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DISAGGREGATE ACCESS MODE AND STATION CHOICE 

MODELS FOR RAIL TRIPS 

Peter S. Liou, New York State Department of Transportation; and 
Antti P. Talvitie, University of Oklahoma 

In this study disaggregate probability choice models are developed for ac­
cess mode and for access station selection. In each of the models, there 
are at least two alternatives available to the individual traveler. A multi­
nomial logit model that is based on the axiom of the "independence of ir­
relevant alternatives" is used. Two methods of approach concerning 
travelers' decision-making processes are used. The first is the simulta­
neous approach, which assumes that the traveler may make the access 
mode and station choice decisions in one of two sequences: station choice 
preceding mode choice or mode choice preceding station choice. In the 
sequential approach, the choices of access mode and access station are 
modeled separately. Results suggest that the traveler's decision-making 
process for the access mode and station choices is behaviorally separate, 
the sequence being station choice followed by access mode choice. The 
study also shows that travelers do not assign the same weights to the set 
of transportation system attributes when making these decisions and that 
the pedestrian and bus modes are preferred to the automobile mode. For 
the station choice, the accessibility of the train station has the greatest 
effect on the traveler's decision. 

•A PERSON planning any type of an intraurban trip makes a number of choices includ­
ing those on destination, mode, and travel route. These decisions have an important 
bearing on transportation planning, and therefore the knowledge of how travelers go 
about making their decisions is essential to transportation planners. 

This research discusses the access part of the rail journey. It is assumed of course 
that decisions on trip origin, trip destination, rail line, and so on have already been 
made; consequently, travelers are faced with two access choices: access mode and 
access station. 

The main purpose of this study is to develop disaggregate choice models of the access 
mode and station selection for rail work trips. At the same time, this study investi­
gates whether travelers make the two choices simultaneously or in a sequence and, if 
the latter, which specific sequence? Another objective of this study is to determine 
the types of transportation and socioeconomic attributes that affect travelers' choice 
decisions and how much. 
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FORMULATION OF ACCESS MODE AND STATION CHOICE MODELS 

In this study, a multinomial logit model (15) is used because there are usually at 
least two alternatives available in each choie€: The generalized expression of the mul­
tilogit model is 

where 

P1 =probability of an individual choosing alternative i E fj} and 
U1 =utility function associated with alternative i. 

(10) 

The utility of an alternative travel choice is represented by attributes of the alternative 
(e.g., travel time, travel cost) and the socioeconomic attributes of the individual (e.g., 
income). A basic assumption to formulation of these models is that travelers ration­
alize their choices by selecting alternatives with the highest utilities. 

Construction of the access mode and station choice models in this study is approached 
from two behavioral process assumptions: (a) the simultaneous assumption in which the 
choices of access mode and station are made together and in which the joint probability 
of the two choices, P(m, s), is contained in a single model and (b) the sequential as­
sumption in which station and access mode choices are made one at a time. In the 
latter case, the joint probability of the two choices is the product of a conditional prob­
ability of one choice and a marginal probability of the other choice, e.g., P(m, s) = 
P(m Is) x P(s) for the station-mode sequence and P(m, s) = P(s Im) >< P(m) for mode­
station sequence. Clearly, both sequences can be justifiably assumed, and therefore 
both are studied. 

For the station-mode sequence, the (conditional) mode choice is modeled first, where 
utility is a function of the level-of-service attributes of the mode and mode-specific 
socioeconomic attributes of the traveler. The (marginal) station model, on the other 
hand, contains three types of station level-of-service attributes: station accessibility 
level of service; in-train level-of-service difference resulting from choosing the se­
lected station instead of other stations in the vicinity of the trip origin; and intrinsic 
level of service of the station, such as parking facility. The last two types of attri­
butes may be directly obtained. However, accessibility to a station is related to the 
effort that is required of the individual to reach the station by the available modes. 
Therefore, it is obtained by combining the probabilities of choosing the access modes 
with either the access mode level-of-service variables or the utility associated with 
each access mode. The former method results in a number of weighted modal level­
of-service variables called weighted price variables. The latter method produces a 
single variable called the weighted inclusive price variable. In the weighted price 
method the same attributes may have different coefficients in the estimated models at 
the two choice levels, whereas in the weighted inclusive price method the values of the 
coefficients for the modal level-of-service variables remain unchanged. This is be­
cause the entire utility function in the access mode model is weighted in the weighted 
inclusive price method. From a behavioral standpoint, the weighted price method 
simply assumes that travelers value the same modal level-of-service attributes dif­
ferently when they choose modes and stations. On the other hand, the weighted in­
clusive price method assumes that travelers view the relative importance of the modal 
level-of-service attributes equally at the two choice levels. An interesting consequence 
of this method of approach, as reflected in the estimated weighted inclusive price sta­
tion model, is that, if this assumption is valid, then the coefficient of the weighted in­
clusive price variable should be 1. 

The other possible sequence is the mode-station sequence in which the conditional 
station choice P(s Im) is modeled first and then the marginal mode choice P(m) is 
modeled. 

In the simultaneous model structure, the probability that a traveler chooses access 
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mode m and access station s is a function of the level-of-service variables of each 
available mode, the in-train level-of-service difference variables, and the intrinsic 
station variables. Again, the socioeconomic attributes of the traveler are included in 
the level-of-service variables. 

DATA AND METHODS 

Data Source and Sample Selection 

The trip data used in this study were taken from an origin-destination survey con­
ducted for the Southward Transit Area Coordination (STAC) committee in Chicago. The 
inner part of the STAC area (21) was chosen as the study area because most rail work 
trips in the area originate there. The trip origins may be identified from the survey 
by a 1

/ 4-square mile centroid. The access mode, access station, and the access dis­
tance to the station can also be either directly or indirectly obtained from the survey. 

A total of 150 work trips were randomly selected from the Illinois Central (IC) Rail­
road surveys. Those samples with incomplete information were replaced with valid 
samples, also randomly picked. Sets of 25 samples each were selected in a similar 
manner from the Rock Island (RI) and the South Shore and South Bend (SS) Railroad data. 
Table 3 gives the number of travelers by access mode and rail line. 

Construction of the access mode and station selection models is based on data on 
travelers' work trips on the Illinois Central. Rock Island and South Shore data are used 
only to test the various operational models. 

The dependent variable of a multinomial logit model is the choice probability, P1, 

where i is one of the alternatives in the choice set. Because only the actual choic.e is 
observed and not the probabilities, when model parameters are estimated P1 equals one 
for the chosen alternative and zero otherwise. 

For the access mode choice models, the alternatives considered are automobile, 
bus, and walk. (Even though it was determined whether travelers drove or were driven, 
the data did not permit further detail in modeling access mode choices.> However, each 
person in the sample was not always considered as having all alternatives available to 
him. Automobile (driven or drove) was always considered a relevant alternative. Walk­
ing was considered to be unavailable to a person if walking distance to a station was 
more than 20 minutes. The bus mode was available if a traveler was within a 1/rmile 
walk of a bus route. 

For the station selection model, alternative stations were chosen on the basis of 
data and were usually near the chosen station. 

Notation 

The notation (22) used in the models is defined as follows: 

OVT = out-of-vehicle time, the sum of walking time and waiting time during the in­
dividual's access trip to the station; 

AT= automobile time, the amount of time the individual spends in an automobile 
during his station access trip; 

BT = bus time, the amount of time the individual spends on a bus during his station 
access trip; 

Table 3. Sample distribution. 

Railroad 

Access Mode IC RI SS 

Automobile 
Driver 27 4 4 
Passenger 20 4 4 

Walk 50 9 9 
Bus 53 ...!! 8 

Total 150 25 25 

OC = operating cost of an automobile during the access 
trip to the station; 

PC = out-of-pocket parking cost for automobile driver 
or bus fare for the bus user; 

TC = total cost, the sum of the operating cost and the 
out-of-pocket cost; 

LHT = line-haul time difference, the on-train travel 
time difference resulting from choosing the sta­
tion instead of the alternative stations; 

PD = parking dummy of the available parking space per 
automobile driver; and 

S = socioeconomic attribute, the ratio of total cost to 
median income. 
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Estimation Method and Evaluation Criteria 

The models are evaluated in three ways: (a) The statistical significance of each var­
iable in the model and the model as a whole is determined; (b) the reasonableness of the 
magnitude of the coefficients of the model variables is examined (elasticities are studied 
to determine the effects of the attributes on the choice probability and the value of time); 
and (c) the model is applied to situations different from that on which the model is es­
timated. 

Inasmuch as the choice probabilities are not observed, a statistical test such as the 
estimated residue measurement (R2

) ordinarily used for linear regression analysis is 
not valid. The statistical tests used for the disaggregate models in this study are mainly 
the t-test, which determines the statistical significance of each variable in a model, and 
the x2-test, which determines the statistical significance of the entire model. 

Both the sign and the magnitude of the coefficient of a variable are examined. The 
sign of a coefficient must be logical: The coefficients for out-of-vehicle time, auto­
mobile time, bus time, operating cost, out-of-pocket cost, weighted price, and socio­
economic variables must have negative signs, whereas the coefficients of line-haul dif­
ference, parking dummy, and weighted inclusive price variables must have positive 
signs. 

The magnitude of the coefficients of the variables may be examined by studying the 
elasticities of the choice probabilities with respect to each of the variables. The math­
ematical expression for the direct and cross elasticities of a multilogit model are 

where 

Exli=b1X11(l - P1) 

Ex1j = -b1X1J(pJ) 

P1 = choice probability of alternative i, 
X11 and X1J =Ith explanatory variable describing alternatives i and j, 

b1 = coefficient of X1, and 
Exli' Ex1i = direct and cross elasticities with respect to X1. 

(11) 

(12) 

Furthermore, the implied value of time obtained from this research is compared 
with the value of time obtained from other studies. 

The disaggregate access mode and station models are further evaluated by applying 
each model to different situations. As mentioned previously, the base data for the mod­
els estimated in this study are the set of IC data; the RI and SS data are the control data 
and are used solely for testing the models. The service areas, operators, number of 
rail tracks, distances between adjacent stations, train operating frequencies, and types 
of signal and train facilities of the Rock Island and South Shore Railroads are different 
from those of the Illinois Central Railroad. 

For each individual sample, the expected probability of the chosen mode or station 
is compared with the expected probabilities of the alternative modes or stations in their 
respective choice set. If the expected probability of the chosen mode or station is 
greater than or equal to those of the alternatives, then the model has made a correct 
prediction. Otherwise, the prediction is wrong. Furthermore, for the access mode 
model, the expected number of users of each mode is compared with the actual number 
of users of the same mode. 

RESULTS AND EVALUATION OF ESTIMATED 
ACCESS TRIP CHOICE MODELS 

Models were estimated for the conditional mode choice p(m \ s), the marginal station 
choice P(s), and the conditional station choice p(s \m>. However, estimation of the 
marginal mode choice model P(m) and the simultaneous choice model P(s, m) resulted 
in models with incorrect signs. These models and evaluations of them are discussed 
below. 
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Conditional Mode Choice Model 

Two of the estimated access mode models appeared to have the correct signs and 
statistically acceptable coefficients for each variable. The coefficients of these two 
models and other relevant information are given in Table 4. Both of these models in­
clude the out-of-vehicle, automobile, and bus times. The cost variable is different, 
however, in the two models. In the first model it is the operating cost (OC), and in 
the second model it is the tofal cost divided by income (s). 

Statistical tests indicate that all the variables in model 1 and the model itself are 
significant at the 0.99 level of confidence. In model 2, the socioeconomic variable is 
statistically significant only at the 0. 75 level of confidence. The bus time variable is 
statistically significant at the 0.95 level of confidence. The out-of-vehicle and automo­
bile time variables, along with the model itself, are statistically significant at the 0.99 
level of confidence. Therefore, on the whole both models are statistically acceptable. 

From the coefficients in model 1, the implied values of time (in dollars per hour) 
are as follows: 

Variable 

Out-of-vehicle time 
Automobile time 
Bus time 

Value 

0.48 
0.75 
0.41 

standard 
Deviation 

0.25 
0.50 
0.25 

Comparisons of these values with the submode values of time in other studies are not 
available. However, the value of in-vehicle time is approximately the same in this 
research and in some other recent demand model studies, approximately 70 cents/hour 
(2, 19). However, the values of the out-of-vehicle time in this research are much lower 
tKalllhe value of the out- of-vehicle time of other studies, $ 3.00/hour and more. It 
should be noted, however, that the trips under investigation in this study are access 
trips, whereas the other studies considered either the major part of the trip or the en­
tire trip. 

From the coefficients of the second model, the implied value of automobile time is 
$80/hour, which is too large to be reasonable. Therefore, model 2 is considered 
invalid. 

The direct elasticities of the access mode model, computed at the means of each 
variable, for each fixed probability are given in Table 5. It can be seen from Table 5 
that most of the variables are elastic when computed at the means of these variables. 
OC, which is associated exclusively with the automobile mode, has the greatest elas­
ticity, and AT, OVT, and BT have smaller elasticities in that order. Values of the 
direct elasticities in this study are not in line with the a priori knowledge of the elas­
ticities from previous studies. However, the differences between this study and others 
must again be noted. Also, as the probability increases, the elasticities decrease. 
This suggests logically that travelers grow less concerned with changes in the trans­
portation attributes if their chosen mode is chosen with a high probability. The model 
is further evaluated by applying it to both IC and RI/SS data and comparing the results. 
The misclassifications and the predictive rates are given in Table 6. 

The expected number of travelers by mode can be computed as the sum of the ex­
pected probability values of each mode: 

N.(expected) = L p; 

where 

P; = probability of mode m being chosen by person i and 
N.(expected) = expected number of travelers to use mode m. 

Comparisons of the expected and the actual number of travelers by mode are given in 
Table 7. 
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The comparisons show that the expected and actual values by mode are compatible. 
For the RI and SS data, the absolute percentage of difference for bus mode is 69 as com­
pared to approximately 80 for the other modes. This may be attributed to the fact that 
bus frequencies in the areas of the RI and SS Railroads are often quite low. Though 
the waiting time for bus was set at no more than 8 minutes during the process of data 
preparation, 30-minute headways for buses in these areas are not uncommon. This 
may interfere with a traveler's time schedule for reaching the station and eventually 
the jobsite and therefore force him to choose another access mode. 

Marginal Station Choice Model 

Two of the estimated station models appeared to have correct coefficient signs and 
statistically acceptable indications. One of the models used the weighted prices and the 
other used the weighted inclusive price as part of their level-of-service variables. 

The Weighted Price Station Model-The statistical tests of this model (Table 8) in­
dicate that the variables are significant at the following levels of confidence: 

Variable 

Weighted OVT 
Weighted AT 
PD 

Level of Confidence 

LHT 
Whole model 

0.99 
0.99 
0.95 
0.80 
0.99 

The direct elasticities are computed at the means for the weighted OVT and weighted 
AT, at 4 minutes for LHT, and at 1 minute for PD (Table 9). 

These elasticities indicate that, when selecting the access stations, travelers are 
most sensitive to out-of-vehicle time and automobile time. The results also show that 
travelers are relatively unconcerned about the extra amount of time spent (or saved) 
inside the train in choosing the access station. In spite of the incompleteness of the 
parking availability variable, it appears that it has an effect on the choice of access 
station. Information on the value of time is not available, inasmuch as this model has 
no cost variable. Misclassifications and the predictive accuracy rates of the model are 
given in Table 10. 

The Weighted Inclusive Price station Model-The coefficients of the weighted inclu­
sive price station model and other relevant information are given in Table 11. Statis­
tical tests of this model indicate that the variables are significant approximately at the 
levels of confidence given below: 

variable 

Weighted inclusive price 
PD 
LHT 
Whole model 

Level of Confidence 

0.97 
0.97 
0.90 
0.99 

The direct elasticities are obtained in the same way as in the previous station model 
(Table 12). The elasticities indicate that the weighted inclusive price variable is the 
most important attribute to travelers selecting a station. 

The coefficient of the weighted inclusive price variable in this model is 0. 5850. It 
is tested to be significantly different from 1.0000. This indicates that the above­
mentioned assumption is invalid. In other words, the traveler does assign different 
weights to the set of transportation system attributes when making his access mode and 
station choice decisions. 

The misclassifications and the predictive accuracy rates of the model are given in 
Table 13. Comparisons of the actual number of travelers choosing a certain train sta­
tion with the expected number are not made for the two access station models because 
the small number of travelers observed is distributed to a relatively large number of 
alternative stations. 
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Table 4. Coefficients of conditional 
mode models. 

Variable 

Out-of-vehicle time 
Automobile time 
Bus time 
Operating cost 
Socioeconomic atlribute 

Model 1· 

Coefficient 

-0.441 
-0 .681 
-0.382 
-0 .556 

Standard 
Error 

0.094 
0 .291 
0.120 
0.193 

Model 2' 

Coefficient 

-0 .286 
-1.122 
-0.164 

-0.084 

Standard 
Error 

0 .059 
0.260 
0.091 

0.111 

ax: = 99.498 with 4 degrees of freedom. 
b>f = 87.647 with 4 degrees of freedom. 

Table 5. Direct elasticities of conditional mode model. 

Mean Direct Elasticity 
(minutes 

Table 6. Accuracy of conditional 
mode model. 

M "'= 1-N 
Variable or cents) p = 0 .30 p = 0.50 p = 0.70 Data N M {percent) 

OVT 6.7 2.08 1.49 0.89 
AT 6.7 3.19 2.28 1.37 
BT 10 .1 2.71 1.94 1.16 
oc 15.5 6.03 4.31 2.58 

Table 7. Comparison of number of mode users. 

Absolute 
Percentage of 

Data Mode N, N, Difference 

IC Automobile 56 47 81 
Walk 40 50 80 
Bus 54 53 98 

RI/ SS Automobile 13 16 81 
Walk 15 18 83 
Bus 21 16 69 

Note: Ne =expected nu mber of travelers and NA =actual number 
of travelers. 

Table 9. Direct elasticity of 
weighted price station model. 

Table 10. Results of 
application of weighted price 
station model. 

M 
,,. ~ 1 - N 

Data N M (percent) 

IC 150 32 78.7 
RI/ SS 50 l 98.0 

Variable 

Weighted OVT 
Weighted AT 
LHT 
PD 

IC 150 12 92 
RI/SS 50 7 86 

Note: N = total number of observations, 
M = number of misclassificat ions, and 
a= predictive accuracy. 

Table 8. Coefficients of weighted 
price station model. 

Standard 
Variable Coefficient Error 

Weighted OVT -0 .385 0.102 
Weighted AT -0 .957 0.172 
LHT 0.138 0.167 
PD 0.827 0 .469 

Note: -x! = 90.391 with 4 degrees of freedom. 

Variable Direct Elasticity 
Value 
(minutes) p = 0.30 p = 0.50 p = 0.70 

6.44 
2.16 
4.00 
1 

1.73 1.24 0.74 
1.44 1.03 0 .62 
0.39 0.28 0 .17 
0.57 0.41 0 .25 

Table 11. Coefficients of weighted inclusive 
price station model. 

variable 

Weighted inclusive price 
LHT 
PD 

Coefficient 

0.585 
0.230 
1.189 

Note: x' • 100.4353 with 3 degrn1 of freedom. 

Standard 
Error 

0.107 
0.194 
0.563 
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Direct Elasticity 

Variable Value p = 0.30 p = 0.50 p = 0.70 

Weighted inclusive price 
LHT 

8.07 
4.00 

3.31 2.36 
0.64 0.46 

Table 13. Results of 
application of weighted 
inclusive price station model. 

M °' = 1 - N 
Data N M (percent) 

IC 150 27 82 
RI/SS 50 2 96 

PD 

Table 15. Accuracy of conditional 
station models. 

M °' = 1 -w 
Model Data N M (percent) 

IC 110 20 82 
RI/SS 23 3 87 

2 IC 110 20 82 
RI/SS 23 3 87 

Conditional Station Selection Model 

1 0.83 0.59 

Table 14. Coefficients of conditional station models. 

Model 1 Model 2 

Standard 
variable Coefficient Error Coefficient 

OVT -0.664 0.180 -0.653 
BT -0.310 0.208 
In-vehicle time -0.184 
oc -0.136 0.066 -0.062 
PD 0.859 0.480 0.833 

Table 16. Marginal mode choice models. 

Variable Model 1 Model 2 Model 3 

OVT -0.083 -0.082 -0.347 
BT 0.137" 
In-vehicle time 0.142" 0.210· 
oc -0 . 189 -0.248 -0.093 
Dl 2.837 
D2 3.638 

Note: Dl and 02 are the dummy variables such that 01 = 0, 
02 = O for automobile mode, 01 = 0, 02 = 1 for walk mode, 
and 01=1, 02 = 0 for bus mode, 
a Incorrect coefficient sign. 

1.42 
0 .28 
0 .36 

Standard 
Error 

0.177 

0.173 
0.094 
0.480 

Estimation of the conditional station model is the first step of the mode-station 
modeling sequence. The coefficients of the two models and other relevant statistical 
information are given in Table 14. 

The values of time implied by the coefficients of model 1 are approximately $3.00 at 
a = 1. 73 for OVT and $1.40 at a = 1.12 for BT. The values of time implied by the coef­
ficients of model 2 are approximately $6.00 at a= 9.94 for OVT and $1.80 at a= 4.20 
for in-vehicle time. The misclassifications of these two models when applied to the 
base and the control data are given in Table 15. 

These two station models appear to be fairly good. Nevertheless, it must be noted 
that the station models only constitute part of the sequential modeling process. The 
access mode models also have to be examined before the validity of this particular 
mode and station decision-making sequence assumption can be determined. 

Marginal Mode Choice Model 

The level-of-service variables describing access to a station by mode were aggre­
gated by the weighted price method. All the models involved incorrect coefficient signs 
(Table 16). The fact that no valid access mode model could be estimated raises doubt 
about the validity of the mode-station decision-making sequence assumption. There­
fore, the marginal mode models as well as the conditional station models cannot be 
applied with confidence to planning problems. 
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Simultaneous Choice Model 

No valid models could be obtained by using the simultaneous model structure. An 
example of the estimated simultaneous models is given below: 

Variable 

OVT 
AT 
BT 
PD 

Coefficient 

-0.0119 
-0.0571 
0.1974 
1.340 

(Note that the coefficient for bus time shows an incorrect sign.) The results tend to 
suggest that the simultaneous model structure is also an invalid traveler decision­
making assumption, 

SUMMARY 

The main purpose of this study was to develop disaggregate choice models of the ac­
cess mode and access station for those travelers who make their work trip by rail. 

The multinomial logit model, which is used in this study, is based on the indepen­
dence of irrelevant alternatives assumption and is capable of dealing with a different 
number of choice alternatives for each of the behavioral units; it is considered to be 
the most suitable model for the situation under investigation. 

The data used for the estimation and evaluation of the various probability models 
were obtained from the Chicago area. 

It is assumed that a person makes the access mode and station choice decisions 
either simultaneously or in the station-mode sequence or the mode-station sequence. 
In the case of the sequential assumption, the joint probability of the access mode and 
station is separated into a conditional probability of one choice given the other choice 
and a marginal probability of the other choice, depending on the particular choice se­
quence assumed. The investigation in this study of the simultaneous model structure 
and the mode-station sequence structure failed to produce choice models with intui­
tively correct coefficient signs. 

The results of the research based on the station-mode sequence revealed some in­
teresting behavioral characteristics of individual travelers when they make their access 
trips. Even though some studies have reported rather high cost elasticities for the 
automobile mode and rather low elasticities for out-of-vehicle and in-vehicle time (2, 
19), it is a common belief that travel demand is insensitive to changes in travel cost 
and pos sibly in-vehicle time, al'though it is quite sensitive to changes in out-of-vehicle 
time (2, 5, 23). It should be noted, however , that the latter are derived from travel de­
mand models, whereas the former are so-called modal-split elasticities (i.e., trip 
frequency decisions were not modeled). 

The results from the access mode model, P(m Is), of the present study indicate that, 
of the travel time (modal-split) elasticities, the automobile time elasticity is the highest 
followed by bus time and out-of-vehicle time elasticities. Surprisingly, the automobile 
operating cost elasticity is the highest of all by a wide margin, and several attempts to 
include automobile ownership costs and bus fare in the models failed to produce plaus­
ible models. Finally, the value of automobile time was estimated at 74 cents/ hour; 
this is in accordance with previously obtained values. 

An income variable was also considered in the estimation of one of the access mode 
models. A very rough income figure, the median income of the traffic zone, was the 
only available income information. It is not known whether this is why the model in 
which this variable was included yielded an implausible model; income information for 
each individual would have been desirable. 

These results indicate that paying for a car trip to a station and spending travel 
time inside an automobile are disliked by travelers as compared to spending travel 
time inside a bus. The relatively low elasticity of out-of-vehicle time (as compared 
to automobile operating cost) suggests, furthermore , that it should not be difficult to 
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convince a traveler to choose access modes such as walking and even the bus for which 
the out-of-vehicle time may constitute a large part of the total price. 

These "discoveries" appear contradictory to the information obtained from previous 
travel demand studies. Nevertheless, it must be realized that those studies considered 
the entire trip, whereas this study deals only with the access part of the trip. These 
two are different in nature, and consequently the behavioral responses of the travelers 
should not be expected to be the same. 

An important consideration in this context is whether access trips can be separated 
from the rest of the journey. This assumption was made in this study, but it is by no 
means the only assumption that can be made. In similar vein, whether automobile 
ownership and location decisions of households should be linked with the work trip de­
cisions must also be asked. This research does not provide answers to such questions, 
of course, but the somewhat counter-intuitive results tend to suggest that automobile 
ownership and location decisions are important in work trip decisions (and vice versa). 

Still, the different behaviors may be intuitively justified. For the entire journey, 
the travel distance between the trip origin (home) and the trip destination (jobsite) is 
generally quite large. Therefore, comfort, privacy, and other advantages offered by 
the automobile mode become important to travelers and thus make their response in­
sensitive to changes in automobile travel time and cost characteristics. Of course, 
the walk mode is usually not considered as one of the available alternatives for such a 
trip. On the other hand, for the access trip, the travel distance between the trip origin 
and the trip destination (train station) is very short. For example the average access 
trip travel distance of the 150 observed travelers in the set of base data is only 1.5 
miles. Clearly, not much comfort or privacy can be derived by using a car for a trip 
of this length. On the contrary, the various inconveniences of using an automobile, 
such as finding a parking space, leaving the car in a parking lot close to home where 
it is not available for use by other members of the family, or having someone else 
drive the traveler to the station, become predominant disadvantages. 

Access station selection models, P(s), were more in keeping with current beliefs 
about travel behaviors: Travelers' choice decisions are most sensitive to out-of­
vehicle time followed by the automobile time, whereas bus time and travel cost vari­
ables failed to enter the model. Also, in the weighted inclusive price station selection 
model, the coefficient of the inclusive price variable is significantly different from 1.0, 
which suggests that travelers do not assign the same weights to the set of transportation 
system attributes when they choose access mode and station. 

In regard to the simultaneous and mode-station sequential models, no conclusive ex­
planation can be given of their failure to obtain plausible choice models. The results 
of this research only give empirical support to such travelers' decision processes in 
which the access mode and station choice is done sequentially-station choice followed 
by mode choice. This is, of course, a tentative suggestion. 

Finally, when the access mode and station selection models were applied to different 
situations they produced good predictive results. 

WHAT HAS BEEN LEARNED 

It has been learned through this research that more detailed information than was 
available on the level of service of the transportation system and on the individuals in 
the sample is required in order to estimate disaggregate choice models effectively. 
Within the extent of this study, for example, the exact location of the trip origin, the 
individual's income, specific information on parking conditions at the stations, and 
most importantly relevant alternatives to the choices actually considered by each in­
dividual behavioral unit should be specifically determined when surveys are taken for 
disaggregate choice modeling. Of specific concern is the automobile mode, which in 
this study is considered a relevant alternative for every traveler. 

The somewhat counter-intuitive results also suggest that there is a clear need to 
relate household location and automobile ownership decisions to choice of (access) mode 
and other (work) trip decisions if truly behavioral models are to result. 

In conclusion, the disaggregate modeling technique and the information obtained 
were quite instructive. Only a small sample of data was required to estimate the 
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models; thus, considerable savings of money and time can result from the use of dis­
aggregate models. However, before disaggregate models can be confidently used in 
transportation planning, their transformation into aggregate travel demand models 
must be accomplished. To date, little work (24) has been done on forecasting aggre­
gate travel demand by means of (transformed) disaggregate models. Of the few ag­
gregation procedures, more empirical studies are warranted. 
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DISCUSSION 
Gerald Kraft, Charles River Associates, Cambridge, Massachusetts 

I want to clarify an issue raised in both papers that leads to serious confusion. Both 
papers contrast simultaneous models with what they call sequential models. Unfortu­
nately, the urban transportation planning models of the generation-distribution-modal 
split-route assignment variety give particular meaning to the issue of simultaneity and 
sequentiality that is not the same as those presented in these papers. Whereas the 
papers address a sequential decision-making process, the mathematical formulations 
used imply no such concept. These formulations are simply a factoring of a joint prob­
ability distribution into the product of a conditional and a marginal distribution. Thus, 
it is a process of estimating probability functions sequentially and does not imply any­
thing about decision-making in any sequence. 

Recursive, the term used by Ben-Akiva, is far more appropriate. Although it is of 
course true that travelers may make sequential decisions, there is no particular reason 
to assume that they do. In this sense Ben-Akiva, arguing for simultaneous structures, 
is quite correct. On the other hand, to assume a joint probability distribution and then 
ask questions about conditional probabilities or marginal probabilities are perfectly 
natural and reasonable. In any event, I would prefer using recursive to sequential to 
avoid any possible ambiguity. 

GENERAL REMARKS 

Both papers are very interesting and appear to provide us with some very useful in­
formation. A puzzle appears when they are regarded together. In effect, Ben-Akiva 
says that the recursive approach to modeling does. not work because there is no a priori 
reason to have the model go in one order, say destination to modal split, rather than 
the other, modal split to destination. He shows that, by changing the order, he obtains 
disparate empirical results. He then argues that a simultaneous estimation not only 
avoids the ambiguity of ordering the conditional distributions to be estimated but also 
is mathematically and statistically feasible for estimation. 



53 

Liou and Talvitie also look at two alternative recursive structures, one in which 
access mode precedes station selection and the other in the opposite order. They also 
find the results different, as does Ben-Akiva, but, when they attempted a simultaneous 
model, no useful results were obtained. 

Thus, although both papers agree that the two recursive structures give different 
answers, one paper argues that the solution is to use simultaneous estimation and the 
other says that simultaneous modeling produced no useful results. Furthermore, Liou 
and Talvitie argue that the order is important and care should be given to the selection 
of the order. They even suggest that. the order can be determined from the empirical 
results. 

Neither paper really addresses the question of why the authors came out with the re­
sults they did. Neither Ben-Akiva nor Liou and Talvitie tell us why the different order­
ings on the recursion yield substantially different results, nor do they tell us why the 
results obtained by using recursive estimation differ from those that were obtained by 
using simultaneous equations. 

Before going into the possibilities, I should state a basic inconsistency in the Liou­
Talvitie paper that may be the root of at least part of the problem. They assume that 
the station and access mode decision process can be divorced from the selection of the 
basic line-haul mode. In a sense, by assuming such independence they have already 
assumed the appropriateness of the recursive system and may have thus "cooked" the 
results. This may explain in part why their simultaneous model does not work. The 
authors recognize this, but perhaps they do not place enough emphasis on the problem 
in their interpretation of the results using the recursive model. 

In evaluating the reasons for discrepancies between the recursive and simultaneous 
approaches, I see four possibilities. 

1. The theory and assumptions used in constructing the model itself may be in-
adequate. 

2. The specification of a structure may create problems. 
3. The variables used in the model may be inadequate or inappropriate. 
4. The techniques used for estimating the parameters may be inadequate. 

Before I begin to consider these possibilities in turn, I apologize for not having a spe­
cific answer to the confusion, but I hope my discussion can be useful as a guide to seek­
ing the reason. 

MODEL THEORY 

In considering the problems of theory, we must examine probability theory and utility 
theory. In probability theory, the equivalence between simultaneous and recursive es­
timates as defined by the authors appears simple; as I indicated earlier a joint prob­
ability distribution can be expressed as the product of a conditional distribution and a 
marginal distribution. Furthermore, in a multiple decision framework, repeated ap­
plication of this process can be used to develop a chain of probabilities that can be 
modeled. 

In another but similar context, Manheim demonstrated the equivalence of simulta­
neous and sequential or recursive models (12). As for probability theory at this level, 
the joint probability function is independentm the order of recursion. Thus the results 
obtained in the papers are totally inconsistent with the probability theory, which I be­
lieve we all would accept as given. 

On the other hand, the utility theory on which the models are based might be ques­
tioned. This concerns principally the assumptions of separability or additivity in the 
utility functions. (These assumptions are too technical to take up here, but they are 
extremely powerful tools for simplifying the development of models and for enhancing 
the power of their application.) They may, nevertheless, do violence to reality with 
the consequence that they lead to the kinds of results presented here. This suggests 
some merit in further investigation but it is not likely that this is the most fruitful first 
step. 
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MODEL STRUCTURE 

Have the theoretical considerations of probability and utility been applied properly 
in development of a specific structure for the model? The model development leading 
to the logit models used by the authors and in other work appears to be quite sound. 
As a fairly general form for an ogive it would appear to be very robust. The specific 
forms of the variables entering the model, however, may not be entirely appropriate. 
There may be interdependencies, for example, that are not taken into full account in 
the types of linear functions that have been explored. 

Whereas the logit model has substantial advantages because of its ease in manipula­
tion and ease with which new alternative choices are added, it may be too simplified 
and we may have to forgo some of its benefits. We want to be extremely careful before 
discarding the model, however, because the advantages seem to be so overwhelming. 
In addition to the ease of adding alternatives to modes, destinations, and the like when 
the logit model is used, we must also consider possible future developments to add 
choices of an intermediate-run nature such as automobile ownership or a long-run na­
ture such as the location of residence or place of work. The axiom of independence of 
irrelevant alternatives may be a mixed blessing, but before throwing it out we should 
be sure that we are unable to make the judicious decisions about alternatives that would 
avoid conflict between the axiom and reality. That assumes, of course, that we can 
find no similarly endowed alternative. 

VARIABLE SELECTION 

The variable selection and definition used in the models also may lead to the results 
obtained. Leaving out important variables or introducing spurious ones may have seri­
ous ramifications for model misspecification. It is well known that model misspecifica­
tion can lead to peculiar results; all model estimation may suffer some from this prob­
lem. One problem is the attribution of effects to the wrong variables. In the case at 
hand the problem may be more subtle and serious. In particular, it seems that Liou 
and Talvitie's failure to distinguish between automobile driver and automobile passen­
ger trips seriously compounds the problem. Also, their use of aggregate zonal income 
may explain some of the inconsistencies. This is suggested, for example, by the very 
poor statistical results obtained for their socioeconomic variable, the ratio of total 
cost to median income. 

The idea of a combined price or cost variable with income is an interesting one; it 
was also used by Ben-Akiva in his dissertation (2). The inability of such a variable to 
pick up separate price and income effects, however, is a serious weakness (although 
there may very well be a relationship between the level of income and the size of the 
price effect). 

An additional problem may arise in the Liou and Talvitie study because no variable 
i s provided for a difference in rail fares between the alternative stations. If there is 
no difference, they should tell us so, but one might suppose that such a difference (at 
least at the margin) would have an effect on station choice. 

It seems that a fruitful avenue of exploration to explain the differences in results as 
we change the direction of recursion and between recursive and simultaneous estima­
tion approaches might lie in better variable selection, which may isolate effects that 
are currently being related improperly. 

ESTIMATION TECHNIQUES 

The last area that may lead to discrepancies between recursive approaches and be­
tween the recursive approach and the simultaneous approach is in the estimation tech­
niques themselves. The idea of an inclusive price developed by Charles River Asso­
ciates (4) was to simplify the estimation process. The results obtained through the 
use of such a variable were extremely encouraging. In terms of parameter estimates 
obtained, the inclusive price was statistically quite significant, and the weight seemed 
to be reasonable. Ben-Akiva's dissertation (2) reaffirmed those characteristics. The 
use of such a function, if it is consistent with the theory, is extremely beneficial. It 
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reduces the number of variables that must be considered at any single stage of the es­
timation and may make an otherwise intractable estimation problem relatively simple. 
Nevertheless, it may be that the process using alt inclusive price creates estimation 
problems. 

Ben-Akiva informs us that the estimation times for the recursive and simultaneous 
models were not very different when input-output differences were considered, the 
simultaneous being somewhat longer, but not significantly so. On the other hand, when 
the computing time itself is considered, the simultaneous model took nearly four times 
as long as the recursive model. With larger samples, more variables, and more 
stages of the recursion to be processed, such as trip frequency and time of day, the 
differences in computation time between methods may be substantial. Furthermore, 
estimating equations with large numbers of variables is an extremely difficult procedure. 
I ani not fully convinced that we should discard recursive estimation in favor of simul­
taneous estimation. Rather, we should explore further the use of the inclusive price, 
including the possible introduction of constraints in the estimation process that will 
ensure consistency between the different recursion orders and between recursive and 
simultaneous estimation techniques. 

DECIDING AMONG THE MODELS 

An important question remaining is, How can we decide which of the models are 
good? The tests suggested by Liou and Talvitie seem to be good ones. They suggest 
we look at statistical significance, reasonableness, and application of the model to a 
new set of data to compare the estimated and observed values. I would put the reason­
ableness test first and insist that the results agree with theory and that parameter 
values have correct signs and be of reasonable magnitude with respect to a priori con­
siderations. statistical significance without reasonableness produces very questionable 
results. 

Application of the three tests suggested may help us to reject one model over another; 
however, it does not tell us what is wrong with the rejected model nor indeed what is 
possibly wrong with a model that is accepted. Unfortunately, we cannot pick models in 
any general way by using these techniques. We can only compare model results with 
results in the real world. Even here, we must be extremely cautious because theory 
is all we have. If the results of statistical estimation are inconsistent with our theory, 
we may wish to explore the theory itself or, alternatively, go back to the entire esti­
mation process to locate the difficulty. Indeed, the results reported in both papers ap­
pear to have problems with statistical significance. 

USING THE MODELS 

In closing, there are two problems that need a great deal more attention before we 
will be able to use disaggregate models generally in the planning process. Both papers 
indicate that further research is essential to develop these models for general applica­
tion. This is not to say that we have not learned a great deal through the development 
and estimation of the models to date. We are making extraordinary advances in model 
development for urban transportation planning purposes, but it is important that we ex­
plore the causes for the problems cited in these papers. 

Both authors make brief mention of the aggregation problem in the use of disaggre­
gate models. The problems are not trivial. They cannot be dealt with by simple hand­
waving and suggesting that aggregation can be accomplished by estimation followed by 
addition of the results for many individuals. Some basic requirement is called for to 
examine the possibility of developing aggregate models from the disaggregate or alter­
natively learning how to use parameter estimates from the disaggregate models for 
broader, more aggregative decision-making. Indeed, this has been the genesis of 
these models where Lisco, Thomas, Stopher, and others attempted to measure val­
ues of time and where others have been concerned with estimates of price and service 
level elasticities. 

The fundamental problem confronting us is, "Can we develop a model structure that 
does not do violence to our theories or to reality yet is both mathematically and sta­
tistically tractable ?" 
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Peter R. stopher, Associate Professor of Civil Engineering, Northwestern University 

The impression that is gained from reading these two papers is that the authors draw 
diametrically opposing conclusions. Ben- Akiva claims that a simultaneous model of 
destination and mode choices for a shopping trip can be constructed and is to be pre­
ferred over a recursive procedure comprising two models for destination and mode 
choices. In contrast, Liou and Talvitie are unable to construct a satisfactory simul­
taneous model of station and access mode choices for the access segment of a work 
trip and conclude that these choices must be modeled recursively. 

In my opinion, neither of these conclusions is sufficiently supported by the papers, 
and I must conclude that there is no basis for accepting either conclusion at this time. 

These papers may be discussed from a number of viewpoints. I have elected to 
consider the statistical evidence supplied and will leave it to other discussants to con­
sider matters of philosophy, structure, and the like. 

First, both papers are lamentably deficient in the reporting of statistical measures 
of assessment and comparisons for the models. Hence, many of my comments are in 
the form of requests for more information. Ben-Akiva bases his conclusions on the 
fact that the coefficients of identical variables are numerically different in the simul­
taneous model from those in the recursive model. However, he does not establish 
whether these differences are statistically significant. Liou and Talvitie dismiss the 
simultaneous choice model on the grounds of an incorrect sign for one variable in each 
simultaneous model built, but do not establish whether the incorrectly signed coefficient 
is statistically significant from zero. Further testing of differences between the models 
is largely left alone because of the incorrectly signed coefficient. The question of sta­
tistical differences between the other coefficients remains open. 

Both papers make model comparisons on the basis of derived travel time values. 
These values are obtained by computing the ratio of the coefficients of travel time and 
travel cost. Both papers report a standard deviation for these computed travel time 
values, but neither paper r eports on the method us ed for computing this standard de­
viation. Correctly, this is determined (25) as 

vfa1) = a~v<a1) + a~V(a2) - 2a1a2 cov(a1, a2) 
\a2 a2 

where 

a1 and a2 = coefficients whose ratio is being determined, 
V( ) =variance of, and 

cov( ) = covariance of. 

If both E(a1) and E(a2) are nonzero, then this variance has a distribution. However, 
this distribution is likely to be seriously skewed (26) and will not permit the standard 
deviation to be used as a means of establishing confidence limits in the normal manner. 
Hence, the reporting of values of travel time and their standard deviations provides 
little or no information for comparison between models. Based on the actual values 
derived by the authors, and the untenable assumption that the ratio is normally dis­
tributed, none of the values of time reported in either paper is significantly different 
from zero and hence each other. Thus, I must dispute the statement by Ben-Akiva 
that "Estimated values of time from the simultaneous model are greater than those 
estimated from a mode choice model (given destination) and smaller than those esti­
mated from a destination choice model (given mode)." 

Neither of the two papers reports the values of one or more constants for the 
multiple-choice models. However, the estimation of one or more constants permits 
coefficient estimates to be made with minimal bias and also allows overall goodness­
of-fit measures to be determined. In binary choice models, the constant determines 
the position of the logit curve in relation to the values of the fitted linear function. It 
serves an identical pur pose (in more dimensions) for a multiple-choice logit model. 
In conceptual terms, the constant may be considered as providing some of the informa­
tion lost by an improperly specified model (27). The lack of a constant therefore pre-
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supposes a fully specified model (i.e., a constant equal to zero) and also changes sig­
nificantly the meaning of the chi-square test of model fit. 

A further problem with both papers concerns the data base for the choices. In both 
cases, it appears that the choice sets have been assigned to the individuals in the data 
set and the alternative options have been provided with engineering measures of the 
relevant variables. Many previous studies have shown this to be behaviorally incorrect. 
First, it is necessary to define the perceived choice set for each individual and, second, 
it is the perceived attributes of the alternatives that determine behavior. Because 
neither of these sets of perceptions was determined, the data bases of both studies 
must be considered suspect. The computation of models based on relative measured 
attributes for an arbitrarily defined set of potential alternatives provides no behavioral 
information and consigns the exercises to academic esoterica. 

Finally, it should be noted that, in Ben-Akiva's paper, the coefficients of the vari­
ables relating to characterization of alternative destinations are generally not signifi­
cantly different from zero. This is indicated by the fact that the reported standard 
errors of the coefficients are generally more than half the value of the coefficients for 
the variables EMPd and DCBDd. However, the coefficient of each variable is a function 
of the variances and covariances of all variables used in the model, including those that 
yield nonsignificant coefficients. The presence of these variables in the simultaneous 
model may be the sole cause for the difference in the coefficient values from the mode 
choice model, where the destination variables do not appear. Similarly, the destination 
choice model has nonsignificant coefficients for the destination variables, which makes 
comparisons between the recursive and simultaneous models trivial. 

In summary, neither of the conclusions drawn by these papers can be accepted un­
less the authors can provide much more evidence. Given the questions raised here 
concerning the data base and the significance of the destination descriptors in Ben­
Akiva' s models, it is doubtful whether the conclusions can be accepted under any cir­
cumstances. The primary contributions of the two papers are, first, to highlight the 
problem of model structure in disaggregate, behavioral, travel demand models and, 
second, to demonstrate that it is methodologically possible to formulate simultaneous 
models within this approach. The failure of both authors to achieve statistically and 
conceptually acceptable simultaneous models is more likely to be a function of the data 
available than to be a major methodological problem. No matter how convincing the 
statistical evidence may be, the final test of recursive models versus simultaneous 
models is their comparative predictive accuracy and ease of operation. Neither paper 
addresses these questions. Hence, I conclude that the matter of the preferred structure 
of travel demand models remains a matter for future research, preferably the near 
future. 
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David T. Hartgen, Planning and Research Bureau, 
New York state Department of Transportation 

These papers represent important research in disaggregate demand modeling and 
its application to transportation planning. The papers emphasize both the theoretical 
structure of these tools and model calibration using conventional travel data. 

The previous discussions have concentrated on the differences in the findings of 
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these studies, particularly the authors' results on the sequentiality or simultaneity of 
model structures. However, I am impressed more with the similarities between the 
authors' approaches and their general conclusions than with the differences in their 
empirical findings. 

1. Both authors investigate in detail whether sequential or simultaneous structures 
are more valid for modeling travel behavior and rely heavily on multinomial disaggre­
gate techniques for studying these problems. 

2. Both authors conclude, generally speaking, that choice of a model has consider­
able influence over the coefficients that will be obtained and very likely the conclusions 
that may be drawn based on such models. Therefore, both authors call for great care 
in the selection of models and in their use. 

3. With respect to data bases, both authors suggest the use of very small data sets, 
concentrating on the detail within records rather than the collection of large data bases. 
It is interesting to note that both research efforts were conducted with less then 150 
observations, extremely small by current standards. 

4. Both authors mention the aggregation problem as one that needs to be addressed 
as these models are applied in transportation planning. 

5. Finally, both authors suggest a variety of detailed applications as a key element 
of further research. 

The differences in the specific findings of these studies only serve to emphasize 
the authors' own caveats concerning the models and their use. We are dealing here 
with two very different kinds of problems, as the authors have pointed out . In Ben­
Akiva' s case a commonly studied travel component (off-peak shopping t rips) is inves ­
tigated within the context of several prior travel decisions (purpose and time of day) . 
In Liou and Talvitie's case, a rather specialized problem in transportation planning 
(rail commuter trips) is further broken down for study into only the access portion. 
Given such differences, it is not surprising that the empirical findings of these studies 
are different. In fact, I would have been surprised had they been identical, given the 
great differences in the contexts being studied. 

Of particular interest are the implications in this research for use of these tools in 
transportation planning. It seems that a number of events must occur before the tools 
described here will be included in the general repertoire of transportation planning 
procedures. The first of these is that the profession must know a great deal more 
about the kinds of transportation problems to which such tools can be logically applied. 
This is particularly true with complicated choice combinations, including purpose, time 
of day, route, mode, and destination choices. There are not many cases in which a 
planner would want to model that entire choice sequence as one set of simultaneous 
choices. Ben-Akiva' s results, it seems, obtain partially because he chooses a prob­
lem that by its nature lends itself easily to the assumptions of the Luce model. On the 
other hand, Liou and Talvitie' s findings probably stem from the fact that they study a 
problem drawn from the context of a broader but integral choice decision. It is doubt­
ful whether either of these authors would have obtained the same results had they ex­
tended their choice contexts to, say, trip purpose choices in Ben-Akiva's case or 
primary mode choices in Liou and Talvitie's case. The models constructed by these 
authors have only been demonstrated and tested in problems involving logically paired 
choices and have not been extended to more complicated sequences. 

This is a situation the profession will have to live with for some time. It appears 
unreasonable to expect that the simultaneous models suggested by Ben-Akiva will im­
mediately be applicable to a broad range of intricate transportation choices. There 
are certainly choice contexts to which these models can be applied, but perhaps first 
these tools should be embedded within the overall multichoice transportation planning 
procedure currently in common use, perhaps replacing one or more of those steps. 

This phase is probably required for practical reasons as well. Except for a few in­
dividuals primarily in the academic and consulting environments, transportation plan­
ners are not, generally speaking, well acquainted with the underlying theory and appli­
cation of disaggregate techniques. By and large, the profession consists of individuals 
trained in conventional UTPS procedures. There is a general dissatisfaction with the 
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conventional UTPS approach, but the disaggregate techniques are not perceived to hold 
the answer to these problems, at least not yet. What is required now are demonstra­
tions of the application and potential savings of these procedures, with particular at­
tention to computer processing and institutional constraints to model implementation. 
It is simply not an easy job to bring on line a disaggregate model and to make a case 
in an agency for its use, as opposed to a currently used conventional procedure. Par­
allel use of both tools is more feasible in the short run. In the interim, it seems prob­
able that these procedures will remain relatively unused until the profession is more 
convinced of their utility. 

Of particular concern here is the relevance of models to the profession in general. 
Most transportation planners are much more concerned with the usefulness of models 
to their work than they are with the theoretical niceties of their structure. If models 
do not have the right policy variables or cannot be used to address questions at issue 
today, then whether they are constructed by using disaggregate techniques or conven­
tional aggregate procedures will be equally irrelevant, for in neither case will the 
models be used. Therefore I suggest that the most important step we can take to en­
sure that the results of research such as this will be used is to ensure that our models 
are capable of addressing relevant policy questions. This means not just the study of 
demand model structures, although that is important, but also the specification of ap­
propriate variables and identification of particular problem contexts in which those var­
iables can be used to predict behavior and to estimate impact. How many of us today 
can say we have on-line demand models capable of addressing questions related to the 
energy crisis, car pooling, pricing schemes, fuel policies, and parking modal inter­
face? I doubt that many of us can. 

AUTHORS' CLOSURE 
Moshe Ben-Akiva 

The discussions by Kraft, stopher, and Hartgen deal with three important aspects 
of the proposed travel demand models: model structure and estimation procedure, em­
pirical evidence, and applicability to transportation planning. Before discussing these 
topics, I will briefly restate my line of argument and in particular the precise purpose 
of the empirical study. 

RESEARCH STRATEGY 

The research begins with the assumption (which was not questioned by any of the 
discussants) that the choices of frequency, destination, mode, and time of day for a 
specific trip purpose (e.g., shopping) are elements in a single decision. In other words, 
it is assumed that a potential traveler compares alternative trips and therefore jointly 
selects a frequency, destination, mode, and time of day for a given travel purpose. 
Any sequence assumed for choices that are elements of a single decision is arbitrary. 
For some decisions, a conditional decision-making process implying a specific sequence 
of choices may be a realistic assumption. However, a joint decision-making assump­
tion is more realistic for nonwork trips such as shopping trips. 

Alternative assumptions about the decision-making process or about the causal re­
lationships among choices result in different model specifications. A simultaneous 
structure is used to represent jointly determined choices, whereas a recursive struc­
ture is used to represent a specific choice sequence. In addition to differences in their 
mathematical formulations, the alternative models are estimated differently. In a 
simultaneous structure a model for the joint probability is estimated directly, whereas 
models for the conditional and marginal probabilities in a recursive structure are es­
timated separately. 

Based on a priori reasoning, the simultaneous model is superior to a recursive 
model because it is a more realistic representation of the behavioral process. We do 
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not expect these different models to produce identical estimation results. The value 
of empirical evidence is in determining the consequence or practical significance of the 
differences between the models. The differences are in the estimation results and po­
tentially also in the ease and cost of estimation and application. 

The empirical study that was conducted and reported in the paper was therefore not 
designed to test which model is better. Rather, it was designed to determine the feasi­
bility of the simultaneous model and the practical significance of the differences in the 
estimation results between the alternative models. The empirical study indicated that 
a simultaneous model is feasible and that the differences in parameter estimates are of 
significant practical importance. Based on these results, it was recommended that 
travel demand models be developed by using the simultaneous model structure. 

Since completion of this study, several other empirical studies have strengthened 
these conclusions (28, 30, 34). The results of Liou and Talvitie also support the con­
clusions that the esnmanon of a simultaneous model is feasible and that the alternative 
models produce differences in estimation results that are of practical importance. (The 
fact that the estimation results of their simultaneous model were not satisfactory can 
be attributed to a poor specification.) 

MODEL STRUCTURE AND ESTIMATION PROCEDURE 

Kraft states that models formulated with a recursive (or conditional) structure do 
not imply a sequential (or conditional) decision-making process but "are simply a fac..., 
toring of a joint probability distribution into the product of a conditional and a marginal 
distribution." Furthermore, the fact that alternative model structures produced dif­
ferent estimation results leads Kraft to conclude that the results obtained are incon­
sistent with probability theory. 

There are no inconsistencies between the results and probability theory. The dif­
ferences between the simultaneous and the recursive models are the direct result of 
different mathematical formulations and different estimation procedures. 

Any given model, whether simultaneous or recursive, can be expressed mathemat­
ically as a joint probability or as a sequence of marginal and conditional probabilities. 
However, the mathematical expression for a joint probability derived from a recursive 
model will, in general, be different from the formulation of the joint probability in a 
simultaneous model. Likewise, marginal probability derived from a joint model will 
in general be different from its specification in a recursive model. The reason for 
these differences is the need to introduce additional assumptions in a recursive model 
in order to formulate composite variables. This is the basic difference between simul­
taneous and recursive structures. An additional behavioral assumption of a sequence 
of choice is embedded within a composition rule. Thus, the two structures are mathe­
matically different, and we should not expect identical results. 

This is illustrated by using the logit model and the example of mode and destination 
choice as in my paper. We can estimate a single logit model that explains directly the 
joint probability of shopping destination and mode choice as follows: 

eudm 
p(d, m :DM) = ------=-=u­L e d·m· 

d'm't:DM 

(13) 

This model treats the choices of mode and destination jointly (i.e., simultaneously), 
does not require any sequence assumptions, and allows for a realistic representation 
of choice between complete alternatives (e.g., shopping trip to the CBD by bus versus 
a car trip to a suburban shopping center). 

Using the logit model for each choice separately in one specific sequence, we es­
timate the following two models: 

(14) 
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(15) 

The basic difficulty with a recursive structure is the representation of variables 
that vary across more than one choice in the utility function of the marginal probability. 
Travel time, for example, varies between mode and destination combinations. There­
fore, this variable enters directly into the joint utility Udm in Eq. 13 and the conditional 
utility Um\d in Eq. 15, but it cannot be directly represented in the marginal utility Ud in 
Eq. 14 because the mode is indeterminate. Denoting this variable as Xdm, for a joint 
model we can write the following [for simplicity other variables in the utility functions 
are not explicitly included (~, ch. VI)]: 

(16) 

where the travel time variable, for example, enters directly the utility function. For 
the sequential model, we can write the conditional utility as 

(17) 

and the marginal utility as 

where Xd is assumed to represent the values of Xdm by all alternative modes. Thus, 

where g( ) is some composition rule and Xd is a composite variable of Xdm across modes. 
An example of such a definition is 

Xd = 2:: Xdm X P(m:Mi) 

mEMd 

(20) 

This is the rule that was used in the shopping model estimated by CRA (4) . It im\)lies 
a sequence assumption, and it requires that a lower level conditional prObability (to 
compute these composite variables) be estimated before a higher level marginal prob­
ability can be estimated or predicted. 

The assumption implied for the variable of travel time, for example, is that des­
tination choice is based on expected travel time across modes. This means that the 
actual choice of mode is indeterminate when the destination choice is made; it is as­
sumed that destination is chosen first, and then conditional on the destination alterna­
tive chosen a mode is chosen. 

Thus, modeling a set of choices, which are realistically assumed to be made jointly, 
in a recursive structure with composite variables will result in errors due to model 
mis specifications. 

The difference in estimation procedures between the simultaneous and the recursive 
structures also contributes to differences in the results. The differences can be at­
tributed to both efficiency issues and specification errors. Consider a simultaneous 
model such as the one for the joint probability of mode and destination in Eq. 13. We 
can mathematically derive the expression for any conditional or marginal probability. 
Therefore, although the model is specified as simultaneous we can estimate the model 
coefficients in two ways. We can either estimate the joint probability directly or es­
timate any sequence of marginal and conditional probabilities, say P(d) and P(m \ d). 
What are the differences between these two estimation procedures? [The answer to 
this question is discussed in detail by Ben-Akiva (!,ch. IV).J 
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First, the estimation results obtained by the direct estimation of the joint probability 
are more efficient than those obtained for the marginal and conditional probabilities. 
This is because all the data are used to estimate the coefficients appearing in P(m \d) 
in the first case, whereas only the data on alternative modes to the chosen destination 
are used in the second case to estimate the same coefficients. In addition, the coef­
ficients estimated for the conditional probability are used to create the composite vari­
ables used in the estimation of the marginal probability. Thus, there is also a propa­
gation of errors in a sequential estimation, where the randomness in lower stage es­
timates shows up as measurement errors in the higher stage models. Thus, in the 
absence of specification errors, the difference in the estimation results can be ex­
plained by random variation. The direct estimation of the joint probability provides 
the most reliable estimates. 

Second, the differences between the two estimation procedures are also attributed 
to specification errors. Specification errors will affect both estimation procedures. 
Because the effect of the error on the joint probability estimation will be different from 
that on a conditional and a marginal probability estimation, it contributes to the dif­
ferences that will be observed between the two procedures. A more careful selection 
of variables may reduce the specification errors and therefore reduce the differ ences 
between the estimation results of the joint and conditional probabilities. However, 
even if the model is fully specified, the differences between simultaneous and recursive 
models that result from use of composite variables in a recursive structure will still 
be present. 

To overcome these difficulties, Kraft suggests that constraints be included in the 
estimation process that will ensure consistency between different sequences. This 
suggestion is implemented in the direct estimation of the joint probability of a simul­
taneous model. 

The logical answer to Kraft's question, Can we develop a model structure that does 
not do violence to our theories or to reality yet is both mathematically and statistically 
tractable? is the simultaneous model recommended in my paper. If we consider a 
wider range of travel-related choices, such as employment location, automobile owner­
ship, and residential location in addition to short-run choices, the appropriate model 
structure may be termed block recursive. In this structure, the blocks of long-run 
and short-run choices are recursive with respect to each other. However, within 
each block the choices are made jointly and modeled in a simultaneous structure. 

EMPIRICAL EVIDENCE 

The essence of Stopher's discussion is that the conclusions are not supported by the 
supplied statistical evidence. However, as noted earlier, my conclusions are not based 
on hypothesis testing or solely on comparisons of goodness-of-fit measures. From a 
theoretical point of view the simultaneous model is superior to the recursive model. 
The empirical evidence is used to demonstrate the feasibility of the simultaneous 
model and to determine the practical significance of the differences that we expect a 
priori. 

Stopher states that I did not establish that the differences of the estimates of the re­
cursive and the simultaneous models are statistically significant. (It is not clear to 
me what specific statistical test can be used for this purpose because the models have 
different nonlinear mathematical formulations. The goodness-of-fit measures of the 
different models are almost identical.) Suppose for the moment that the differences 
are not statistically significant at a reasonable significance level. Should this be a 
reason to revise my conclusions? One knows a priori that there are differences due 
to different mathematical formulations and estimation procedures; therefore, it can be 
concluded that the lack of significant statistical differences is due to the small sample 
size . Furthermore , the coefficient estimates of the simultaneous model are more re­
liable because of the direct estimation of the joint pr obability. Inasmuch as a simul­
taneous model does not cost much more to estimate a nd apply than a recursive model, 
which has been indicated, the simultaneous model structure -should be recommended. 

Stopher further questions the empirical evidence due to the use of so-called engi-
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neering rather than perceived choice sets and attribute values. He goes so far as to 
say that using engineering data in model estimation "provides no behavioral information 
and consigns the exercises to academic esoterica." Alternatively, the use of perceived 
values can be considered the academic esoterica, inasmuch as the models are intended 
to provide decision-makers with forecasts of the impacts of alternative policies or plans. 
A prerequisite for the use of a model estimated with perceived (or reported) values for 
forecasting is a set of relationships between perceived and engineering values. Further­
more, perceptions are only intermediate variables formed by individuals on the basis 
of physical objects and characteristics that are measured by the engineering values. 
Thus, a model that uses engineering estimates explains directly the individual's re­
action to physical objects and characteristics, circumventing the need to deal with the 
intermediate variables of perceptions. It is clear, however, that the model functional 
form and parameters embody both the formation of perceptions and the behavioral re­
sponse to these perceptions. This rationale is the basis for a large body of econometric 
literature, and I am not aware of any studies that have shown it to be "behaviorally in­
correct" as Stopher claims. 

I agree with Stopher's statement that a lack of constants in a choice model specifica­
tion presupposes a fully specified model. Constants can be excluded from the model 
only if it can be shown that they have no explanatory power; i.e., the constants are equal 
to zero. (The specification used by Liou and Talvitie did not include constants. This 
may explain their unsatisfactory estimation results for the simultaneous model.) This 
was not done in this study. The constants included are a mode-specific constant, DA, 
and a CBD destination constant, DCBD. It does not make sense to use a constant for 
every possible destination because there are so many. 

In summary, the conclusion that the simultaneous structure is preferred does not 
depend on additional statistical evidence. Future effort should be directed at the steps 
necessary to make fully specified simultaneous travel demand models available for ap­
plication rather than at further comparisons of alternative model structures. 

APPLICABILITY TO TRANSPORTATION PLANNING 

The applicability of the proposed models to transportation planning, the essential 
issue of research in travel demand modeling, is the focus of Hartgen' s discussion. I 
agree with Hartgen's conclusion that "what is required now are demonstrations of the 
application and potential savings of these procedures, with particular attention to com­
puter processing and institutional constraints to model implementation." Furthermore, 
the overall direction for the development of travel demand models should be toward op­
erational models that are more reliable in a forecasting context. 

Several studies that have been completed since my paper was written have further 
shown the practicality of estimating simultaneous choice models in situations with more 
than two dimensions of choice and with a very large number of alternatives and obser­
vations. First, the simultaneous model of destination and mode for the shopping trip 
has been extended to include frequency as well in the simultaneous structure (29). A 
similar simultaneous model was also applied successfully with a data set fromllie 
Netherlands (30). Simultaneous disaggregate choice models have also been successfully 
applied to the automobile ownership and work mode choices (31) and are currently being 
applied to the entire set of long-run locational and automobileownership choices (33). 

From the point of view of aggregate forecasting the use of simultaneous models 
places no additional burden on data requirements and computational efforts. Two on­
going research efforts at M.I. T. focus on the application of simultaneous travel demand 
models to aggregate forecasting. The first study is investigating alternative procedures 
of using these models for aggregate predictions (32). The second study (sponsored by 
DOT University Grant Research Program) is implementing these models and procedures 
for a transportation planning case study. 
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Peter S. Liou and Antti P . Talvitie 

The issues raised by the discussants are well taken, and perhaps we can clarify 
some of the questions that have been brought up. 

It is true that mathematically the joint probability should have the same value as the 
pr oduct of a conditional probability and a margim\l probability and be indeJ?endent of any 
specific mathematical for mulation; e .g ., P (s, m) = P(s Im) x P(m) = P (m Is) x P(s). 
However, the conditional probability, by definition, means the probability of one event 
taking place given that the other event has already taken place. Therefore, from the 
behavioral viewpoint, decisions of the access mode and station choices may be ap­
proached from three directions: the simultaneous decision-making process and the 
two ·sequential decision-making processes. It appears in this study that empirically 
it is possible to estimate choice models based on the station-mode sequential assump­
tion. Further research is necessary to determine whether the joint probabilities would 
indeed be the same had it been possible to estimate choice models based on the other 
sequential structure or based on the simultaneous modeling structure. 

With regard to the modeling aspect of this study, the importance of including one or 
more constants in the utility function was investigated. In fact, in the various access 
mode and station models, mode-specific dummy variables were included to indicate 
the access mode with which the in-vehicle time was associated. Nevertheless, all the 
models estimated in this fashion involved (significant) coefficients with incorrect signs. 
One such model is in Table 16 (model 3). 

Another point concerning the modeling aspect is the access mode alternatives. Al­
though it was observed in the survey whether a traveler drove or was driven to a sta­
tion, the detail of the data did not permit separating these two modes. Consequently, 
the automobile mode was viewed as a single mode and the value of each level-of-service 
variable associated with the automobile mode was obtained by averaging the values by 
automobile-driver mode and automobile-passenger mode (22). 

In formulation of the station selection models, differences in train fare among alter­
native stations were not included because the alternative stations were generally adja­
cent to each other and were located within the same fare zones. 

With regard to the model evaluation aspect of this study, two points need to be men­
tioned. As reported in the paper, no valid models could be obtained by using the simul­
taneous model structure. The estimated models were considered invalid on the basis 
of incorrect coefficient signs. The coefficients with wrong signs were statistically 
significant; therefore, further testing between the models was not carried out. For 
the simultaneous model, for example, the standar!i error of the bus time variable is 
0.0427, whereas the variable coefficient is 0.1974. The second point concerns the 
standard error of the implied value of time. The variances of the implied values of 
time were determined in the same way as suggested in one of the discussions (19). It 
was not known, however, whether their distributions were normal or skewed. -

Another important aspect discussed concerns the applicability of the multinomial 
logit modeling technique to transportation planning and forecasting. This is a laudable 
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goal for transportation research. However, it seems that the objective is not only to 
replace the existing UTPS package with a new package but to replace it with a better 
and more valid modeling system or concept. Therefore, it ought to be realized that 
transportation planning should be done on the basis of methodology and assumptions 
that are consistent with travel choice behavior and consumer theory, especially when 
such planning involves both short-range predictions and long-range projections ex­
tending 20 years into the future. This would require a full and extended knowledge and 
understanding of the extent and limitations of this and other modeling techniques. 

In closing, we would like to emphasize that formulation of the access mode and sta­
tion choice models in this study was based on the assumption that the modeling of the 
access trip can be separated from the rest of the journey. Further research is neces­
sary to determine whether this consideration is proper. On the other hand, the be­
havioral decision-making process involved in making a trip is so complex that struc­
turing a single simultaneous model to include all the trip choices such as purpose and 
household location on the one hand and trip frequency, time of day, trip destination, 
travel mode, and route on the other is clearly not advisable, if not impossible. Some 
assumptions have to be made to separate the various trip choices and thus simplify the 
modeling process. This study only explores one of the many such assumptions that 
could be made. 

Finally, it is stressed in all the discussions that further research in this area is 
warranted. As pointed out, knowledge of the relevant alternatives as perceived by in­
dividual travelers and specific socioeconomic information (e.g. , individual income, 
hous ehold expendable income) are impor tant in formulating behavioral models. Un­
fortunately, these types of information were not available for this study. Furthermore, 
the validity and the effects of a number of assumptions that are essential for disaggre­
gate multinomial modeling such as the separability assumption and of course the axiom 
of independence of irrelevant alternatives should be investigated in the near future. 


