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This paper summarizes the results of Wardrop, Edie, Haight, Breiman, 
and others in the study of space and time distributions of speed and other 
traffic characteristics. In order to help the traffic engineer properly 
assess mean speeds and othertraffic characteristics, the underlying meth­
odology is clarified and its application illustrated by examples of real-life 
situations. S-qch applications involve data from manual counts, several 
types of detectors, and aerial photography. 

•THIS expository paper reviews the work of various investigators on the definition :md 
measurement of traffic parameters. An attempt is made to unify these results to make 
them more understandable to traffic engineers. The use of the theory is illustrated by 
examples taken from realistic situations. These examples help the traffic engineer to 
apply the theory properly in the measurement of mean speeds and other characteristics 
when various detecting methods are used to record traffic data. 

Traffic flow is a rather complex process when one considers some of the charac­
teristic variables that can be associated with an individual vehicle: speed at an instant 
of time, speed at a particular location, location at an instant of time, number of pas­
sengers, distance and time separation of vehicles, and quite a few more. To study this 
field it is necessary to focus attention on several important variables and consider how 
they behave under uniform conditions of roadway and environment and under conditions 
of light to medium flow. As shown by Wardrop' s results (17), it is convenient initially 
to make a simplifying assumption about one of the variables, speed: namely, that any 
vehicie is considered Lo have uue speed associated with it in order to reflect uniform 
conditions. Another assumption by Wardrop has to do with the arrival process of a 
vehicle having a given speed. This paper will dwell mainly on the theory relating to 
stationary flow. 

In the basic works of Wardrop (17) and Lighthill and Whitham (11), the important 
quantities such as flow, concentration, time-mean speed, and space-mean speed were 
defined and the relations between them explored. The results of these examinations 
are remarkable in view of the limited data base available to these and other researchers 
at that time . Wardrop looked at uniform traffic that was fairly homogeneous in space 
(over a stretch of roadway) at any instant of time and in time (period of observation) at 
any location on the road. He then developed several important relationships by means 
of an ingenious intuitive argument. Lighthill and Whitham required only time homo­
geneity and developed a local relationship for the uniform condition between flow and 
concentration by considering road traffic by analogy as a stream and by building a fluid 
continuum model involving three characteristics of streams: flow (quantity per unit 
time), concentration (quantity per unit space), and speed (space per unit time) . Math­
ematical relations were s tudied as to how they varied over s pace and time so that the 
situation of traffic on long, crowded roads could be formally modeled under nonuniform 
conditions. For these time-inhomogeneous conditions, Lighthill and Whitham used their 

-----=r =es=u·1ts to~tudy--congested-ftow-antl bottlenecks:-:-.------------------
The variety of definitions applied to measurements in the traffic stream was re­

viewed by Edie (7) . Relations between apparently different definitions of the same 
characteristics were clarified. First it was brought out that relations between flow, 
concentration, and speed are meaningful only when their averages are considered. Next 
it was advocated that the correct type of average be employed, space-mean or time­
mean, in forming such relations. This would depend on the type of measurement that 
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was employed: one type made at a point (or short distance) in space taken over a long 
interval of time and the other type taken at an instant of time (or short interval) taken 
over a long roadway. Arithmetic means computed from the first type are referred to 
as time means (averages over time) while those computed from the latter type are re­
ferred to as space means (average over distance). In another paper, Edie et al. (8) 
examine a large sample of speed, concentration, and flow data gathered through the use 
of electronic instrumentation in the Holland Tunnel in order to study time- and space­
inhomogeneous situations. 

Recently, three fundamental studies on traffic data and models were made by 
Breiman (~ ; !). The first paper reviews the data base, models, and statistical re­
sults for one-way homogeneous multilane traffic flow. The second paper, employing 
the methodology of stochastic processes, first derives the following relation developed 
by Lighthill and Whitham under locally homogeneous flow: 

q = k v. (1) 

where q and k are average flow and concentration and v, is the space mean speed defined 
by Wardrop. The paper then establishes the relation between the space and time dis­
tribution of speeds. In the third paper Breiman provides a further clarification as to 
interpretation of reduced aerial data and derives the fundamental theorem that relates 
the space distribution of speeds and headways to obtainable synchronous data involving 
these variables. 

In the following sections a heuristic development is made that reflects the results 
contained in the papers of Wardrop, Edie, and Breiman. It is important, however, that 
full recognition be given to the many contributions and studies by other researchers 
that preceded or were contemporaneous to these. Some, such as those by Weiss and 
Herman (19), Brieman (1), Thedeen (16), and Renyi (15), consider the statistical prop­
erties of traffic under low density, while others, suchas Miller (12), Buckley (5), 
Gafarian et al. (6), and Munjal and Hsu (13), explore the behavior of traffic by empirical 
investigations and application of the theory. 

HOMOGENEOUS DISCRETE TRAFFIC STREAM MODELS OF WARDROP 

To develop Wardrop's relations, it is necessary to make some formal assumptions 
as to the possible behavior underlying traffic characteristics in order to study its mea­
surement. We will consider three basic quantities that need to be measured. These 
are flow, concentration, and speed. As a start, consider a simple model in which the 
overall process of vehicle speeds {V} may be considered as a stream that consists of 
C (finite) superimposed substreams [S}. In this model the following assumptions are 
made to describe it: 

1. Any vehicle has associated with it only one speed, v1 • 

2. Any vehicle belongs to the ith substream, St, only if its speed is exactly equal 
to V1• 

3. Vehicles are considered as moving points determined from the corresponding 
locations on the vehicle (i.e., front bumper) and as traveling without interfering with 
one another. 

4. Vehicles proceed on the right lane of a 2-lane section of a 4-lane divided high­
way, and whenever a point overtakes and passes any point it does so by using the left 
lane prior to overtaking and immediately merging to the right lane upon passing. 

5. For each substream, the vehicles enter one end of a very long roadway at com­
pletely random instants of time; constituting a Poisson process of events. 

Some of these assumptions could be modified, but in any case there is eventually 
achieved a homogeneity of traffic after some amount of time has elapsed from the initial 
entering if one looks at a large section of the road downstream. After such time has 
elapsed, traffic is called time-homogeneous, which means that any and all time averages 
converge to a limiting average for long time intervals. 

Similarly, traffic is called space-homogeneous if space averages converge to a 
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limiting average for a long enough distance. It has been shown (3) that the limiting 
nvcrnges for both space- and time~homogeneous traffic are equivalent. 

It is interesting to note that Wardrop defines a random series of events in time as 
a series of events in which (a) each event is completely independent of any other event 
and (b) equal intervals of time are equally likely to contain a given number of events. 
But this implies that assumption 5, involving Poisson events, would hold. However, 
Breiman (1) has shown that one can start with an arbitrary homogeneous speed distri­
bution in space and obtain a limiting Poisson spatial distribution under the assumption 
that cars can pass freely. Similarly, Thedeen (16) concludes that both time and space 
counts eventually tend to form a Poisson proces~ 

Relationship Involving Space Mean Speed 

With these preliminaries we can now present Wardrop' s relations on a statistical 
basis or in a frequency interpretation setting. First look at the process of vehicl~s in 
an individual substream, S1• Since the vehicles in S1 are identified with their own ar­
rival process, which is Poisson or completely random, the quantity q1 (cars per hour) 
is associated with the arrival rate or traffic intensity parameter, while the time in­
terval T1 between the instants of arrivals of such vehicles obeys the exponential dis­
tribution whose density function is given by 

From the expectation of T O the average time interval between vehicles passing an ob­
server stationed at a fixed point adjacent to the road is then 1/ ql" During this time in­
terval, the vehicle is going at fixed speed v I so that the average distance traveled in this 
averagetime isv/q1 • This means that, on the average, each vehicle in the ith sub­
stream is separately located somewhere along a distance of road that is v1/ q1 units long 
at any instant of time. It then follows that the average number of substr eam vehicles 
per unit length of road (concent ration) is given by the reciprocal of this distance or 

/a .. .... ,...., 

ll = .1, ~ •••• ' \..,/ (2) 

C 
If k = L k1 denotes the concentration of the entire traffic stream, the discrete fre-

1 
quency distribution in space of vehicles whose speed is v1 is then defined by the mul­
tinomial probability 

p.(i) = Prob (V, = v1 ) = k/k (i = 1, 2, ... , C) (3) 

Thus p, (i) is the assigned probability space measure to the body of vehicles in the i th 
substream. Taking expectations, the space mean speed is obtained as follows: 

C C 
v, = E(V,) = L V 1p,(i) = L V1k/ k 

1 1 

C 
v. = I: q1/k (applying Eq. 2) 

v. = q/k (4) 

C 
where q = :E q1 is the composite flow of all the substreams or simply the sum of the 

1 
arrival rates. Equation 4 was first developed by Wardrop and is identical to Eq. 1 here. 
This is the only valid relation that connects average flow, average concentration, and 
average speed. 
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Equation 4 can be used directly in obtaining the space mean speed if one has an un­
biased estimate of each ki/k, which necessitates the observation of vehicle separations 
on a long roadway at an instant of t ime . Even reduced aerial data do not provide a long 
enough distance, as pointed out by Breiman (!). Therefor e, we will next consider the 
alternative method of estimating v. by examining time measurements at a point on the 
road. 

Relationship Involving Harmonic Mean of Time Speeds 

Let us consider measurements of speeds as vehicles in the composite stream pass 
a given point on the road over a long interval of time. We shall designate this time­
speed process by (Vr} to distinguish it from the process of speeds over space {Vs} 
previously examined. By applying the frequency interpretation for the probability that 
any vehicle passing the point will have speed Vt = v11 we obtain 

where Pt(i) is approximated by ni/n, n1 being the number of vehicles having speed v1 

C 
and n = :E n1 • Hence we can approximate Pt (i) by 

1 

~ (i) = .!!1 =· n:f T = ~ 
Pt n n T q 

(5) 

(6) 

where T is the period of observation and q1 is the obs erved arrival rate per unit of 
time. For large T, we can assume that q1 and q are equiva lent to the underlying cor­
responding traffic intensities q1 and q, so that we have 

(i = 1, 2, ... , C) 

upon applying the frequency interpretation for probabilities. 
Now consider the expected value of v;-1 given by 

C 1 
E {l/Vtl = L -pt(i) 

1 V1 

Upon substitution of Eqs. 7 and 2 in turn we get 

C 1 1 C k 
E [ 1/ V t } = L - 9.i. = - L lei = -

1 Vt q q 1 q 

(7) 

(8) 

From Eq. 8 we learn that the reciprocal of an individual time speed is an unbiased 
estimate of k/q or 

- 1 

q = k[ E(l/ Vt)] (9) 

in contrast to the relation involving q, k, and space mean speed v •. 
As a practical consideration, no one would use a single observation on V to esti­

mate the expected value of the population in this case. Any individual speed could only 
relate to one of C denumerable substreams. One then considers a random sample of n 
successive speeds passing a point denoted by V1, V2, ... , Vn. Employing stationarity, 
these speeds can be considered to be identically distributed in the multinomial popula­
tion defined by Eq. 7 and in addition may be dependent on each other. These variables 
obey the law of large numbers under certain conditions that imply that the covariance 
between any two sample speeds V1 and V1+. tends to zero as the lag m increases (!!, 
chapter 10)·. The law of large numbers informs us that the sample mean approaches 
the population mean so that, for large n, 
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Efl £: _!_},.,, ~ 
(n l V1 q 

(10) 

But, from our sample, 

where vh is the harmonic mean of the time speeds. Hence the harmonic mean vh of the 
time speeds can be employed as an asymptotic estimate in the homogeneous traffic 
relation, as follows: 

(11) 

in contrast to Eq. 1. By employing the harmonic mean of speeds obtained irom the time 
process to estimate the mean speed in the space process, one can thus correctly for­
mulate the fundamental relation in Eq. 1. 

In the foregoing treatment, the symbols q and k were used to indicate population 
parameters, where q represented an underlying flow and k represented an underlying 
concentration. This was done in order to be consistent with their historical treatment 
in the literature. It is unfortunate that this same treatment has confused these symbols 
with their observed measurements. Thus, on presenting the following section on ex­
amples involving the harmonic mean, the quantitites q and k will be perceived to rep­
resent measured quantities in order to be consistent with another body of the literature 
on traffic measurements. It would have been preferableto use the symbols>.. for the 
underlying flow (replacing q) and 1/J for the underlying concentration (replacing k). It is 
hoped that this dual use of the symbols q and k will not prove to be confusing to the 
reader. 

Examples Using Harmonic Mean 

Example 1: Manual Volume Counts-Manual traffic counts are used to obtain flow in 
traffic surveys where perhaps it is desired to know only the volume of traffic that af­
fects an intersection in order to establish a warrant for signalized control or redesign. 
This type of method is also employed when other mechanical equipment cannot be 
readily installed. It is customary to start the count at the start of an hour or the start 
of a 15-minute period. This is called asynchronous counting, relating to the fact that 
a vehicle may not be at the location at the start of the count and similarly the count does 
not end specifically at the instant of arrival of the last (uncounted) vehicle. Synchronous 
counting refers to initiating the time period at the arrival of a vehicle and terminating 
the count at the arrival of an uncounted vehicle (10). The asynchronous count data are 
typically easier to acquire and for large counts would closely approximate the syn­
chronous method. 

If N are the number of vehicle counts in a time period T, then the flow (vehicles per 
unit time) is computed as q = N/T. Under light flow, the observed flow per unit time 
can be considered to have a Poisson distribution with arrival rate >... Hence for time 
period T, the number of vehicles N has a Poisson distribution with mean >..T. The ob­
served ratio, q, has a mean equal to ..\., since 

1 >..T 
E(q) = E(N/T) = T E(N) = T = ..\. 

However, the value T may itself be considered to represent approximately the sum of 
N 

N vehicle headways (times between front bumpers) so that T I: h1 • We may there­
i= 1 

fore write 
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where ii is the mean headway. This is only an approximation of the actual situation 
because, if N vehicles were actually counted, then the time interval T would represent 
the sum of N-1 headways and 2 partial headways. 

Now consider the total observed flow q to consist of the sum of N individual flows, 
N 

or let q = I:; q1 , where q1 = 1/h1 in which q1 and h1 are respectively the instantaneous 
1 

flow and headway associated with each vehicle. 
Then we may write 

)

- l 

- 1 1 1 
q = 1/h = !. " h = ( iii' I:: Cit 

N""' I 

Thus the average flow, when computed from individual flows associated with each ve­
hicle, is the harmonic mean of the individual flows. 

Example 2: Detector Measurements-There are various methods of reducing traffic 
data from measurements taken from a detector or pair of detectors at a location. 

Method 1: Pneumatic Tubes (BPR Traffic Analyzer)-A pair of pneumatic tubes are 
stretched across a given lane on the roadway; these tubes are usually separated by a 
distanced, 8 to 10 ft apart. When a vehicle's front tires cross over the first tube a 
signal is sent to a counter to register its arrival time and when the front tires cross 
the next tube another counter records another arrival time. The difference of these 
arrival times, t1 , represents the traversal time-the time it took the vehicle to traverse 
the !mown distance d. Let us assume that T is the entire period of observation while 
N is the total count (9). Then the flow, speed, and concentration may be obtained by 
means of the following formulas. 

Individual speeds: v1 = d/t1 (i = 1, 2, ... , N) 
Space mean speed estimate: 

[ 

- 1 

v. ""' Nd = N - .!. L .!. J 
L t1 L t1 / d - N Vi 

harmonic mean of the spot speeds 
= vh 

Flow: q"" N/T 

C t t . k q1- N L t, / d 1 L t1 
oncen ra 10n: = v, ""'f' N = d~ 

Method 2: Tape Switch or Occupancy Detector-Another type of method to directly 
measure flow q and speed v, is from a simple occupancy detector or tape switch over a 
particular lane during a data sampling period of duration T. Let 

Nr number of vehicles that traversed the detector during interval T; 
Or estimated portion of the time T that the axles of the vehicle were sensed by the 

detector (occupancy); 
t1 = traversal time of the i th vehicle length sensed by the detector; and 
L average length of vehicles. 

Then we can form the following computations. 

Occupancy: Or = I:; t1 
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Individual speeds: v1 = L/t1 

Space mean speed estimate: 

= harmonic mean of the spot speeds 

Flow: q "" Nr/T 

Concentration: k "" q/vh 

Method 3: Detectors Involving Two Classes of Vehicles-Consider two classes of 
vehicles such as passenger and commercial vehicles that can be distinguished by height 
sensors installed under overpasses. Denote the measurements on occupancy, number 
of vehicles, and average vehicle length by 0 1, n1, and L1 , where i = 1, 2 designates pas­
senger and commercial vehicles respectively. 

In order to use Eq. 11, it is necessary to obtain an estimate for 

where vu is the j th measurement for the speed of a vehicle in the ith class. However, 
n1 n1 

the quantity L v~! is estimated by L t 1J/L 1 = Oi/L1, where t 1J is the time measurement 
1 1 

for the jth vehicle in the ith class. 
Hence the approximation for v, is given by 

If we now write 

where vh, 1 is the harmonic mean speed in category i, we have for the combined harmonic 
------wrnan 

as the estimate of the space mean speed. This relation is easily extended to apply to 
several classes of vehicle lengths instead of only two. Reference is made to the cor-
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responding formula found in Weinberg et al. (18), which differs from the above. 

The calculations for flow and concentratio::re q = f n/ T and k = q/vh respec -

tively, where T is the total observation time. 

Relationships in Wardrop's Discrete Model 

One can find basic relationships that relate time and space distributional properties. 
The first to consider is that 

p,(i) = ~ Pt(i) 
I 

i = 1, 2, ... , C (12) 

where p. (i) and Pt (i) are the corresponding space and time probabilities for Wardrop' s 
substream or discrete model. This is the discrete analogue for the corresponding re­
lation found in the continuous case by Haight (10) and by Breiman (3). Equation 12 is 
di rectly obtained by using Eqs. 2 and 4 in the definition of p, (i); i.e~ 

P.(i) = lr/k = qJ v1 = ~ P (i) ..,_ "q7v. V1 t 

Another important relationship is that found by Wardrop: 

(13) 

where a!, v,, and Vt are respectively the space speed variance, space mean speed, and 
time mean speed. This is proved by employing the definitions of the variance and 
mean, as follows: 

C 
a! = I: (v1 - v,)2 p, (i) = 

i=l 

C 

C 
:E v: p. (i) - v! 
i=l 

where v, = :E v1 p,(i) is the expectation of V,. 
1 

By using Eq. 12, the summation term on the right reduces to 

(14) 

which when substituted in Eq. 14 yields Eq. 13. It may be seen that more general re­
lations involving the moments of the space and time speed distributions can be derived 

from Eq. 12. Thus, ifµ.; (r) andµ.; (r) designate the corresponding rth moments of the 
space and time distributions about the origin, we have 

µ. 1(r+ 1) _ -V µ. '(r) 
I - I t (15) 

For the corresponding moments about the mean (centr al moments) between the time 
Culrl ) and space (u!rl) distributions, the following formula can be established: 

(16) 
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CONTINUOUS SPACE AND TIME SPEED DISTRIBUTIONS 

The speed of a vehicle is generally considered to obey some unknown continuous 
distribution such as a Gaussian or gamma distribution instead of the discrete distribu­
tion considered by Wardrop in his substream model. In Haight (!Q) there is introduced 
a basic relation that connects space and time distribution of speeds for which an intui­
tive argument was provided. If one lets the space and time distribution of speeds be 
represented by the corresponding probability density functions f,(v) and ft(v), then, 
analogous to Eq. 12, the following is obtained: 

(17) 

where f,(v) and ft(v) are identically zero for v < 0. 
Breiman (3) provides a rigorous proof for Eq. 17 that involves an analysis of the 

time-space process of speeds, and in fact his result is applicable to a more general 
distribution function that may involve discontinuities. Wardrop's substream model, 
involving a completely discrete or discontinuous set of probabilities, is in fact a special 
case of Breiman's result. 

A heuristic proof of Eq. 17 may be developed from the discrete relation of Eq. 12. 
This development follows. 

Let the range of V be finite, with minimum and maximum values of O and M respec­
tively. Now partition the closed intervals (0, M) into n subiµtervals defined by (v1 _ 11 v1 ) 

for i = 1, 2, ... , n, where Vo= 0, v1 _ 1 < v1 and v0 = M. We can designate this partition 
by l,, = ( V 1-1 V l) • 

If the randon variable V belongs to the i th interval, we can arbitrarily assign the 
value v1 to V. Thus for the partition of n intervals we can associate the probability that 
V assumes the value v1 by means of the probability p(v1). If the random variable is in 
a space process we designate the probability by p, (v1), and if it is in the time process, 
we designate the probability by Pt (v 1). 

Thus for the partition I,, we know from Eq. 12 that p,(vi) = V,pt(v1 )/ v1• 

Let the number of subdivisions be increased, with each interval ut:iu~ n1ade suffi­
ciently small so that with good approximation we have 

Vv'"here 

6.v = v1 - v1 _ 1 and v 1 ~ v. 

For any such fine partition we then have, applying Eq. 12, 

which, upon division of both sides by .1.v, completes our proof. 

BREIMAN'S FUNDAMENTAL THEOREM 

Previous results have provided us with an essentially unbiased expression for the 
mean space speed v,. Thus the harmonic mean v~ of the synchronous time speeds at a 

iven oint on the road is used to estimate v,. This may be put in the form (see Eq. 9) 

(18) 

wherein the subscripts t and sy on the right side have almost identical meanings. Al­
though the subscript t was previously used to indicate the synchronous speed of the ve­
hicle or "sy" as it passed a grow,d detector, it could have been applied to the asyn­
chronous time case discussed previously under Example 1: Manual Volume Counts. 
Similarly, the quantity V, represents the observed speed of a car, C 0 , when it reaches 
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a designated location L0 • It would be equivalent to the quantity Vin the above expres­
sion under Et. 

The estimate of the right side of Eq. 18 is the harmonic mean v, of the synchronous 
speeds at L0 , or 

v,., !r:-{ 
n 1 }-

1 

• n i=l Vo1 
(19) 

where v0 i, v02 , ... , v0• represent the set of observed speeds of each successive car, C0i, 
ascertained when it reaches L0. 

Breiman's theorem (4) allows us to form the unbiased estimate of any function of 
speed and headway in the space process in terms of a similar function in the synchro­
nous time process. It therefore allows us to develop valid analyses of traffic data re­
duced from aerial photographs. From aerial data, not only joint speed characteristics 
but also headway measurements of successive vehicles are obtained. 

As mentioned earlier, one wants to compile synchronous time data. On each frame 
a particular location on the roadway is referenced, say L0 • If one is interested in a 
particular lane, then we first see what the traffic looks like at the instant of time when 
the front part of the vehicle passes directly over that location. This vehicle is labeled 
C0, and its downstream predecessors are C1, C2, ... , and its followers are C_1, C_2, .... 

At the instant of time when C0 reaches location L 0 , say, the following joint set of syn­
chronous time measurements is simultaneously obtained (provided of course that they 
appear on the same frame): 

Symbol Identification 

Vehicle: 
Location: 
Space headway (in ft) or gap: 
Speed (ft/sec): 

-Upstream 

. . . , C-2, C_1, 

. . . , L_2, L_1, 

... , X_1, X_1, 

... ,V-2,V-1, 

Downstream-

C1, C2, C3, .. . 
L1, L2, L3, .. . 
X1, X2, X3, .. . 
V1, V2, V3, .. . 

In practice, the front bumper (location) of C0 may not be at L0 for any frame. In gen­
eral, its location is ascertained by the linearly interpolated distance between two suc­
cessive frames. This interpolation is similarly performed for the other vehicles. The 
speeds can be obtained by simply dividing the distance moved for each vehicle from one 
frame to the next by the frame lapsed time. Each time that vehicle C_1 reaches L 0 , 

then C_1 is redesignated C0 , and all other vehicles are similarly relabeled. 
By applying Breiman's powerful fundamental theorem on synchronous data (4), any 

function of the space headway and speed process, say ¢ (X, V) = ¢ (X1, ... , X.; Vi, ... , 
v. ), may be estimated by 

E, ¢ (X, V) = v, E,y [ ¢ (X, V)/V0 J (20) 

where the left side represents the average of any arbitrary function¢ of the space head­
way and speed process while the expectation E,y on the right represents the average of 
the same function of the synchronous (time) headway and speed process, each divided 
by the synchronous speed V0 at L 0 • Some examples for the use of Eq. 20 follow. 

Example 1: Equation 18 

Let ¢ be identically equal to 1 in Eq. 20. This is allowed because¢ is arbitrary. 
Then, since on the left the expected value of a constant equals that constant, we have 

1 = v, E,y (l/V0 ) 

which is the well-known re.suit that v, is the harmonic mean of the speeds at a fixed spot 
and is estimated by Eq. 19 in terms of the sample harmonic mean vh. 
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Example 2: Equation 17 

Iu Eq. 20, let ¢(X, V) = ¢(V), which io the outcome of successive values of V0 or 
speeds when cars pass the origin, L 0 • The expectation on the right side of Eq. 20 is 
the expectation of ¢ (V)/V under the time distribution of speeds while the left side is 
the expectation of ¢(V) under the space distribution of speeds. Thus we write Eq. 20 as 

/ r/>(v)f.(v) dv = v. / ¢~) f(v) dv 

Since this holds for all functions ¢(v), it certainly holds for 

¢(v)={~ 
where vis included in the interval (v', v' + .1.v') 

where vis not included in the interval (v', v' + .1.v') 

From this we obtain for any v 

which gives an alternate proof for relation 17. 

Example 3: Variance of the Space Speed (o!) 

By letting ¢(V) = V2 in Eq. 20, we have 

from which we obtain 

which is another well-known result. 

Example 4: Expecta:tion of Headway Distances in Space 

Let ¢ = XO and apply the fact that E ~X o = 1/ k. F.qn~tinn ?.O thAn hPr.omP.~ 

or 

which is similar to one of Edie's formulas ('.I., Table 1) for measurements at a point . 

That is, let X01 approximate 1/ k, while we let J approximate k / q1 (using Wardrop's 
01 

Eq. 2.2). Then we obtain the correspo11 ing re atir:o=-=n:--,-----------------

1 
q 

Example 5: Expression as an Arithmetic "Mean" 

In general, for any function r/J, Eq. 20 provides an operational method of estimating the 
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space expectation of any function of speeds and headways. For large N, we can write 
the theorem as 

{ 
1 N 1 }-

1 

wherevh = NI:~ 
1 Vo 

Thus Breiman's recipe for estimation is 

1. Look at those time instants at which C0 passes L 0 • 

2. At those instants, calculate speeds and headways counting upstream and down­
stream. 

3. Find the value of the function¢ for these measurements; i.e., if¢ = (X0 + XJ V0 , 

then the succession of measurements is represented by the vector 

{ ¢ l = [Xol + Xu Xo2 + X12 x.N + X1N J 
1 r V0l ' V.2 ' ... ' Vo» 

where, at the first time instant, X01 and X11 are headways of C 0 and C1 while V01 is C 0 's 
speed, and so on. 

4. Divide each¢ by the corresponding value V01 , the speed of the car at the origin, L 0 • 

5. Take the arithmetic mean of ¢i/V01 and multiply by the harmonic mean of the V01 ; 

i.e., the space distribution estimate is 

E.{x•;
0 
X1

} ~ [ ~ f i.
1 
r1 

[ ~ ~ X01

~
1
X11 J 

This example is given only for purposes of illustrating Eq. 20. 
Many more illustrative examples can be formulated for the application of Breiman's 

theorem. One can obtain useful formulas for the dependence of successive headways 
or speeds of various order lags. It should be noted that the headways in this section 
were expressed in units of distance. Breiman calls these space headways as distin­
guished from time headways, which are expressed in units of time. Conventional no­
menclature by highway engineers refers to Breiman' s space and time headways as gaps 
and headways respectively. It could cause some confusion to discuss the space and 
synchronous distributions of "space headways", so it would perhaps be preferable to 
refer to Breiman's result as "the relation between the space and synchronous time 
distributions of gaps and speeds". 

However, this relation also holds between the space and synchronous time distribu­
tions of headways and speeds, since a gap can always be expressed as a headway by 
simply dividing it by the speed, e.g., 

2 x2 
¢ = x. = --2. • V = H2 

• V v. v~ . • o 

where H0 is the corresponding headway for car C0 • 

It should be stressed that the function ¢( ) does not have to involve V. In fact, it may 
be deduced from the derivation of Eq. 20 that any function of traffic involved in the 
carrier space process of speeds could have been substituted for gap (X) or headway (H). 
Thus, any of the characteristic traffic variables mentioned in the introduction could be 
substituted for X in order to obtain an unbiased estimate of its space mean. For ex­
ample, one could obtain an unbiased estimate of the average number of vehicle oc­
cupants by using Eq. 20. This has been examined for several extreme cases as well 
as for an intermediate joint set of speeds and number of car occupants where the true 
space mean speed and mean number of occupants were known. It was ascertained that 
the usual method of the arithmetic mean number of occupants (ignoring speeds) may 
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produce a slight bias for the intermediate case but could present a large bias in the 
extreme cnses. In every instance, however, it was shown th::it the synchronous method 
of Breiman produced an unbiased estimate. This indicates the utility of traffic flow 
theory in allowing one to examine the validity of alternative methods as well as to pro­
vide an unbiased method of estimating traffic characteristics. This type of analysis is 
applicable to other measurement variables such as energy, age or make of vehicle, and 
proportion of heavy vehicles. 
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