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This study is co11cerned with the sti·ucture of travel demand models . Two 
alternative structures are defined, simultaneous and recursive, that are 
based on different hypotheses about the underlying travel decision-making 
process. The simultaneous structure is very general and does not require 
any specific assumptions. The recursive structure represents a specific 
conditional decision structure, i.e., the traveler is assumed to decompose 
his trip decision into several stages. Thus, simultaneous and recursive 
structures represent simultaneous and sequential decision-making pro­
cesses. Theoretical reasoning indicates that the simultaneous structure 
is more sensible. Moreover, if a sequence assumption is accepted, there 
are several conceivable sequences, and generally there are no a priori 
reasons to justify a selection among them. A simultaneous model, how­
ever, is ver y complex because of the large number of alternatives that a 
traveler faces in making his trip decision. An empirical study is con­
ducted to investigate the feasibility of a simultaneous model and to ap­
praise the sensitivity of predictions made by a travel demand model to the 
structure of the model. The data set for the study was drawn from con­
ventional urban transportation study data. Included in a trip decision are 
destination and mode choices. With the same data set, three disaggregate 
probabilistic models are estimated for the shopping trip purpose: a simul­
taneous model and two recursive models with two possible sequences. The 
simultaneous model proved to be feasible in terms of the computational 
costs and the estimation results . The results of the recursive models 
showed that estimated model coefficients vary considerably with different 
model structures. The simultaneous model structure is recommended. 

•DECISION- MAKING in transportation planning, as in any other planning activity, re­
quires the prediction of impacts from proposed policies. One of the inputs to the pre­
diction process is the demand function that describes consumers' expected use of trans­
portation services. 

The approach mos t widely used to predict passenger travel demand (6, 12, 13) is the 
aggregate ur ban t r ansportation model sys tem (UTMS). [A model can be e xpressed math­
ematically in many different ways. The word structure refers to the format of writing 
a model that has a behavioral interpretation. A model can be used for forecasting in a 
format that has no behavioral interpretation. The distinction between direct and indirect 
travel demand model (12) is based on the format used for forecasting and does not nec­
essarily imply a cliffP.rP.Tit behavioral interpretation.] It is characterized by a recursive, 
or sequential, structure that represents a conditional decision-making process; i.e., it 
is assumed that the traveler makes his trip decision in several stages. A trip decision 
consists of several travel choices, e.g., mode and destination. In a recursive structure 
the travel choices are determined one at a time, in sequence. 

Two recent developments in modeling travel demand have stimulated the present 
study. The first was the recognition that the representation of the trip decision as a 
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sequential process is not completely realistic. It has been argued (9) that the trip 
decision should be modeled simultaneously with no artificial decomposition into sequen­
tial stages. Attempts to develop simultaneous models followed the conventional approach 
of aggregate demand analysis, in which the quantity demanded is taken as a continuous 
variable ( 5, 8, 16, 17). The second development was ·the introduction of disaggregate 
probabilistic demand models that relied on a more realistic theory of choice among 
qualitative trip alternatives. However, all the disaggregate models that were devel­
oped could be used either for a single stage of the UTMS (18) or, more recently, for 
all the stages, but again with the assumption of a recursive structure (4). 

The common denominator of these two developments is clearly a disaggregate prob­
abilistic simultaneous travel choice model. However, because of the large number of 
alternative trips that a traveler faces and the large number of attributes that describe 
each alternative, a simultaneous model can become very complex. This raises some 
important issues concerning the feasibility of a simultaneous model and the sensitivity 
of travel predictions to the simplifying assumption of a recursive structure. 

The purpose of this research is to investigate these issues and to recommend a 
strategy for structuring travel demand models. This study explores alternative travel 
demand model structures and their inherent behavioral assumptions. An empirical 
study is conducted to calibrate the alternative models and furnish some evidence of the 
feasibility and desirability of disaggregate simultaneous travel choice models. 

MODELS 

In general, models are simplified representations of some objects or phenomena. 
This study deals with econometric models, i.e., mathematical relationships describing 
economic phenomena of observed variables and unknown but statistically estimable pa­
rameters. We use models to better understand real-world phenomena and to make de­
cisions based on this understanding. 

Travel demand models are use.d to aid in the evaluation of alternative policies by 
predicting the consequences of alternative policies or plans. A model that determines 
travel consequences independently of the characteristics of various policy options ob­
viously cannot be used to evaluate those options (unless policies are, in fact, irrelevant 
to consequences). 

Specification of a travel demand model involves some assumptions about the rela­
tionships among the variables underlying travel behavior. Predictions made by the 
model are conditional on the accuracy of the behavioral assumptions and, therefore, 
are no more valid than the assumptions. 

A model can duplicate the data perfectly, but may serve no useful purpose for pre­
diction if it represents erroneous behavioral assumptions. For example, consider a 
policy that will drastically change present conditions. In this case the future may not 
resemble the present, and simple extrapolation from present data can result in signifi­
cant errors. However, if the behavioral assumptions of the model are well captured, 
the model will be valid under radically different conditions. It should be noted that this 
discussion is very general. Behavioral assumptions are a matter of degree inasmuch 
as there are many levels of detail at which behavior could be described. (For example, 
sensitivity to policies could be regarded as a gross level of behavioral assumptions.) 

The requirement that models be policy-sensitive is necessary but not sufficient for 
planning purposes. An additional requirement is that the models be based on valid be­
havioral assumptions. A model could be policy-sensitive but be useless for policy 
analysis if it is not based on valid assumptions. 

In general, it is impossible to determine the correct specification of a model from 
data analysis. It should be determined from theory or a priori knowledge based on ex­
perience with, and understanding of, the phenomenon to be modeled. Frequently there 
is no comprehensive theory that will prescribe a specific model. Moreover, important 
variables are often missing because of lack of data or measurement problems. There 
are other potential problems that involve the different kinds of data that could be used 
to estimate the model (e.g., time series versus cross section, attitudinal versus engi­
neering) and the need to use a mathematical form that is amenable to a feasible statis­
tical estimation technique. 
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The result is that we may have several alternative models to evaluate. Unfortunately, 
"in statistical inference proper, the model is never questioned .... The methods of 
mathematical statistics do not provide us with a means of specifying the model" (11). 
In other words, given several alternative models and a data set, statistical inference 
Will not be conclusive on which model represents the "true" process. This does not 
say, however, that the data do not play a role in the selection among models. At var­
ious stages of an empirical analysis, some aspects of assumptions that do not agree 
sufficiently with the findings may be revised. More generally, accumulated past evi­
dence from empirical studies influences the formulation of the assumptions of new 
efforts. 

Suppose that we are faced with a choice among some alternative models that were 
not discarded in the course of data analysis. If these alternative models are based on 
different sets of assumptions, we should decide which set makes the most sense ac­
cording to a priori knowledge about behavior, along with goodness-of-fit measures and 
statistical significance tests. 

In modeling passenger travel demand, we are concerned with the trip-making be­
havior of individuals or households. Hence, a prerequisite to travel demand modeling 
is a set of assumptions that describe the process of trip- making decisions of these in­
dividuals or households. The basis for comparing different travel demand models 
should be the reasonableness (or the correspondence with a priori knowledge) of the 
behavioral assumptions of each model. 

In this study we consider two travel demand model structures: simultaneous and 
recursive, each representing a different travel behavior assumption. We assume a 
priori that a simultaneous structure is appropriate. However, we also consider re­
cursive models, in order .to evaluate the significant differences between the two. 

Disaggregate Models 

The behavioral assumptions of a demand model take the perspective of an individual 
as he weighs the alternatives and makes a choice. An aggregate model based on con­
sumers aggregated by location or socioeconomic category could be constructed. How­
ever, aggregation during the model construction phase will only cloud the actual rela­
tionships and can cause a significant loss of information (7, 14). An aggregate model 
that is based on averages of observations of socioeconomic types and geographic loca­
tion would not necessarily represent an individual consumer's behavior, and the same 
relationships may not hold in another instance or another location. For planning pur­
poses, we are concerned with the prediction of the behavior of aggregates of people. 
However, in principle, aggregation to a level required for forecasting can always be 
performed after estimation. 

In urban transportation planning (UTP) studies the data are collected on the disag­
gregate level and aggregated to a zonal level for use in the conventional UTMS (13). 
Using this disaggregate data directly in disaggregate travel demand models can bring 
about large savings in data collection and processing costs. Because the data are used 
in the original disaggregate form and are not aggregated to the zonal level, a compre­
hensive home interview survey is not essential as is the case of conventional aggregate 
models. Previous work with disaggregate travel demand models (4, 18) indicates that 
it is a feasible modeling approach. Thus, disaggregate travel demand models have 
several practical advantages over aggregate models: 

1. Possible reduction in data collection costs, 
2. Transferability of the models from one area to another, and 
3. Possibility of using the same set of models for various levels of planning. 

The problem of aggregating a disaggregate model for forecasting requires more re­
search. However, some simplified methods, such as the use of homogeneous market 
segments (.!:_, 12), are available and can be used. 

Choice Theory 

In general, models that describe consumer behavior are based on the principle of 
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utility maximization subject to resource constraints. Conventional consumer theory, 
however, is not suitable for deriving models that describe a probabilistic choice from 
a qualitative or discrete set of alternatives. Therefore, the travel demand models de­
veloped in this study rely on probabilistic choice theories (2, 3, 4, 10). 

It is assumed that the consumer selects the alternative fli.a1 maximizes his utility. 
The probabilistic behavior mechanism is a result of the assumption that the utilities of 
the alternatives are not certain but are random variables determined by a specific dis­
tribution. 

The choice probability of alternative i is 

P(i:At) = Prob[U1t;,, U,t, -v-jt'AtJ 

where 

At = set of alternative choices available to consumer t and 
Utt = utility of alternative i to consumer t. 

The utilities are essentially indirect utility functions that are defined in theory as the 
maximum level of utility for given prices and income. In other words, U1t is a function 
of the variables that characterize alternative i, denoted as X1 , and of the socioeconomic 
variables describing consumer t, denoted as St. Thus, we can write 

The set of alternatives At is mutually exclusive and exhaustive such that only one alter­
native is chosen. The deterministic equivalent of this theory is simply a comparison 
of all alternatives available and selection of the alternative with the highest utility. 

The mathematical form of the choice model is determined from the assumption about 
the distribution of the utility values. The coefficients of the utility functions are esti­
mated with a cross section of consumers and by observations of actual choices. There­
fore, the observed dependent variable has a value of zero or one. The forecast of the 
model is a set of probabilities for the set of alternatives. 

The Multinomial Logit Model 

There are a number of probabilistic choice models that are available; two of the 
most popular and most useful are the probit and logit models. The multino·mial logit 
model, as described below, appears to be superior to probit because of the computa­
tional time requirements. 

The logit model (~, !) is written as follows: 

With disaggregate cross-sectional data, the logit model is estimated by using the max­
imum likelihood method ( 15). 

The Travel Choices 

A trip decision for a given trip purpose consists of several choices: trip frequency, 
destination, time of day, mode, and route. In a probabilistic choice approach we are 
interested in predicting the joint probability P (f, d, h, m, r:FDHMRt), which is defined 
as the probability that individual or household t will make a trip with frequency f to 
destination d during time of day h via mode m along route r. The set of alternatives 
FDHMRt consists of all possible combinations of frequencies, destinations, times of 
day, modes, and routes available to individual t. 

For the purpose of presentation we consider only two travel choices: destination 
and mode. The set of all alternative combinations of destinations and modes is denoted 
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as DM. (For simplicity we drop the subscript t.) We can partition this set according 
to destination to get the sets of alternative modes to a given destination Md. If modes 
and destinations have no common attributes and the two choices are independent, then 
Md is independent of d and can be written as M. However, this is an unrealistic as­
sumption because there are many attributes, such as travel time, that are in fact char­
acterized by all the travel choices. Therefore, it is assumed that Md -f. Md'· We are 
interested here in predicting the joint probability P(d, m:DM). 

The Alternative structures 

If we assume that the two choices are independent, we write the following independent 
structure: 

P(m:M) = Prob[U. ;;;, U.', -v-m'E:M] 

and 

P(d, m:DM) = P(d:D) x P(m:M) 

where 

D = set of alternative destinations, 
M =set of alternative modes, 
ud =utility from destination d, and 
Um = utility from mode m. 

(This is an unrealistic structure for travel demand; but it is presented for the purpose 
of comparison with other structures.) 

Consider a conditional decision-making process in which, for example, destination 
is chosen first and then, conditional on the choice of destination, a mode is chosen. 
For this assumption we write the following recursive structure: 

and 

where 

P(d:D) = Prob[Ud;;;, Ud', -v-d'E:D] 

P(m:Afd) = Prob[Um\d;;;, U.'\d, -v-m'E:Md] 

P(d, m:DM) = P(d:D) x P(m:~) 

Md = set of alternative modes to destination d and 
Um\d =utility from mode m given that destination d is chosen. 

Assuming that the choice of mode is dependent on the choice of destination and vice 
versa, we can write the following simultaneous structure: 

P(d:D.) = Prob[Ud\•;;;, Ud'\m, --v-d'E:D.] 

P(m:~) = Prob[Um\d;;;, Um'\d• --v-m'E:Md] 

where Dm =the set of alternative destinations by mode m. 
In the independent and recursive structures we predict the joint probability by mul­

tiplying the structural probabilities. However, in a simultaneous structure, the two 
conditional probabilities are insufficient i°'ormation to predict the joint J?robability. 
Therefore, we need to estimate either a marginal probability, say P(d:D), or, directly, 
the joint probability. The problem with the first approach is that we need to define a 
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Ud where we originally specified Ud\m· The second approach requires a specification of 
the joint utility Udm, in which the cohlbination dm is considered as a single alternative. 
This approach is more logical because it corresponds with the notion of a simultaneous 
choice. Hence, in the simultaneous structure, we need to estimate the following choice 
probability: 

P(d, m:DW = Prob[Udm 01; Ud'•'• -v- d'm'EDM] 

Given the joint probability we can derive any desired marginal or conditional probability. 
For example, 

and 

Alternative Models 

P(m:M) = L P(d, m:DM) 

dEDm 

P(d:D.) = P(d, m:DM) 
P(m:M) 

For simplicity, we write the probabilities in this section without the notation for the 
set of alternatives. In other words, we will write P(d, m:DMt) as Pt(d, m), and P(m:Mi.t) 
as Pt(m\d). 

In the prediction of joint probability Pt(f, d, m, h, r), the set of alternatives consists 
of all possible trips or all possible combinations of frequencies, destinations, modes, 
times of day, and routes available to individual t. In a simultaneous structure of the 
logit model, this will be the definition of the set of alternatives, and the choice proba­
bility will be for an alternative f, d, m, h, r combination. 

The joint probability can be written as a product of marginal and conditional proba­
bilities: 

Pt(f) x Pt(d If) x Pt(m If, d) x Pt(h If, d, m) x Pt(r If, d, m, h) 

and can be written in many ways : 

In a recursive structure we will use a logit model for each probability separately and 
arrange the set of alternatives for each choice according to the sequence implied by the 
way we write the product. For example, the probability Pt(m If, d) is the probability of 
choosing mode m, when the set of alternatives consists of the modes available to indi­
vidual t, to destination d at trip frequency f. 

Calibrating a sequential model requires assumptions beyond the definitions of the 
relevant sets of alternatives for each choice. Consider, for example, the choice model 
for the probability Pt(m \f, h). The problem is how to include in the model all the vari­
ables that for a given mode vary across destinations. Clearly, we cannot use all these 
variables as separate variables with their own coefficients. Therefore, we need to con­
struct composite variables. There are many possible composition schemes. In addi­
tion there is the possibility of constructing the composite variables from several orig­
inal variables together such that the trade-off among them is kept constant in all choices. 
For example, for an alternative destination we can define a generalized price by each 
mode that is a function of travel time and travel cost; then we aggregate across desti­
nations to create a composite generalized price that is specific only to mode. 

THE EMPIRICAL STUDY 

The data for this study were taken from a data set prepared for the Metropolitan 
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Washington Council of Governments (WCOGL The data set was combined from a home 
interview survey conducted in 1968 by WCOG and a network (i.e., level of service) data 
set assembled by WCOG and R. H. Pratt Associates. 

The scale and the objectives of this empirical study dictated that we use only a small 
subsample of the original data set for a single trip purpose, shopping. The data were 
kept in the disaggregate form where the observation unit is a household. This follows 
the assumption that the behavioral unit for a shopping trip is also a household. 

Hence, the disaggregate data were exclusively drawn from conventional urban trans­
portation study data. Specifically, trip and socioeconomic data from a home interview 
survey, level-of-service data from coded networks, and other user cost data custom­
arily collected by transportation planning agencies were used. 

Because our purpose is to evaluate the sensitivity of the predictions to the structure 
of the model, we consider in the empirical work only the joint probability of destination 
and mode (given that a trip is taken)-Pt(m,d). We model this joint probability with 
three alternative structures: a simultaneous logit model that estimates this probability 
directly and the following two possible recursive model sequences: 

and 

where a logit model is applied to each probability separately. We also investigate al­
ternative ways of constructing composite variables for the marginal probability. 

The justification for separating destination and mode choices from other choices is 
as follows: The choice of time of day is assumed to be insignificant because the sample 
included only off-peak shopping trips. Route choice is not reported in the available data. 
The actual frequency is also not reported. Trips are reported for a 24-hour period. 
Therefore, the observed daily frequency is either 0 or 1 (and in a few cases 2). If we 
use an aggregate of households, this is sufficient information to compute an average 
frequency. For a disaggregate model the actual frequency is not available. We are 
forced to assume that the choices of mode and destination are independent of the actual 
frequency and, therefore, can be modeled separately. Note that with O, 1 daily fre­
quencies, Pt(f = 1 Id, m) = 1 and Pt(f = 0 Id, mJ = 0. 

The sample used for estimation consists of 123 household home-shop-home round 
trips that were selected randomly from a home interview sample in the northern cor­
ridor of Metropolitan Washington. Each household has a choice between two modes, 
the family car and bus, and several shopping destinations, ranging from one to eight 
according to the location of the household residence. It is important to note that we 
need to consider only alternatives that have positive choice probabilities. Therefore, 
a shopping location that is too far or a mode that is unsafe and consequently not feasible, 
or assumed to have negligible choice probability, need not be included in the set of 
alternatives. 

The data consist of level-of-service variables by mode and destination, shopping op­
portunities by destination, and socioeconomic characteristics of the household. Each 
observation included the value of the variable's for all the relevant alternatives for this 
household and the observed choice. 

Specification of the Variables 

The following list gives the definitions of the variables: 

TOdm = out-of-vehicle travel time to destination d by mode m (in minutes) 
Tldm = in-vehicle travel time to destination d by mode m (in minutes) 

1
;dc =out-of-pocket cost to destination d by modem (in cents), divided by house­

hold income 
Ed = wholesale-retail employment (number of jobs) 

DCBDd = CBD specific dummy variable for destination d 



{
1 ford= CBD 

= 0 otherwise 
DA. = automobile-specific dummy variable for mode m 

_ { 1 for m = automobile 
- 0 form= bus 

DINC. = automobile-specific income variable for mode m 
_ {INC for m = automobile 
- 0 form= bus 
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The level- of- ser vice variables are generic rather than mode-specific. (This would 
increase the number of level-of-service variables from three to six.) In this case, the 
marginal rates of substitution among level-of-service variables will differ for alterna­
tive modes. From a theoretical point of view it makes more sense to have equal mar­
ginal rates of substitution. The differences among modes that are not explained by the 
level-of-service variables included, such as differences in comfort and safety, are ac­
counted for by the mode-specific dummy variables. This assumption has been tested 
(4) from an empirical point of view. A mode choice model was calibrated with mode­
specific level-of-service variables, and it was found that the modal coefficients were 
not significantly different. This supports the a priori assumption of equal marginal 
rates of substitution. 

The alternative models estimated are presented in terms of the log of the odds of 
choosing one alternative over another. That is, the models are expressed as 

K 
P(i) ~ ( ) A 

Log p( ·) = ~ X1k - xjk ek 

J k=l 

where 

P(i) = choice probability of alte.,.native i, 
Xik = k th explanatory variable for alternative i, and 
~k = coefficient estimate of the k th explanatory variable. 

The Simultaneous Model 

In the simultaneous model presented below, the joint probability of destination and 
mode (given that a trip is made) was directly estimated. The sets of alternatives con­
sist of combinations of mode and destination. There are from two to 16 alternatives 
for each observation. The results that were obtained are as follows: 

Log ~(d/m~ = -1.36 (DA. - DA,,') - 0.0633 (70dm - T0d'•') 
P d • m (0.970) (0.0202) 

- 0.0164 (Tid• - Tld'.') - 0.0757 (Cdm/INC - CN/INC) 
(0.0116) (0.0216) 

+ 0.114 (DINC. - DINC0
1) + 0.000171 (EMPd - EMP41) 

(0.158) (0.0000875) 

+ 0.316 (DCBDd - DCBDd') (1) 
(0. 554) 

L*(O) = -277.678 
L*(S) = -207.380 

p2 = 0.25 
p2 = 0.25 
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where 

p(d, m) = joint probability of choosing destination d and mode m, 
L*(O) = log likelihood for 0 coefficients, 
L*(S) =log likelihood for the estimated coefficients, 

pa = coefficient of determination 
= 1 - L*(0) and 

L *(O) ' 
p2 = p2 adjusted for degrees of freedom, 

and the numbers in parentheses below the model coefficients are standard errors. 
All the signs and the relative values of the coefficient estimates are as expected. 

The pure automobile effect, So A, gave a minus sign; however, it should be interpreted 
as a transit bias only together with the coefficient of the automobile-specific income 
variable, which is positive. Out-of-vehicle travel time is on the order of four times 
more onerous than in-vehicle travel time. The standard errors of the coefficients of 
the automobile specific income and the CBD dummy variables are relatively large; 
however, they have the expected signs. 

Alternative Recursive Models 

Three alternative composition rules were used: weighted prices, weighted general­
ized price, and log of the denominator. The composite variables are defined when the 
estimation results are presented. In addition, there are two possible sequences: 

1. d .... m:d followed by m, and 
2 . m .... d:m followed by d. 

Hence, we estimated a total of six recursive models, three for each sequence. The 
estimation starts with the conditional probability, i.e., p(mld) in the first sequence 
and P(d Im) in the second sequence. Then, the marginal probability is estimated by 
using the composite variables that are calculated with results from the conditional 
probabilities. Note that for each sequence there are one conditional probability and 
three marginal probabilities for the alternative composition rules. 

Sequenced .... m: The Conditional Probability 

The conditional l?robability presented below is the equivalent of a trip interchange 
modal-split model (20). The model predicts the probability of mode choice for a given 
destination (and given that a trip is made). The sets of alternatives consist of the bus 
and automobile modes for the chosen destination. The estimation results are as follows: 

where 

P(m Id) ( ) ( ) , Log ( J ) = -0.639 DA,. - DA,' - 0.0515 TOdm - TO dm 
Pm' d (1.33) (0.0237) 

- 0.0108 (Tidm - TI)d.' - 0.137 (Cdm/INC - Cdm'/INC) 
(0.0261) (0.0530) 

+ 0.0490 (DINC. - DINC.1
) 

(0.199) 

L*(O) = -85.257 
L*(DA) = -56.216 

L*(S) = -23.033 
p2 = 0.73 
p2 = o. 72 
P~A = 0 . 59 
fJ~A = 0.58 

(2) 

p(m Id) = conditional probability of choosing mode m given that destination dis chosen, 
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L*(DA) = log likelihood for 0 coefficients except for pure automobile effect DA, and 
P~A = coefficient of determination in addition to the pure automobile effect. 

It can be seen that all the coefficients have their expected signs. Out-of-vehicle 
travel time is almost five times more onerous than in-vehicle travel time. The stan­
dard errors of the coefficients of in-vehicle travel time and income are relatively large; 
however, the coefficients have their expected signs. 

Sequence d .... m: The Marginal Probability 

The marginal probability of destination choice is the equivalent of a pre-modal-split 
distribution model. This model predicts the probability of destination choice with the 
mode choice indeterminate. The sets of alternatives consist of the alternative shopping 
destinations. Three models with the alternative composition rules were estimated for 
this probability, and the results are presented below for weighted prices. 

Log p((d!) = -0.0227 (TO~ - To';i') - 0.0374 (TI~ - Tl~') 
pd (0.0523) (0.0173) 

- 0.0269 (C~/INC - C~'/INC) + 0.000130 (EMPd - EMPd1) 

(0.0327) (0.0000910) 

+ 0.638 (DCBDd - DCBDd') 
(0.595) 

L*(O) = -192.421 
L*(e) = -182.485 

L*d•(e) = -205.518 
rl = o.o5 
p2 = 0.04 

P~. = 0.26 

where 

P(d) = marginal probability of choosing destination d, 

TO~= L TOdm X P(m \d), 

m 

TI~ = L Tfa. x P(m \d), 

m 

c~ = L Cdm x P(m \d), 

m 
L*d.(e) =log likelihood for the joint probability, and 

p~ = coefficient of determination for the joint probability. 

(3) 

Note that p~. is not computed. The reason is that the two separate models have different 
numbers of degrees of freedom. The results for weighted generalized prices are as 
follows: 

P(d) 
Log P(d~ = 0.000149 (EMPd - EMPd') + 0.353 (DCBDd - DCBDd') 

(0.0000867) (0. 510) 

+ 0,507 (GP~ - G~1) (4) 
(0.141) 

L*(O) = -192.421 
L*(B) = -184.866 

L* d.rn) = -207 .899 
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where 

p2 = 0.04 
p2 = 0.04 
P~. = 0.25 

GP~= L (-0.0515 X TOdo - 0.0108 X Tldm - 0.137 X Cdm/INC) P(m Id) 

m 

The results for the log of the denominator are as follows: 

Log p((d!) = 0.000149 (EMPd - EMPd1 ) + 0.295 (DCBDd - DCBDd1) 

pd (0.0000862) (0.510) 

+ 0.549 (log ~"-log P~1) 
(0.147) 

L*(O) = -192.421 
L*(S) = -184.068 

L* d.(a) = -207 .101 
P2 = 0.04 
p2 = 0.04 
p~. = 0.25 

where 

p~ = L exp(-0.639DA. - 0.0515TOd. - 0.0108Tidc - 0.137Cd./INC + 0,0490DINC.) 

m 

(5) 

All the models have relatively low coefficients of determination, which is attributed 
to the lack of more descriptive attraction data. All three models gave coefficient es­
timates with the expected signs. However, in Eq. 3, the coefficient of out-of-vehicle 
travel time is smaller than the coefficient of in-vehicle travel time, in contrast to what 
we would expect. The standard errors in Eq. 3 are relatively large; however, it fits 
the data as well as the two other models. 

The model with weighted prices represents the assumption that the marginal rates 
of substitution among level-of-service attributes are different for different choices. 
The two other models assume equal rates for different choices. From a theoretical 
point of view, the latter assumption seems more reasonable. It is more likely that a 
traveler will have an identical trade-off between travel time and money cost for differ­
ent travel choices rather than several of them, each being used for a different choice. 
The poor results from the weighted prices model support this assumption. It appears 
that all previous travel demand models reported in the literature have made the as­
sumption of equal marginal rates of substitution for different choices. 

Comparison of Eqs. 4 and 5 shows that there are no significant differences (2). The 
coefficient estimates of the CBD dummy variable have relatively large standard-errors 
in the two models. However, the coefficients have the expected signs. The model 
shown in Eq. 4 is equivalent to the model developed by Charles River Associates(!). 

Sequence m .... d: The Conditional Probability 

The conditional probability in this sequence is the equivalent of a post-modal-split 
trip distribution model. The model predicts the probability of destination choice for a 
given mode. The sects of alternatives consist of the alternative shopping destinations 
for the chosen mode. The estimation results of this model are as follows: 
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P(d] m) ( , ) ( , ) Log ( ' I ) = -0.0610 Tod. - TOh - 0.0287 Tid. - Tih 
P d m (0.0380) (0.0136) 

- 0.0470 (C40 /INC - Cd'./INC) + 0.000148 (EMP4 - EMP41) 
(0.0263) (0.0000899) 

+ 0.330 (DCBDd - DCBD41) (6) 
(0.548) 

L*(O) = -192.421 
L*(e) = -179.680 

pa= 0.07 
pa= 0.06 

where P(d Im) = conditional probability of choosing destination d given that mode m is 
~ose~ · 

The signs of the coefficient estimates are as expected. Out-of-vehicle travel time 
is more than two times more onerous than in-vehicle travel time. The coefficient of 
the CBD dummy variable has the expected sign but a relatively large standard error. 
The goodness of fit of this model is relatively low because of the large number of alter­
natives and the lack of better attraction description. 

Sequence m ... d: The Marginal Probability 

The marginal probability of mode choice is the equivalent of a trip-end modal-split 
model (20). This model predicts the probability of mode choice with indeterminate 
destination choice. The sets of alternatives include the bus and automobile modes. 
Again, we model this probability with the three alternative composition rules. The 
results that were obtained for weighted prices are as follows: 

where 

Log p((m~) = -0.952 (DA. - DA.1
) - 0.0509 (T~ - T0~1) 

Pm (1.27) (0.0204) 

+ 0.109 (TI~ - TI~') - 0.183 (C~/INC - C~1/INC) 
(0.0429) (0.072 5) 

+ 0.293 (DINC. - DINC.1) 
(0.225) 

L*(O) = -85.257 
L*(DA) = -56.216 

L*(e) = -24.596 
L*d•(e) = -204.276 

p2 = 0.71 
pa = 0. 70 
P~. = 0 .26 
P~A = 0.56 
P~A = 0.55 

p(m) =marginal probability of choosing modem, 
TO~= LTOdm X P(d\m), 

d 
TI~ = L Tfa. x P(d Im), and 

d 
C~ = LCdm x P(d\m). 

d 

(7) 
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For weighted generalized price, the results are as follows: 

where 

Log p((m~) - -2 .07 (DA.. - DA,.1) + 0 .117 (DINC. - DINC. 1) 

Pm (0.959) (0.157) 

+ 1.62 (GP~ - GP~1) 
(0.371) 

L*(O) = -8 5.2 57 
L*(DA) = -56.216 

L*(S) = -31.039 
L*d.(8) = -210.719 

p2 = 0.64 
p2 = 0.63 
p~. = 0.24 
P~A = 0.45 
P~A = 0.44 

GP~ = I (-0.0610TOdm - 0.0287Tidm - 0.0470Cdm/INC)P(d Im) 

d 

For the log of the denominator, the results are as follows: 

where 

Log P~m~, = -1. 74 (DA. - DA,.1
) + 0.0489 (DINC. - DINC.1) 

P~mi (0.955) (0.168) 

+ 1.42 (log P~ - log p~1) 
(0.303) 

L*(O) = -85.257 
L*(DA) = -56.216 

L*(S) = -27.832 
L* dm( e) = -207. 512 

p2 = 0.67 
p2 = 0.67 
p~. = 0.25 
P~A = 0.50 
P~A = 0.50 

p~ =I exp(-0.0610TOdm - 0.0287Tidm - 0.0470Cdm/INC 

d 

+ 0.000148EMPd + 0.330DCBDd) 

(8) 

(9) 

Again, Eq. 7, the weighted prices model, gave unreasonable coefficient estimates, 
similar to those ill Eq. 3. The two other models, Eqs. 8 and 9, gave better results. 
The coefficients of the income variable have the expected signs but relatively large 
standard errors. The model of Eq. 8 uses the same composition scheme as the model 
developed by CRA (!); however, this model assumes a different sequence. 

Comparison of Alternative Models 

The alternative models that gave reasonable coefficient estimates are given below. 



Model 

Simultaneous 
Recursive d .... m 

Recursive m .... d 

Method 

Direct estimation 
Weighted generalized price 
Log of the denominator 
Weighted generalized price 
Log of the denominator 

Equation 

1 
2, 4 
2, 5 
6, 8 
6, 9 
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It was not the purpose of this study to accept or reject the a priori assumption of a 
simultaneous decision-making process. As expected, the empirical evidence does not 
show which of the alternative structures, one simultaneous and two recursive, is more 
likely to be correct. All the models gave reasonable coefficient estimates. Further­
more, all the models gave essentially equal goodness of fit: p2 = 0.25. The simulta­
neous model includes seven coefficients, whereas the recursive models included eight. 
This implies that the simultaneou_s model has a slight edge in this category, but it is 
certainly not a conclusive difference. 

The simultaneous model that included observations with up to 16 alternatives and 
seven variables gave reasonable coefficient estimates. The computer cost was only 
slightly higher (::::20 percent) than the cost of a binary mode choice model with five vari­
ables. This indicates that a simultaneous model is feasible for the two choices of des­
tination and mode. It also indicates that expanding the set of choices and therefore in­
creasing the number of alternatives and variables may not be an unrealistic objective. 

Comparison of the coefficient estimates of the simultaneous model with those of the 
estimated recursive models suggests that the predictions are sensitive to the structure 
of the model. This sensitivity can be demonstrated by showing some examples of the 
important trade-offs and elasticities. Table 1 gives the values of time implied by the 
different models. 

Although the standard err ors ar e relatively large, this is not atypical for estimates 
of value of time (19). (The estimated model coefficients that were used to compute the 
values of time were significantly different from zero.) 

Estimated values of time from the simultaneous model are greater than those esti­
mated from a mode choice model (given destination) and smaller than those estimated 
from a destination choice model (given mode). 

Table 2 gives some direct elasticities of the mode choice probability. The figures 
in Table 2 are based on the following case: 

Table 1. Value of travel time in dollars per hour. 

Variable P(m,d} P(mld} P(dlm) 

Out-of-vehicle 3.02 1.36 4.67 
travel time (1.44) (0.98) (4 .36) 

In-vehicle travel 0 .78 0.28 2.21 
time (0.68) (0.66) (2.0 1) 

Note: The figures are for a household with annual income between 
$10,000 and $12,000. Numbers in parenthe$es are standard errors. 

1. Annual household income is between 
$10,000 and $12,000, 

2. The probabilities of choosing bus 
and automobile are 0.2 and 0.8 respectively, 

3. Out-of-vehicle travel times are 20 
minutes by bus and 10 minutes by auto­
mobile, 

4. In-vehicle travel times are 30 
minutes by bus and 15 minutes by auto­
mobile, and 

5. Out-of-pocket costs are 50 cents by 
both bus and automobile. 

Table 2. Direct elasticities of the mode choice probability. 

Bus Automobile 

Variable P(m,d} P(mid} P(m, d} P(mld} 

Out-of-vehicle travel time -1.01 -0.82 -0.13 -0.10 
In-vehicle travel time -0 .31 -0.26 -0.05 -0.03 
Out-of-pocket cost -0.40 -0 .91 -0.13 -0.23 
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The most striking variation in Table 2 is in the cost elasticity. The mode choice 
model derived from an estimated joint probability gives cost elasticities that are about 
half the elasticities computed from a recursive mode choice model. 

The differences among the models could be attributed to specification errors, which 
affect a mode choice model and a destination choice model differently. The effects 
could be in the opposite directions, and therefore the joint probability model gave es­
timates that are in some way between the estimates of the two other models. 

The marginal probabilities of the recursive models, which were formulated with 
composite variables, also demonstrated significant differences from the corresponding 
probabilities derived from the simultaneous models. 

Thus, the chosen structure can make a big difference in terms of the values of the 
estimated coefficients. Inasmuch as there are a priori reasons to assume a simulta­
neous rather than a recursive structure, we should estimate the joint probabilities 
directly. Then, if necessary, we can derive any conditional probability. 

CONCLUSIONS 

Models based on disaggregate data and choice theory were estimated in the past 
either for a single travel choice, primarily mode choice, or for several choices but in 
a recursive structure. The empirical study that was conducted in this research demon­
strated the estimation of a disaggregate simultaneous model. The results from the es­
timation of a simultaneous destination and mode choice model indicate that this approach 
is feasible within reasonable computation cost. Moreover, the estimation results of 
models with recursive structures for the same two choices show that important coef­
ficient estimates vary considerably with the different model structures. 

This empirical study was limited in scale, and it is recommended that the evidence 
should be extended to include alternative data sets, different trip purpose categories, 
a complete set of travel choices, and a more extensive set of explanatory variables (in 
particular, attraction description). 

The empirical evidence taken together .with the theoretical assumptions of a simul­
taneous structure and the advantages of disaggregate models suggests that future efforts 
in travel demand modeling should be in the direction of simulta neous disag~regate prob­
abilistic models. Given the joint probability (from the simultaneous model), one can 
derive conditional probabilities and use the model for forecasting in sequential stages, 
corresponding with the UTMS procedure. 

One of the important problems in using disaggregate models for forecasting is the 
aggregation problem. Future research efforts should investigate this problem. How­
ever, for the short run, simplified aggregation procedures, such as market segmenta­
tion, are available and can be used. 

The use of disaggregate models suggests new emphasis in data collection efforts for 
transportation planning. The amount of data needed for disaggregate models has not 
yet been determined, but it is clear that a change in the general method of collecting 
travel data is appropriate. The comprehensive home interview survey covering an en­
tire planning region might be replaced by several more descriptive small samples, in 
selected areas of the region. Thus, the emphasis should be to represent the full range 
of socioeconomic characteristics affecting travel behavior, rather than to sample all 
parts of the region at a uniform rate. Smaller scale surveys will make possible the 
collection of the detailed information (not conventionally collected) important for dis­
aggregate demand models . For example, information on car pooling, how often a trip 
is made (instead of repor ting only the trips made during the last 24 hours), institutional 
constraints such as preferred arrival time, and so forth, would be obtained. In addi­
tion to the travel data requi rements, better information is also needed with respect to 
the attributes of alternative trips. In particular, the attraction data available from con­
ventional data sources used in urban transportation planning are not very descriptive. 
More detailed attraction data are needed to achieve better predictions of destination 
choice. 

In-depth studies of travel behavior based on detailed interviews and attitudinal data 
could be fruitful. However, it appears that the most beneficial directions for research 
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toward improvements of transportation planning capabilities are the aggregation prob­
lem, behavioral modeling of round trips with non-home-based links, and experimental 
application of simultaneous disaggregate models to case studies of important transpor­
tation issues at different levels of planning. 

In conclusion, this research has indicated the desirability and the feasibility of a 
simultaneous disaggregate travel choice model. 
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DISAGGREGATE ACCESS MODE AND STATION CHOICE 

MODELS FOR RAIL TRIPS 

Peter S. Liou, New York State Department of Transportation; and 
Antti P. Talvitie, University of Oklahoma 

In this study disaggregate probability choice models are developed for ac­
cess mode and for access station selection. In each of the models, there 
are at least two alternatives available to the individual traveler. A multi­
nomial logit model that is based on the axiom of the "independence of ir­
relevant alternatives" is used. Two methods of approach concerning 
travelers' decision-making processes are used. The first is the simulta­
neous approach, which assumes that the traveler may make the access 
mode and station choice decisions in one of two sequences: station choice 
preceding mode choice or mode choice preceding station choice. In the 
sequential approach, the choices of access mode and access station are 
modeled separately. Results suggest that the traveler's decision-making 
process for the access mode and station choices is behaviorally separate, 
the sequence being station choice followed by access mode choice. The 
study also shows that travelers do not assign the same weights to the set 
of transportation system attributes when making these decisions and that 
the pedestrian and bus modes are preferred to the automobile mode. For 
the station choice, the accessibility of the train station has the greatest 
effect on the traveler's decision. 

•A PERSON planning any type of an intraurban trip makes a number of choices includ­
ing those on destination, mode, and travel route. These decisions have an important 
bearing on transportation planning, and therefore the knowledge of how travelers go 
about making their decisions is essential to transportation planners. 

This research discusses the access part of the rail journey. It is assumed of course 
that decisions on trip origin, trip destination, rail line, and so on have already been 
made; consequently, travelers are faced with two access choices: access mode and 
access station. 

The main purpose of this study is to develop disaggregate choice models of the access 
mode and station selection for rail work trips. At the same time, this study investi­
gates whether travelers make the two choices simultaneously or in a sequence and, if 
the latter, which specific sequence? Another objective of this study is to determine 
the types of transportation and socioeconomic attributes that affect travelers' choice 
decisions and how much. 


