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This investigation of traffic behavior was based on an unusually strong data 
set: The data were taken from a two-lane expressway with only one ramp 
operat ion in the 7-mile (11-km) length. Truck and bus traffic was not al­
lowed to operate on the two-lane expressway, and the data set spanned a 7-
hour period and reflected all phases of traffic behavior. Auto covariance 
and cross-covariance time series analyses were applied to traffic-stream 
occupancy. The autocovariance functions indicated random flow-density be­
havior for occupancy less than 15 percent (free-flow behavior). The auto­
covariance functions for higher occupancies indicated varying degrees of 
Markovian behavior. Cross-covariance analysis indicated that, under free­
flow conditions, disturbances in the traffic stream were propagated with 
the flow of traffic at nearly the free-flow traffic speed. Analysis of flow­
density behavior yielded distinct and discontinuous ranges of linear and 
nonlinear behavior. Further investigation through multivariate discrim­
inant analysis indicated that, although density was the more important pa­
rameter, a flow-density criterion function was superior to a simple density 
criterion function. Furthermore, such a flow-density criterion function 
would change over time because of differences in the breakdown and re­
covery processes. 

•UNDERSTANDING the behavior and interrelationships of traffic parameters, especially 
flow and density, is fundamental to techniques of traffic flow control. Various models 
have been adva nced. The early models assume the well-known continuous smooth para­
bolic relationship between flow and dens ity. However, Edie (1), after observing a num­
ber of data sets from the Port Authority of New York and New Jersey files relating to 
traffic flow in tunnels, noted that the empirical flow-density plots could be represented 
by two curves, one for the uncongested or free-flow state and one for the congested 
state. He proposed a distinct discontinuity in the region of maximum flow (Fig. 1) and 
showed that two curves fit the data better than a single curve. Drake, Schaffer, and 
May (2 ), in a statistical comparison of several hypotheses that describe stream flow 
characteristics, found that the Edie hypothesis yielded a comparatively low value for 
the standard error of estimate. 

Athol (3) showed the flow-density relationship to be discontinuous with a linear trend 
to maximum volume for free flow and a breakdown to a flow less than maximum volume 
in congestion (Fig. 1 ). 

According to Athol, congestion results from a driver behavioral response, i.e., 
drivers have a threshold tolerance of other vehicles. Once this threshold is exceeded, 
a reaction sets in that results in less effective individual driving and lower speeds. 
This interpretation of the onset of congestion is compatible with Edie's theory of dis­
continuity. 

In a different approach, Mika, Kreer, and Yuan(4) investigated data from the John 
C. Lodge Freeway in Detroit. They categorized flow into two distinct modes-a steady 
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state with a parabolic relationship between flow and density and an oscillatory mode in 
which speed and density exhibit out-of-phase periodicities when plotted as a function of 
time. They found that the transition between these two modes of behavior is near the 
maximum flow value. If the steady-flow mode can be interpreted as free-flow operation 
and the oscillatory mode can be construed as congested operation, the work of Mika, 
Kreer, and Yuan is further evidence that the flow-density curve involves a discontinuity, 
or at least instability, about the maximum flow value. 

This paper describes a further investigation of the flow-density relationship and dual­
mode behavior. 

DATA, SYSTEM, AND INSTRUMENTATION 

Data used in this investigation were collected by the Expressway Surveillance Proj­
ect in Oak Park, Illinois. The John F. Kennedy Expressway reversible lane section 
was the monitored segment of expressway. It is used to relieve the traffic load on the 
adjacent freeway system during peak periods. The freeway system configuration is 
shown in Figure 2. During the morning peak period, the reversible lanes are available 
to traffic flowing southeast toward Chicago. The roadway is open to northwest-bound, 
outward-flowing traffic in the afternoon and early evening. The slip ramp is open only 
to afternoon traffic. 

There are seven monitoring stations along the 7-mile (11-km) length of the highway. 
As shown in Figure 2, the slip ramp is situated between stations 3 and 4. Afternoon 
traffic flows from station 7 towards station 1. The monitors are 6-ft (1.8-m) square 
electromagnetic coils centered in the pavement of each 12-ft (3.6-m) lane. 

The equipment detects traffic flow in units of vehicles per 20 seconds and occupancy 
in units of percentage of the 20-second sampling p eriod (x 100) in which an automobile 
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by 180. Occupancy may be converted to appropriate density in vehicles per mile by 
multiplying by 2 .8 (assuming 18. 75 ft (5 . 72 m ) = average automobile length)(3).] The 
data were collected from 1:04 to 8:01 p.m. on a day of "clean" conditions-dry pavement, 
fair weather, and average weekday volume. 

In considering this investigation, it is very important to realize the strength of the 
data s et. First, there was less than 1 percent detectable er ror (the differ ence in total 
occupancy at each station over the 7-hour sampling period) in the data. Second, the 
monitored highway segment was 7 miles long with only one ramp in operation. No 
trucks or buses were allowed to operate in the reversible lanes. Thus, the data had 
a minimum disturbance because of ramp activity and nonautomobile traffic, and this is 
important in analyzing driver behavior. This minimization of noise would hopefully en­
able us to see stream flow characteristics much more clearly. Third, the data were 
collected over a 7-hour time period that included free flow, transitional buildup to con­
gestion, congested behavior, transitional decay to free flow, and free flow again. Un­
doubtedly, any strong trends in the data would affect the relationship between adjacent 
data points. However, the measurements are on a sufficiently small time scale com­
pared with the time scale of a trend that such trending effects would be rather small. 

TIME SERIES ANALYSIS: 
A CASE FOR DUAL-MODE BEHAVIOR 

Consideration of Entire 7-Mile Section by Autocovariance 

Consideration of the wide range of traffic stream behavioral characteristics might 
lead to classification of two ranges of st ream behavior: (a) the state in which there is 
little or no vehicle interaction affecting stream behavior, and (b) the state in which there 
is some varying intensity of vehicle interaction that affects stream behavior. It seems 
intuitive that the state of little vehicle interaction might be characterized as random be­
havior. With regard to the state of high vehicle interaction, one might propose an auto­
regressive model in which the behavior of the traffic stream for a given time interval 
is influenced by the behavior of the previous time intervals (~). 



In general, we can allow Zt (the event or observation at time t) to be influenced by 
all previous events. For a discreet autoregressive time series, 
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where ft is a random variable with zero mean and uncorrelated values for p -1- q. Then, 
a random time series is defined by 

Zt = <t (i.e., a 1 = ~2 = .•• = aj = O) 

For a discreet time series, such as our data represent, one can investigate the de­
pendence of Zt on previous events by examining the autocovariance function for the 
series (5, 6 ). 

The covariance of two variables measures the degree to which the two variables vary 
together. If the two variables are not independent, then their covariance is different 
from 0 (7 ). The autocovariance coefficient 'Yk at time lag k measures the-covariance be­
tween two values Zt and Zt-k• a distance k apart. The plot of y versus the time lag k 
is the autocovariance function of the process (5 ). Box and Jenkins conclude that the 
most satisfactory Kth lag autocovariance is c;:- where 

N-k 

~ = ~ L (Zt - Z)(Zt+k - Z), k = o, 1, 2, •.. ' K 

t=l 

At this point we can say that the autocavariance function of a random process would ap­
pear similar to that shown in Figure 3, whereas a process of some autoregressive na­
ture would appear similar to that shown in Figure 4. 

Probably the simplest form of autoregressive behavior is Markovian. A Markovian 
time series is defined by 

According to Kendall and Stuart (~), 

0!1 = p 

for Markovian behavior, where pis the correlation coefficient between Zt and Zt-r 
One statistical test of the randomness or nonrandomness of a time series can be per­

formed using serial correlation (6). The serial correlation coefficient of order 1, rl> 
is defined by -

so that 

where <l' is the variance. Serial correlation r 1 is the sample estimate of autocorrela­
tion p, so that verification of the hypothesis 

means the series is random, and verification of the hypothesis 



Figure 1. Discontinuous flow-density curves. Figure 2. John F. Kennedy Expressway reversible lane section 
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Figure 3. Autocovariance 
function of random time series. 
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Figure 4. Autocovariance 
function of autoregressive time 
series. 
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Figure 6. Autocovariance function of occupancy for 
Station 1, Lane 2, 3:00 to 4:00 p.m. 
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Figure 5. Autocovariance function of occupancy for 
Station 1, Lane 2, 2:00 to 3:00 p.m. 
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Figure 7. Autocovariance function of occupancy for 
Station 1, Lane 2, 4:00 to 5:00 p.m. 
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would mean that the series is Markovian, for example. 
The autocovariance functions of occupancy with up to 40 time lags of 20 seconds each 

were generated for all seven stations for each 1-hour interval from 2:00 to 8:00 p.m. 
[An autocovariance and power spectral analysis package known as BMD!12T of the Bio­
medical Computer Programs (9) was used. The method of calculation agrees with that 
recommended by Box and Jenkins (5).] Occupancy (or density in vehicles per mile-note 
the 2. 8 scalar multiplier) was usedbecause of its unique nature in defining the traffic' 
stream. Lane 2 data were used to attempt to minimize noise, because Lane 1 was being 
fed by the slip ramp. Figures 5, 6, and 7 show some of the autocovariance functions of 
occupancy for Station 1, Lane 2, over 1-hour intervals from 2:00 to 5:00 p.m. 

As shown in Figure 5, Station 1 appears to behave randomly from 2 :00 to 3 :00 p.m. 
Similar behavior was observed from 7:00 to 8:00 p.m. For the hours of 3:00 to 5:00 p.m. 
however, Station 1 appears to have varying degrees of autoregressive behavior as shown 
by Figures 6 and 7. When similar characteristics were observed from 5:00 to 7:00 p.m., 
an interesting point arose: The apparent autoregressive behavior is not so pronounced 
during the time of highest occupancy-28.8 percent from 4:00 to 5:00 p.m., and 25.4 per­
cent from 5:00 to 6:00 p.m.-as it is during the transitional times from 3:00 to 4:00 and 
6:00 to 7:00 p.m. with respective occupancies of 15.3 percent and 16.3 percent. This 
might be due to one of two things: 

1. Because congestion (the condition of sqboptimal flow with high-density, low-speed 
behavior) may occur downstream of Station 1 and back up through Stations 1, 2, and 3 
during peak periods, a well-behaved Markovian autocovariance function may be most 
apparent only while there is very high vehicle interaction and congestion occurring in 
the immediate vicinity of the detector. This conjecture is supported in that further 
analysis showed that Stations 2 and 3 from 4:00 to 5:00 p.m. had a very random autoco­
variance function, yet their mean occupancies were 31.8 percent and 46.0 percent, and 
mean flows were 1,410 and 1,470 vph respectively (Table 1). Also from 3:00 to 4:00 p.m. 
the autocovariance functions for Stations 2 and 3 were similar to that for Station 1. 

2. A higher order autoregressive process or integrated autoregressive moving av­
erage process may be occurring that cannot be analyzed using only autocovariance 
techniques. 

Although Stations 1, 2, 3, and 4 show varying degrees of autoregressive behavior at 
different times, Stations 5, 6, and 7 are continuously random in behavior. The autoco­
variance functions for these three stations from 2 :00 through 8:00 p.m. were all quite 
similar to that shown in Figure 8 for Station 7, Lane 2, 4:00 to 5:00 p.m. 

Station 4, a Special Case 

The behavior of Station 4 appears to be unique. This is probably due to the effect of 
the merging slip ramp traffic that enters the roadway between Stations 3 and 4. Lane 
2 shows lower maxi.mum volumes and densities for Stations 1, 2, 5, 6, and 7, but higher 
maximum volumes and densities for Stations 3 and 4. Generally, then, Lane 2 is used 
less than Lane 1 except in the area where the on-ramp is added to Lane 1 (Stations 3 
and 4), where drivers tend to move into Lane 2 to avoid merging disturbances. Once 
merging is completed, however, these drivers tend to move back into Lane 1. 

This driver reaction to anticipated merging disturbance may show itself in two ways. 
First, it might make drivers more conscious of vehicle interaction in this particular 
area. This increased awareness seems to be indicated by the autocovariance function. 
Figure 9 shows the occupancy autocovariance function for Station 4 from 4:00 to 5:00 
p.m. Although the autocovariance function for 5:00 to 6:00 p.m. is nearly identical, the 
function during the other time intervals is random. The driver reaction to anticipated 
merge behavior may also increase dual-mode behavior. 

Cross Covariance, a Measure of Simultaneous Similar Behavior 

The cross-covariance function is the covariance between two time series, and it 
analyzes the behavior of two points of the traffic stream over time. A high cross­
covariance value or peak in the function indicates that the two points under analysis 



Table 1. Mean operating characteristics. 

2:00 to 3:00 p.m. 4:00 to 5:00 p.m. 

Percent Density Percent Density 
Occu- (vehicle/ Flow Speed Occu- (vehicle/ Flow Speed 

Station pancy mile) (vph) (mph) pancy mile) (vph) (mph) 

1 8.9 25.0 1,250 50.0 28.8 80.6 1,430 17. 7 
2 7.3 20.4 1,200 58.8 31.8 89.0 1,410 15.8 
3 12.9 36.1 1, 510 41.8 46.0 128.8 1,470 11.4 
4 6.1 17.2 l, 100 64.0 11.6 32.5 1,330 40.9 
5 4.7 13.2 801 60.6 6.3 17.6 1,020 58.0 
6 5.9 16.5 833 50.5 7.4 20.8 1,000 48.1 
7 7.6 21.1 1,050 49.8 9.8 27.6 1,320 47.8 

Slip 
ramp 899 603 

Note: Mean speeds were calculated from flow/occupancy using q vph/k vehicles per mile. This will be accurate only for 
linear q-k behavior; it ignores nonlinear and discontinuous considerations. However, it should roughly reflect speed ranges 
in nonlinear behavior. 

Figure 8. Autocovariance function of occupancy for 
Station 7, Lane 2, 4:00 to 5:00 p.m. 

Figure 9. Autocovariance function of occupancy for 
Station 4, Lane 2, 4:00 to 5:00 p.m. 
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Table 2. Free-flow and congested variances. 

2:00 to 3:00 p.m. 

Maximum Cross 
Variance Covariance of - Time Wave 

Station at Station n With Lag Speed 
n Station n Station 1 (second) (mphr 

1 14.24 0 
2 8.24 5.90 80 45.0 
3 21.25 4.62 160 45.0 
4 9.21 3.35 240 45.0 
5 4.56 2.01 320 45.0 
8 b.12 2.'12 380 47.4 
7 8.05 2.lO 420 51.4 
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4:00 to 5:00 p.m. 

Maximum Cross 
Variance Covariance of 
at Station n With 
Station n Station 1 

76.61 
72.26 14.98 

150.65 24.36 
116.94 -19.20 

7.48 4.32 
8.42 -4.48 
9.26 -4.85 

aMean wave speed is determined by distance/time, assuming 1 mile (1.6 km) between stations. 
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experience similar behavior at some distance apart in time equal to a lag value, k. 
The cross-covariance function is not necessarily symmetrical about zero as was the 
autocovariance function (5 ). 

If we have two time series 

and 

then Cx/k), the estimate of the cross-covariance coefficient at lag K, is 

and 

n-K 

Cxy(k) == ~ L (Xt. - X)(Yt+k - Y) fork= O, 1, 2, ... , K 

t=l 

n+K 

Cxy(k) = ~ L (Yt - Y)(Xt-k - X) fork= 0, -1, -2, ... , K 

t=l 

where X and Y are the means of the X series and Y series (5 ). 
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Cross covariance may be used to determine the propagation of a pattern within the 
traffic stream or the similarity in the traffic pattern in different lanes at the same 
points along the roadway. At a lag of zero for all stations, a definite peak in the cross­
covariance function between Lanes 1 and 2 was found for each station. This indicates 
that the traffic pattern of the two lanes was similar over time at the same points along 
the roadway. 

Table 2 gives certain cross covariance of occupancy values for Lane 2, 2 :00 to 3 :00 
and 4:00 to 5:00 p.m. The maximum absolute value of cross covariance was selected 
as shown. Cross covariance with negative time lags was used in the free-flow period 
from 2 :00 to 3 :00 p.m. to obtain the approximate mean wave speed for the propagation 
of a disturbance downstream. The cross covariance with positive time lags was used 
for the 4:00 to 5:00 p.m. period in the hope that it would yield cross-covariance peaks 
reflecting the speed of propagation of a disturbance upstream in the case of congested 
behavior. 

In the free-flow behavior of 2:00 to 3:00 p.m., it seems clear that disturbances in 
the traffic stream move through the freeway with the flow of traffic in a predictable 
manner at roughly the free-flow traffic speed. However, in congested operation, with 
regard to Table 2 and the cross-covariance analysis, there seemed to be no order in 
the transmission of disturbances. 

If a wave is traveling at 10 mph (16 km/hour)-a little faster than Table 2 gives for 
the wave speed from station 1 to 2-then in 880 seconds the wave would only travel about 
2.5 miles (4 km). In other words, if the speed of 8 or 9 mph (12.8 to 14.5 km/ hour) is 
realistic, our analysis would not detect the disturbance upstream of Station 2 because 
our maxi.mum time lag was only 800 seconds. 

TRAFFIC-STREAM BEHAVIOR 
WITHIN FLOW-DENSITY PARAMETER RANGES 

For this analysis, flow-density curves were generated with the data, which were 
broken into hourly segments such that they were divided according to traffic condition, 
i.e., free flow, congested, and transitional. The analysis yielded three results: (a) a 
range of distinct linear behavior as shown in Figure 10, (b) a nonlinear range of be-



60 

havior as shown in Figure 11, and (c) combined linear and nonlinear behavior as shown 
in Figure 12. [Scattergrams of Figs. 10, 11, and 12 were produced by FAKAD, a 
data analysis package developed by K. McDonald at the University of Essex. The origin 
of the axes is set to (O, O). The length of each axis represents an equivalent range of the 
variables in terms of their standard deviations above and below the mean. The mark 0 
on the scattergram indicates one observation at that point, 1 indicates two observations, 
and 9 indicates ten or more.] 

Although the transition effects can make identification of the states difficult, the be­
havior did recognizably shift in time from one range to the other. Table 3 gives a 
breakdown of the station behavior. For station 1, the shifts occurred at approximately 
3:40 p.m. and 6:32 p.m. For station 4, the shifts occurred at approximately 4:40 and 
4:52 p.m. 

From the time series analysis and flow-density behaviors, the investigation nar­
rowed, seeking parameters that could distinguish between the two operational states. 

Development of a Criterion Function 

The simplest criterion function is density. In this case, some density value k will 
distinguish free flow from congested behavior, i.e., the criterion function would be 
Z* = k. 

An advance on this ultrasimplistic approach would be a criterion function of flow and 
density variables. Multivariate discriminant analysis can provide a linear form of such 

Figure 10. Flow-density curve for 
Station 1, Lane 1, 2:00 to 3:00 p.m. 
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table 3. Station flow-density behavior. 

Linear Nonlinear 
Time Period, Behavior, Behavior, 

Figure 11. Flow-density curve for 
Station 1, Lane 1, 4:00 to 5:00 
p.m. 
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Figure 12. Flow-density curve for 
Station 1, Lane 1, 3:00 to 4:00 
p.m. 
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Figure 13. Criterion function for combined 
linear and nonlinear behavior. 
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a relationship (10). In this case, Z*, the value of the discriminant function that best 
separates the two states, is 

Z* = aq +bk 

where a and b are constants, q is a given flow value, and k is a given density value. 
This type of criterion function would appear similar to that shown in Figure 13. 

Evaluation of the Density Criterion Function 
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Analysis of the data for Station 1, Lane 1, from 3:00 to 4:00 p.m. revealed that, for 
uncongested data, average density 

k,,nc = 39.4 

and the standard deviation 

S. d. (~nJ = 11.99 

For the congested data, 

kcon = 78.11 

and 

s.d. (kcon) = 27.24 

These values were determined after the data points were assigned to a congested or un­
congested classification after individual analysis. 

If the density readings are assumed to be normally distributed, the point at which 
there is an equal probability that an observation is a member of each group is at a den­
sity of 51.3 vehicles/mile. At this point, the probability of misclassifying a data point 
is 0.1635. Thus, the density criterion function is k* = 51.3. 

This criterion was applied to the 3:00 to 4:00 p.m. data set for Station 1, Lane 1, 
and was found to classify four congested points and eight uncongested points incorrectly. 
This compares with nine and twenty errors respectively that would be expected with 
normally distributed data and suggests the data are skewed away from the transition 
region. 

The discriminant analysis was done using BMD(12 T (9 ). All congested data but one 
had Z values greater than -0.002 and all uncongested data had Z values less than -0.002. 
Thus, a suitable criterion function for this particular segment of the data is Z* = -0.002. 
This discriminant function coefficients a and b were 0.00002 and -0.00082 respectively, 
giving a criterion function of 

Z* = 0.0002 = 0.00002q - 0.00082k 

which can be rearranged to the form 

q = 41k - 100 

This function correctly allocates all but one point. An F statistic value of 131. 7 for 
2, 177 was obtained that is significant at the 99 percent confidence level. The point at 
which there is a probability of misclassification into either group is at Z = 0.0015. This 
occurs at 1.13 standard deviations from each mean. Setting Z = 0.0015 results in nine 
misclassifications, compared to one misclassification when the empirically derived 
Z = -0.002 is used. This probably means that Z* for each group is not normally dis­
tributed. 

The same discriminant analysis was also done by using normalized variables, i.e., 
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qi - q! 
Zu = S. d. (q) 

instead of flow, and 

instead of density, for i = 1, 2, ... , 180 (for each data point). 
The discriminant function for station 1, Lane 1, using normalized variables for the 

time period 3:00 to 4:00 p.m. was 

Z* = 0.00935 z 1 - 0.01536 z2 

Thus, density seemed more important than flow in determining whether the freeway 
was congested or uncongested by a factor of about 1.65. The difference in sign value 
of z 1 and z2 meant that a high flow would give a high value of Z, and thus uncongested 
operation was more likely, whereas a high density would give a low value of Z, and thus 
congested operation was more likely. 

CONCLUSIONS 

The strength of this further investigation of flow-density behavior was the data set: 
the data had a minimum of disturbance due to ramp activity and nonautomobile traffic. 

Time-series analysis of traffic-stream occupancy was applied in two ways. Auto­
covariance reflected the behavior of a single point in the traffic stream over time. The 
autocovn.riance indicated random f!0''.1.7-density behavior for occup~ncy lP.R~ than approx­
imately 15 percent and varying significant degrees of autoregressive behavior for higher 
occupancies. The different forms of observed autocovariance functions for various 
states of traffic-stream occupancy suggest potential use of this technique for detecting 
behavior under controlled conditions. 

Cross covariance analyzed the behavior of two points of the traffic stream over time. 
This analysis indicated that, under free-flow conditions, disturbances in the traffic 
stream were propagated with the flow of traffic in a predictable manner at roughly the 
free-flow traffic speed. Cross-covariance results were not conclusive for congested 
conditions. 

Analysis of flow-density behavior yielded distinct and discontinuous ranges of linear 
and nonlinear behavior. The existence of these two distinct states of behavior was 
previously indicated by time-series analysis, particularly the autocovariance functions. 
Further investigation of criteria to distinguish between the two states of behavior in­
dicated that, although density waa the more important parameter, a flow-density cri­
terion function was superior to a simple density criterion function. Multivariate dis­
criminant analysis further suggested that a flow-density criterion function would change 
over time because of differences in the recovery and breakdown processes. 
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