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THE NATURE OF TRAVEL DECISION-MAKING 
Reid H. Ewing, Department of City and Regional Planning, Harvard University 

Travel decision-making is described in behavioral terms, and an alterna­
tive to conventional travel forecasting is suggested. Two issues are con­
sidered. The first is the order of travel decision-making. The second is 
the interaction of travel decisions. This paper defines the order of travel 
decision-making with expected utility theory, and it describes the inter­
action of travel decisions withdynamic programming. The resultingtravel 
model is based on theories of decision-making and is unique in this respect. 

• TRANSPORTATION planning has been dominated by engineering ::ind economics 
throughout its brief history. As a result, conventional travel forecasting neglects the 
human element in intraurban trip-making. It is possible to improve travel forecasting 
by first defining the nature of travel decision-making and then applying the result to 
travel demand modeling. That is the purpose of this study. 

Two issues are addressed: In what order are travel decisions made, and in what 
way do travel decisions interact? The literature on decision-making under uncertainty 
provides an answer to the first question. And the literature on dynamic decision­
making provides an answer to the second. These answers lay the foundation for a unique 
travel demand model based on current theories of human behavior. This model is 
proposed as a practical alternative to existing travel demand models. 

THE APPEAL OF SEQUENTIAL TRAVEL MODELS 

In a recent paper, Brand (4) described alternative methods of travel demand model­
ing. His alternatives included sequential and simultaneous models. This paper is 
limited to sequential travel models for two reasons. First, they are more efficient 
than simultaneous models because the number of travel options (each of which must be 
evaluated) increases multiplicatively when decisions are combined. Two departure 
times for each of two modes, each with 10 alternative routes to 10 destinations, 
translate into 400 (2 x 2 x 10 x 10) travel options for each origin in a simultaneous 
travel model. With literally hundreds of origins and additional times, modes, routes, 
and destinations, simultaneous travel demand models become unwieldy. Second, travel 
decisions are apt to be made sequentially rather than simultaneously. The multitude 
of options available to travelers forces them to simplify the decision-making process. 
They do this by making sequential decisions, thereby greatly reducing the number of 
travel options they must consider. Just as trave~ demand is modeled sequentially in 
response to the limitations of the digital computer, so may travelers simplify the 
decision-making process in response to their own limitations. Arguments of this 
nature are persuasive enough to justify the present emphasis on sequential travel 
models. Simultaneous travel models and the empirical choice between simultaneous 
and sequential models will be the subject of future research. 

EXPECTED UTILITY THEORY APPLIED TO TRAVEL DECISION-MAKING 

Conventional travel forecasting assumes that travelers choose a time of departure, 
a destination, a mode, and a route in that order. In some travel models, the choice of 
mode precedes the choice of destination, but the order is always predefined and in­
variant. This can be criticized on two counts. First, the conventional order is based 
on neither theory nor observation. It would certainly be fortunate if the conventional 
order proved to be correct. Second, it is likely that the order of travel decision­
making depends on the available alternatives and thus varies with the situation. Any 
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model that assumes a fixed order of travel decisfpn-ti:iaking cannot consistently re-
produce the decision-making process. The following discussion is motivated by these 
concerns. 

The order of travel decision-making has been ignored in the literature with the ex­
ception of a paper by Brand (!). Brand suggests several alter native methods of order­
ing travel decisions: order based on (a) information, decision-making proceeds from 
the most informed to the least informed decisions; (b) adjustment, decision-making 
proceeds from the least easily adjusted to the most easily adjusted decisions; and (c) 
timing, decision-making proceeds from the latest to the earliest decisions in time 
(that is, the logical order of decisions runs counter to their sequence in time). 

It is not possible to choose among the three methods with the limited evidence avail­
able [see Feger and Feger (12) and 'Dtte and Howell (23)]. Fortunately, no choice is 
necessary because a single theory incorporates them alt This theory is well estab­
lished empirically and ranks among the foremost theories of decision-making under 
uncertainty. 

Few subjects in psychology have received more attention than decision-making under 
uncertainty. Two reviews of this subject are noteworthy. Edwards (9) provides a use­
ful introduction to the subject. Luce and Suppes (16) go into much greater detail. 
Readers who desire additional information should consult these reviews. 

A prominent theory of decision-making under uncertainty, expected utility theory, 
defines the order of travel decision-making. Expected utility theory states that 
decision-makers, when faced with uncertainty, make decisions that maximize their 
expected utility. That is, they select the option with the greatest expected utility, 
where the expected utility of an option is given by 

where 

Ut utility of outcome i, 

EU = L U1P1 

n 

p1 = probability that outcome i will occur, and 
n = number of possible outcomes. 

(1) 

Consider a decision-maker with several options. His first option has two possible 
outcomes. One outcome has a utility of 10 and occurs 40 percent of the time, and the 
other has a utility of 5 and occurs 60 percent of the time. From Eq. 1, the expected 
utility of this option is 7 (10 x 0.4 + 5 x 0.6). The decision-maker will choose this 
option only if his other options offer less expected utility. 

Travel decision-making necessarily involves uncertainty if it is a sequentialprocess. 
This is true even if individual travel decisions are made under certainty because future 
decisions are unknown. For example, if their first travel decision is the choice of de­
parture time, travelers' neglect of destinations, modes, and routes introduces uncer­
tainty into decision-making. Only after all travel decisions are made can the choice of 
departure time be evaluated with certainty. 

Travel decision-making is comparable to gambling. Each decision represents a 
gamble. It is assumed that travelers evaluate all four travel decisions and make the 
decision with the greatest expected utility; then they reevaluate the remaining travel 
decisions and make the decision with the greatest expected utility. This continues until 
they have made all travel decisions. 

Travelers are assumed to have complete knowledge of alternative departure times, 
destinations, modes, and routes. Individual decisions are therefore made under cer­
tainty, and the following equation applies (.,!1 22): 

(2) 

where p1 is the probability that alternative i will be chosen, Ut is the utility of alterna­
tive i, and the summation is taken over all n alternatives. 
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Combining Eqs. 

i 
i 

1 and 2 gives a!n ~pected utility of 
"' ;, 

EU = I: uUL: ui 
n I n 

(3) 

Equation 3 defines the order of travel decision-making. Let us assume that a depar­
ture time and destination have been chosen already. Either a mode is chosen next and 
then a route or vice versa. It will be shown that the order of travel decision-making 
depends on (a) the number of alternative modes and routes and (b) the similarity of 
alternative modes and routes. Consider the following examples. 

In the first example, there are more alternative routes than modes, but alternative 
modes and routes are equally similar. The utility of mode and route pairs is 

M1R1 = 11 = R1M1 
M1R2 8 R2M1 
M1Rs 5 RsM1 
M2T1 7 R1M2 
M2R2 4 R2M2 
M2Rs "" 1 RsM2 

M1 refers to mode 1, M2 to mode 2, R1 to route 1, and so on. The expected utility of 
travel is 7. 50 if the choice of mode precedes the choice of route and 7.46 if the choice 
of route precedes the choice of mode. These values are obtained from Eq. 3 by first 
calculating the expected utility prior to the last decision and then the expected utility 
prior to the next to last decision. This indicates that travel decisions with few alter­
natives are made before travel decisions with many alternatives. 

In the next example, alternative routes are more similar than alternative modes, 
but the number of alternative modes and routes is the same. The utility of mode and 
route pairs is 

M1R1 = 10 = R1M1 
M1R2 8 R2M1 
M2R1 4 R1M2 
M2R2 2 R2M2 

The expected utility of travel is 7. 56 if the choice of mode precedes the choice of route 
and 7.62 if the choice of route precedes the choice of mode. This indicates that travel 
decisions with similar alternatives are made before travel decisions with dissimilar 
alternatives. 

The conclusions of the last two paragraphs may surprise readers. Intuitively, deci­
sions with many dissimilar alternatives should precede decisions with few similar 
alternatives. Yet these examples indicate that the reverse is true. There is nothing 
inconsistent about this. Just as the expected utility of travel is calculated by evaluat­
ing the last decision first and just as Brand's third method of ordering travel decisions 
assumes that the logical order of decisions runs counter to their sequence in time, 
travel decision-making may begin with the last travel decision and work backward. 

It is encouraging that order based on information and order based on adjustment 
represent special cases of the present theory. Incomplete information about travel 
alternatives results in uncertainty in decision-making and causes the probabilities of 
selection to converge. In the limit, if no information is available, the probability of 
selection is the same for every alternative. This decreases the expected utility of 
corresponding travel decisions and causes travelers to postpone these decisions until 
other decisions are made. Order based on information applies in this case. When 
travel decisions are long-lived, the probabilities of selection are affected, but in this 
case they tend to diverge rather than converge. It is likely that travelers exercise 
greater care when they make long-lived decisions, and therefore they select alternatives 
with maximum utility. This increases the expected utility of long-lived travel decisions 
and causes travelers to advance these decisions relative to other travel decisions. 
Order based on adjustment applies in this case. 
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DYNAMIC PROGRAMMING APPLIED TO 
1

'llRA VEL DECISION-MAKING 

Conventional travel demand models assume that travel decisions are made inde­
pendently, whereas direct demand travel models assume that travel decisions are fully 
integrated. It is likely that travel decisions are neither so independent nor so fully 
integrated as assumed in these models. 

In his review of sequential decision-making, Edwards (8) divided sequential decisions 
into six classes. His sixth class included dynamic decisions of the type made by 
travelers, which are characterized by the dependence of later decisions on earlier de­
cisions. Because travel decision-making is a dynamic process, the literature on 
dynamic decision-making applies and a substantial body of knowledge is available. 
During the 1950s Bellman (2) developed an analytical technique known as dynamic pro­
gramming. At that time Beilman suggested that dynamic programming could be used 
to simulate dynamic decision-making. Dynamic programming has since been applied 
to dynamic decision-making in a variety of theoretical and empirical studies (~ 14). 

Several studies have compared the performance of subjects on dynamic decision­
making tasks to the results of dynamic programming. Using variations of the Reader's 
Control Problem to simulate recurrent business decisions, Rapoport and Ray applied 
dynamic programming to stochastic problems (19), adaptive problems (18), adaptive 
problems of unknown duration (20), and deterministic problems (21). Inall cases 
dynamic programming adequately described subjects' performance on dynamic decision­
making tasks. 

Dynamic programming is based on the principle of optimality, which states that the 
best decision at each stage in the decision-making process is the decision that optimizes 
the remainder of the process. Dynamic programming therefore begins with the desired 
objective (a maximum benefit from travel) and works backward through the sequence 
of decisions to the starting point (the decision to work, shop). Each decision in the 
sequence is optimized according to a predefined decision rule. A decision-maker can 
ignore past and future decisions and evaluate his present alternatives with this decision 
rule. 

In many ways, travel decision-making is an ideal problem for dynamic programming. 
Problems must. be divided into stages in dynamic programming. Travel decision­
making has four stages-the choice of departure time, destination, mode, and route. 
Alternative states must be defined at each stage. Alternative departure times, destina­
tions, modes, and routes represent alternative states of the various travel decisions. 
An objective function must be optimized in some manner. The objective function in travel 
decision-making is the utility of travel and, of course, it is maximized. Actions and 
policies must be defined. Choices among alternative departure times, destinations, 
modes, and routes represent actions, and sets of choices represent policies. Returns 
on all actions and policies must be evaluated. This presents a problem because no 
utility accrues in travel until all travel decisions are made. However, it may be pos­
sible to associate utility with individual travel decisions. The utility of individual 
travel decisions will be a function of independent measures of performance (i.e., mea­
sures that do not depend on other travel decisions) such as distance between zones in 
trip distribution, smoothness of ride in modal split, and directness of route in network 
assignment. 

Once the utility of individual decisions is determined, a dynamic programming model 
can be developed. The following notation is used: 

fn (a) = maximum utility of all remaining travel decisions if alternative a is chosen 
in the nth decision (= objective function in state a and stage n j.f decision­
making is optimal); 

u,.b utility of travel alternative bin the n+l stage of travel decision-making if 
travel alternative a was chosen in the nth stage (= the return from the action 
of choosing state b in stage n+l when state a was chosen in stage n); 

t alternative departure times; 
d alternative destinations; 

m = alternative modes; 
r = alternative routes; and 
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o = state of travelers after travel decision-making. 

If travel decisions are made in the conventional order (i.e., departure time, destina­
tion, mode, and route), the following equations can be derived from the principle of 
optimality: 

f4(r) max [ u,. 0 ] 

Uro 

fs(m) max Cu.r + f4(r)J 
U.r 

f2(d) max [ ud• + fJ (m)J 
~. 

f1 (t) max [ Uu + f2(d)] 
Uu 

By way of example, the third equation says that the maximum utility of all remammg 
travel decisions if destination d is chosen in the second stage of travel decision-making 
is equal to the maximum value of the sum of the utility of destination d plus the maxi­
mum utility of all remaining travel decisions if mode m is chosen in the third stage of 
travel decision-making. f2(d) is evaluated for all modes that serve destination d. 
Modes that do not are ignored. The other equations are analogous. 

Dynamic programming identifies the optimal departure time, destination, mode, and 
route. It does not distribute trips among alternative departure times, destinations, 
modes, and routes as conventional models do. Distribution is a separate process. 
Several methods of distribution are available. The most promising is an intervening 
opportunities approach that assigns a constant fraction of all remaining trips to the 
best of the remaining travel alternatives (the process is then repeated without this 
alternative). 

The use of dynamic programming to simulate travel decision-making has one major 
drawback. Dynamic programming simulates optimal decision-making, but travel 
decision-making is apt to be suboptimal. The issue in travel forecasting is not how 
travelers should make decisions but how travelers do make decisions. Arriving at the 
same conclusion (for decision-making in general), Rapoport extended his earlier analysis 
to include suboptimal decision-making (17). He began by noting that shortcomings of 
the human memory, the cost of information-gathering and -processing, the inability to 
plan ahead, the ignorance of interdependencies, and so on limit our ability to make 
decisions. Decision-making "in non-trivial tasks will, in general, not be optimal." 
He went on to propose a theory of dynamic decision-making that makes use of pro­
gramming algorithms. Decision-makers are assumed to plan ahead one, two, or even 
more decisions in dynamic decision-making tasks. The extent to which they plan ahead 
depends on their ability and the nature of their tasks. Rapoport described empirical 
tests of his theory. Subjects' performance on Elithorn' s perceptual maze test (10) was 
compared to the results of three algorithms. The first algorithm assumed that subjects 
plan ahead one move when choosing among alternative paths through a maze, the second 
that they plan ahead two moves, and the third that they plan ahead three moves. The 
performance of many subjects corresponded to one of the three algorithms (particularly 
to the third one) and varied with the design of the maze. It would appear that planning 
horizons do vary from individual to individual and from task to task. 

If travel decision-making is suboptimal, Rapoport's algorithms can be used in travel 
forecasting. One algorithm applies to travelers with a planning horizon of one travel 
decision, another to travelers with a planning horizon of two travel decisions, and a 
third to travelers with a planning horizon of three travel decisions. (A planning horizon 
of four travel decisions leads to optimal decision-making.) Algorithms can be chosen 
by comparing the results of each to the behavior of travelers. The algorithm that best 
describes the travel behavior of each socioeconomic class can be used in forecasting. 

It should be noted that existing travel models correspond to the extremes of travel 
decision-making. Conventional travel demand models assume that travel decisions 
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are independent of each other. Trip generation, trip distribution, modal split, and 
network assignment are modeled independently and undertaken sequentially. Each is 
completed without reference to the others. Conventional travel forecasting corresponds 
to the simplest type of travel decision-making, where travelers ignore all future deci­
sions. The result of sequential decision-making is identical to that of dynamic decision­
making if the planning horizon of travelers is one travel decision. In contrast, direct 
demand models assume that travel decisions are fully integrated. Trip generation, 
trip distribution, modal split, and network assignment are combined in a single model. 
Because all stages are undertaken simultaneously, they are allowed to fully interact 
and influence each other. Direct demand forecasting corresponds to the most sophis­
ticated type of travel decision-making, where travelers consider all travel decisions 
simultaneously. The result of simultaneous decision-making is identical to that' of 
dynamic decision-making if the planning horizon of travelers includes all remaining 
travel decisions. Existing models can describe the extremes of travel decision­
making, but only behavioral models can describe travel decision-making in general. 

Transportation planning has been dominated by engineering and economics throughout 
its history. Hopefully, this paper and another by the author (11) have demonstrated the 
potential of behavioral models in transportation planning. I believe that transportation 
planning is ready to incorporate psychological theory into its simple economic models. 
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