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Operational network equilibrium procedures are being developed for the 
fixed-demand single-mode case . The basis of these procedures is de
scribed in the light of the historical development of approaches to the 
problem of predicting equilibrium flows in transportation networks. The 
procedures are described as capacity restraint methods that have the fol
lowing advantages over traditional approaches: On each iteration, improve
ment of the solution is ensured; and following each iteration, a measure 
that indicates the maximum amount of error remaining can be calculated. 
This paper describes network equilibrium procedures being made opera
tional as a part of the UMTA Transportation Planning System. These pro
cedures are described in light of their theoretical and mathematical back
ground. Although significant theoretical work has been done on the 
variable-demand network equilibrium problem, the first developmental 
step being taken is to provide an efficient fixed-demand equilibrium pro
cedure. It is expected, however, that expansion to the variable-demand 
case will be possible within the general algorithmic framework being de
veloped. The paper begins by stating the general (variable-demand) net
work equilibrium problem. This problem is then formulated mathemat
ically, and the nature of its solution is discussed. Previous work to develop 
efficient solution techniques is discussed. The results of much of the 
previous work are summarized as a general equilibrium algorithm for 
the fixed-demand problem. Finally, based on this general algorithm, cur
rent development work is described. 

•THE PROBLEM of predicting flow equilibrium in transportation networks is in de
termining the values of interzonal flows and costs and link flows and costs. (Cost is 
used in a very general sense to represent in a single variable a combination of things 
such as travel time, fares, operating expenses, and discomfort.) 

These are the output variables; the inputs are the structure of the transportation 
network, sets of link supply and interzonal demand functions, and flow distribution rules. 
Because deterministic and static, or steady-state, inputs are used, the output variables 
are also deterministic and static. They therefore represent constant or average con
ditions over a period such as a peak hour or an average day. 

The components of the inputs to the flow equilibrium problem listed above are de
scribed as follows: 

1. The network-A network is composed of nodes and ordered pairs of these nodes 
termed links. Links connect two nodes and allow flow to occur in only one direction 
between them. Some of the nodes are zones at which trigs enter and leave the ne w k. 

2. Supply functions-Each link has associated with it not only a flow but also an im
pedance to flow in the form of a travel time or generalized cost. The relationship be
tween link flow and link cost is expressed by a supply function that indicates how cost 
increases as flow increases. Typically, the supply function for each link may have an 
asymptote at a maximum flow level or capacity. 
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3. Demand functions-Each zone pair has associated with it a demand function that 
relates the origin-destination (0-D) travel cost to the volume of travel that will flow 
from origin to destination. In the variable-demand case, this volume of travel de
creases as the cost increases. In the fixed-demand case, the volume of travel remains 
constant for all levels of cost. 

4. Flow distribution rules-A flow distribution rule that describes how travelers route 
themselves over links to move from an origin zone to a destination zone is assumed to 
exist. This rule can imply either individual route choice, systemwide control of route 
choice, or some combination of these. For the representation of highway travel by 
private vehicles, the common assumption is that individuals choose a minimum cost 
route. The results of this flow distribution rule are that all routes chosen from any 
origin to any destination will have equal travel costs and that all other routes will have 
higher travel costs. These results are termed Wardrop's first principle (26) or a 
user-optimized flow pattern (4). -

For the representation of travel by vehicles belonging to a single authority, such as 
a railroad providing freight service, a logical assumption is that the single authority 
wishes to maximize its total consumer's surplus and that its flow distribution rule is 
to make routing decisions with this objective in mind. The result of this flow distribu
tion rule has been termed Wardrop's second principle or a system-optimized flow 
pattern. 

Our concern is with the prediction of user-optimized flow patterns, although the 
relationships -of these two flow patterns will also be explored. When user-optimized 
flow patterns are obtained, Wardrop's first principle states that there will be a unique 
travel cost for each zone pair. 

MATHEMATICAL FORMULATION 

The mathematical relationships that exist between the components of the equilibrium 
problem will be detailed here for the user-optimized problem. This has been done in 
the literature in a number of ways, based on alternative mathematical descriptions of 
network flows. The approach used here has been borrowed largely from Kulash (11). 

The following notation is used: -

a a typical link connecting two nodes, 
k a typical 0-D pair, 

m a typical path for a given 0-D pair, and 
Pk• (a1, . .. , a,,) = the set of links on path m connecting 0-D pair k. 

The links included in each Pk. constitute a single path from the origin to the destination 
of k. This path must be free of loops, and all links included in the path must be used 
in proceeding from origin to destination. 

This notation can be used to define the following variables: 

fa, ca = flow and cost on link a, 
fk•, ck• = flow and cost on path m for 0-D pair k, and 
f\ ck = flow and cost for 0-D pair k. 

The relationships between these variables are the following: 

1. The network structure gives rise to flow relationships for interzonal flows : 

fk = l: fkm 

all m 

_ for all k; for link flows: 

f. = l: fk• 

all k, m 

(1) 

(2) 
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for all a and for which a ( Pk•; and for path costs: 

for all k,m and for which a E Pkm· 
2. The supply relationships are 

for all a where s. is a function. 
3. The demand relationships are 

for all k where d k is a function. 

all a 

c. 

(3) 

(4) 

(5) 

4. The flow distribution rule, for a user-optimized flow pattern, gives rise to the 
following equilibrium relationships: 

for all k. 

if fk• > o} 
if f k• = 0 

(6) 

The properties of the solution to the user-optimized network equilibrium problem 
can be obtained by defining an equivalent optimization problem. This can be done as 
follows: 

1. For each demand function d k (Eq. 5), define the inverse function g k such that 

2. Define a new link function, ~., as follows: 

3. Define a new interzonal function, Q\ as follows: 

The equivalent optimization problem is then 

___ ,subjecLto-Eqs. 1 to 3. 

Maximize z = LQk(fk) - r.~.(f.) 

k 

(7) 

(8) 

(9) 

(10) 

This equivalence is proved by a number of mathematicians, including Gibert (9) and 
Murchland (17) for the general case and by Dafermos (5) for the fixed-demand case. In 
the fixed-demand case, the function gk cannot be obtained. There is, however, an anal
ogous optimization problem: 

Minimize Z = L .~.(f,.) (11) 

subject to Eqs. 1 to 3. 
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After the equivalency of the two problems has been demonstrated, the mathematics 
of nonlinear convex programming was used to prove that the solution of both problems 
exists, is unique, and is stable. 

REVIEW OF EQUILIBRIUM APPROACHES 

Problem Formation 

It appears that the first recognition of the difference between user-optimized and 
system-optimized network flows was described by Pigou in 1920 (20), who demonstrated 
for a simple two-link, two-node network. Current interest in the problem, however, 
dates from Wardrop's statements of the two kinds of problems in 1952 (26). 

Subsequent work on the formulation of the network equilibrium problem was done by 
Beckmann, McGuire, and Winsten (1), Prager (21), and Jorgensen (13). Jorgensen 
showed that if the supply functions '{"Eq. 4) are used to define a new set of functions 
Sf(f.) by using the relation 

I
f. 

St(f.) = 1/f. 
0 

s. (v)dv (12) 

then any flow pattern that is user-optimizing with respect to the set of cost functions 
s. (f.) is at the same time system-optimizing with respect to the set of cost functions 
S!f{f.). 

Solution Procedures 

Based on the foundations laid in the 1950s and early 1960s, solution procedures have 
been developed that can be divided into four general classes: traffic assignment ap
proaches, mathematical programming approaches, algorithmic approaches with fixed 
demands, and algorithmic approaches with varying demands. 

Traffic Assignment Approaches-This class of solution procedures has by far pre
dominated the other classes in actual application and in number of variants. [For an 
early survey, see Martin, Memmott, and Bone (15). The most common methods are 
described in the FHWA Traffic Assignment Manual (8).] Here, it is only necessary to 
note the major deficiencies of these approaches as methods for solving the network 
equilibrium problem: 

1. Link travel times have often been kept constant, thereby ignoring the existence 
of link supply functtons; 

2. Origin-destination trips have often been kept constant, thereby ignoring the exis
tence of travel demand functions; 

3. The number of paths traveled between each origin and destination has often been 
limited to one, making it impossible, normally, to satisfy Wardrop' s first principle; 

4. The accuracy of the approaches as approximations of equilibrium has not been 
determined (this includes both their convergence properties, if they involve iterations, 
and their expected errors upon completion). 

These deficiencies are not inherent in the traffic assignment process, and all of 
them are not true for each assignment procedure. Indeed, the procedure developed by 
Martin and Manheim (14), and implemented in transportation analysis systems at M.I. T. 
(14, 22), has only the last deficiency mentioned. Similarly, the package of assignment 
programs developed by Wigan (27, 28) includes procedures that have all features listed 
above except proven convergence properties. 

Mathematical Programming Approaches-Charnes and Cooper (3) have developed 
linear programming solutions to network equilibrium problems with fixed demands. 
Their contribution is the multicopy assignment algorithm, which takes advantage of the 
specific structure of the linear program they formulate. 

Yang and Snell (30) formulated a nonlinear equilibrium problem with fixed demands 
and developed a solution algorithm based on the maximum principle of Pontryagin. 
Tomlin (24) formulated a quadratic programming problem involving both the assignment 
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of traffic and the distribution of trip ends over all destinations by using a gravity model. 
The major problem with all mathematical programming approaches is the prohibitive 
solution cost for real-sized problems. 

Algorithmic Approaches With Fixed Demands-Three major efforts are known that 
have led to the development of network equilibrium algorithms for the fixed-demand 
case. These algorithms are significantly more efficient than the mathematical pro
gramming approaches. In each case, the improvement over programming approaches 
is obtained by using each of the following features of the network equilibrium problem: 

1. The relationship between the system-optimizing and user-optimizing problems; 
2. The theorems of mathematical programming, which are applicable because of the 

first feature; and 
3. The process actually used by travelers to progress to equilibrium. 

Expanding on Jorgensen's work, Mosher (16) was the first to formulate the user
optimizing equilibrium problem explicitly and to develop a solution algorithm that can 
be shown to converge. Dafermos and Sparrow (6) and Dafermos (4, 5) have developed 
more general algorithms. These algorithms are not limited to linear functions and 
have been extended explicitly to cases where the supply functions are of the following 
form: 

(13) 

where f1 , ••. , fJ are a subset of all network links. This extension is useful for represent
ing delays due to two-way traffic on facilities and to intersection flows. A second ex
tension involves the definition of multiple user groups, which can represent different 
vehicle types or users of different modes. A third set of algorithms for the fixed
demand case has been developed by Bruynooghe, Gibert, and Sakarovitch (2, 10). Their 
major advance is the elimination of the need to specify paths prior to the start of the 
procedure. New paths are found as the algorithms progress by using a minimum path 
procedure. 

Algorithmic Approaches With Varying Demands-A number of algorithms have been 
developed to obtain solutions to the general problem of user-optimized network equi
librium when both demands and supplies vary with travel cost. These are very recent 
developments developed since 1967. 

As an extension of the final fixed-demand algorithm described previously, Gibert (9) 
developed what appears to be the first variable-demand algorithm with proven con- -
vergence properties. Expanding on the work of Gibert, Murchland (17) has described 
the network equilibrium problem with varying demands in a way thafexplicitly brings 
out the relationships between the system- and user-optimized problems. Rather than 
specify exactly the steps of an algorithm, Murchland gives four principles for their 
development and states that a number of algorithms should be developed based on these 
principles and then tested to determine the most efficient one. The principles stated 
are the following: 

1. The algorithm should have as its goal the minimization of either the equivalent 
system-optimizing problem or its dual. Murchland suggests the use of an error in
dicator, 6, which is the difference between the objective functions for these two problems. 

2. Because these two objective functions are equal at equilibrium, the algorithm can 
be stopped when 6 is sufficiently small. 

_____ _,,3,.,___........,.·..,,_M...algru:ithm conti1mes, o can b~y u:m.i.ng_li · ·9..mhi,.mill,Q= - ...,~-
old and new flow patterns. 

4. Because the final solution will typically have flows on a number of paths between 
all origins and destinations, any single iteration method that will assign flows to a num
ber of paths should improve the speed of convergence. 

Murchland has used these principles to develop a research-oriented network equilib
rium computer program. 

Two approaches to network equilibrium with varying demands have been developed 
in the United States. The first, by Wilkie and Stefanek (29), applies control theory to 
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the user-optimized equilibrium problem. The second approach, by Kulash (11), is an 
initial effort involving only linear equations. -

Finally, an algorithm has been developed by Netter and Sender (18, 19) that addresses 
explicitly the multiple user group, multiple dimensioned supply functionlas in Eq. 13), 
and multiple dimensioned variable demand function problem. Netter and Sender show 
that multiple solutions exist unless the supply functions have a very restricted form. 
The algorithm is shown to converge to one of the multiple solutions; which one depends 
on the starting point chosen. 

A GENERAL EQUILIBRIUM ALGORITHM FOR FIXED DEMANDS 

The previous work done in developing network equilibrium solution procedures can 
be summarized by stating the features of these procedures that are essential to ensure 
convergence to the equilibrium solution, as agreed on by a number of authors, and that 
represent a minimum departure from existing traffic assignment procedures. (The 
restriction to minimum departures from existing procedures eliminates further con
sideration of approaches involving significantly more flow variables than used in traffic 
assignments.) These will be presented within the general algorithmic framework de
veloped by Murchland (17), inasmuch as it can be applied to the fixed-demand problem 
(all fk's fixed). After the elements of this framework are listed, some of the options 
available for each element will be described, emphasizing the suitability of existing 
production-oriented procedures as parts of equilibrium algorithms. 

1. Step 1-Develop an initial network solution, S. 
2. Step 2-Determine the best direction in which to proceed to_obtain a new trial 

solution. 
3. Step 3-Develop a trial solution, St. 
4. Step 4-Use an optimization procedure to obtain the best next solution, as a com

bination of Sand St. Symbolically, S = C(S, St) where C is some combination. 
5. Step 5-Determine whether Sis a satisfactory final solution. If it is not, return 

to step 2. 

Step 1-Initialization 

Because any solution for which the flow conservation relationships hold is appropriate, 
this step can be accomplished very efficiently by assigning total demands in an all-or
nothing manner to the minimum cost paths corresponding to zero flow. This step con
cludes with an updating of all link and 0-D cost variables. Normally, 0-D cost variables 
will be set equal to the cost on the new minimum path for the 0-D pair. 

Step 2-Direction for Trial Solution 

A new demand level for each 0-D pair can best be obtained by adopting a value that 
equals the old value plus a fraction of the difference between the old value and the value 
predicted by the demand function at the current minimum path cost. 

A number of authors show that the path over which new travel should occur for each 
0-D pair is the minimum cost path; its choice is assumed in the proofs of convergence. 
As an alternate, a multiple-path approach, using the link travel costs on the previous 
solution, can be used. A multiple-path solution for which the average travel cost is 
less on these new paths than on the old paths, using the old set of link costs, will also 
be satisfactory. 

An important option for the whole algorithm is whether new solutions are developed 
separately for each 0-D pair or at one time for the entire system. The choice of this 
option will determine whether steps 2, 3, and 4 are done in sequence separately for each 
0-D pair, or just one time, with an 0-D pair loop within each step. 

Step 3-Develop Trial Solution 

With the directions developed in step 2, the trial solution can be developed by using 
standard loading and link cost updating procedures to determine all flow variables (new 
fa and updated ca and ck) ass0ciated with this trial. 
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Step 4-Combine S and St to Obtain a New Solution 

This is the critical step, because it is here that all existing capacity restraint 
methods fall short of being network equilibrium procedures with proven convergence 
properties. For convergence, it is necessary that the proportions of old and trial solu
tions be determined by the procedure itself rather than by the analyst. 

A number of options exist with respect to the nature of the combination method, in
cluding the characteristics of the function itself, and the procedure for choosing the 
parameter of this function: 

The Combination Function-If 0-D pairs are considered separately, which requires 
saving the route of each path through the network and the corresponding path volume, 
then two combination functions are suggested: 

1. A transfer of volume from the longest path for an 0-D pair to the shortest as 
suggested by Dafermos and Gibert. 

2. An increase in volume on the shortest path (a fraction of the trial solution) plus a 
proportional decrease on all previous paths as suggested by Murchland. 

If only systemwide flow changes are made, no path volumes and routes need be saved. 
Then the only feasible combination function appears to be one corresponding to 2 above, 
a linear combination of the trial solution and the former solution. 

The Combination Function Parameter-If 0-D pairs are considered separately and 
the combination method of 1 above is used, the amount of volume shifted can be calculated 
based on maximizing the improvement to the objective function, Z (Eq. 11). 

If combination method 2 is used or if systemwide flow changes are made, the fraction 
of the new flow to add to the remaining portion of the old flow can be obtained either by 
maximizing the change in the objective function, Z, or by minimizing an error measure 
for the new solution. The details of the former approach are described in the next sec
tion. After a new solution is obtained, all link and 0-D cost variables should be up
dated to represent the new flows. 

Step 5-Apply Stopping Rule 

A number of stopping rules can be envisioned. These will take different forms de
pending on the method used to determine the combination parameter in step 4: 

1. Stop when the change in the objective function Z is small compared to Z itself: 
(LlZ/Z} ,;; E. 

2. Similarly, if an error function is used, stop when the change in the function is 
small compared to the function value itself. 

3. Stop when a specified number of iterations have been performed. 
4. Stop when a specified computing cost, measured in dollars or CPU minutes, has 

been spent. 

Whichever stopping rule is used, the final printout should include measures of the re
maining error. 

It is useful to summarize the various components that can be used to provide the 
options discussed and to state their availability. 

1. Efficient minimum path, link loading, and link updating capabilities are available 
in a number of traffic assignment packages. One of these, Dial's STOCH procedure (7), 
provides an efficient multiple-path assignment capability. -

------~'- "'-v,a·r iant- of he-ae-iHt.:y-te--fo-r-m- Hnear-eombinaHens ef- two-se-ts of'- link-loading ·:5-
inc luded in Wigan's system. 

3. The ability to obtain an error measure for any flow pattern that indicates its 
maximum variation from an equilibrium solution and the nature of such measures are 
discussed by Murchland and Wigan. 

4. The ability to determine the fraction that should be used in forming a linear com
bination of two flow patterns so as to minimize the error measure is discussed by 
Murchland, Gibert, and Dafermos. 
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AN OPERATIONAL ALGORITHM 

A number of the options described previously are being investigated, in preparation 
for specifying additions to the UTP system to incorporate network equilibrium. The 
basic algorithm serves as the standard of comparison for the efficiency and accuracy 
of all options developed. This algorithm is basic in that it makes maximum use of 
available assignment procedures and data structures. Alternatives to this basic algo
rithm will be judged by comparing their benefits-in terms of increased efficiency and 
accuracy-to their costs in terms of extra development time and, in some cases, com
puter storage requirements. 

The basic algorithm is described in this section, and the following notation is used: 

P' 
F1 
C1 
M1 

~z1 
s. (x) 

= 
= 
= 
= 
= 
= 

set of minimum paths between all zone pairs k, for iteration i; 
set of link flows for all links a, for iteration i; 
set of link costs for all links a, for iteration i; 
set of link supply function slopes for all links a, at the flow levels F1; 
change in value of the objective function (Eq. 11); and 
supply function for link a, evaluated at flow level x and 

L 1, L2, L3, L4 are analyst-supplied parameters. 

Step !-Initialization 

Perform an all-or-nothing assignment to the minimum paths corresponding to zero 
flows on all links [P0 based on C0 = s.(O)]. The result will be F1. Then, update all link 
costs to correspond to F1, yielding C1. At the same time, 

1. Estimate supply function slopes at the current flow levels by performing the fol
lowing calculation for each link a: 

(14) 

2. Estimate the initial value of the objective function, Z1. 

Z1 = 1/2 L fi. (c10 + ca.) (15) 
a 

Set i = 1 and ci, the initial combination size, equal to La. Finally, print i and Z1. 

Step 2-Determine Trial Solution Direction 

Find new minimum paths, p 1+1, based on the link costs C1. 

Step 3-Develop Trial Solution 

Assign all travel to the paths p 1
+
1, yielding flows Ft for the trial solution. 

Step 4-0btain New Solution 

The parameter>.. is determined to (approximately) minimize the (positive) change in 
the objective function. As derived in the Appendix, the expression for>.. (Eq. 25) is 

(16) 



48 

where 

m1a = slope of the supply function for link ~ at flow level f1. and 
.6.f0 = fta - f1a • 

As discussed in the Appendix, ,\ must be limited to the range O < ,\ < 1 • It is shown 
in the Appendix that Eq. 16 cannot result in a value of ,\ less than zero. If ,\ > 1, A 
should be set equal to 1. 

Form a new solution, F1+1, by combining F 1 and Ft, For each link, this involves 

(17) 

Update all link costs to correspond to F1+i, yielding Ci+1· At the same time, reesti
mate supply function slopes between solutions i and i+ 1 by performing the following 
calculation for each link, a: 

(18) 

Also, calculate the final estimate of the change in the objective function, .6.Z, and the 
new value of the function Z1 . 

.6.Z 

(19) 

Print i, .6.Z, Z1, and -X.; and set i = i+ 1. 

Step 5-Apply Stopping Rules 

The procedure is stopped and the desired assignment outputs are generated if any of 
the following are true: 

1. -(.6.Z/Z) ,; L1, 
2. -.6.Z ,; L2, 
3. i = L3, or 
4. CPU minutes 2 L4. 

If none of these is true, return to step 2. 

CONCLUSIONS 

A review of the literature on the network flow equilibrium problem indicates that 
the problem has a number of interesting properties that are useful in developing solu
tion algorithms. Included are the existence, uniqueness, and stability of a solution and 
the equivalency of the user-optimized problem and a system-optimized problem. A 
number of solution algorithms have been developed, and their convergence to a true 
equilibrium solution can be proved. A number of these algorithms can be made opera
tional by putting together standard components of transportation network analysis sys
tems and simple new evaluation tools. The kinds of computations to be performed by 
these tools are described in operational terms. The computation costs of these algo
rithms are expected to be comparable to those of existing restrained capacity assign
ment procedures. 

A basic algor1t 1m is escri e a uwo ves muum epar res r o.m e:XJ.S mg 
capacity restraint procedures. Efficiency and accuracy results obtained for this algo
rithm are being used as a base point against which to compare more innovative algorithms. 
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APPENDIX 

DERIVATION OF THE COMBINATION PARAMETER A 

The combination parameter A is to be determined to approximately minimize the 
positive change in the objective function, Z (Eq. 11). This change, l:J,.Z, is made up of 
components for each link a, such as the shaded area shown in Figure 1. When l:J,.f. is 
positive, as shown in the figure, the contribution to 1:J,.Z(l:J,.Z.) is positive. Similarly, 
when 1:J,.f. is negative, 1:J,.Z. is negative. 

To avoid the necessity of determining Cta, we approximate point g by point d, which 
can be determined from the following relationship: 

Then, using the area abde as an approximation for l:J,.Z., we obtain 

Figure 1. Relationships used to calculate az. for a typical link. 
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This quantity can be summed over all links to obtain the total change. 

az = r % af. (2 C1a + m1 0 af.) (22) 
a 

To find>.. requires that az be defined as a function of>... This can be done by replac
ing af.. in Eq. 22 with ,._at.., resulting in 

az(>..) = r 1/2 >..a{.(2 C1a + >..m1aaf..) (23) 
a 

The valid range for >.. is O ;;; >.. ;;; 1. 
The optimum value for >.. can be found by differentiating az (>..) with respect to >.. and 

setting the derivative equal to zero. 

/iaZ(>..) 2 
0 = - "- = r C1.af. + A r m1. (af.) 

u>.. a a 

Solving for >.. gives the following expression: 

r chaf. 
"- = - ......... a'-----r ml• (af.) 2 

a 

(24) 

(25) 

Note that the denominator is always positive. If the numerator is not negative, >.. 
will be negative. This will only occur if the trial solution, evaluated at the former costs 
C1., is not so good as solution i. This cannot occur because flows are being shifted 
from higher to lower cost paths-at the current costs-in steps 2 and 3. 

If the value of>.. from Eq. 25 is greater than 1, then>.. should be set equal to 1. This 
implies that all of the former solution is being replaced by all of the trial solution t. 




