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Dial-a-ride is a demand-responsive transportation system in the experi
mental stages of development. Previous analyses of the system have been 
dominated by relatively expensive, supply-oriented simulation models and 
crude, insensitive demand predictions. This paper presents an analytic 
equilibrium model that has minimal data and computational requirements 
and is suitable for use in designing future dial-a-ride systems. The model 
is used to test the sensitivity of level of service and net operating cost to 
changes in demand model parameters and fares. The results demonstrate 
the important effects of decisions such as fleet size, service area, and fare 
levels on the economic and noneconomic prospects of a potential dial-a-ride 
system. In dial-a-ride as in many other transportation systems, theinter
relations between design parameters and demand response are so complex 
that only an equilibrium model can predict the impacts of a specific design. 

•BY THE END OF 1973, about 20 demand-responsive urban bus systems were oper
ating in North America (1, 2). These systems are designed to provide high-quality 
service at a premium fa.re:- Dial-a-ride systems have been implemented in widely 
dissimilar locations, ranging froni small independent cities (Batavia, New York) to 
commuter suburbs (Haddonfield, New Jersey; Bay Ridges, Ontario) to sectors of 
large cities (Regina, Saskatchewan; Ann Arbor, Michigan; and Rochester, New York) 
to new communities (Columbia, Maryland). As awareness of the potential of this new 
system increases, many other localities will likely consider the implementation of 
demand-responsive services. In this type of planning environment it is important 
that modeling tools be available to help answer questions such as, What service area 
is best? What are the implications of a given fare on ridership, profit, and service? 
How many vehicles should be operated to provide a desired quality of service? 

To date, the most frequently used analysis tool for aiding in the design of dial-a
ride systems is the detailed computer simulation model (3). Although simulation can 
be very effective, it suffers from 2 major deficiencies in this application. First, it 
is generally an expensive tool, requiring extensive software development and involving 
large amounts of computational resources in the application. More important, how
ever, is the fact that dial-a-ride simulation models have been supply oriented. In 
these models demand must be exogenously determined; traditionally it has not been 
considered an explicit function of the quality and cost of service provided by dial-a
ride or competing modes. These models may be accurately described as defining a 
supply surface rather than determining an actual operating point. 

This paper describes an analytic model that builds from the existing models to 
overcome their weaknesses so that it is suitable for assisting in the design of future 
dial-a-ride systems. This model uses an equilibrium framework in which dial-a-ride 
ridership is assumed to be a function of the average fare, wait time, and in-vehicle 
time of the dial-a-ride system and a function of automobile travel time. The model 
has minimal data and computational requirements and can therefore be used to test a 
broad range of policy options at extremely low cost. Since the model is discussed 
elsewhere in detail (4, 5), this paper summarizes the model system and presents some 
test results. - -

MODEL SYSTEM 

The model system consists of 3 basic components: a supply model, a demand 
model, and a net cost model. The supply model determines the quality of service 
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that can be provided in an area by a specified vehicle fleet at a given level of ridership. 
The demand model predicts the level of ridership that will result from a given quality 
of service and fare level. The net cost model determines the financial implications 
of the service. The supply and demand models are solved simultaneously and yield 
the equilibrium level of ridership and quality of service. By using the models repeat
edly, one can determine the implications of selecting different numbers of vehicles, 
fares, or service areas. In this analysis, fare, number of vehicles, and service area 
are key policy variables. To use the models, the planner must specify the following 
inputs: 

1. Average vehicle speed, 
2. Average trip length, 
3. Total number of minutes per day during which dial-a-ride operates, 
4. Factor input prices such as labor wage rates and vehicle capital and operating 

costs, 
5. Size of the service area, 
6. Total number of vehicle trips made in the service area during the time the 

dial-a-ride system operates, 
7. Time needed for a passenger to exit a vehicle, and 
8. Time needed for a passenger to board a vehicle. 

From these parameters, the model determines daily dial-a-ride ridership, revenues, 
costs, average travel time, and average wait time. 

Supply Model 

The supply model is formulated to predict average wait time and average travel 
time for a given system. The aim is to develop good structural relations that can then 
be calibrated with simulation model results. The model should be accurate over the 
reasonable operating range of dial-a-ride, but because of the objective of minimal 
computational requirements the full complexity of dial-a-ride operating decisions can
not be included. The travel time model is derived by treating each vehicle as a queue. 
The act of picking up a passenger corresponds to the arrival of a user at the end of the 
queue, and the act of dropping off a passenger is analogous to the user's being served 
and his leaving the queue. 

The rate of arrivals per vehicle per minute is defined by A, which is determined in 
the demand model. The rate at which passengers are serviced, µ., depends on the 
vehicle speed, the distance between drop-offs, and the time required to actually pick 
up and drop off a passenger. 

The wait-time submode! was based on a simple assumption about the dispatching 
algorithm: The vehicle is routed to move toward a waiting passenger's origin as 
directly as it moves toward an in-vehicle passenger's destination. From the travel 
time submode!, the mean velocity toward any point, Vm, can be estimated as the 
ratio of the average trip length to the average travel time. Given the average dis
tance between the vehicle that is assigned to the new demand and the demand origin 
Lw, the expected wait time is simply Lw/Vm. 

This 2-component supply model was calibrated by the adaptation of a detailed simu
lation model and the testing of 27 hypothetical systems. These test results were then 
used to develop an expression for the mean vehicle interstop distance and Lw and to 
select the most appropriate queuing model form. 

The interstop distance was modeled as a linear function of the average trip length 
and the demand arrival rate A, which together measure the efficiency with which tours 
can be put together. Lw was modeled as a function of the vehicle density and the demand 
density in the service area. Both equations yielded reasonable fits for linear forms 
and had coefficients with the expected signs. 

Both the single-server queuing models tested tended to underpredict travel and wait 
times for highly congested systems. However, the range of demand rates and vehicle 
densities over which the model was valid was quite well defined. All the results re
ported in this paper are within the range of model validity. 
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In general, the M/M/1 model, which asswnes a Poisson process for the server, 
resulted in predictions that better matched the simulated data and so it was used in the 
supply model. 

Demand Model 

At present, there are few comprehensive data on the demand for dial-a-ride ser
vice. For this reason, a relatively simple incremental demand model form was se
lected (6). 

Total daily travel within the service area is asswned to be fixed, and the dial-a
ride modal split is determined as a function of fare, wait time, and the ratio of dial
a-ride in-vehicle time to automobile travel time. The model assumes a known base
point modal split denoted as MS0

, which corresponds to a known base fare, wait time, 
and travel time ratio, denoted as f°, tw0

, and TTR0 respectively. The modal split 
at other fares, wait times, and travel ratios is expressed as follows: 

0 [ (tw - tw
0

) (TTR - TTR
0

) (f - f°)] MS = MS 1 + e, two + em TTR° + e, ~ 

where e, is the elasticity of demand for dial-a-ride with respect to wait time, em is 
the elasticity of demand for dial-a-ride with respect to the travel time ratio, and e, 
is the elasticity of demand for dial-a-ride. 

Simply stated, this model predicts changes in modal split from the base point as 
the weighted swn of 3 effects: the fraction deviation of wait time from the base point, 
the fraction deviation of the travel time ratio from the base point, and the fraction 
deviation of fare from the base point. The coefficients for these 3 variables are their 
respective elasticities. 

The base point selected was a 2 percent modal split for a wait time of 15 minutes, 
a travel time ratio of 2.0, and a fare of $0.60. This is based on the records of the 
Batavia, New York, system for the early months of operation in the fall of 1971. 

The elasticities used have a great deal of uncertainty associated with them. The 
figures chosen are based on the attitudinal survey of Golob and Gustafson (7). They 
derived a set of demand curves from these surveys; however, these models gave pre
dicted modal splits that seem far too high when compared with the market shares ob
served in cities with dial-a- ride service. Rather than use these demand curves di
rectly and seriously overestimate demand, we used only the elasticities implied by 
their work. These elasticities are rough averages over the range of levels of service 
and fare considered. The elasticities used are as follows: 

eTTR = -0.3 

e, = -1.1 

The service elasticities are lower than those often used, and the fare elasticity is 
quite high. This may reflect the tendency for the elderly, poor, and young to use the 
system. Such socioeconomic groups are likely to be more fare sensitive and less ser
vice sensitive. 

The service elasticities for travel time and wait time were roughly equal in Golob 
and Gustafson's demand curves. This is somewhat unusual in that wait time is gen
erally regarded as being more onerous than is vehicle time (8). However, dial-a-ride 
wait time is generally spent in the passenger's home rather ffian at a bus stop or 
transit station. Furthermore, the arrival of the dial-a-ride vehicle is likely to be 
quite reliable since the telephone operator at the control center can often give the 
passenger an expected vehicle arrival time. Because the service elasticities are well 
below other estimates, such as the -0.593 value found in a model calibrated by 
Domencich and Kraft, extensive sensitivity analysis was don:e to determine whether 
elasticities would greatly affect the predictions made (~. 
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The fare elasticity, although higher than those generally assumed for public trans
portation, seems reasonable since the dial-a-ride fare is generally substantially higher 
than fares for conventional public transit. Golob and Gustafson's survey work indicates 
that fare elasticity tends to increase with fare. Analysis of the results of a fare in
crease in the Peoria Premium Special subscription bus service also indicated a fare 
elasticity near unity (10). 

For the dial-a-ridesystem to be in equilibrium, both the supply and demand rela
tions must be satisfied concurrently. The simultaneous solution of these equations 
results in a third order polynomial expression in>.., the demand arrival rate. The 
coefficients of this polynomial are functions of the trip length, vehicle speed, and the 
coefficients of the equations for the mean interstop distance and Lw. 

Net Cost Model 

The cost for any given dial-a-ride system was divided into 4 major categories (Q): 

1. Customer communications, including handling and processing incoming calls; 
2. Vehicles, including capital and operating costs and driver wages; 
3. Dispatching, including computer rental, space, maintenance, and program

ming; and 
4. Overhead. 

Each of these categories was further disaggregated into space, labor by job type, 
phone rental, and other subcategories. Wage rates and other factor input prices were 
derived from a number of sources and represent reasonable values for the northeast 
United States where there is unionized labor. 

In the cost analysis, true demand-responsive service operated only during off-peak 
hours; more efficient subscription bus service operated during peak hours. Thus, a 
portion of the cost was allocated to these peak-hour activities. The entire model 
system was developed for a typical weekday of operation. Thus, some fraction of 
fixed costs was allocated to weekend and holiday dial-a-ride service. 

PARAMETRIC TEST CASE 

The entire model system was used to test the effects of various dial-a-ride systems 
and the sensitivity of the model to a range of parameters. The sizes of the 3 hypothet
ical areas considered were 2 by 2, 2.8 by 2.8, and 3 by 4 miles. The average trip 
length, fare, fleet size, demand elasticities, and base modal split were all varied. 
Only increases in the magnitude of the travel time ratio and wait ti.me elasticities were 
considered because of the unusually low value of these elasticities implied by attitu
dinal survey research. The following variations were examined for all systems. 

1. Trips per day: 16,000, 2 by 2 miles; 32,000, 2.8 by 2.8 miles; and 48,000, 
3 by 4 miles. 

2. Trip lengths: %(h1 + h2), %(h1 + h2), and %(h1 + h2), where h1, h2 are the 
dimensions of the service area. 

3. Fare elasticities: -0.8, -1.1, and -1.3. 
4. Base modal splits: 1, 2, and 3 percent. 
5. Fares: $0.25, $0.50, $0.75, $1.00, and $1.25. 
6. Wait time and travel time ratio elasticities: -0.3, -0.3; -0.5, -0.5; and -0.7, 

-0.7. 

The following parameters were held constant. 

1. Total service time per day: 480 minutes. 
2. Vehicle speed: 0.25 miles per minute. 
3. Base fare: $0.60. 
4. Base travel ratio: 2.0. 
5. Base wait time: 15 minutes. 

For systems characterized by both high fares and high fare elasticities, no positive 
equilibrium solution could be found. This probably resulted from the inadequacy of the 
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constant elasticity assumption used in developing the demand model. Occasionally, 
when the high-fare, high-elasticity system did yield a positive volume, the results 
were completely unreasonable in that the predicted dial-a-ride travel time was less 
than the automobile travel time. However, these systems were a small fraction of 
those tested and were characterized by input values far beyond the range of values for 
which the supply model was calibrated. 

No system tested showed a profit. This appears reasonable in light of existing 
operational experience and when one considers that only the off-peak hours were con
sidered. Efficient peak-hour subscription bus service could offset some or all of the 
off-peak loss. 

Figures 1 through 6 show some of the results of the test runs for various represen
tative systems. Two basic statistics were considered. First, the ratio of total dial
a-ride travel time and automobile travel time is termed the level of service. This 
measure reflects the overall quality of service provided by the system, and its value 
increases as the actual quality of service declines. Second, the daily deficit of the 
system is an economic performance measure. In general, there is a trade-off between 
improved service and reduced deficit. 

Figures 1 and 2 show that the fare is a significant design variable. Higher fares 
imply lower demand, which results in improved service, which encourages more 
demand, which to some extent offsets the impact of increased fare. However, because 
the fare elasticity is high while the wait time and travel ratio elasticity is low, this 
offsetting effect is quite small. The deficit curves for various fare levels are u-shaped, 
and the minimum deficit lies between $0.75 and $1.00 per trip, depending on the fare 
elasticity. In general, this fare is somewhat higher than is currently being charged 
by most existing dial-a-ride systems. 

Figures 3 through 6 show the effects of various demand parameters on the level of 
service and net daily deficit. The base modal split is a major determinant of service 
quality and economic performance. For example, the deficit for an 8-vehicle system 
is almost $100 per day less at the 2 percent base modal split than at the 1 percent 
(Fig. 3). The magnitude of this differential tends to increase with vehicle fleet size. 
In general, a 1 percent increase in modal split produced a 10 to 20 percent decrease 
in daily deficit. The significant effect that the base modal split also has on quality of 
service is shown in Figure 4. 

Figures 5 and 6 show the effect of the travel time ratio and wait time elasticities 
for various fleet sizes. In general, because most of the system tested operated at 
wait times and travel time ratios considerably below the base points of 15 minutes and 
2.0 respectively, !>igher service elasticities implied higher demand and resulted in a 
lower operating deficit. 

Relatively small increases in the service elasticities had substantial effect on the 
size of the deficit. For example, Figure 5 shows that a shift in the elasticities from 
-0.3 to -0.5 resulted in a 12 to 15 percent decrease in deficit, depending on the size 
of the vehicle fleet. In general, the size of the deficit decrease was a constant pro
portion of the total deficit, independent of the vehicle fleet, 

The effect of increases in service elasticity on the quality of service is shown in 
Figure 6 for the same system as was used in Figure 5. The increase in demand 
implied by higher elasticities resulted in poorer quality service. To maintain the 
same level of service when the service elasticities shifted from -0.3 to -0.5 would 
have required the addition of 2 to 3 vehicles. Shifts from -0.3 to -0.7 imply the addi
tion of 3 to 5 vehicles to maintain an equivalent level of service. 

CONCLUSIONS 

In previous analyses of dial-a-ride systems, either simulation has been used to 
analyze supply characteristics or attitudinal or empirical analysis has been used to 
predict demand. This analysis shows that both supply and demand parameters are 
important and must be considered in an integrated framework in designing dial-a-ride 
systems. 



Figure 1. Fare versus deficit for various elasticities. 
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Figure 2. Fare versus level of service for various elasticities. 
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Figure 3. Fleet size versus deficit for various base modal splits. 
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Figure 4. Fleet size versus level of service for various base modal 
splits. 
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Figure 5. Fleet size versus deficit for various service elasticities. 
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Figure 6. Fleet size versus level of service for various service 
elasticities. 
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This paper presents a model system based on an equilibrium framework that re
quires that both supply and demand be satisfied. Furthermore, the analytic form of 
ali of the model components greatly reduces the computation required to evaluate a 
broad spectrum of design options. 

The model system developed is of necessity somewhat crude, but it is sensitive 
to the types of system design options that are probably most relevant and is useful in 
analyzing changes in both short-run operating policy such as fare and long-run invest
ment decisions such as fleet size and service area. 
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