most closely resembling the observed flows, 
we made extensive comparisons of each assignment algorithm with the observed ground 
counts. A chi-square index was used as one means of comparison: 

where 

G1 observed flow on street i, 
A1 = flow on arc i predicted by the assignment algorithm, and 

n = number of arcs in the network. 

The authors used the chi-square index as an intuitive means of comparison; however, 
they report that, if the values of the chi-square were used in a statistical test, then 
" ... all of the assignments would be rejected according to a Chi-Square test, since all 
of the values are significantly different from the ground count." As given below, the 
chi-square index actually increased after the first iteration, and, even after four iter­
ations, it was still larger than the index of iteration number one: 

Technique 

Unrestrained assignment 
Iteration No. 1 
Iteration No. 2 
Iteration No. 3 
Iteration No. 4 

Chi-Square Value 

19,035 
12,597 
16,616 
14,599 
14,187 

No mention of a confidence level is given. The authors' conclusion emphasizes their 
problem with lack of convergence: "It is not recommended that additional iterations 
of capacity restraint be made utilizing the same function or model because it has been 
concluded that the fourth iteration is only the third best assignment." 

A chi-square test was also used in the National Cooperative Highway Research Pro­
gram study (7) to check the all-or-nothing algorithm and several variations of the ca­
pacity restraint algorithms. Here it is also reported that "all of the values are sig­
nificantly different from the ground count estimates, indicating that the difference in 
assignment is more than can be expected by chance alone." 

Another criterion for comparing the output of each algorithm with the observed flows 
is that of total vehicle-miles in the network. In their report (7), Huber, Boutwell, and 
Witheford tested the ground count vehicle-miles and each algorithm's predicted vehicle­
miles for the Pittsburgh network. The hypothesis tested was that the observations 
from the ground count and from four algorithms are all from the same normally dis­
tributed population. No justification of the assumption of normality is given. The 
authors again conclude that the hypothesis must be rejected. In fact, they reach the 
remarkable conclusion that all of the assignment algorithms are equally poor, stating 
that " ... the various assignment techniques gave results which were closer to each 
other than to the ground count results." This clearly indicates the need for an improved 
equilibrium traffic assignment algorithm. 
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In tlie next section we will present a different model for the equilibrium traffic as -
signment problem. A solution technique that has been proved to converge every time 
and that rapidly closes in on the equilibrium flows without excessive computational re­
quirements will then be described. 

MATHEMATICAL PROGRAMMING MODEL FOR LARGE-SCALE NETWORK 
EQUILIBRIUM PROBLEMS 

Consider a fixed network with n nodes, and assume that nodes 1, 2, ... , p, p ~ n are 
origins and destinations. Define A as the set of arcs (i, j) in the network. Let x13 denote 
the total flow along the arc (i, j), let x'l 3 denote the flow along arc (i, j) with destination 
s, and let D(r, s) denote the fixed amount of flow required between nodes r ands. Ob­
viously, 

As above, we let the average travel time function for arc (i, j) be denoted by A1j(x1J). 
Now define 

Using the definition A1J(x1j) in Figure 1, we see that 

Then the optimal solution for the nonlinear programming problem 

(NLP) min L f1,( f x) = min L [ aiJ( f x'lJ) 
(i, j)€A s=l ~ (i, j)€A s =l 

+ (b,,;{t x.,)] 
s. t. L x'lJ + D(j, s) 

frB(j) 

for j = 1, ... , n and s = 1, ... , p and 

XiJ ;;,; 0 (i, j) €A 

(1) 

(2) 

(3) 

for s = 1, ... , p constitutes the equilibrium flows. The objective function, Eq. 1, is the 
sum of the integrals of the average cost functions. In Eq. 2, B(j) is the set of nodes 
with arcs leading into node j (before j) and A(j) is the set of nodes with arcs leading 
into them from j (after j). The constraints of Eq. 2 are conservation of flow equations 
that state that, for each destination s, the sum of the flows into each node destined for 
s plus the flow originating at that node destined for s equals the sum of the flows out 
of that node destined for s. Constraints of Eq. 3 are simply the nonnegativity require­
ments. 

Problem NLP is closely related to the work done by Kirchoff in electrical networks. 
Beckmann (!) seems to have been the first to apply the idea to transportation networks; 
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he proves that the solution to NLP is the desired equilibrium. Unfortunately, this 
problem appears very much harder to solve than current simulation models. The 
number of constraints in NLP is enormous-the number of conservation of flow con­
straints of Eq. 2 equals the product of the number of nodes in the network with the 
number of destinations in the network. Thus this nonlinear programming problem for 
a network with 200 nodes, 100 of which are destinations, would have 20,000 conservation 
of flow constraints. In addition there are the nonnegativity constraints. Potts and 
Oliver (8) state that computational success has been limited to small versions of prob­
lem NLP, and so the approach appears useless for realistically sized equilibrium traf­
fic assignment problems. 

However, a rigorous examination and exploitation of the structure of problem NLP 
reveal that this is not at all the case. LeBlane (5) used the Frank-Wolfe algorithm (11) 
to solve the equilibrium traffic assignment problem, e.g., problem NLP. This solution 
technique has proved to be remarkably accurate and efficient. In the Frank-Wolfe 
algorithm, Eq. 1 is replaced with a very simple linear approximation, and the linear 
programming problem of minimizing this linear approximation subject to Eqs. 2 and 3 
is solved. The optimal solution to this linear programming problem is then used to 
define a search direction in which to minimize Eq. l; the result of this search is an 
estimate of the equilibrium flows. After the search is completed in this generated 
direction, a new linear approximation is obtained, the linear programming problem is 
resolved with the new objective function to obtain a different direction of search, and a 
better estimate of the equilibrium flows is obtained by searching in this direction. The 
algorithm continues to iterate in this manner, solving one-dimensional searches and 
linear programming problems that minimize successively better linear approximations 
to the nonlinear objective function of Eq. 1. 

An alternative procedure for solving NLP would be the usual method of linearization­
approximate Eq. 1 with a piecewise linear function and use the simplex method to solve 
the resulting linear programming problem. The solution of problem NLP by lineariza­
tion has been attempted in the past. Because linearization uses a more accurate linear 
approximation and hence does not solve a sequence of linear programming problems, it 
may seem that linearization is more efficient than the iterative technique from a com­
putational point of view. However, this is not the case. Both solution techniques were 
coded on the CDC 6400 computer for a test network, and the computing time for the 
iterative technique was less than that of the usual linearization procedure by orders of 
magnitude. These numerical results are reported in the next section. 

The key reason for the computational success of the Frank-Wolfe algorithm described 
above is that each of the linear programming problems has such an extremely simple 
structure that it can be solved by a shortest route algorithm. This means that all of the 
conservation of flow equations and nonnegativity constraints can be ignored; they are 
automatically satisfied by definition of a route between two nodes. It is well known in 
operations research literature that the computational requirements of a shortest route 
algorithm are trivial as compared to the requirements of a linear programming prob­
lem. The net result is that when problem NLP is solved by the Frank-Wolfe algorithm, 
the computational requirements of several shortest route problems and one-dimensional 
searches are vastly less than the computational requirements of the simplex method for 
solving NLP by linearization. 

In the preceding section, a currently used iterative simulation technique based on 
Charnes' game theoretic interpretation of the equilibrium traffic assignment problem 
was described. LeBlanc (5) showed that each iteration of this simulation technique in­
volves solving a shortest route problem that is identical to the shortest route problem 
solved at each iteration of the algorithm suggested in this paper for solving problem 
NLP. Thus we have the remarkable conclusion that the computational requirements of 
the proposed approach are not significantly different from the computational require­
ments of currently used simulation techniques for the equilibrium traffic assignment 
problem; so it is obvious that the proposed approach will be efficient for large problems. 

The basic difference between the simulation technique and the algorithm suggested 
in this paper is that the proposed algorithm solves the shortest route problem to deter­
mine a direction of search and then minimizes the objective function in this direction to 
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obtain a new estimate of the equilibrium flows. The simulation procedure, on the other 
hand, uses the solution to this same shortest route problem itself as a new vector of 
flows. This leads to completely distinct flow vectors. These two approaches to the 
problem are fundamentally different. One is a simulation technique based on heuristic 
assumptions about the system; it frequently does not converge. The other is a rigorous 
application of a convergent algorithm to an NLP problem whose optimal solution is 
proved to be the equilibrium. 

COMPUTATIONAL RESULTS 

The Frank-Wolfe algorithm described was programmed in FORTRAN IV on a CDC 
6400 computer; the test network shown in Figure 2 was used initially for debugging of 
the computer programs only. The network and travel time functions were chosen so 
that the equilibrium flows could be determined by inspection. Because the Frank-Wolfe 
algorithm converges to the equilibrium solution only after an infinite number of itera­
tions, the primary concern was to determine how many iterations of the procedure are 
required for a reasonably accurate answer. The results are given in Table 1; after 
eight or 1-0 iterations, the flow values are probably more accurate than the data that 
are input to this type of model. 

The algorithm was then run on a larger network consisting of 76 arcs and 24 nodes, 
each of which was both an origin and a destination. This network was used to model 
Sioux Falls, South Dakota, a city of approximately 125,000 residents. The network, 
trip table, and volume-delay functions are shown in Figures 3 and 4. Because the trip 
table in Figure 4 is symmetric-the number of trips between node i and node j equals 
the number of trips between nodes j and i-the equilibrium flow values will also be 
symmetric. In other words the equilibrium flow on arc (i, j) will be equal to the flow 
on arc (j, i), and thus we really need compute only 38 flow values. In this problem, 
one unit of flow was chosen to be 1,000 vehicles per day. Problem NLP for this net­
work had 1,824 variables, 576 conservation of flow constraints, and 1,824 nonnegativity 
constraints. Because this is a general nonlinear programming problem, it is impos­
sible to determine the exact solution in a finite amount of time. However, examination 
of the sequence of flows in Figure 5 shows that, after 20 iterations, only two variables 
changed by more than 5 percent; the majority changed by less than 2 percent. Thus 
the final flow vector appears to be a highly accurate estimate of the equilibrium solu­
tion. Computing time for 20 iterations, excluding 3 seconds of compilation time, was 
6 seconds. If the termination rule had been to stop when the maximum percentage 
change in components was less than 8 percent, the procedure would have terminated 
after 16 iterations. After 16 iterations, the maximum percentage change in the com­
ponents was 7. 7 percent; computing time was 5 seconds. 

The most encouraging computational result was the very small increase in the num­
ber of iterations required by the Frank-Wolfe algorithm for the two example problems. 
There were 12 conservation of flow constraints and 40 nonnegativity constraints for the 
initial network used for debugging, whereas the problem for the larger network in 
Figure 3 consisted of 576 conservation of flow equations and 1,824 nonnegativity con­
straints. Nevertheless, the required number of iterations increased from approxi­
mately eight or 10 to only 16 or 20. The number of iterations appears to be related to 
the number of nodes in the underlying network rather than to the number of constraints 
in the NLP problem. Increasing the number of nodes by a factor of six only doubled 
the number of iterations; this indicates that the algorithm will be computationally ef­
ficient for problems as large as several hundred nodes. 

As mentioned earlier, problem NLP can also be solved by a more common form of 
linearization in which Eq. 1 is approximated by a piecewise linear function. This ap­
proach was also attempted on problem NLP for the network in Figure 3. However, the 
computing time was much greater: For this technique, the Optima package on the CDC 
6400 required 700 seconds to solve NLP-more than 100 times as long as the Frank­
Wolfe technique. 
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Figure 3. Sioux Falls network. 
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Table 1. Sequential estimates of equilibrium flows on 10 arcs of Figure 1. 

Sequential 
Vectors of Arc 
Equilibrium 
Flow 2 3 4 5 6 7 8 0 10 

x ll) 37.2 28.3 37.2 28.3 28.3 37.2 37.2 28.3 14.4 14.4 
xm 32.2 32.6 32.2 32.6 32.6 32.2 32.2 32.6 20.6 20.6 
xO) 33 .9 29.9 33.9 29.9 29.9 33.9 33.9 29.9 20.4 20.4 
x f4J 32.0 31.6 32.0 31.6 31.6 32.0 32.0 31.6 22.6 22.6 
x !5J 29.9 33.0 29 .9 33.0 33.0 29.9 29.9 33.0 22.2 22.2 
x 161 31.0 31.8 31.0 31.8 31.8 31.0 31.0 31.8 23.6 23 . 6 
x11, 32.5 29.9 32. 5 29.9 29 .9. 32. 5 32. 5 29 .9 23 .0 23.0 
x 18) 31.7 30.6 31.7 30.6 30.6 31. 7 31.7 30.6 23.0 23.9 
x i"> 29.9 32.1 29.9 32.1 32 .1 29.9 29.9 32.1 23.3 23.3 
x( I D) 31. 7 29.9 31. 7 29.9 29.9 31. 7 31. 7 29.9 22.7 22.7 
x CllJ 30.0 31.4 30.0 31.4 31.4 30.0 30.0 31.4 22.3 22.3 
x n 2i 31.2 30.0 31.2 30.0 30.0 31.2 31.2 30.0 22.0 22.0 
xU.ll 30.0 31.0 30.0 31.0 31.0 30.0 30.0 31.0 21. 8 21.8 
x U-4) 31.0 30.0 31.0 30.0 30.0 31.0 31.0 30.0 31.6 21.6 
x0SJ 30.0 30.9 30.0 30.9 30.9 30.0 30.0 30.9 21.5 21.5 

Equilibrium 
flow 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 20.0 20.0 

Figure 4. Trip table and arc parameters for Sioux Falls network. 
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Figure 5. Sequence of vectors of flow on (a) arcs 1 through 19 and (b) arcs 20 through 38. 
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CONCLUSIONS AND RECOMMENDATIONS 

In this paper we have addressed the problem of finding the equilibrium traffic flows 
on urban networks. In particular, we have looked at the computational aspects of large­
scale equilibrium problems. The algorithm that was discussed above promises to be 
efficient for finding the equilibrium on a network with hundreds of nodes, since its most 
difficult computational requirements are identical to those of the iterated capacity re­
straint simulation models of traffic assignment currently used. And yet the above 
algorithm is a rigorous one; it is proved theoretically that it always converges to the 
exact equilibrium. This algorithm has demonstrated its capability by solving a large­
scale nonlinear programming problem (576 linear constraints and 1,824 variables and 
nonnegativity constraints) in 6 seconds on the CDC 6400 computer. Even this small 
computing time could certainly be reduced by examining the computer program in detail 
and by making it more sophisticated and more efficient. Further research is needed, 
however, to determine exactly how large a network can be handled in a reasonable 
amount of computer time. This question is of particular interest to transportation 
planners inasmuch as the assumption that a true equilibrium is achieved is almost 
universally used in system models used to support such planning. Current methods of 
network equilibrium analysis are known to be inaccurate (in that they often do not con­
verge to an equilibrium) and very costly, making the potential payoff from research on 
better methods very substantial. The problem of selecting a suitable test network and 
appropriate data must also be addressed. Finally, suitable comparisons for the outputs 
of different assignment models must be chosen. 
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