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A Kalman filtering methodology for the estimation of traffic densities on 
multilane roadways is tested ·by using aerial photography data. The method 
gives very satisfactory estimates even when the sensor separation is as 
great as 3,000 ft. A systematic procedure is given for designing and 
calibrating a density-measuring system for a roadway. 

• A SERIES OF PAPERS (1, 2, 3) demonstrated that it is possible to obtain accurate 
estimates of the number oCvehicles on a section of a roadway by using the technique of 
Kalman filtering on noisy measurements of flow and velocity taken by sensors at the 
entrance and exit of the section. The technique was used with sensor data obtained at 
the Lincoln Tunnel in New York City during the twmel control experiment (4) carried 
out from 1966 to 1969. The data corresponded to the particular configuration and 
conditions of the experiment; nameiy, the sensors were piaced about % miie (0.8 km) 
apart, and lane-changing was illegal and therefore infrequent (but not altogether absent). 

Many questions arose as a result of the investigation discussed in the series of 
papers. Would the method work equally well in a freeway environment where lane
changing is much more frequent? iiow close must the sensors be placed in order to 
yield accurate density estimates? What are the trade-offs between cost and accuracy? 
The purpose of this paper is to provide some answers to these questions. A partial 
answer to the question of the effectiveness of the Kalman filtering approach in measur
ing freeway densities has been provided by the successful use of a somewhat different 
Kalman filtering procedure by Nahi and Trivedi (5). 

The data used in this paper were obtained by the System Development Corporation 
through an analysis of aerial photographs of sections of the Long Island Expressway 
taken at the rate of one frame every 2 seconds. Using these data, we could assume 
the placement of imaginary sensors at any location of the observed section of the ex
pressway, which was about% mile (1.2 km) long. The aerial data also provided exact 
counts of vehicles between the assumed location of sensors, and these counts were used 
as a benchmark for estimating the effectiveness of the density estimation algorithm. 
In view of the nature of the aerial data, the assumed sensors gave a very accurate mea
surement of the flow and a reasonably accurate measurement of the speed of each ve-

----lilc e pasftfie sensor pofnt-. - Noisy OW measurements coUlabe siilliiJ.a ea6y the adOi
tion of noise to the aerial data for flow. The density estimation algorithm used (1) in 
this investigation was chosen because of its advantage of linearity in both the state 
equations and the observation equations entering in the Kalman filtering procedure and 
because of the satisfactory quality of what is taken as observation. 

P ROBLEM STATEMENT 

Let us briefly review the essential features of the density estimation algorithm. 
Suppose there are N + 1 sensors placed at discrete distances on a roadway for the 
measurement of count and velocity and that these sensors divide up the roadway into 
N sections identified by the index of the upstream sensor. Let Yi be the number of ve
hicles in section i at time k, where i = 1, 2, ... , N and k = 1, 2, 3, ... , and let n~ be the 
number of vehicles that pass over sensor i between times k and k + 1, where i = 1, 2, .. . , 
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N + 1 and k = 1, 2, 3, .... Then the following equation, which merely states the conser
vation of cars, should be true: 

(1) 

If there are no lane-changing effects or errors on the flow measurements, Eq. 1 is an 
exact description of the transition from time k to time k+ 1. However, in general it is 
necessary to add a "noise" term in Eq. 1 to account for occasional deviations, yielding 
the state equation 

where wk is the noise term, which is assumed to have the following statistical prop
erties: 

I 
0, 

Q, 

j/k 

j = k 

(2) 

(3) 

From the measurements of velocities and counts at the entrance and exit of section i, 
one can generate a rough measurement of y~, which we will call z!, using the travel
time algorithm (1). The travel-time algorithm involves smoothness arguments on the 
distribution of velocities inside the section, and these arguments allow the computation 
of some average travel time for the cars that enter section i between times k and k + 1, 
and hence also for the last car to exit during this period. All the cars that entered the 
section while the last vehicle was traversing it are assumed to be still within the sec
tion. As might be expected, the rough count z~ deviates from y~, and if we denote the 
difference between y~ and z~ by vk, we have the observation equation, 

(4) 

Experience has shown that it is not unreasonable to assume that the noise term vk has 
the following statistical properties: 

0, j/k (5) 

R, j = k 

From now on, wk will be referred to as system noise and vk will be referred to as ob
servation noise. The quantity Q from Eq. 3 is then the variance of the system noise, 
and R from Eq. 5 is the variance of the observation noise. With the state equation (Eq. 2) 
and the observation equation (Eq. 4), one can use Kalman filtering techniques to gen
erate optimal estimates, y~, of the y~. The equations for the Kalman filter are given in 
the Appendix. Here, it is sufficient to recall that the Kalman filter produces, recur
sively, best estimates of y! as a weighted average of a value obtained by using the pre
vious best estimate and the flow data, as shown in Eq. 1, and the rough count z~ . The 
weights of the averaging process are the Kalman gain, G., defined in the Appendix, and 
its unit complement. 

Before the Kalman filter can be used, four parameters must be set: the initial 
mean of the state vector, the covariance matrix Eo of the initial state, Q, and R. For 
any finite run, the accuracy of the filter estimates is dependent on the choice of these 
parameter values of which Eo, Q, and R are particularly important. In practice, it is 
difficult to guess the best values for Eo, Q, and R, especially when one is designing a 
surveillance system for an unknown environment. A systematic methodology should 
therefore include a procedure for choosing appropriate values of Eo, Q, and R. 
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In view of these observations and those made in the introduction, we pose the follow
ing questions: 

1. Is there a systematic way of choosing the initial values for the Kalman filter in 
this particular application? 

2. How sensitive is the algorithm to the distance between sensors? 
3. Is there a systematic methodology for designing a surveillance system for 

r oadways? 

CHOICE OF INITIAL VALUES OF THE KALMAN FILTER 

Because we are working with linear state equations and linear observation equations, 
the effect of the choice of values for the initial mean of the state vector and the initial 
covariance matrix lJo on the accuracy of the filter estimates is minimal (6). However, 
the choice of lJo affects the rate of convergence of the estimates. In pract ical terms, 
we are faced with the problem of choosing l:;o, Q, and R so that the filter will yield good 
estimates of the state (the number of vehicles between sensors) for a finite run of the 
algorithm. 

At this point we must define how we measure the goodness of the estimates. The 
Kalman filter is supposed to be an unbiased estimator, but this is never the case in 
practice. For each section i between sensors, let us define the following measures: 

T 

T r M -Srn 
k=l 

I: (y~ - N )2 - m~ 
k=l 

(6) 

(7) 

where T is a finite time horizon and y~ and y~ are respectively the number of cars in 
section i at time k and its corresponding estimate. Over a certain finite time horizon, 
one always finds a certain amount of bias in the filter estimates. The quantity m 1 is 
this bias and is never zer o in pr actice. It is one measure of the goodness of the esti 
mates. The quantity s 1 measures the amount of dispersion of the estimates about the 
actual values of the state and as such is also a measure of the goodness of the estimates. 
Experience has shown that by appropriately choosing r;o, Q, and R it is possible to bring 
both \ m 1 \ and s 1 down to a certain point, beyond which varying the values for r;o, Q, and 
R will only decrease \ m 1 \ at the expense of increasing s 1 , and vice versa. It is there
fore necessary to take both m 1 and s 1 into account when considering the performance of 
the filter. 

(8) 

The values of the parameters r;o, Q, and Rare then to be chosen so that € 1 is mini
mized for each section of the roadway. 

Experimentation with the choice of these initial values leads to the observation that 
the accuracy of the filter estimates does not depend on the individual values of r;o, Q, 
or R; instead, it depends crucially only on the choice of the ratio p defined by 

fJ = Q/R (9) 

By keeping fJ constant, it is possible to vary l:;o, Q, and R individually by one or two 
orders of magnitude without affecting the accuracy of the filter estimates. This is an 
important observation, because it means that in designing a surveillance system for a 
roadway the engineer has to worry about the choice of the proper value for only one 
unknown parameter, instead of three, as the equations of the Kalman filter would seem 
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to indicate. This result is also justifiable theoretically. It can be shown that for our 
particular application of the Kalman filter the steady-state feedback gain G00 is of the 
form 

1 
G.., = ----

1 +-R
!:.,,+ Q 

(10) 

where !;
00 

is the steady-state variance of the estimator. But Ero .... 0 and G00 -.. (1 + 1/ p)-~ 
where p is given in Eq. 9. In other words, the steady-state gain approaches a function 
of p alone, and, because the steady-state gain is the most crucial factor in determining 
the accuracy of the filter estimates in the long run, it is not surprising to find the filter 
performance dependent on p alone. 

The next logical step at this point is to investigate how the optimal values for p relate 
to the operating conditions of the corresponding sections. In our experiments with the 
choice of initial values, it was found that the optimal values for p (i.e., those values that 
yield minimum ( 1 , where i =1, .. . , N for the various sections) do not have any system
atic relation to the separation between sensors, the mean speed of vehicles in the sec
tion, or the mean density of vehicles in the section. They are, however, related to the 
average frequency of lane-changing in the section. In general, a high frequency of lane
changing inside the section implies a high optimal value for p, and vice versa. The re
sults are shown in Figure 1, where the solid line indicates the mean and the dotted 
lines indicate the spread of the optimal values for p versus the level of lane-changing 
frequency. This dependence of p on the frequency of lane-changing is understood if one 
recalls that fJ is the ratio of the system noise variance to the observation noise variance . 
System noise is largely caused by lane-changing, and observation noise accounts for 
the crudeness of the travel-time estimates (used as noisy observations of the state). If 
the quality of the travel-time estimates is uniform, the observation noise variance is 
more or less constant, and p is a monotonically increasing function of the system noise 
variance. Because higher frequencies of lane-changing imply higher values for the 
system noise variance, they also imply higher values for the optimum p. 

This discussion pertains to the density estimate of a single lane that is affected by 
lane-changing. If we apply the Kalman filter combining all lanes of a roadway, then the 
system noise may reasonably be expected to be close to zero, and hence the optimum P 
is also very close to zero. 

OPTIMAL SENSOR PLACEMENT 

As mentioned, we set up imaginary sensors along the roadway to measure count and 
velocity and used these measurements to generate estimates of the numbers of vehicles 
between sensors. We first created several sections of roadway by placing sensors 
500 ft (152 m) apart in each of the three lanes of the expressway, chose optimal values 
for the initial parameters for each section between sensors, and ran the estimation 
algorithm for all the sections. We then increased the distance between sensors from 
500 ft to 4,000 ft (1219 m) in 500-ft steps, repeating the estimation experiment at each 
step. In the cases of wide sensor separation, overlapping sections were defined to 
ensure an adequate number of samples. For any given sensor separation, the minimum 
errors obtained in all the sections were averaged to remove possible effects of geo
metric peculiarities of the roadway. Our objective was to find out how the accuracy of 
the estimation algorithm was affected by the separation between the sensors. The re
sults are shown in Figure 2, where the average minimum error is plotted against the 
sensor separation. It is significant that the error remains almost constant at a low of 
approximately 12 to 17 percent as the sensor separation is increased from 500 ft to 
3,000 ft (914 m), beyond which it starts to rise slowly. 

The same experiments were repeated with all three lanes treated together (2). For 
any given sensor separation, a section was defined across the three lanes, andan esti
mate was obtained for the total number of vehicles in the three lanes within the section. 
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Figure 1. Optimum value of p versus 
frequency of lane-changing. 
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Figure 3. Percent error in density 
estimation versus sensor separation when 
all lanes are treated together. 
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Figure 2. Percent error in density 
estimation versus sensor separation when 
all lanes are treated singly. 
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Table 1. Errors in density estimates for different sensor separations. 

Errors (percent) 

Sensor Separate Lanes Combined Lanes 
Separation 
(ft) Max. Min. Mean Max. Min. 

500 15.0 10.8 11. 7 14.3 4.7 
1,800 20 .0 7 .1 11.8 5.3 0.8 
1,500 21.4 9.7 13.7 7.5 1.9 
2,000 23.8 9.5 14.7 3.5 0.8 
2,500 21 .4 10.7 15.4 2.7 1.6 
3,000 22 .4 11 .1 17.1 -· 
3,500 32.0 18.0 23.8 
3,850 45.l 24.S 2B. O 

NOto: rn •o::m~am;rr17...-.·o:a04e·;n1,. 
8The maximum and minimum figures are not given where the sample size was one. 

Mean 

8.1 
1. 8 
2.9 
1.8 
1.8 
2.1 
5.7 

I J. i 

Speed (rt/ sec) 

Max. Min. 

92 .2 74.7 
91.8 75.2 
91.4 75.2 
89.2 75.5 
89.4 76.2 
90.8 76.6 
89.5 76.9 
89. 1 77 .3 

Mean 

84.2 
83 .1 
83 .9 
82.8 
83.2 
83.6 
83.4 
63 .0 



49 

The results, shown in Figure 3, lead to three observations. First, the errors in this 
case were uniformly smaller than they were when the lanes were treated independently. 
This is to be expected because by combining the lanes we remove the errors that may 
result from lane-changing of vehicles. Second, as before, the error curve has a flat 
region. In this case, it occurs between 1,000 and3,000 ft (305 to 914 m), where the error 
stays at a constant low level of about 2 percent. Third, the error curve has a slight dip 
between 500 and 1,000 ft. This may have been because the true counts have integer 
values whereas the estimated counts do not, and a count error may be a greater fraction 
of the true value when the sensor separation, and hence the vehicle count, is small. 
Such an effect is not observed in the case of lanes treated individually, because lane
changing in that case raises the level of error as the sensor separation is increased. 

Clearly the insensitivity of the accuracy of the estimation algorithm to the separation 
between sensors has significant practical implications for the design of surveillance 
systems, simply because it costs less to place sensors farther apart. 

The numerical results corresponding to Figures 2 and 3 are given in Table 1. Also 
given in this table are the average speeds corresponding to the various runs of the 
Kalman filter. It is seen that all the runs correspond to relatively light, free-flowing 
traffic. Therefore , the tests of the estimation algorithm given here are somewhat in
complete in that they do not show how well the algorithm works during periods of heavy 
traffic. Undoubtedly, periods of high-density, slow-speed traffic will be handled well 
if one leads up to them starting with light traffic. It is not clear, however, how well 
the filter initializes during periods of persistently heavy traffic. A test of the algo
rithm for such traffic was not possible because of lack of data but would be very de
sirable. 

GENERAL DESIGN METHODOLOGY 

We can now suggest a general methodology that uses the estimation algorithm Q) for 
designing a density measuring system for a roadway: 

1. Obtain some aerial data of the roadway-about 1 hour's duration of traffic, with 
photographs taken at 1 frame per 2 seconds, is more than adequate. Ideally, one should 
obtain data for different degrees of congestion, because the accuracy of the estimation 
depends on the degree of congestion (1). 

2. Compute the speed and flow past imaginary sensors placed at varying distances 
on the roadway. 

3. Start with reasonable guesses for the initial count of vehicles in a section and the 
initial variance !:o of this count. Run the estimation algorithm for values of p varying 
from, say, 10-4 to 1, keeping the observation noise variance R at some constant level. 
Find the best value of p for each section, corresponding to the minimum error, and 
compute the average minimum error for each value of the sensor separation, varying 
the sensor separation in steps of 500 ft between 500 and 4, 000 ft. 

A plot of the minimum error versus sensor separation may then be used in conjunc
tion with economic considerations of installation and operation costs in order to deter
mine the optimum placement of sensors. A high density of sensors entails a high instal
lation and maintenance cost for the sensors themselves and for communication and 
possibly a high cost of computing power required for processing the sensor data. Re
duction of this cost may be traded-off against some degradation of density estimates. 

Frequently, the maximum separation of sensors is dictated by the need to detect in
cidents such as vehicle stoppages with a high reliability. The problem of reliable in
cident detection is still not completely understood, and it is not clear how one can best 
combine incident detection and density estimation. 

CONCLUSIONS 

We have provided, in this paper, some answers to questions concerning Kalman filter 
application, algorithm sensitivity, and roadway surveillance system design. We have 
found a systematic way of choosing proper initial values for the Kalman filter as used 
in the density estimation algorithm (_!_), and we have shown that the algorithm gives 
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satisfactory results for freeways, at least where the densities are relatively low. Con
trary to intuition, the minimum achievable error of the density estimation algorithm is 
not necessarily a strictly increasing function of the distance between sensors, but the 
variation of this error versus sensor separation may have a flat region, offering an 
opportunity for substantial savings in sensor cost. 

There are a number of possible extensions of the work presented here. Analytical 
modeling of the flow of traffic from section to section may improve the overall accuracy 
of a surveillance system or even provide an analytical solution to the problem of optimal 
sensor placement and a feedback solution for optimizing traffic flow. A simple correla
tion of the density estimation in two adjacent sections should improve the overall ac
curacy by use of the argument of conservation of cars over many contiguous sections 
of a roadway. 
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APPENDIX 

THE KALMAN FILTER EQUATIONS 

Let k = 0, 1, 2, ... , k be anindexoftimewhere k = 0 corresponds to the initial time. 
Consider a discrete-time, possibly nonlinear, and time-varying system whose state 
vector Xt< is an n-dimensional vector, Xt<E:Rn. Assume that the state propagates accord
ing to the stochastic difference equation 

(11) 

Suppose that the measurement vector zk, ~k E:Rr), is related, possibly nonlinearly, to the 
state vector by the observation equation 

(12) 

Ass ume that fk(·): Rn .... Rn and h.(·): Rn -' Rr are known, continuous , and sufficiently dif
ferentiable. Assume zero-mean, uncorrelated "white" noise in both the state and ob
servation equations, i.e., 
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E(~~\} 0 

E{~k} 0 for all k 

E(~~\~~'.fJ 9.1< likJ, 9.1< > Q. 

E(~k~} B:k likJJ Ric > Q. 

\ (13) 

Define 

Xo E(!o} 

I:o E((!o - !o){!o - !o)'} 

Assume that ?E.oi !k• and~ are mutually independent for all k, j. 
The following notation will be used: 

estimate of s tate vector xk based on the observation z1, z2, ... , zk ~ &1k 
! k+1 lk predicted estimate Of the- vector X 1 based Only On the measurements Z1, Z2, 

••• , ~k (i. e., before measurement~+l is made) - -
E { (xk - Xi.1k) (xk - x~ 1k)'} 
E { ~k+l .:-~+1j°;)(!Jc-:;:; - ~k+1 lk) '} 

The discrete-time Kalman filter algorithm is best described by decomposing it into 
three distinct steps: initializing, predicting, and updating. Start the algorithm by 
setting 

For predicting, generate !_k+il k, I:k+1I k by 

!_k (~kl k) 

:Fk :r:klk "F~ + Qk 

where 

For updating, generate ~+ilk+1 = !k+ilk,Ek+tlk+i by 

where 

~+1ik+ilk = ~+1 + Gk+1 (~11:+1 - ~+i <&+1)] 

Ek+llk+l = Ek+llk - Gk+l Hk+l I:k+llk 

0~+1 

(17) 

(19) 

(20) 

The algorithm is iterative in nature. starting with an initial guess, it generates a 
new state estimate each time an observation vector becomes available. 

In a particular case (1), the state of the system is a scalar quantity, x,,, the count of 
vehicles on a roadway section during the nth time interval. The state propagates ac -
cording to the linear equation 

:x,, + t.N. + w. (21) 
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where ~N,, is the net input into the section (input at the entrance minus output at the 
exit} and w. a random error. The measurement is a rough estimate of the count of 
vehicles z. obtained directly from the speed and flow measurements. This estimate 
was obtained by first estimating the travel time of individual vehicles through the 
section (1). Other methods for obtaining zn -for example, a phenomenological relation
ship bet\veen speed and density- can also be used satisfactorily (3). The Zn is related 
to x,, according to -

(22} 

Thus, both f(·) and h (·}are simple linear functions, and the preceding formulas are 
reduced to the simpler form 

tk+ilk+1 = I;k+1lk (1 - Gk+1) 

G;;+1 tk+1I k (~k+il k + Rk +1)-
1 

where 

Qk E(w~ } 
(24) 

Rk E{v~} 

and the process is initialized by selecting some initial values Xo and !:010· 


