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There is experimental evidence that saturated clays in undrained conditions 
have depth-dependent anisotropic strength properties. Hence there is a 
need for an appropriate strength law to determine the failure field for the 
medium in question. The critical bearing capacity of a footing in this me­
dium was determined by a modified version of Hill's failure mechanism. 
According to this, in a nonhomogeneous medium where strength increases 
depth, failure takes place closer to the surface than it does according to 
Prandtl's mechanism. Anisotropy and nonhomogeneity must be taken into 
consideration in general. 

•ANISOTROPIC or nonhomogeneous materials are the subject of numerous studies (l, 
2, 3, 4, 5, 6, 7, 8). In engineering applications there is frequently a shear line along which 
theamsofropic strength is correlated (9, 10, 11, 12, 13). Livneh, Greenstein, and 
Shklarsky (14, 15, 16, 17) claim, however,tiuitthis approach is meaningless in an aniso­
tropic medium :incITsllius inapplicable for practical purposes. The strength of satu­
rated clay in undrained conditions is known to be anisotropic (2, 18) and to increase with 
depth (19). Therefore, to determine critical bearing capacity-under long footings we 
have toformulate the strength law (yield function) and from it derive the field of failure 
(slip-line field) for the given medium. The notations used in the formulations in this 
paper are as follows: 

c = cohesion, 
Ca = surface value of cohesion, 
C = material constant in Hill's model, 

D1, D.14 , D:! = material constants, 
D(I/J, x, y) = strength factor, 

G = depth gradient of D, 
f = yield function, 

i, j = characteristic directions, 
J2 = second invariant of stress deviator, 
k = material constant, 

N.: = critical bearing- capacity factor, 
p = mean stress in plane, 
q = critical bearing capacity, 

u, v = axial velocity components, 
x, y = coordinate system in plane, 

Ay, n .. = anisotropic functions, 
; = angle between x and major principal strain-rate directions, 

'11 , C13 = principal components of stress tensor, 
a,, "n T ,y = components of stress tensor in (x, y) plane, and 

w = angle between x and major principal stress directions. 
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YIELD FUNCTION 

The principal mechanical property of a cohesive 2-dimensional medium such as the 
clay described previously is a yield function independent of the mean stress whose gen­
eral form is 

(1) 

where D = strength factor, which is D (1/J, x, y). D also equals the radius of the Mohr 
circle at failure; in an anisotropic medium it is not identical with cohesion (14, 15, 16, 20). 
That is to say, - - - -

11 (cr1 - cra\2 
(a . - O'y)2 2 

J2 = ;2S1JS1J = --
2
- J = 

4 
+ Txy (2) 

For a homogeneous medium, the yield function reduces to a model such as that proposed 
by Hill (21) or Davis and Christian (2). 

In thisstudy, we present for practical purposes the following pattern for D: 

D = D(iµ)y=O + Gy 

where 

w = angle (positive counterclockwise) between x and 0'1 directions (Fig. 1), and 
G = oD/2y, the depth gradient of D (Fig. 2). 

The first term in Eq. 3 represents the surface variation (y = 0), as follows: 

( ) ( 
D2 - Di) . 2k2 ( ) . 2k D 1/J y=O = D1 - D1 - Dff/4 + 2 k Slil l/> + D2 - D1 Slil !/> 

where 

D1,D"14 ,and D2 = w = 0, 77/4, and 77/2 respectively [Fig. 3 (~)], and 
k = material constant. 

This paper deals with cases of constant G (l~· 

FIELD OF FAILURE IN ANISOTROPIC INHOMOGENEOUS CLAY 

(3) 

(4) 

To determine the stress field in an anisotropic clay medium, the components of the 
stress tensor at failure should be formulated as follows: 

a,,y = p ± D cos2iµ 

Txy = D sin2iµ 
( 5) 

When Eq. 5 is substituted, the equilibrium equations read: 

op+ 2D(-sin2iµ + n 0 cos2!/J) ol/J + 2D(nosin2!/J + cos2iµ) o!/> + Gsin2iµ = 0 (6) 
ox ax ay 

op+ 2D(n0 sin2I/J + cos2iµ) ell/)+ 2D(sin2iµ - nocos2iµ) ell/> - Gcos2iµ = 0 (7) 
ay ax elY 

where 

an 
n0 =ellµ= 1,/.i _j_ ln[D(iµ)y=o + Gy] 

2D ol/J 
(8) 



Figure 1. Description of the coordinate 
system. 

Figure 2. Variation of the strength factor, 
D, with depth. 

Figure 3. Anisotropic strength properties of clay. 
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This is not exclusive for a strength factor that obeys Eq. 4, but it is valid for any 
plausible continuous pattern, such as Hill's or Davis' models. Equations 7 and 8 are 
hyperbolic and yield 

1 0 2D(-sin21/J + nocos21/J) 2D(nosin21/J + cos 2iµ) 

0 1 2 D(nosin 2 iµ + cos 21/J) 2D(sin21/J - n0 cos2ip) 
= 0 (9) 

dx dy 0 0 

0 0 dx dy 

which in turn has 2 roots 

dy sin2 1/l - noCOS 21/J ± ,,/1 + n! , - = =~l 
dx COS21/J + nosin21/J ' 

(10) 

which represent the slopes of the characteristic lines in the stress field. These lines, 
in the anisotropic-inhomogeneous cohesive media, meet at right angles. 

The compatibility equations of the stress field that are satisfied along characteristic 
lines are as follows: 

where 

dp + 5.:ydl/J + G(sin21/J - cos 21/J y~)dx = 0 

dp - 5:.ydl/J + G(sin21/J - cos2iµ y~)dx = 0 

along i line 

along j line 

(11) 

(12) 

(13) 

Equations 11 and 12 are the equilibrium equations and reduce to those of Hill and 
navi~ fnr thP.ir :r::irtirnhlr mnnP.l~ in ::i hnmn~PnPrn1~ mPni11m ::inn tn thn~P nf HPn,..k:y in 

an isotropic-homogeneous one, where D represents cohesion. 
The stress field is identical with the velocity characteristics of the following model, 

which represents the particular case of displacement under plastic deformation: 

(14) 

au av ---
cot 2 ; = ox oY-= 1 + notan21/J 

all av tan21/J - no -+-
(15) 

oy ax 

where 

u and v = axial velocity components, and 
; = the angle (positive counterclockwise) between the x and major principal 

strain-rate directions. 

Equation 14 indicates that the plastic deformation involves no change of volume; Eq. 
15 indicates that in an anisotropic medium, the directions of the principal stresses and 
strain rates are not coincidental. Such is the case, for example, ,vi.th Hill's model (21), 
for which Eq. 15 reduces to -

tan2 ; = (1 - C) tan2 1/J (16) 

In an isotropic medium (no = O), 1/J = ;, and the directions coincide. 
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BEARING CAPACITY OF FOOTING IN 
ANISOTROPIC, NONHOMOGENEOUS CLAY MEDIUM 

Figure 4 shows that the case in question is symmetric, and that along the edge in 
fields 1 and 2, 1/J = 0 and rr/2 respectively; for both of which, oD/ol/J = 0 (D obeys Eq. 4). 
Hence, in these zones, no = O, and the compatibility Eqs. 11 and 12 reduce to 

dp - Gcos2iµ y~ l dx = 0 , along i, j line (17) 

If we substitute Y~,J, we have 

dp±Gdx=O along i, j line (18) 

Equation 10 shows that along the edge in fields 1 and 2 y~ = -y'J (dxt = -dx). Accord­
ingly, in the symmetric case with a constant mean stress, the compatibility equations 
are satisfied by straight lines. In other words, in an anisotropic, nonhomogeneous 
medium when D increases only vertically, each failure field consists of 2 families of 
straight lines that meet at right angles. 

In the homogeneous and weightless case (anisotropic or isotropic), the critical bear­
ing capacity according to Hill is identical with its Prandtl counterpart. However, for 
the case under discussion in this paper, when D increases with depth, the critical bear­
ing capacity according to Hill is lower. This could be expected because the material 
undergoes shear closer to the surface. By symmetry, point E in Figure 4 must be the 
midspan of the footing; this agrees with Hill's mechanism. The assumption for the fan­
shaped field 3 is that it is rigid and that the shear line j (BC in Fig. 4) is circular. This 
assumption signifies that the characteristic line i passes through the singularity S (along 
BC, the j line, y~ = y/ x). In these circumstances it can be shown that the following set 
of equations is satisfied along the j line: 

dy~ 
dx dib 
-=XI I 
dl/l YJ - Y1 

dy~ 
dy - X I dl/) 
dw - YJ YJ - y~ 

dp - ( ') dx 
diµ= Ay - G sin2iµ - cos2iµ YJ dip 

(19) 

Equation 14 was shown by Ince (22) to have a unique solution for given initial con­
ditions, in this case, for point A-p,;- = D1, YA = O, XA = B/2, and WA= 0. This solution 
represents an approximate upper bound for the critical bearing capacity as follows: 

(20) 

where DE and PE refer to point E, at which 1/J = rr/2. 
Figure 5 shows Ne plotted against Di/D.? [with (G/ D.?)(B/10) and D.,jD.? as parameters] 

where the dimension of B is identical to that of D.? / G. For the total error because of 
noninclusion of the anisotropy and nonhomogeneity, it is seen that when D1/ D.? = 1.2 5, 
D.,. / D.? = 1.0, and (G/D.?)(B/ 10) = 0.1, the exact value is about 50 percent higher than 
its isotropic counterpart, N. = 1T + 2. The comparison r efers to an undisturbed surface 
sample tested under routine laboratory conditions (ip = 'IT/2). In certain circumstances, 
1 component of the error cancels the other out, in which case [(G/ D)(B/ 10) = 0.05, 
D1/ D.? = 0.6, and D •. ,./ D.? = 0. 75] the isotropic value may be used. 

In an isotropic medium where c = Co + Gy, the compatibility Eqs. 11 and 12 reduce to 
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Figure 4. Rupture mechanism for bearing capacity determination. 
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dp + 2 edit, - Gdx = 0 

dp + 2 cdw + Gdx = 0 

along i line 

along j line 
(21) 

According to Livneh and Greenstein (2 3), integration of the above yields the upper 
bound ~ 

q = (7T + 2) Co.4B 

where co.4a = cohesion at depth y = 0.4B. 

CONCLUSIONS 

(22) 

In an anisotropic medium where the strength factor D increases with depth (as in the 
symmetric problem in Fig. 4), there are 2 fields of failure consisting of straight lines 
that meet at right angles. 

Critical bearing capacity is determined by Hill's failure mechanism, as modified, 
in which the material is sheared closer to the surface than in Prandtl's model. Critical 
bearing capacity N0 is determined from a set of equations with a unique solution for 
given initial conditions, namely PA = D1 , YA = 0, and XA = B/2 (Fig. 4). 

Anisotropy and nonhomogeneity may sometimes have a considerable effect on No 
compared to the isotropic value, 7T + 2, although in certain cases their contributions 
may cancel each other out. In an isotropic medium (no = O) with depth-dependent 
strength, critical bearing capacity is obtained by multiplying the cohesion at depth 
0 .4B by the isotropic No. 
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