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FOREWORD 
This RECORD will be of great interest to researchers and practitioners of travel de­
mand forecasting because it presents findings from leading researchers in the field on 
recently recognized interactions between travel behavior assumptions and the resulting 
travel models and forecasts made with these assumptions. 

Travel forecasters have always recognized that their forecasts should be plausible 
and reasonable and that their models must be calibrated to be consistent with observed 
travel patterns. What emerges from the findings of the 1972 Conference on Urban 
Travel Demand Forecasting (HRB Special Report 143) and now from the papers in this 
RECORD is that the forecasting models being used in the profession for the last 20 
years have their own implicit rules of behavior. These behavior rules are not only 
those implied by the independent variables included and the coefficients estimated but 
also those on the structure of the travel choices (e.g., sequence of choices) and choice 
alternatives (e.g., alternative destinations) over which the models should be applied. 
It is the latter rules of behavior required by the current travel forecasting models 
(e.g., trip generation equations, gravity and logit models) and our method of estimating 
these models that require exposure to the profession. A full understanding of the choice 
structure implied by the model being used can be of great help in efficient use of the 
model and in appropriate selection of what forecasting model to use in the first place. 
Lack of knowledge of a model's implied choice behavior may lead to grievous errors in 
its application. Lack of knowledge of how travelers behave under different circum­
stances when confronted with high-capital versus low -capital transportation alterna­
tives may require that complicated models always be used. 

Clearly, more research on travel behavior and be}\avioral travel models is required 
before we can make trade-offs in specific planning situations between the basis in be­
havior (and thus the logic and plausibility of travel forecasts) and the time, money, and 
skills required to carry out the forecasts. Examination of the papers in this RECORD 
will carry us a substantial distance forward in understanding that these trade-offs can 
be made and in beginning to make these trade-offs in our own work. 

-Daniel Brand 

iv 



ESTIMATING THE DEMAND FOR SHORT-HAUL 
AIR TRANSPORT SYSTEMS 
Adib K. Kanafani and Shing-Leung Fan, 

Institute of Transportation and Traffic Engineering, 
University of California, Berkeley 

To evaluate the feasibility of novel systems for short-haul air transporta­
tion requires an estimation of the market share potential for various con­
figurations of such systems. This paper deals with the development of a 
model for estimating the market share that various short take-off and 
landing (STOL) system configurations can be expected to capture in a high­
density, short-haul air travel corridor. The process by which travelers 
in the corridor choose among different routes serving the corridor is 
studied. Variables such as line-haul travel times, schedule frequencies , 
and fares are studied. Traveler's choice is modeled in terms of these 
variables in a probabilistic manner. Such a formulation allows the aggre­
gation of travelers into groups for the purpose of demand analysis. The 
model is calibrated on the basis of data on travel characteristics in the 
500-mile corridor connecting the San Francisco Bay and Los Angeles met­
ropolitan areas. System configurations include STOLports located at var­
ious points within the region and varying schedule frequencies and air 
fares. Alternative strategies of diverting short-haul air traffic from con­
gested hub airports to STOLports are also studied. The calibrated choice 
model is combined with a total travel forecasting model to provide a fore­
casting procedure for estimating the demand potential for STOL transpor­
tation systems. The calibrated models are used to study various STOL 
system configurations and to estimate their market potential. 

•THE objective of the research documented in this paper was to develop a procedure 
for forecasting the demand for alternative short take-off and landing (STOL) systems 
in the high-density, short-haul air travel corridor connecting San Francisco and Los 
Angeles. 

The forecasting framework used has two stages. In the first stage total air travel 
demand in the corridor is forecast. This is followed by the second stage of estimating 
the choice among available air travel routes in the corridor. The combination of the 
two allows the estimation of the demand for any one route or type of service, including 
a variety of postulated STOL systems. This distinction between total air travel de­
mand and the choice among available routes reflects a characteristic particular to 
short-haul air transportation. In short-haul air transportation (normally defined by 
a range of approximately 500 miles), line-haul travel time does not constitute the major 
portion of total travel time. The total quality of air service is, therefore, more sensi­
tive to variations in ground access travel times and schedule delays than is the case in 
long-haul transport. Consequently, it is necessary to study the process of choice among 
alternative routes and to relate that process to such route characteristics as access 
times and schedule frequency. 

Another characteristic peculiar to short-haul air transportation is that within its 
range high-speed ground transportation modes may pose significant competition. In 
principle, therefore, a forecasting procedure for short-haul air transportation should 
consider the interplay among all available air and ground modes. However, for this 
study of the California corridor, it was believed that ground transportation technology 
has not yet reached a point where significant interaction occurs between air and ground 
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transportation. Consequently, the forecasting process developed deals exclusively 
with air transportation. It is therefore clear that the forecasts obtained here are con­
ditional on the fact that no significant changes occur in the ground transportation system 
in the corridor. Should a high-speed rail system, for example, become a reality for 
the California corridor, then the forecasts presented here would be false. 

MODEL DESIGN 

The modeling structure used in this study is shown in Figure 1. A number of travel 
routes are identified within the short-haul corridor, and for each route a number of at­
tributes or transportation characteristics are identified. Two models are used to es­
timate the demand potential for STOL transport in the corridor. First, a generation 
model is used to estimate the total air travel demand, where it is postulated that this 
demand depends on the socioeconomic characteristics of the city pairs in the corridor 
as well as the best route attributes available for each city pair. Second, a choice model 
is used to estimate the split in the total demand among available routes in the corridor, 
where it is assumed that the split depends on the relative attributes of each of the routes. 
These two models are then combined to estimate the total market share for each route. 
When summed over routes that constitute STOL service, the total demand for STOL 
transportation is obtained. 

The study corridor on which these models were to be applied was represented by a 
network consisting of origin and destination cities and origin and destination airports. 
As shown in Figure 2, the corridor joins two regions-I, San Francisco, and II, Los 
Angeles-with air transport among a number of airport pairs. For every origin­
destination pair, a route is defined by a path along the network extending from the 
origin city to the origin airport, the destination airport, and finally the destination 
city. In Figure 2 ACDB and AEKB are examples of routes connecting cities A and B. 

Figure 1. Model framework. 
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Air Travel Generation Model 

A simple multiplicative model was used to estimate intercity air transport demand 
in the study corridor. This model included both socioeconomic (population, median 
income, and employment) and transportation (the best available schedule frequency, 
lowest travel time, and lowest travel cost) variables among all the available routes 
for each city pair. Three alternative model forms were specified and later statistically 
tested: 

where 

T13 =total traffic between cities i and j, 
P = population, 
Y =median income, 

Y13 =average median income for both cities, 
t 13 =shortest travel time among all routes between i and j, 

(1) 

(2) 

(3) 

LS13 =level-of-service variable defined as the average travel time between i and j 
over all routes and weighted by the cost and the schedule frequency for each 
route, and 

O! =parameter representing demand elasticities with respect to the variables. 

Route Choice Model 

The purpose of the choice model is to describe how a traveler in the corridor is 
likely to choose among the available routes serving the corridor. This description is 
then used to split the total travel demand generated by the previous model among these 
routes. The model specified in the study was a stochastic model that predicts the prob­
ability of choice conditional on values of the choice elasticities. By studying the ran­
dom var iations of these elasticities among individuals and using a procedure proposed 
by Kanafani (3), we can aggregate over the total study population. 

Using the c orridor notation of Figure 2, let P13k be the probability that a traveler 
between cities i and j chooses-route k and let Yuki, 1 = 1, ... , m, be m attributes of 
route k. The basic postulate of the model is specified by the following probability 
function: 

That is, the probability of choice is assigned on the basis of a set of m route attributes. 
An individual is assumed to evaluate the characteristics of all routes one at a time. 

For each characteristic he ranks the routes available to him. This ranking is analogous 
to the probability that a route is chosen on the basis of this particular characteristic. 
Thus it is assumed that there is a unique correspondence between the ranking of a route 
on the basis of a characteristic and the probability of choosing the route on that basis. 
This correspondence is defined by a set of weights 91 • Letting A1 be the event of choos­
ing a route on the basis of characteristic 1 and postulating a sigmoidal relationship 
among the weight 9, the value Y1 of 1, and the probability P give the choice probability 
P1Jk1 as 

e, 
[A J y!Jkl 

P1jkl = p I = L e, 
Y13r1 

(4) 

r 

In Eq. 4 the probability of taking route k on the basis of attribute 1 is a function of 
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its value for route k relative to all available routes. It should be noted that P1jkl in 
Eq. 4 is the probability based only on one attribute, 1, and is independent of all the 
other attributes. That is, P1Jk1, ... , PiJkm are probabilities of independent events. 
The total choice probability PiJk• which is based on all route attributes, is therefore 

subject to 

and 

LP1Jk = 1 
k 

Equation 7 is satisfied by introducing a factor K1l in Eq. 5 to give 

With Eqs. 7 and 8 it should be possible to determine K!J· 

( 5) 

(6) 

(7) 

(8) 

To facilitate the presentation of the remainder of the model, we assume without loss 
of generality that there are only three route attributes: total travel time Hilk• schedule 
frequency Fijk, and travel cost C1jko Equation 8 now becomes 

(9) 

where Or!, {J, and y are the weights placed on each of the attributes. Combining Eqs. 7 
and 9 gives 

2: F~Jk 2: c:Jk L H~jk 
k k k 

KiJ = ~ a P -r 
£ F1Jr C1Jr H1Jr 

r 

(10) 

Substituting this value in Eq. 9 gives the expression of the choice probability, which, 
because Cll, {J, and ')I are postulated as random variables, is stated as a conditional 
probability of choice given Or!, {J, and y: 

(11) 

To find the unconditional probability requires that this expression be integrated over 
the domains of the random variables Or!, {J, and y respectively, which gives 

P[ijk] = f f f P[ijk I Or!, {J, y]f(O!, /3, y) dO!d{Jdy 

R1 R2 R3 

(12) 
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where f(or:, {3, y) is the joint density function of the variables or:, {3, and /I. It was as­
sumed and later statistically verified that a traveler assigns these weights independently 
of one another. This assumption yields a considerable simplification because it allows 
the representation of the joint density function as the product of the individual density 
functions for each weight. The choice model can now be specified in its complete form: 

(13) 

STOL Share Model 

Once both the travel generation model and the choice model are completely specified, 
we combine them into a model that will allow the estimation of the share of any route 
in a corridor. This will also allow the estimation of the demand potential for STOL 
transport. Combining the value T1i of the demand for air travel between any 0-D pair, 
as obtained from the generation model, with the choice probability PCijk], as obtained 
from the choice model, gives the expected demand for a route k: 

(14) 

If I/! denotes the subset of all routes k that are STOL routes, then the total demand po­
tential for STOL transportation between any 0-D pair i, j can be obtained from 

E[ST1iJ = T1J L PCijk] 

k£1/> 

(15) 

and the total STOL demand potential in the corridor is obtained by adding the demand 
values for all 0-D pairs: 

E[ST] =LL E[ST1JJ 

i j 

(16) 

This model allows the estimation of the demand potential for STOL transportation 
for any STOL service configuration. 

THE DATA BASE 

Most of the data used in this study were derived from an on-board origin-destination 
survey conducted in 1970 by Daniel, Mann, Johnson, and Mendenhall (1). For each 
trip the following variables were observed: 

1. Trip origin and destination, 
2. Airport pair used, 
3. Trip purpose, and 
4. Reported ground access times at both trip ends. 

A total of 1,637 business trips and 1,467 nonbusiness trips were included in the data 
base. This trip information was collected on 12 conventional take-off and landing (CTOL) 
routes in the study corridor: 

1. Oakland-Hollywood/Burbank, 
2. Oakland-Los Angeles International, 
3. Oakland-Ontario, 
4. Oakland-Santa Ana (Orange County), 
5. San Francisco International-Hollywood/Burbank, 
6. San Francisco International-Long Beach, 
7. San Francisco International-Ontario, 
8. San Francisco International-Santa Ana, 
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9. San Jose-Hollywood/Burbank, 
10. San Jose- Los Angeles International, 
11. San Jose-Ontario, and 
12. San Jose- Santa Ana. 

A major deficiency of the data source was that the survey did not include flights out 
of San Francisco International (SFO) and Los Angeles International (LAX). This, of 
course, reduces the accuracy of the estimation based on the remaining routes, for San 
Francisco International and Los Angeles International are by far the most important 
airports in the corridor. However, because the calibration technique uses a sample 
of travel records randomly selected from the trip file, it can be said that the loss of 
accuracy in the analysis is only to the extent that the sample used may be considered 
biased. 

Inventory data including information on the socioeconomic characteristics of the 
study area and its population and information describing the air transport system in 
the study area were also acquired. The socioeconomic characteristics included were 
population, income characteristics, and employment levels, and the transportation 
variables were (a) schedule frequencies of service between airport pairs, (b) line-haul 
travel times between airport pairs, (c) air fares between airport pairs, and (d) ground 
access times between population centers and airports. 

The socioeconomic variables were obtained from the 1970 census (10). The trans­
portation characteristics were obtained from available sources such aSthe Official 
Airline Guide and available road maps of the study area. 

MODEL CALIBRATION AND TESTING 

Air Travel Generation Model 

Multiple regression analysis was performed on the logarithmic forms shown in Eqs. 
1, 2, and 3. The results of this analysis for both business and nonbusiness travel are 
given in Table 1, from which some interesting observations can be made. 

1. In all regressions, population and median income seemed to be highly significant 
in explaining total travel generations. The positive signs of the elasticities were as 
expected. 

2. In the case of business travel, shortest travel time t 1 j did not seem to be so 
highly significant as the other variables, even though the parameters associated with 
it were all negative, as expected. This is probably due to the fact that there is very 
little variation in this variable among the zone pairs in the study corridor. In the case 
of nonbusiness travel, this variable is not significant. This result seems intuitively 
appealing inasmuch as it is reasonable to deduce that nonbusiness travelers, i.e., 
mainly recreational travelers, are not sensitive to travel time. 

3. In all models tested, the total explanatory power was rather low. R2 values fall 
in the range 0.26 to 0.36. Because the explanatory power of the variables in the models 
seemed sufficiently high as explained earlier, it seems likely that additional variables 
describing the socioeconomic nature of the various cities in the corridor should have 
been included. 

Based mainly on these results, it was concluded that the models as calibrated were 
not suitable for forecasting travel demand. On the other hand, the explanatory power 
of the variatles included in the model seemed sufficiently high to warrant use of the 
models. Because the dema.nd elasticities of variables such as population and income 
were estimated with sufficiently high confidence, it should be possible to use them in 
relating changes in income ar,d population to changes in travel demand. 

The general structure of the travel generation model is 

TiJ = n x:• 
k 

where ~ is the elasticity of the travel demand with respect to variable Xk, the ratio of 
relative changes of T and X, and is given by 
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(17) 

for all k. The total relative change in TiJ that is brought about by changes in variable 
Xk can be calculated from the equation for the total derivative as follows: 

from which 

(18) 

For example, in model B4 (Table 1), if both population of the origin city and average 
median income simultaneously increase by 10 percent, then the total increases in travel 
generation will be as given in Eq. 18. 

dTq = 0.29 dPi + 0.89 dYtJ = 11.aoi 
T1J P1 Y1J 

This procedure is used to apply growth rates to the actual city pair volumes rather than 
to volumes obtained from the regression model. This avoids the forecasting difficulties 
caused by the weak explanatory power of the regression model. 

The Choice Model 

To determine the pr obabilities Pujk] as shown in Eq. 13 required that the distribu­
tion functions f1(et), fz(fJ), and f3(y) be estimated. To do this we subdivided the data i nto 
randomly selected groups. For each group, estimates of O!, fJ, and y were obtained by 
regressing on the function: 

(19) 

where HtJk is the access time at both ends of a trip between i and j by route k. The 
particular form of Eq. 19 was selected from a number of alternatives that were tested 
statistically. 

This procedure is analogous to selecting random observations on the values of O!, /3, 
and y. Although the sample subgroups wer e selected at random, there is no evidence 
tha t they do r epresent hom ogeneous subsets of the population and that the readings ob­
tained for O!, {J, and y ar e trul y disaggregate estimates . On the other hand, this pro­
cedure provides a closer approximation to a completely disaggregate model than a de­
terministic model. 

Estimated values for the three parameters were obtained for both business and non­
business travel. Both O! and fJ have the cor:rect sign. The parameter y does not seem 
to have a consistent sign; however, the F-statistic associated with this parameter is 
very low in all cases, indicating that it is not significantly differ ent' from zero. This 
is not sur prising for a number of reasons. First, i t was found thr ough an investigation 
of the data base that access time variations between the differ ent t r ip data records were 
not very large. Second, when compared with the effect of schedule frequency, the ac­
cess time effect seemed dwarfed. Variations in schedule frequencies among airport 
pairs were such that the resulting variations in expected schedule delays would be con­
siderably larger than differences among access times. 

The overall statistical goodness of fit was demonstrated by the high values of coef­
ficients of multiple determination R2

, which were over 0.90 in all cases. These wer e 
corroborated by low values of the standard error of estimate-between 0.23 to 0.39. 
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Table 1. Results of regressions. 

Business Models Nonbusiness Models 

Variables Bl B2 B3 B4 B5 NB1 NB2 

Constant -6 .2 -7 .97 -4 .39 -7 .32 -13 .44 -16.10 -15.65 

e,,p, 0.31 0.29 0.31 0.29 0.30 0.32 0.31 
(36.88) (32.98) (34.46) (32.62) (35.62) (23.88) (22.67 

e,, P, 0.31 0.37 0.34 0.37 0.40 0.40 0.42 
(36 .00) (63.22 ) (62 .99) (61.23) (99.57) (42.42) (56.94) 

e,, y, 1.02 1.05 
(11.60) (7.10) 

e,,y, -0 .12 0.45 
(0.15) (1.49) 

e,,ylJ• 0.48 0.63 0.89 1.10 1.40 
(4.70) (2.23) (4 .20 ) (7 .50) (7.37) 

e.i tlJ -0.46 -0.32 -0.41 -0 .33 0.18 0.24 
(3.24) (1.54) (2.27) (1.70) (0.32) (0.63) 

e.i LS,, 0.31 
(0.99) 

R' 0.3279 0.3128 0.3074 0.3117 0.3101 0.2619 0.3576 

Note: Numbers in parentheses are F-statistics. 

"In model B2, Yi) = Yi x Yi; in model 83, Yi;= (Pix Y1 + P1 x Yj)/ (P; +Pi); in other models, Yii= (Yi+ Yj)/2 

Figure 3. 
travelers. 
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0.415 0.460 0.505 0.550 0.595 0.640 0.685 0.730 
Departure Frequency Elasticity 

Table 2. Results of distributions and chi-square tests. 

Normal 
Gamma Distribution Distribution Degrees 

Trip of 
Purpose Variable K >. r(K) µ a Freedom 

Business a 23.72 38.96 1.05 x 1022 5 
fJ 4.28 14.43 8.63 4 
y 0.0136 0.1068 3 

N onbuslne s a a 4.64 13.43 14.13 
fJ 5.33 10.69 40.19 
y 0.363 0.247 

Noto: Clemmo dlllrlbution: f(x) • ;~K) x•·10"'· Normal dlotrlbution: f(x) • ~ 0·1•·•121202 

NB3 

-15.65 

0.31 
(22.67) 

0.42 
(56.94) 

1.40 
(7 .37) 

0.3558 

x' 
Calculated P-Value 

6.042 0.3019 
3.925 0.4170 
3.244 0.3592 

1. 596 0.4531 
1.033 0.5964 
2.650 0,4520 
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The next step was to estimate the density distribution of each of the estimates based 
on the values obtained in the regressions. This was done for °'• {3, and ')I, in spite of 
the fact that ')I was previously judged not significant. This allowed the investigation of 
any effect, regardless of its significance, of access time on the choice process. Further­
more, by including all parameters in the analysis, we could develop a process that is 
general enough to be used under other empirical conditions. This will only allow the 
corroboration of the rather limited results of this study. 

Estimation of the density distribution functions of parameters °'• {3, and ')I was per­
formed by inspecting their graphical representations and then testing the fit to postu­
lated statistical distribution functions. There is no obvious relationship between be­
havioral assumptions and specific statistical distribution functions. At this stage of 
knowledge regarding the behavioral implications of stochastic aggregation in travel 
demand models, the best that can be done is empirical analysis. 

Graphical representations of the empirical distributions of °'• {3, and ')I were obtained 
by constructing cumulative histograms for each parameter. An example of these histo­
grams is shown in Figure 3 together with the theoretical distribution and the 9 5 percent 
confidence band. ')I distributions were postulated for the parameters °' and {3, whereas 
a normal distribution was postulated for yin both the business and nonbusiness cases. 
After the parameters of those hypothesized distributions were estimated from the re­
spective data sets, statistical tests of goodness of fit were performed. Chi-square 
tests were performed on all six distributions and had high P-values, showing in all 
cases that the empirical distributions and the theoretical distributions were not sig­
nificantly different. 

To corroborate the results of the chi-square tests and to remove any doubt that may 
be precipitated because of the chi-square test's sensitivity to small sample sizes, we 
conducted Kolmogorov' s D-test. This D-test result is shown in Figure 3 in the form 
of the 9 5 percent confidence band. As can be seen, the theoretical distribution falls 
within this band; therefore the postulated distribution is a valid representation of this 
random variable. The equations for the theoretical distributions as well as the results 
of the chi-square tests are given in Table 2. The assumption of the independence of°'• 
{3, and y was checked by calculating the correlation coefficients. These were on the 
order of 0.3 to 0.4, which is significantly low for the sample sizes in question. 

The final step in the calibration of the choice model is to evaluate the three­
dimensional integral of Eq. 13. It was not possible to evaluate the integration analyt­
ically. However, it is always possible to evaluate a finite integral numerically with 
the aid of a high-speed computer. It is easy to tell from inspection of the integrand 

that it is indeed finite. The first part of the integrand is a ratio known to be less than 
unity and the second part is the joint density functions of three random variables that 
are also limited to unity. 

The numerical analysis consisted of inputting characteristics of the 12 alternative 
routes in the study corridor and operating the model in an attempt to reproduce the ob­
served data. 

The overall goodness of fit of model results was then tested. Figures 4 and 5 show 
comparisons of model results with observed data for business and nonbusiness travel. 
Although a perfect fit was not achieved, in view of the results presented above and the 
imperfections of the data base used in calibrating the choice model, model results can 
generally be considered good and the calibrated model can be used for making travel 
forecasts. 

DEMAND FORECASTING AND SENSITIVITY ANALYSIS 

The first step in performing demand forecasting for STOL transportation is to postu­
late STOL system characteristics. Two basic assumptions are implicit in this ap-
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proach: (a) that any transportation service can be represented by a number of attri­
butes associated with it and that the decision process by which travelers choose among 
alternative services is essentially unchanged by the introduction of STOL or any other 
transportation service and (b) that the traveler's decision process remains unchanged 
over time. In other words, the values of the parameters and elasticities that reflect 
the traveler's response to exogenous influences will not change over the forecasting 
period. This latter assumption can be validated only after repeated applications of the 
forecasting models at different points in time. 

STOL System Configurations 

The specifications of STOL system configurations consist of the locations of STOL­
ports, frequencies of service, travel costs, and travel times involved. There is a lack 
of precise data on STOLport locations and STOL aircraft characteristics. Therefore, 
the system variables are treated parametrically; i.e., a number of reasonable config­
urations are postulated and the resulting forecasts are presented. The purpose of this 
type of analysis is to demonstrate the use of the forecasting models and provide a pro­
cedure by which the demand potential of alternative STOL systems can be compared. 

The only locations for STOLports considered in this study are existing military fields 
and general aviation fields. It is believed that such airports, by the mere fact of their 
existence, would be the first candidates for the introduction of STOL air transportation 
into any urban area. In the San Francisco Bay area, candidate airports include Crissy 
Field, Berkeley Marina, Concord Buchanan Field, and Palo Alto Airport, and, in the 
Los Angeles area, they include Hawthorne Airport, Fullerton Airport, Compton Air­
port, and Santa Monica Airport. 

In the analysis, many configurations can be generated by selecting various airports 
from these two groups. In this presentation we show the results for only two config­
urations. 

Postulate STOL fares were calculated from the formula 

F total cost per available seat-mile x stage length t 
are = load factor + ax 

The range of total cost per available seat-mile was taken as 2 to 4 cents for a stage 
length of 400 miles, which is an average range anticipated for STOL aircraft (7). The 
load factor range was 0. 5 to 0. 7. -

The frequency of service was allowed to vary in two manners. First STOL service 
frequency was increased from 0 to 49 weekly flights, without adjusting the frequency of 
service of the CTOL airport pairs. Then it was postulated that some CTOL service will 
essentially be replaced by STOL service, so the increase in STOL frequency was ac­
companied by an equal decrease in CTOL frequency. 

Forecasting STOL Market Share 

The first model application consisted of varying STOL fares and departure frequen­
cies without adjustment to CTOL frequency. For the STOL system chosen, Figure 6 
shows its market shares of business and nonbusiness travel and the increase in STOL 
market share brought about by increasing service frequencies as well as decreasing 
the fare. Comparing the results for business and nonbusiness travel shows that bus­
iness travel is more sensitive to departure frequency than nonbusiness travel; the curves 
for the former are steeper. Also, comparing the distances between the curves for dif­
ferent fares shows that nonbusiness travel is more sensitive to fare than business travel. 
In both cases, the market share for STOL does not exceed 8 percent of the total. 

The next step in the analysis was to introduce adjustments in the CTOL schedule 
frequency simultaneous to increases in STOL frequencies. This was done in two man­
ners. First, reductions in total CTOL frequencies ranging from 10 to 90 percent were 
obtained by distributing these flights equally among STOL routes in the configuration 
studied. Second, CTOL frequencies were reduced only at routes involving either SFO 
or LAX or both by switching flights to STOL and distributing them among STOL routes 



Figure 4. Comparison of modeled and observed business 
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in the same manner as before. This second case was motivated by the idea that STOL 
service may be introduced to reduce congestion at major hub airports. Because only 
SFO and LAX may have volumes sufficiently high to cause congestion, it was assumed 
that reductions in CTOL service may be warranted at routes including either or both of 
these airports. 

The results of this analysis are shown in Figure 7 for configuration I and in Fig\ire 
8 for configuration II. The figures show the increase in STOL market share related to 
the two types of CTOL frequency adjustments described. In configuration I a market 
share of more than 50 percent can be achieved; market share potential increases to a 
maximum of about 70 percent for configuration II. It should be noted that for both con­
figurations the increase in business travel is larger than the increase in nonbusiness 
travel. This result follows from the fact that business travel is more sensitive to ser­
vice frequency. 

An interesting result is obtained when Figures 7 and 8 are compared. In spite of 
the fact that in both cases the number of flights switched from CTOL to STOL service 
is the same, the market share potential under configuration II is larger than under con­
figuration I. This seems to indicate that market share increases as the number of STOL 
routes increases, even if the same service frequency is offered. Of course, this effect 
is due for the most part to the fact that a larger number of STOLports will yield a higher 
accessibility to STOL services. 

The results obtained from applying the model to additional configurations indicated 
that the marginal increase in STOL market share decreases as the number of STOL 
routes increases. A result such as this is of vital importance when the cost­
effectiveness of introducing additional STOL routes or STOLports into an urban area 
is analyzed. 

Forecasting Total Air Travel 

As was discussed, calibration results showed that the models were not sufficient to 
forecast the absolute levels of traffic between city pairs. However, the elasticities of 
demand with respect to the population, income, and travel time variables were esti­
mated with high reliabilities. Therefore, they were used to relate the increase in travel 
volumes to varying growth rates in population and income and to the changes in travel 
times caused by the introduction of STOLports in the study area. 

Based on the calibration results, the models selected were 

"1n T1 J = -7.32 + 0.29 "1n Pi+ 0.37 "1n PJ + 0.89 "1n YIJ - 0.33 "1n tiJ 

for business travel and 

"1n T!J = -15.65 + 0.31 "1n Pi + 0.42 "1n PJ + 1.40 "1n YiJ 

for nonbusiness travel. If we assume that population and income growth occurs in the 
same manner in all zones, simplifying Eq. 18 gives 

where 

O!k = elasticity with respect to variable k, and 
wk = proportional change in variable k. 

(20) 

If aT0 / T0 is denoted by f3 and the number of years over which the forecast is performed 
by N, future traffic volumes TtJ can be obtained from present volume T!J by 

TiJ = (1 + f3)N TiJ 

The total corridor travel T* at year N is then 

(21) 



Figure 8. Sensitivity of STOL share of business travel market to changes in CTOL 
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T* = ~ T1J(1 + fj)N = T(l + fj)N 

ij 

(22) 

This procedure relates future travel volumes in each city pair to present volumes 
and thus avoids zone-by-zone errors that may be introduced if the volume levels are 
forecast directly from the model. 

Annual population growth rates were varied from 0.5 to 2.0 percent. Median income 
was increased in the range 5.0 to 7 .0 percent per year. The forecast was performed for 
values of N of 10, 15, and 20 years. For the STOL system configuration, the following 
assumptions are made. During the first 10 years, i.e., up to the year 1980, no service 
will be introduced at any of the STOLports. In 1980 service will be introduced accord­
ing to configuration I. Travel times will then be modified but held unchanged throughout 
the rest of the forecasting period. 

Results of model application to business travel are shown in Figure 9. rt should be 
mentioned that these results are samples of the types of results that can be obtained 
from the application of the travel generation model. This application allows the es­
timation of the increase in total corridor air travel, as well as particular city pair 
volumes, under different population and income growth assumptions and for different 
air transport system alternatives. 

Forecasting STOL Demand Potential 

Forecasting STOL demand is done by combining the forecasts of the total corridor 
air travel demand with the forecasts of the STOL market share. This is a simple op­
eration consisting of the multiplication of the STOL share and the total air travel volume. 
As an example, the forecast for configuration I was obtained, for business travel, for 
various levels of frequency switch from the CTOL airports to the STOLports. The 
forecast results (Fig. 10) are based on a population growth rate of 0. 5 percent per year 
and a median income increase of 7 percent per year with a STOL fare of $21.60. The 
forecast extends from a 1970 base year total volume of 3.1 million passengers to 1990. 
Naturally, the validity of a forecast through 1990 depends on the validity of the as­
sumed growth rates for population and income. These growth rates could be modified 
at intervals within the forecast period if this is deemed necessary. 

CONCLUSIONS 

The procedure presented in this paper is aimed at forecasting the demand potential 
for transport systems in short-haul air transportation. Particularly, the objective 
was to study market potentials for various STOL system configurations in a short-haul 
corridor, such as the Los Angeles~San Francisco corridor. 

The framework used in forecasting consists of three stages: Forecast the total air 
travel demand in the corridor; estimate the market share for any given STOL config­
uration; and combine these two into a forecast of the market share for STOL. An ag­
gregative choice model is developed for this purpose. This model is stochastic in na­
ture and permits the aggregation of individual choice decisions across a study population. 
Because of the lack of suitable data, it was not possible to perform this aggregation 
strictly on an individual traveler basis. Therefore, it was necessary to perform the 
aggregation on small population subgroups, chosen at random. It is believed that such 
a procedure, though not strictly an aggregative procedure, is a step in the right di­
rection, particularly based on the large amount of data required for calibrating a 
model to account for differences among all individuals in a population. 

In the forecasting model used in this study, it is assumed that no significant changes 
will occur in high-speed ground transportation in the study corridor and that the air 
travel market and the ground travel market are essentially independent. This, of 
course, will not be true if technological changes occur that create competition in the 
corridor between air and high-speed ground transportation. Therefore, it is essential 
to note that the validity of the forecasts obtained by the procedure developed in this 
study is conditional on this assumption. 
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The uncertainties inherent in forecasting socioeconomic indicators such as income 
and population a r e accounted for by forecasting in a sensitivity manner. That is, the 
forecasts are pr ovided for ranges in growth rates for such variables. In a long-range 
planning situation it is always prudent to revise such forecasting inputs and modify the 
forecasts if necessary. 

An interesting finding of this analysis is that the demand potential for STOL trans­
portation in a corridor served by CTOL airports is strongly dependent on the level to 
which corridor traffic is diverted from the CTOL airports to STOLports. This is due 
to the strong impact of schedule frequency on the attractiveness of any particular air­
port pair and the initial frequency advantage that the large CTOL airports have. It was 
also found in the analysis that adding STOLport pairs in the system increases the mar­
ket share but at a decreasing rate. This is a finding that would be important in assess­
ing the cost-effectiveness of introducing STOL service in a short-haul air travel 
corridor. 
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DETERMINATION OF FUNCTIONAL SUBREGIONS WITHIN 
AN U.RBAN AREA FOR TRANSPORTATION PLANNING 
Thomas F. Golob and Salvatore J . Hepper, 

Transportation and Urban Analysis Department, 
General Motors Research Laboratories; and 

John J. Pershing, Jr.*, Fairfax Cowity Planning Commission 

It is axiomatic that large urban areas are not spatially homogeneous with 
respect to transportation demand, supply, and impact phenomena. This 
paper addresses this heterogeneity in terms of the transportation planning 
process. A technique for using areawide travel, land use, and population 
data to divide an urban area into a set of fwictional subregions is presented. 
Each subregion represents aplanning area, andinterregion planningis pro­
posed on a different scale of analysis. The technique is based on the sta­
tistical decomposition of origin-destination fl.ow matrices. The decompo­
sition method can be considered a generalized type of factor analysis in 
which raw data observations are used as opposed to variable correlations. 
The units can be any spatial aggregation of people and activities, such as 
census tracts or minor civil divisions, and the travel can be trips for any 
specific purpose or a composite of all trips. Selection in both cases depends 
on the objectives of the planning process. Multiple discriminant and regres­
sion analyses are then used to define the subregions in terms of differences 
in population and land use characteristics. Results from an application of 
the technique in the Detroit area are presented as a case study. Six sub­
regions, composed of groups of minor civil divisions and central city sub­
communities, were fowid and successfully described for home-based work 
travel in this urban area. The results support urban economic theories of 
a central city core area, suburban industrial centers, and satellite cities. 

eTHIS PAPER presents a specific transportation planning technique as a possible 
addition to the set of planning tools available to decision-makers. This technique 
breaks down a metropolitan area or reasonably extensive planning area into fwictional 
subregions on the basis of people's trip-making behavior. The technique can be cate­
gorized as an inductive search for hypotheses of transportation and urban form through 
the identification of regularities in spatially aggregated data. 

Analyzing urban transportation needs and evaluating alternatives on a scale smaller 
than an entire urban area are addressed. Studies of activity center distributions, 
feeder transit services (e.g., involving dial-a-bus alternatives), and local and col­
lector roadway systems are just a few cases in which analysis could be accomplished 
on a subregional basis with appropriate aggregated subregional interactions. For 
example, in the case of the home-based work trip, a transportation system must be 
able to deal with the travel needs of persons who work outside of the central business 
district. This paper indicates how suburban areas can be organized into meaningful 
subsystems for transportation analysis and planning. 

The technique is based on multivariate analyses of transportation flows and related 
data on the characteristics of the origin and destination spatial units. The analyses 

*Mr. Pershing was with General Motors Research Laboratories when this work was developed. 
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are all well documented in theoretical. textbooks, and computer programs are readily 
available in standard statistical. packages. 

STATISTICAL METHODS 

The multivariate statistical. method of singular decomposition is used to determine 
structural. similarities in a data matrix comprised of travel variables. The data are 
organized in the form of origin-destination (O-D) matrices used in traditional. trans­
portation planning processes. Each cell of the matrix represents a measurement of 
the flow of people from an origin to a destination for a common travel purpose. In the 
terminology of traditional multivariate data matrices, each origin spatial unit is treated 
as a variable and each destination spatial unit is treated as an observation. For flow 
matrices the metric for the variables is the same for each variable; therefore it is 
appropriate to decompose the data without applying standardizing transformations, such 
as subtracting out the mean for each variable (column in the matrix) and dividing each 
variable by the standard deviation. This transformation characterizes the factor 
analysis version of singular decomposition (2). Such standardizations result in a loss 
of information (both the level and dispersion-of the variables in the case of factor 
analysis), whereas singular decomposition preserves the level of information present 
in the raw data. 

The Eckart-Young theorem (1) and Nash's extension (4) can be used to decompose 
an n x m data matrix, X, into three matrices such that -

X""' P AQ' 

where 

P = n x r matrix of orthonormal. (independent and normalized) vectors, 
Q = m x r matrix of orthonormal (independent and normalized) vectors, 
A = r x r diagonal. matrix of eigenvalues (latent roots of X), and 
r = number of vectors extracted (r ,-;; m ,-;; n). 

(1) 

In flow matrices, m = n. In the terminology of traditional. factor analysis, it is con­
venient to let L = (QA) represent the factor loading matrix and to treat the associated 
vectors of L as that linear combination of the original n variables (origin spatial units) 
that describes each new factor. Similarly, the vectors of P represent the factor scores 
or evaluations of the n observations (destination spatial units) on the new latent factors. 

The number of independent latent factors extracted is determined by subjective eval­
uation of the associated eigenvalues A, the first differences in eigenvalues, and the 
cumulative fraction of trace accounted for by each factor or eigenvalue. The fraction 
of trace of the cross-product (X 'X) matrix is analogous to the percentage of variance 
in factor analysis, and it represents the importance of a factor in describing the in­
formation in the original data. The trade-off addressed entails a sufficient explanation 
of the original data (in cross-product terms) within the minimum number of factors 
possible. 

After the number of latent factors to be extracted is determined, a rotation to simple 
structure is achieved by application of the successive factor varimax rotation (3). 

After rotation the latent factors can be expressed in terms of the original. origin 
variables by identifying the origin spatial units most strongly related to each factor. 
The strength of this relationship is proportional to the absolute value of the j th term 
in the i th column of the rotated factor loadings matrix. Each origin spatial unit is 
then assigned to the factor to which it is most strongly related. The factors are then 
interpreted as functional subregions with relatively homogeneous travel patterns, each 
subregion being delineated by the origins that are assigned to that factor. 

The next phase of regional decomposition is to relate the socioeconomic character­
istics (referred to as "state" variables) to the subregions and associated latent origin 
factors. First, a correlation analysis is employed by forming an [ (r + s) x n] data 
matrix, z, where r = factor loading vectors, s = socioeconomic characteristic vectors, 
and n = origin spatial units. All correlation coefficients that are significantly different 
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from zero at the a1 = 0.05 level of significance are explored. Correlations between 
r and s can be used to broaden the interpretation of the factors and thus to provide a 
better understanding of the differences between the subregions. Such understanding 
can be of use in initiating detailed planning analysis for specific transportation needs. 

A logical extension of the correlation analysis is the application of linear regression, 
in which each factor is treated as a dependent variable and the relevant socioeconomic 
characteristics determined from the correlation analysis are treated as the independent 
or explanatory variables. However, to use this approach as anything other than a broad 
indicator of meaningful interrelationship requires that a variable or a linear combina­
tion of variables be found that maps the socioeconomic characteristics (variables) into 
each factor loading of the flow matrix. 

A third and more satisfying test is consequently performed to determine whether 
the groupings can be significantly differentiated from each other on the basis of their 
mean value measurements on each state variable. The multivariate analysis of vari­
ance is used to determine the significance of the overall difference among several 
group means on a single variable by performing an F-test on the Mahalonobis D..:. 
statistic as suggested in Tatsuoka (5). A group mean that is significantly different 
from other group means of a particiilar state variable is identified at the a = 0.01 level 
of significance. A summary of these results can yield penetrating descriptions of each 
mutually exclusive group of origins. 

The results presented later are based on the difference between groups of origin 
spatial units with respect to a single state variable descriptor, whereas correlation 
analysis and linear regression are based on the similarities of the origin spatial units 
as evaluated on a latent factor and one or more state variables. 

A CASE STUDY APPLICATION 

Data 

Investigation of the interrelations between transportation behavior and urban form 
was based on a case study of the Detroit, Michigan, urbanized area as defined by the 
Bureau of the Census for the base year, 1965. The data used in this analysis were 
collected in 1965 during the conduct of the Detroit Region Transportation and Land Use 
Study (TALUS). The Southeastern Michigan Council of Governments (SEMCOG) gener­
ously provided these data to the Transportation and Urban Analysis Department of the 
General Motors Research Laboratories in support of research into the costs and ben­
efits of proposed new systems of public transportation and the development of improved 
methods of urban transportation planning and evaluation. Two types of data have been 
used: home-to-work trip travel flows, which are used to determine travel patterns, 
and state variables, which are used to explain the socioeconomic and demographic 
structure of a spatially defined area. 

The data were supplied in the form of observations of 1,278 transportation analysis 
zones as defined by TALUS within the five-county Detroit region. These regions were 
converted to observations on 59 central city subcommunities (CCSs) and 61 minor civil 
divisions (MCDs) within the urbanized area. These areas represent portions of Wayne, 
Oakland, and Macomb Counties. Inasmuch as each MCD was made up of one or more 
analysis zones, the conversion entailed aggregation by code sequences of all zones 
within the urbanized area. The MCDs were defined consistently with the MCDs of the 
Bureau of the Census, which in Michigan are incorporated municipalities or townships. 
Each CCS follows boundaries determined by a local census committee and delineates 
relatively homogeneous neighborhoods of approximately the same population. 

The flow variables represent home-to-work trip movements of people from an MCD 
or CCS to every MCD or CCS within the urbanized area. The focus on home-based 
work travel is for illustrative purposes only; the technique is considered relevant for 
a variety of transportation issues. Gross trip flows were divided by the total. number 
of households at each origin; the resultant measure is the number of work trips per 
household made to each destination. This statistic can also be considered as the 
probability that a household at j will make a work trip to i. The state variables consist 
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of socioeconomic characteristics of the population by place or residence, employment 
characteristics by place of work, and land use characteristics of each MCD or CCS. 
The socioeconomic characteristics that describe the spatial uni.ts are 

Median family income, 
Percentage of families with incomes under $3,000, 
Percentage of families with incomes over $15,000, 
Percentage of households with youngest over 18, 
Households with residence less than 1 year, 
Percentage of households owning no car, 
Percentage of households owning two cars or more, 
Percentage of renter-occupied dwellings, 
Households per residential acre, 
Persons per occupied dwelling unit, 
Percentage of household heads with less than 12 years' education, 
Percentage of female household heads, 
Percentage of skilled or unskilled household heads, 
Percentage of nonwhite population, 
Percentage of population under 20 years of age, and 
Percentage of population over 64 years of age. 

The types of employment included in the employment characteristics are 

Professional and related, 
Public administration, 
Service, 
Finance, insurance, and real estate, 
Retail trade, 
Wholesale trade, 
Transportation, communication, and utilities, and 
Manufacturing. 

Land use characteristics of interest are the percentages of commercial, public, 
industrial, and recreational land. 

Subregion Determination 

The original 120 x 120 matrix of home-based work travel per household was reduced 
to seven principal components that accounted for 76.40 percent of the trace in the data 
cross-product matrix. This number of independent factors was determined subjectively 
as described earlier. A graph of the cumulative percentage of trace accounted for by 
each level of reduction is shown in Figure 1 for up to 15 factors; doubling the number 
of factors selected would have accounted for only an additional 10 percent of the original 
variance. 

By grouping each of the 120 MCD or CCS origins according to the factor on which it 
loaded most highly, we delineated six functional subregions of homogeneous travel 
patterns. The seventh factor was found to be much weaker and only represented an 
orientation slightly different from the others. Dimensionality was thus reduced in 
making the transition from factors to subregions, which is an effective check against 
accepting too many factors through the extraction cutoff procedure. The six subregions 
are shown in Figure 2. The factors are discussed in order of the fraction of trace 
(percentage of original variance) accounted for after rotation. 

The first factor accounted for 22.1 percent of the original trace, and the subregion 
determined by the factor includes almost all of the central city of Detroit, as well as 
adjoining suburban areas along major radial transportation corridors leading into the 
CBD. (The subregion is labeled central in Fig. 2.) The CBD (MCD 8 in Fig. 2) is the 
destination with the highest score on this factor. This suggests that central city resi­
dents tend to work within the city and that there is much less out-commuting to sub­
urban employment centers than there is in-commuting to the central city. The four 
major transportation corridors of in-commuting in 1965 that can be identified with this 



20 

Figure 1. Analysis of total home-based work origins. 
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subregion were I-94/ I-75 to the southwest, I-96/ Grand River Avenue to the west north­
east, I-75/ Woodward Avenue to the north northwest, and I-94/Gratiot Avenue to the 
northeast. 

The second factor accounted for 21.0 percent of the trace and determines the north­
west portion of the urbanized area. The major destination is overwhelmingly Pontiac 
(MCD 135). The adjacent areas are primarily bedroom communities surrounding this 
industrial satellite city. The Pontiac subregion seems to be spatially separated from 
the central city. 

Factor three accounted for 12.3 percent of the trace, and its subregion includes the 
southwest portion of Wayne County. Dearborn (MCD 65) is the major attractor, and 
Livonia (MCD 83), Ecorse (MCD 67), and Fort Wayne (MCD 23) are of secondary im­
portance as employment attractors. Three adjacent central city subcommunities (23, 
54, and 59) load highly on this factor, suggesting that the Dearborn industrial area is 
a more important employment center for residents of these areas than are other cen­
tral city opportunities. 

The fourth factor, accounting for 7 .8 percent of the trace, centers on Warren 
(MCD 172), another major suburban industrial community. Royal Oak (139) is almost 
as important an attractor, whereas Ferndale (114) and Southfield (141) are somewhat 
lesser attractions. Again, out-commuting from the city of Detroit is not a primary 
characteristic in the formation of the subregion. Factor seven, which accounted for 
3.6 percent of the trace, also centered on Warren but was oriented toward the east 
and south and did include Detroit communities; but this factor was insufficiently strong 
(in relation to the other six factors) to form a subregion via the origin factor loadings 
method used here. 

Factor five accounted for only 4.9 percent of the trace, and its subregion is com­
posed of the heavy industrial areas downriver from Detroit. Trenton (97), Ecorse (67), 
and Wyandotte (101) all are important suburban employment destinations represented by 
this factor. 

The remaining sixth factor accounted for as little as 4. 7 percent of the trace and 
centers around the satellite city of Mt. Clemens (162) to the northeast of Detroit. 
Warren (172), Roseville (167), and Clinton Township (156) have lesser destination 
scores and are thus secondary attractors for persons living in this subregion. Mt. 
Clemens is an established commercial center and the county seat of Macomb County. 

When these six subregions are examined as separate homogeneous areas, interesting 
results are obtained. Between 38 and 74 percent of the home-based work trips origi­
nating within each of the six subregions have a destination also within the origin sub­
region. For the Detroit urbanized area as a whole, 65.3 percent of the home-based 
work trips remain within the origin subregion. This fact suggests that transportation 
planning should be oriented more toward the analysis of functional urban subregions. 
The within-subarea trips are given in Table 1. 

Analytical Description of Subregions 

The next phase of the case study dealt with the identification of the seven factors 
and associated six subregions in terms of the 28 state variables given earlier. It is 
obvious from Figure 2 that distance and travel time are major determinants of people's 
home/ work location behavior. All of the subregional groupings are spatially contiguous 
with the exception of the few suburban communities with relatively large numbers of 
central city commuters. However, the nature of the seven factors can also be related 
to the characteristics of the people who live and work in each spatial area and related. 
land use. Correlation, regression, and discrimination analyses were thus applied to 
the results of the decomposition. 

Correlations between each factor loading and the 28 state variables with absolute 
values of 0 .20 or more were considered in the analytical description. These results 
are given in Tables 2, 4, 6, 8, 10, and 11. Stepwise regression was then used to de­
termine whether the factor loadings could be predicted from the socioeconomic char­
acteristics in a linear manner. Functions in which all t-ratios were significant at the 
°' = 0.05 level were selected, up to a maximum of five variables. Problems of multi­
collinearity were not considered since the purpose of this portion of the study was 



Table 1. Total work trips within origin 
subregion. 

Subregion 

Central 
Pontiac 
Dearborn 
Warren 
Downriver 
Mt. Clemens 

Total urbanized area 

Percentage Within 
Subregion 

74.3 
71.5 
56.7 
47.8 
55.8 
38.0 

65.3 

Table 3. Characteristics of central subregion. 

Sub-
region 

Characteristic Mean 

Persons per occupied dwelling unit 3.26 
Percentage of family incomes under $3, 000 17. 30 
Percentage of households with youngest 

over 18 11.12 
Percentage of population under 20 37 .51 
Percentage of populalion over 64 10.47 
Percentage of renter households 32.02 
Percentage of blue-collar household heads 33.14 
Percentage of households with no car 23.42 
Percentage of households with two or more 

cars 24 .92 
Households per residential acre 9.65 
Percentage of female household heads 19 .79 
Percentage of professional employment 13 .88 
Percentage of service employment 12 .21 

Table 4. Significant correlations for the Pontiac 
subregion factor. 

Table 5. Characteristics of Pontiac subregion. 

Sub-
region 

Characteristic Mean 

Percentage of family incomes over $15,000 28.73 
Percentage of blue-collar household heads 30.31 

Table 6. Significant correlations for the Dearborn 
subregion factor. 

Table 2. Significant correlations for the central 
subregion factor. 

Urban 
Area 

Variable 

Percentage of population over 64 
Percentage of households with youngest over 18 
Households per residential acre 
Percentage of female household heads 
Percentage of service employment 
Percentage of renter households 
Percentage of finance, insurance, and real 

estate employment 
Percentage of family incomes under $3,000 
Percentage of households with no car 
Percentage of commercial land 
Percentage of residence under 1 year 
Percentage of manufacturing employment 
Percentage o[ blue-collar household heads 
Percentage of households with two or more 

cars 
Persons per occupied dwelling unit 
Percentage of population under 20 

Significantly Different Means 

Correlation 

0.47 
0.36 
0.33 
0,33 
0.28 
0.24 

0.21 
0.20 
0.20 
0.20 

-0.20 
-0.22 
-0.25 

-0.26 
-0.35 
-0.45 

Mean Pontiac Dearborn Warren Downriver Mt. Clemens 

3.43 3.67 3. 65 3.87 
14.12 7.47 

9.99 8.44 6.40 
40.15 44.28 42.64 46 .94 

8.53 5.27 5.96 6.43 4, 21 
26.27 14.13 
36.73 46.81 
19.53 10.06 

28.93 40.09 36.18 
7.77 2.91 4.21 

16.54 11.11 12.61 10. 76 
13.01 7.37 

9.88 5.78 

Variable 

Percentage of households with 2 or more 
cars 

Households per residential acre 

Urban Significantly Different Means 
Area 

3.90 

48.24 
4.47 

53. 73 

Correlation 

0.27 
-0.20 

Mean Central Dearborn Warren Downriver Mt. Clemens 

12.60 5.23 
36.76 

Variable 

Percentage of blue-collar household heads 
Percentage of transportation, communica-

tions, and utility employment 
Percentage of population under 20 
Percentage of industrial land 
Persons per occupied dwelling unit 
Percentage of service employment 
Percentage of family incomes over $15,000 
Percentage of population over 64 

53.73 

Correlation 

0.26 

0.26 
0.25 
0.25 
0.22 

-0.20 
-0.21 
-0.26 
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basically exploratory. It was found that 13 of the 28 variables entered into the seven 
multiple regressions. 

Finally, discriminant analysis was applied to the six subregional groupings of MCD/ 
CCSs to determine whether they could be significantly discriminated from each other 
by the state variables. The F-ratio test was used to determine significant groups at 
a 1 percent level of significance. Variables that distinguish the six groupings most 
effectively in this manner are given in Tables 3, 5, 7, 9, and 12. The group means for 
each value are shown for each subregion that was significantly differentiated. Of the 
28 socioeconomic variables, 16 were able to distinguish between at least one pair of 
the groups significantly. As expected, the central subregion proved to be the most 
complex. Significant correlations for the central subregion are given in Table 2. 
This central factor was related through multiple regression to three variables taken 
in combination: percentage of households with youngest child under 18 years of ~e (+), 
population over 64 years old ( +), and manufacturing employment ( -) ; a multiple R of 
0. 55 was obtained. 

The central subregion is the most easily discriminated group (Table 3). These 
results are generally in keeping with urban economic and sociological definitions of 
core areas of large metropolitan environments. 

The Pontiac subregion factor loadings did not correlate very highly with the state 
variables. However, percentage of households with two or more cars was positively 
related and households per residential acre negatively related (Table 4). 

Pontiac was related through multiple regression to residency for less than 1 year(+) 
and percentage of households with two or more cars (+), but this regression accounted 
for only 39 percent of the variance in this factor loading vector. Also, the Pontiac 
grouping was found to be distinguishable in skilled and unskilled household heads and 
family incomes over $15,000 (Table 5). The statistics relate to the sphere of influence 
of an industrial satellite city of a large metropolitan environment. 

Positive correlations for the Dearborn subregion are given in Table 6. The Dearborn 
regression equation included population over 64 ( - ) , percentage of industrial land ( +), 
percentage of transportation, communications, and utilities employment(+), and per­
centage of professional employment(+). The regression accounted for 49 percent of 
the variance. The Dearborn grouping was distinguished from the other subregions by 
percentage of families with incomes over $15,000, percentage of professional employ­
ment, percentage of skilled and unskilled household heads, and percentage of service 
employment (Table 7). These results are consistent with theories of predominantly 
blue-collar workers with large, young families living close to an extensive suburban 
industrial center. 

The Warren subregion factor was also rather complex, for it includes lower middle 
to upper class communities. Positive and negative correlations are given in Table 8. 

The first Warren factor was related through regression to percentage of households 
with no car ( -) , percentage of industrial land (-), and percentage of manufacturing 
employment(+); the R2 was 0.49. Important characteristics of the Warren grouping 
discovered through discriminant analysis were low values on families under $3,000, 
renter-occupied dwellings, households with no cars, and professional employment 
(Table 9). An important industrial suburban center similar to Dearborn is indicated, 
although the difference between the population characteristics of this subregion and 
the central area are accentuated in this case. 

The Downriver subregion factor was correlated with two related indexes (Table 10). 
Downriver was regressed on percentage of family incomes under $3,000 (-), percentage 
with youngest child over 18 (-), and percentage of industrial land(+); the level of ex­
planation was 48 percent. Discriminant analysis results pointed out the high mean 
value of 21.38 for the subregion grouping on percentage of industrial land. Knowledge 
of the area as a heavy lineal (i.e., riverfront) industrial development with adjacent 
blue-collar residential neighborhoods cross-validates these results. 

The Mt. Clemens subregion factor was positively and negativdy correlated with the 
variables given in Table 11. The factor was jointly related to family incomes under 
$3,000 (+), percentage of skilled and unskilled household heads (+), households with 
no car(-), and employment in public administration(+); the multiple R2 was 0.47. 



24 

Table 7. Characteristics of Dearborn subregion. 

Sub- Urban Significantly Different Means 

Characteristic 
region 
Mean 

Area 
Me an Central Pontiac Warren Downriver Mt. Clemens 

Percentage of family Incomes over $15,000 
Percentage of professional employment 
Percentage of service employment 

5.23 
15.71 

5.78 

12 .60 
13 .01 

9.88 

Table 8. Significant correlations for the Warren subregion 
factor. 

Table 9. Characteristics of Warren subregion. 

28.73 
7.37 

12.21 

Variable 

Percentage of households with two or more 
cars 

Median family income 
Persons per occupied dwelling unit 
Percentage of industrial land 
Percentage of population over 64 
Percentage of residence under 1 year 
Percentage of education under 12 years 
Households per residential acre 
Percentage of nonwhite population 
Percentage of female household heads 
Percentage of family incomes under $3, 000 
Percentage of renter households 
Percentage of households with no car 

Urban Significantly Different ?deans 
Area 

Correlation 

0.36 
0.31 
0.26 

-0.21 
-0 .22 
-0.23 
-0.30 
-0.31 
-0.31 
-0.38 
-0 .38 
-0.40 
-0.42 

Characteristic 

Sub­
region 
Mean Mean Central Pontiac Dearborn Downriver Mt. Clemens 

Percentage of family incomes under $3,000 
Percentage al renter households 
Percentage of households with no car -
Percentage of professional employment 

7.47 
14.13 
10.06 

7.37 

14.12 
26.27 
19.53 
13.01 

17.30 
32.02 
23.42 

15.71 

Table 10. Significant correlations for the Downriver 
subregion factor. 

Table 11. Significant correlations for the Mt. Clemens 
subregion factor. 

Variable 

Percentage of industrial land 
Percentage of manufacturing employment 

Correlation 

0.35 
0.24 

Variable 

Percentage of blue-collar household heads 
Percentage of public administration employ-

ment 
Percentage of population under 20 
Percentage of !emale household heads 
Percentage of households with no car 

Table 12. Characteristics of Mt. Clemens subregion. 

Characteristic 

Percentage of blue-collar household heads 
Percentage of public employment 

Sub­
region 
Mean 

53. 73 
14.19 

Urban Significantly Dlf!erent Means 
Area 
Mean Cent ral Pontiac Dearborn 

36.78 
4.41 3.85 

30.31 
4.04 3.52 

Warren 

6.03 

Correlation 

0.27 

0.26 
0.20 

-0.20 
-0.21 

Downriver 

2.03 
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Finally, the Mt. Clemens grouping was distinguished by skilled and unskilled house­
hold heads as well as employment in public administration (Table 12). These statistics 
indeed describe an established commercial and light·industrial satellite city. 

CONCLUSIONS AND DIRECTIONS FOR RESEARCH 

This paper has presented a method of reducing a large and complex urban region 
into smaller subregions for transportation planning purposes. It was show:n that a 
large matrix of origin-destination flows can be reduced from 120 columns to seven 
without losing a great deal of the original information. Singular decomposition enables 
the reduction of complex matrices into smaller, more easily handled matrices and at 
the same time provides for the delineation of subregions exhibiting similar travel be­
havior analyzed-in this case home-based work trips. 

These subregions were found to account for two-thirds of the home-based work 
trips for the total region and could be described in terms of differences in population, 
employment, and land use characteristics. More broadly, the subregions can be re­
lated to urban economic theories of activity distribution within metropolitan environ­
ments. 

Ultimate tests of the validity of the outputs of the technique and its usefulness in 
urban transportation planning will have to be deferred until it can be tested in practice. 
One possible test might be to compare subregion results from application of the tech­
nique with results from consensus judgments of a panel of experts intimately involved 
with a particular planning question. 

This study also makes explicit the importance of other factors besides distance or 
travel time in the analysis of trip-making behavior. The characteristics of the house­
hold, the employment centers, and the overall land use patterns also play an important 
part in travel behavior. Consequently, several areas of analysis opened up by this 
study should be pursued further. 

The importance of distance and travel time in travel behavior needs to be considered 
in a subregional and regional context. What is the importance of multiemployment 
centers and· their relationship to existing and potential transportation systems? How 
is time interrelated with the socioeconomic characteristics of the population, the dis­
tribution of jobs by types, and the patterns of land use? 

The technique should be extended to the study of various motivations and means of 
trip-making. Likewise, the analysis should consider other trip purposes, such as shop­
ping and social and recreational travel. Similarly, complex trips that involve modal 
splits and are multipurpose should eventually be handled. But these extensions can be 
deferred until the results of more simplistic applications, such as the one reported 
here, can be competently and objectively evaluated. 
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ALTERNATIVE TRAVEL BEHAVIOR STRUCTURES 

STRUCTURE OF PASSENGER TRAVEL DEMAND MODELS 

Moshe E. Ben-Akiva, Transportation Systems Division, 
Massachusetts Institute of Technology 

This study is co11cerned with the sti·ucture of travel demand models . Two 
alternative structures are defined, simultaneous and recursive, that are 
based on different hypotheses about the underlying travel decision-making 
process. The simultaneous structure is very general and does not require 
any specific assumptions. The recursive structure represents a specific 
conditional decision structure, i.e., the traveler is assumed to decompose 
his trip decision into several stages. Thus, simultaneous and recursive 
structures represent simultaneous and sequential decision-making pro­
cesses. Theoretical reasoning indicates that the simultaneous structure 
is more sensible. Moreover, if a sequence assumption is accepted, there 
are several conceivable sequences, and generally there are no a priori 
reasons to justify a selection among them. A simultaneous model, how­
ever, is ver y complex because of the large number of alternatives that a 
traveler faces in making his trip decision. An empirical study is con­
ducted to investigate the feasibility of a simultaneous model and to ap­
praise the sensitivity of predictions made by a travel demand model to the 
structure of the model. The data set for the study was drawn from con­
ventional urban transportation study data. Included in a trip decision are 
destination and mode choices. With the same data set, three disaggregate 
probabilistic models are estimated for the shopping trip purpose: a simul­
taneous model and two recursive models with two possible sequences. The 
simultaneous model proved to be feasible in terms of the computational 
costs and the estimation results . The results of the recursive models 
showed that estimated model coefficients vary considerably with different 
model structures. The simultaneous model structure is recommended. 

•DECISION- MAKING in transportation planning, as in any other planning activity, re­
quires the prediction of impacts from proposed policies. One of the inputs to the pre­
diction process is the demand function that describes consumers' expected use of trans­
portation services. 

The approach mos t widely used to predict passenger travel demand (6, 12, 13) is the 
aggregate ur ban t r ansportation model sys tem (UTMS). [A model can be e xpressed math­
ematically in many different ways. The word structure refers to the format of writing 
a model that has a behavioral interpretation. A model can be used for forecasting in a 
format that has no behavioral interpretation. The distinction between direct and indirect 
travel demand model (12) is based on the format used for forecasting and does not nec­
essarily imply a cliffP.rP.Tit behavioral interpretation.] It is characterized by a recursive, 
or sequential, structure that represents a conditional decision-making process; i.e., it 
is assumed that the traveler makes his trip decision in several stages. A trip decision 
consists of several travel choices, e.g., mode and destination. In a recursive structure 
the travel choices are determined one at a time, in sequence. 

Two recent developments in modeling travel demand have stimulated the present 
study. The first was the recognition that the representation of the trip decision as a 
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sequential process is not completely realistic. It has been argued (9) that the trip 
decision should be modeled simultaneously with no artificial decomposition into sequen­
tial stages. Attempts to develop simultaneous models followed the conventional approach 
of aggregate demand analysis, in which the quantity demanded is taken as a continuous 
variable ( 5, 8, 16, 17). The second development was ·the introduction of disaggregate 
probabilistic demand models that relied on a more realistic theory of choice among 
qualitative trip alternatives. However, all the disaggregate models that were devel­
oped could be used either for a single stage of the UTMS (18) or, more recently, for 
all the stages, but again with the assumption of a recursive structure (4). 

The common denominator of these two developments is clearly a disaggregate prob­
abilistic simultaneous travel choice model. However, because of the large number of 
alternative trips that a traveler faces and the large number of attributes that describe 
each alternative, a simultaneous model can become very complex. This raises some 
important issues concerning the feasibility of a simultaneous model and the sensitivity 
of travel predictions to the simplifying assumption of a recursive structure. 

The purpose of this research is to investigate these issues and to recommend a 
strategy for structuring travel demand models. This study explores alternative travel 
demand model structures and their inherent behavioral assumptions. An empirical 
study is conducted to calibrate the alternative models and furnish some evidence of the 
feasibility and desirability of disaggregate simultaneous travel choice models. 

MODELS 

In general, models are simplified representations of some objects or phenomena. 
This study deals with econometric models, i.e., mathematical relationships describing 
economic phenomena of observed variables and unknown but statistically estimable pa­
rameters. We use models to better understand real-world phenomena and to make de­
cisions based on this understanding. 

Travel demand models are use.d to aid in the evaluation of alternative policies by 
predicting the consequences of alternative policies or plans. A model that determines 
travel consequences independently of the characteristics of various policy options ob­
viously cannot be used to evaluate those options (unless policies are, in fact, irrelevant 
to consequences). 

Specification of a travel demand model involves some assumptions about the rela­
tionships among the variables underlying travel behavior. Predictions made by the 
model are conditional on the accuracy of the behavioral assumptions and, therefore, 
are no more valid than the assumptions. 

A model can duplicate the data perfectly, but may serve no useful purpose for pre­
diction if it represents erroneous behavioral assumptions. For example, consider a 
policy that will drastically change present conditions. In this case the future may not 
resemble the present, and simple extrapolation from present data can result in signifi­
cant errors. However, if the behavioral assumptions of the model are well captured, 
the model will be valid under radically different conditions. It should be noted that this 
discussion is very general. Behavioral assumptions are a matter of degree inasmuch 
as there are many levels of detail at which behavior could be described. (For example, 
sensitivity to policies could be regarded as a gross level of behavioral assumptions.) 

The requirement that models be policy-sensitive is necessary but not sufficient for 
planning purposes. An additional requirement is that the models be based on valid be­
havioral assumptions. A model could be policy-sensitive but be useless for policy 
analysis if it is not based on valid assumptions. 

In general, it is impossible to determine the correct specification of a model from 
data analysis. It should be determined from theory or a priori knowledge based on ex­
perience with, and understanding of, the phenomenon to be modeled. Frequently there 
is no comprehensive theory that will prescribe a specific model. Moreover, important 
variables are often missing because of lack of data or measurement problems. There 
are other potential problems that involve the different kinds of data that could be used 
to estimate the model (e.g., time series versus cross section, attitudinal versus engi­
neering) and the need to use a mathematical form that is amenable to a feasible statis­
tical estimation technique. 
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The result is that we may have several alternative models to evaluate. Unfortunately, 
"in statistical inference proper, the model is never questioned .... The methods of 
mathematical statistics do not provide us with a means of specifying the model" (11). 
In other words, given several alternative models and a data set, statistical inference 
Will not be conclusive on which model represents the "true" process. This does not 
say, however, that the data do not play a role in the selection among models. At var­
ious stages of an empirical analysis, some aspects of assumptions that do not agree 
sufficiently with the findings may be revised. More generally, accumulated past evi­
dence from empirical studies influences the formulation of the assumptions of new 
efforts. 

Suppose that we are faced with a choice among some alternative models that were 
not discarded in the course of data analysis. If these alternative models are based on 
different sets of assumptions, we should decide which set makes the most sense ac­
cording to a priori knowledge about behavior, along with goodness-of-fit measures and 
statistical significance tests. 

In modeling passenger travel demand, we are concerned with the trip-making be­
havior of individuals or households. Hence, a prerequisite to travel demand modeling 
is a set of assumptions that describe the process of trip- making decisions of these in­
dividuals or households. The basis for comparing different travel demand models 
should be the reasonableness (or the correspondence with a priori knowledge) of the 
behavioral assumptions of each model. 

In this study we consider two travel demand model structures: simultaneous and 
recursive, each representing a different travel behavior assumption. We assume a 
priori that a simultaneous structure is appropriate. However, we also consider re­
cursive models, in order .to evaluate the significant differences between the two. 

Disaggregate Models 

The behavioral assumptions of a demand model take the perspective of an individual 
as he weighs the alternatives and makes a choice. An aggregate model based on con­
sumers aggregated by location or socioeconomic category could be constructed. How­
ever, aggregation during the model construction phase will only cloud the actual rela­
tionships and can cause a significant loss of information (7, 14). An aggregate model 
that is based on averages of observations of socioeconomic types and geographic loca­
tion would not necessarily represent an individual consumer's behavior, and the same 
relationships may not hold in another instance or another location. For planning pur­
poses, we are concerned with the prediction of the behavior of aggregates of people. 
However, in principle, aggregation to a level required for forecasting can always be 
performed after estimation. 

In urban transportation planning (UTP) studies the data are collected on the disag­
gregate level and aggregated to a zonal level for use in the conventional UTMS (13). 
Using this disaggregate data directly in disaggregate travel demand models can bring 
about large savings in data collection and processing costs. Because the data are used 
in the original disaggregate form and are not aggregated to the zonal level, a compre­
hensive home interview survey is not essential as is the case of conventional aggregate 
models. Previous work with disaggregate travel demand models (4, 18) indicates that 
it is a feasible modeling approach. Thus, disaggregate travel demand models have 
several practical advantages over aggregate models: 

1. Possible reduction in data collection costs, 
2. Transferability of the models from one area to another, and 
3. Possibility of using the same set of models for various levels of planning. 

The problem of aggregating a disaggregate model for forecasting requires more re­
search. However, some simplified methods, such as the use of homogeneous market 
segments (.!:_, 12), are available and can be used. 

Choice Theory 

In general, models that describe consumer behavior are based on the principle of 
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utility maximization subject to resource constraints. Conventional consumer theory, 
however, is not suitable for deriving models that describe a probabilistic choice from 
a qualitative or discrete set of alternatives. Therefore, the travel demand models de­
veloped in this study rely on probabilistic choice theories (2, 3, 4, 10). 

It is assumed that the consumer selects the alternative fli.a1 maximizes his utility. 
The probabilistic behavior mechanism is a result of the assumption that the utilities of 
the alternatives are not certain but are random variables determined by a specific dis­
tribution. 

The choice probability of alternative i is 

P(i:At) = Prob[U1t;,, U,t, -v-jt'AtJ 

where 

At = set of alternative choices available to consumer t and 
Utt = utility of alternative i to consumer t. 

The utilities are essentially indirect utility functions that are defined in theory as the 
maximum level of utility for given prices and income. In other words, U1t is a function 
of the variables that characterize alternative i, denoted as X1 , and of the socioeconomic 
variables describing consumer t, denoted as St. Thus, we can write 

The set of alternatives At is mutually exclusive and exhaustive such that only one alter­
native is chosen. The deterministic equivalent of this theory is simply a comparison 
of all alternatives available and selection of the alternative with the highest utility. 

The mathematical form of the choice model is determined from the assumption about 
the distribution of the utility values. The coefficients of the utility functions are esti­
mated with a cross section of consumers and by observations of actual choices. There­
fore, the observed dependent variable has a value of zero or one. The forecast of the 
model is a set of probabilities for the set of alternatives. 

The Multinomial Logit Model 

There are a number of probabilistic choice models that are available; two of the 
most popular and most useful are the probit and logit models. The multino·mial logit 
model, as described below, appears to be superior to probit because of the computa­
tional time requirements. 

The logit model (~, !) is written as follows: 

With disaggregate cross-sectional data, the logit model is estimated by using the max­
imum likelihood method ( 15). 

The Travel Choices 

A trip decision for a given trip purpose consists of several choices: trip frequency, 
destination, time of day, mode, and route. In a probabilistic choice approach we are 
interested in predicting the joint probability P (f, d, h, m, r:FDHMRt), which is defined 
as the probability that individual or household t will make a trip with frequency f to 
destination d during time of day h via mode m along route r. The set of alternatives 
FDHMRt consists of all possible combinations of frequencies, destinations, times of 
day, modes, and routes available to individual t. 

For the purpose of presentation we consider only two travel choices: destination 
and mode. The set of all alternative combinations of destinations and modes is denoted 
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as DM. (For simplicity we drop the subscript t.) We can partition this set according 
to destination to get the sets of alternative modes to a given destination Md. If modes 
and destinations have no common attributes and the two choices are independent, then 
Md is independent of d and can be written as M. However, this is an unrealistic as­
sumption because there are many attributes, such as travel time, that are in fact char­
acterized by all the travel choices. Therefore, it is assumed that Md -f. Md'· We are 
interested here in predicting the joint probability P(d, m:DM). 

The Alternative structures 

If we assume that the two choices are independent, we write the following independent 
structure: 

P(m:M) = Prob[U. ;;;, U.', -v-m'E:M] 

and 

P(d, m:DM) = P(d:D) x P(m:M) 

where 

D = set of alternative destinations, 
M =set of alternative modes, 
ud =utility from destination d, and 
Um = utility from mode m. 

(This is an unrealistic structure for travel demand; but it is presented for the purpose 
of comparison with other structures.) 

Consider a conditional decision-making process in which, for example, destination 
is chosen first and then, conditional on the choice of destination, a mode is chosen. 
For this assumption we write the following recursive structure: 

and 

where 

P(d:D) = Prob[Ud;;;, Ud', -v-d'E:D] 

P(m:Afd) = Prob[Um\d;;;, U.'\d, -v-m'E:Md] 

P(d, m:DM) = P(d:D) x P(m:~) 

Md = set of alternative modes to destination d and 
Um\d =utility from mode m given that destination d is chosen. 

Assuming that the choice of mode is dependent on the choice of destination and vice 
versa, we can write the following simultaneous structure: 

P(d:D.) = Prob[Ud\•;;;, Ud'\m, --v-d'E:D.] 

P(m:~) = Prob[Um\d;;;, Um'\d• --v-m'E:Md] 

where Dm =the set of alternative destinations by mode m. 
In the independent and recursive structures we predict the joint probability by mul­

tiplying the structural probabilities. However, in a simultaneous structure, the two 
conditional probabilities are insufficient i°'ormation to predict the joint J?robability. 
Therefore, we need to estimate either a marginal probability, say P(d:D), or, directly, 
the joint probability. The problem with the first approach is that we need to define a 



31 

Ud where we originally specified Ud\m· The second approach requires a specification of 
the joint utility Udm, in which the cohlbination dm is considered as a single alternative. 
This approach is more logical because it corresponds with the notion of a simultaneous 
choice. Hence, in the simultaneous structure, we need to estimate the following choice 
probability: 

P(d, m:DW = Prob[Udm 01; Ud'•'• -v- d'm'EDM] 

Given the joint probability we can derive any desired marginal or conditional probability. 
For example, 

and 

Alternative Models 

P(m:M) = L P(d, m:DM) 

dEDm 

P(d:D.) = P(d, m:DM) 
P(m:M) 

For simplicity, we write the probabilities in this section without the notation for the 
set of alternatives. In other words, we will write P(d, m:DMt) as Pt(d, m), and P(m:Mi.t) 
as Pt(m\d). 

In the prediction of joint probability Pt(f, d, m, h, r), the set of alternatives consists 
of all possible trips or all possible combinations of frequencies, destinations, modes, 
times of day, and routes available to individual t. In a simultaneous structure of the 
logit model, this will be the definition of the set of alternatives, and the choice proba­
bility will be for an alternative f, d, m, h, r combination. 

The joint probability can be written as a product of marginal and conditional proba­
bilities: 

Pt(f) x Pt(d If) x Pt(m If, d) x Pt(h If, d, m) x Pt(r If, d, m, h) 

and can be written in many ways : 

In a recursive structure we will use a logit model for each probability separately and 
arrange the set of alternatives for each choice according to the sequence implied by the 
way we write the product. For example, the probability Pt(m If, d) is the probability of 
choosing mode m, when the set of alternatives consists of the modes available to indi­
vidual t, to destination d at trip frequency f. 

Calibrating a sequential model requires assumptions beyond the definitions of the 
relevant sets of alternatives for each choice. Consider, for example, the choice model 
for the probability Pt(m \f, h). The problem is how to include in the model all the vari­
ables that for a given mode vary across destinations. Clearly, we cannot use all these 
variables as separate variables with their own coefficients. Therefore, we need to con­
struct composite variables. There are many possible composition schemes. In addi­
tion there is the possibility of constructing the composite variables from several orig­
inal variables together such that the trade-off among them is kept constant in all choices. 
For example, for an alternative destination we can define a generalized price by each 
mode that is a function of travel time and travel cost; then we aggregate across desti­
nations to create a composite generalized price that is specific only to mode. 

THE EMPIRICAL STUDY 

The data for this study were taken from a data set prepared for the Metropolitan 
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Washington Council of Governments (WCOGL The data set was combined from a home 
interview survey conducted in 1968 by WCOG and a network (i.e., level of service) data 
set assembled by WCOG and R. H. Pratt Associates. 

The scale and the objectives of this empirical study dictated that we use only a small 
subsample of the original data set for a single trip purpose, shopping. The data were 
kept in the disaggregate form where the observation unit is a household. This follows 
the assumption that the behavioral unit for a shopping trip is also a household. 

Hence, the disaggregate data were exclusively drawn from conventional urban trans­
portation study data. Specifically, trip and socioeconomic data from a home interview 
survey, level-of-service data from coded networks, and other user cost data custom­
arily collected by transportation planning agencies were used. 

Because our purpose is to evaluate the sensitivity of the predictions to the structure 
of the model, we consider in the empirical work only the joint probability of destination 
and mode (given that a trip is taken)-Pt(m,d). We model this joint probability with 
three alternative structures: a simultaneous logit model that estimates this probability 
directly and the following two possible recursive model sequences: 

and 

where a logit model is applied to each probability separately. We also investigate al­
ternative ways of constructing composite variables for the marginal probability. 

The justification for separating destination and mode choices from other choices is 
as follows: The choice of time of day is assumed to be insignificant because the sample 
included only off-peak shopping trips. Route choice is not reported in the available data. 
The actual frequency is also not reported. Trips are reported for a 24-hour period. 
Therefore, the observed daily frequency is either 0 or 1 (and in a few cases 2). If we 
use an aggregate of households, this is sufficient information to compute an average 
frequency. For a disaggregate model the actual frequency is not available. We are 
forced to assume that the choices of mode and destination are independent of the actual 
frequency and, therefore, can be modeled separately. Note that with O, 1 daily fre­
quencies, Pt(f = 1 Id, m) = 1 and Pt(f = 0 Id, mJ = 0. 

The sample used for estimation consists of 123 household home-shop-home round 
trips that were selected randomly from a home interview sample in the northern cor­
ridor of Metropolitan Washington. Each household has a choice between two modes, 
the family car and bus, and several shopping destinations, ranging from one to eight 
according to the location of the household residence. It is important to note that we 
need to consider only alternatives that have positive choice probabilities. Therefore, 
a shopping location that is too far or a mode that is unsafe and consequently not feasible, 
or assumed to have negligible choice probability, need not be included in the set of 
alternatives. 

The data consist of level-of-service variables by mode and destination, shopping op­
portunities by destination, and socioeconomic characteristics of the household. Each 
observation included the value of the variable's for all the relevant alternatives for this 
household and the observed choice. 

Specification of the Variables 

The following list gives the definitions of the variables: 

TOdm = out-of-vehicle travel time to destination d by mode m (in minutes) 
Tldm = in-vehicle travel time to destination d by mode m (in minutes) 

1
;dc =out-of-pocket cost to destination d by modem (in cents), divided by house­

hold income 
Ed = wholesale-retail employment (number of jobs) 

DCBDd = CBD specific dummy variable for destination d 



{
1 ford= CBD 

= 0 otherwise 
DA. = automobile-specific dummy variable for mode m 

_ { 1 for m = automobile 
- 0 form= bus 

DINC. = automobile-specific income variable for mode m 
_ {INC for m = automobile 
- 0 form= bus 
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The level- of- ser vice variables are generic rather than mode-specific. (This would 
increase the number of level-of-service variables from three to six.) In this case, the 
marginal rates of substitution among level-of-service variables will differ for alterna­
tive modes. From a theoretical point of view it makes more sense to have equal mar­
ginal rates of substitution. The differences among modes that are not explained by the 
level-of-service variables included, such as differences in comfort and safety, are ac­
counted for by the mode-specific dummy variables. This assumption has been tested 
(4) from an empirical point of view. A mode choice model was calibrated with mode­
specific level-of-service variables, and it was found that the modal coefficients were 
not significantly different. This supports the a priori assumption of equal marginal 
rates of substitution. 

The alternative models estimated are presented in terms of the log of the odds of 
choosing one alternative over another. That is, the models are expressed as 

K 
P(i) ~ ( ) A 

Log p( ·) = ~ X1k - xjk ek 

J k=l 

where 

P(i) = choice probability of alte.,.native i, 
Xik = k th explanatory variable for alternative i, and 
~k = coefficient estimate of the k th explanatory variable. 

The Simultaneous Model 

In the simultaneous model presented below, the joint probability of destination and 
mode (given that a trip is made) was directly estimated. The sets of alternatives con­
sist of combinations of mode and destination. There are from two to 16 alternatives 
for each observation. The results that were obtained are as follows: 

Log ~(d/m~ = -1.36 (DA. - DA,,') - 0.0633 (70dm - T0d'•') 
P d • m (0.970) (0.0202) 

- 0.0164 (Tid• - Tld'.') - 0.0757 (Cdm/INC - CN/INC) 
(0.0116) (0.0216) 

+ 0.114 (DINC. - DINC0
1) + 0.000171 (EMPd - EMP41) 

(0.158) (0.0000875) 

+ 0.316 (DCBDd - DCBDd') (1) 
(0. 554) 

L*(O) = -277.678 
L*(S) = -207.380 

p2 = 0.25 
p2 = 0.25 
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where 

p(d, m) = joint probability of choosing destination d and mode m, 
L*(O) = log likelihood for 0 coefficients, 
L*(S) =log likelihood for the estimated coefficients, 

pa = coefficient of determination 
= 1 - L*(0) and 

L *(O) ' 
p2 = p2 adjusted for degrees of freedom, 

and the numbers in parentheses below the model coefficients are standard errors. 
All the signs and the relative values of the coefficient estimates are as expected. 

The pure automobile effect, So A, gave a minus sign; however, it should be interpreted 
as a transit bias only together with the coefficient of the automobile-specific income 
variable, which is positive. Out-of-vehicle travel time is on the order of four times 
more onerous than in-vehicle travel time. The standard errors of the coefficients of 
the automobile specific income and the CBD dummy variables are relatively large; 
however, they have the expected signs. 

Alternative Recursive Models 

Three alternative composition rules were used: weighted prices, weighted general­
ized price, and log of the denominator. The composite variables are defined when the 
estimation results are presented. In addition, there are two possible sequences: 

1. d .... m:d followed by m, and 
2 . m .... d:m followed by d. 

Hence, we estimated a total of six recursive models, three for each sequence. The 
estimation starts with the conditional probability, i.e., p(mld) in the first sequence 
and P(d Im) in the second sequence. Then, the marginal probability is estimated by 
using the composite variables that are calculated with results from the conditional 
probabilities. Note that for each sequence there are one conditional probability and 
three marginal probabilities for the alternative composition rules. 

Sequenced .... m: The Conditional Probability 

The conditional l?robability presented below is the equivalent of a trip interchange 
modal-split model (20). The model predicts the probability of mode choice for a given 
destination (and given that a trip is made). The sets of alternatives consist of the bus 
and automobile modes for the chosen destination. The estimation results are as follows: 

where 

P(m Id) ( ) ( ) , Log ( J ) = -0.639 DA,. - DA,' - 0.0515 TOdm - TO dm 
Pm' d (1.33) (0.0237) 

- 0.0108 (Tidm - TI)d.' - 0.137 (Cdm/INC - Cdm'/INC) 
(0.0261) (0.0530) 

+ 0.0490 (DINC. - DINC.1
) 

(0.199) 

L*(O) = -85.257 
L*(DA) = -56.216 

L*(S) = -23.033 
p2 = 0.73 
p2 = o. 72 
P~A = 0 . 59 
fJ~A = 0.58 

(2) 

p(m Id) = conditional probability of choosing mode m given that destination dis chosen, 
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L*(DA) = log likelihood for 0 coefficients except for pure automobile effect DA, and 
P~A = coefficient of determination in addition to the pure automobile effect. 

It can be seen that all the coefficients have their expected signs. Out-of-vehicle 
travel time is almost five times more onerous than in-vehicle travel time. The stan­
dard errors of the coefficients of in-vehicle travel time and income are relatively large; 
however, the coefficients have their expected signs. 

Sequence d .... m: The Marginal Probability 

The marginal probability of destination choice is the equivalent of a pre-modal-split 
distribution model. This model predicts the probability of destination choice with the 
mode choice indeterminate. The sets of alternatives consist of the alternative shopping 
destinations. Three models with the alternative composition rules were estimated for 
this probability, and the results are presented below for weighted prices. 

Log p((d!) = -0.0227 (TO~ - To';i') - 0.0374 (TI~ - Tl~') 
pd (0.0523) (0.0173) 

- 0.0269 (C~/INC - C~'/INC) + 0.000130 (EMPd - EMPd1) 

(0.0327) (0.0000910) 

+ 0.638 (DCBDd - DCBDd') 
(0.595) 

L*(O) = -192.421 
L*(e) = -182.485 

L*d•(e) = -205.518 
rl = o.o5 
p2 = 0.04 

P~. = 0.26 

where 

P(d) = marginal probability of choosing destination d, 

TO~= L TOdm X P(m \d), 

m 

TI~ = L Tfa. x P(m \d), 

m 

c~ = L Cdm x P(m \d), 

m 
L*d.(e) =log likelihood for the joint probability, and 

p~ = coefficient of determination for the joint probability. 

(3) 

Note that p~. is not computed. The reason is that the two separate models have different 
numbers of degrees of freedom. The results for weighted generalized prices are as 
follows: 

P(d) 
Log P(d~ = 0.000149 (EMPd - EMPd') + 0.353 (DCBDd - DCBDd') 

(0.0000867) (0. 510) 

+ 0,507 (GP~ - G~1) (4) 
(0.141) 

L*(O) = -192.421 
L*(B) = -184.866 

L* d.rn) = -207 .899 
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where 

p2 = 0.04 
p2 = 0.04 
P~. = 0.25 

GP~= L (-0.0515 X TOdo - 0.0108 X Tldm - 0.137 X Cdm/INC) P(m Id) 

m 

The results for the log of the denominator are as follows: 

Log p((d!) = 0.000149 (EMPd - EMPd1 ) + 0.295 (DCBDd - DCBDd1) 

pd (0.0000862) (0.510) 

+ 0.549 (log ~"-log P~1) 
(0.147) 

L*(O) = -192.421 
L*(S) = -184.068 

L* d.(a) = -207 .101 
P2 = 0.04 
p2 = 0.04 
p~. = 0.25 

where 

p~ = L exp(-0.639DA. - 0.0515TOd. - 0.0108Tidc - 0.137Cd./INC + 0,0490DINC.) 

m 

(5) 

All the models have relatively low coefficients of determination, which is attributed 
to the lack of more descriptive attraction data. All three models gave coefficient es­
timates with the expected signs. However, in Eq. 3, the coefficient of out-of-vehicle 
travel time is smaller than the coefficient of in-vehicle travel time, in contrast to what 
we would expect. The standard errors in Eq. 3 are relatively large; however, it fits 
the data as well as the two other models. 

The model with weighted prices represents the assumption that the marginal rates 
of substitution among level-of-service attributes are different for different choices. 
The two other models assume equal rates for different choices. From a theoretical 
point of view, the latter assumption seems more reasonable. It is more likely that a 
traveler will have an identical trade-off between travel time and money cost for differ­
ent travel choices rather than several of them, each being used for a different choice. 
The poor results from the weighted prices model support this assumption. It appears 
that all previous travel demand models reported in the literature have made the as­
sumption of equal marginal rates of substitution for different choices. 

Comparison of Eqs. 4 and 5 shows that there are no significant differences (2). The 
coefficient estimates of the CBD dummy variable have relatively large standard-errors 
in the two models. However, the coefficients have the expected signs. The model 
shown in Eq. 4 is equivalent to the model developed by Charles River Associates(!). 

Sequence m .... d: The Conditional Probability 

The conditional probability in this sequence is the equivalent of a post-modal-split 
trip distribution model. The model predicts the probability of destination choice for a 
given mode. The sects of alternatives consist of the alternative shopping destinations 
for the chosen mode. The estimation results of this model are as follows: 
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P(d] m) ( , ) ( , ) Log ( ' I ) = -0.0610 Tod. - TOh - 0.0287 Tid. - Tih 
P d m (0.0380) (0.0136) 

- 0.0470 (C40 /INC - Cd'./INC) + 0.000148 (EMP4 - EMP41) 
(0.0263) (0.0000899) 

+ 0.330 (DCBDd - DCBD41) (6) 
(0.548) 

L*(O) = -192.421 
L*(e) = -179.680 

pa= 0.07 
pa= 0.06 

where P(d Im) = conditional probability of choosing destination d given that mode m is 
~ose~ · 

The signs of the coefficient estimates are as expected. Out-of-vehicle travel time 
is more than two times more onerous than in-vehicle travel time. The coefficient of 
the CBD dummy variable has the expected sign but a relatively large standard error. 
The goodness of fit of this model is relatively low because of the large number of alter­
natives and the lack of better attraction description. 

Sequence m ... d: The Marginal Probability 

The marginal probability of mode choice is the equivalent of a trip-end modal-split 
model (20). This model predicts the probability of mode choice with indeterminate 
destination choice. The sets of alternatives include the bus and automobile modes. 
Again, we model this probability with the three alternative composition rules. The 
results that were obtained for weighted prices are as follows: 

where 

Log p((m~) = -0.952 (DA. - DA.1
) - 0.0509 (T~ - T0~1) 

Pm (1.27) (0.0204) 

+ 0.109 (TI~ - TI~') - 0.183 (C~/INC - C~1/INC) 
(0.0429) (0.072 5) 

+ 0.293 (DINC. - DINC.1) 
(0.225) 

L*(O) = -85.257 
L*(DA) = -56.216 

L*(e) = -24.596 
L*d•(e) = -204.276 

p2 = 0.71 
pa = 0. 70 
P~. = 0 .26 
P~A = 0.56 
P~A = 0.55 

p(m) =marginal probability of choosing modem, 
TO~= LTOdm X P(d\m), 

d 
TI~ = L Tfa. x P(d Im), and 

d 
C~ = LCdm x P(d\m). 

d 

(7) 
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For weighted generalized price, the results are as follows: 

where 

Log p((m~) - -2 .07 (DA.. - DA,.1) + 0 .117 (DINC. - DINC. 1) 

Pm (0.959) (0.157) 

+ 1.62 (GP~ - GP~1) 
(0.371) 

L*(O) = -8 5.2 57 
L*(DA) = -56.216 

L*(S) = -31.039 
L*d.(8) = -210.719 

p2 = 0.64 
p2 = 0.63 
p~. = 0.24 
P~A = 0.45 
P~A = 0.44 

GP~ = I (-0.0610TOdm - 0.0287Tidm - 0.0470Cdm/INC)P(d Im) 

d 

For the log of the denominator, the results are as follows: 

where 

Log P~m~, = -1. 74 (DA. - DA,.1
) + 0.0489 (DINC. - DINC.1) 

P~mi (0.955) (0.168) 

+ 1.42 (log P~ - log p~1) 
(0.303) 

L*(O) = -85.257 
L*(DA) = -56.216 

L*(S) = -27.832 
L* dm( e) = -207. 512 

p2 = 0.67 
p2 = 0.67 
p~. = 0.25 
P~A = 0.50 
P~A = 0.50 

p~ =I exp(-0.0610TOdm - 0.0287Tidm - 0.0470Cdm/INC 

d 

+ 0.000148EMPd + 0.330DCBDd) 

(8) 

(9) 

Again, Eq. 7, the weighted prices model, gave unreasonable coefficient estimates, 
similar to those ill Eq. 3. The two other models, Eqs. 8 and 9, gave better results. 
The coefficients of the income variable have the expected signs but relatively large 
standard errors. The model of Eq. 8 uses the same composition scheme as the model 
developed by CRA (!); however, this model assumes a different sequence. 

Comparison of Alternative Models 

The alternative models that gave reasonable coefficient estimates are given below. 



Model 

Simultaneous 
Recursive d .... m 

Recursive m .... d 

Method 

Direct estimation 
Weighted generalized price 
Log of the denominator 
Weighted generalized price 
Log of the denominator 

Equation 

1 
2, 4 
2, 5 
6, 8 
6, 9 
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It was not the purpose of this study to accept or reject the a priori assumption of a 
simultaneous decision-making process. As expected, the empirical evidence does not 
show which of the alternative structures, one simultaneous and two recursive, is more 
likely to be correct. All the models gave reasonable coefficient estimates. Further­
more, all the models gave essentially equal goodness of fit: p2 = 0.25. The simulta­
neous model includes seven coefficients, whereas the recursive models included eight. 
This implies that the simultaneou_s model has a slight edge in this category, but it is 
certainly not a conclusive difference. 

The simultaneous model that included observations with up to 16 alternatives and 
seven variables gave reasonable coefficient estimates. The computer cost was only 
slightly higher (::::20 percent) than the cost of a binary mode choice model with five vari­
ables. This indicates that a simultaneous model is feasible for the two choices of des­
tination and mode. It also indicates that expanding the set of choices and therefore in­
creasing the number of alternatives and variables may not be an unrealistic objective. 

Comparison of the coefficient estimates of the simultaneous model with those of the 
estimated recursive models suggests that the predictions are sensitive to the structure 
of the model. This sensitivity can be demonstrated by showing some examples of the 
important trade-offs and elasticities. Table 1 gives the values of time implied by the 
different models. 

Although the standard err ors ar e relatively large, this is not atypical for estimates 
of value of time (19). (The estimated model coefficients that were used to compute the 
values of time were significantly different from zero.) 

Estimated values of time from the simultaneous model are greater than those esti­
mated from a mode choice model (given destination) and smaller than those estimated 
from a destination choice model (given mode). 

Table 2 gives some direct elasticities of the mode choice probability. The figures 
in Table 2 are based on the following case: 

Table 1. Value of travel time in dollars per hour. 

Variable P(m,d} P(mld} P(dlm) 

Out-of-vehicle 3.02 1.36 4.67 
travel time (1.44) (0.98) (4 .36) 

In-vehicle travel 0 .78 0.28 2.21 
time (0.68) (0.66) (2.0 1) 

Note: The figures are for a household with annual income between 
$10,000 and $12,000. Numbers in parenthe$es are standard errors. 

1. Annual household income is between 
$10,000 and $12,000, 

2. The probabilities of choosing bus 
and automobile are 0.2 and 0.8 respectively, 

3. Out-of-vehicle travel times are 20 
minutes by bus and 10 minutes by auto­
mobile, 

4. In-vehicle travel times are 30 
minutes by bus and 15 minutes by auto­
mobile, and 

5. Out-of-pocket costs are 50 cents by 
both bus and automobile. 

Table 2. Direct elasticities of the mode choice probability. 

Bus Automobile 

Variable P(m,d} P(mid} P(m, d} P(mld} 

Out-of-vehicle travel time -1.01 -0.82 -0.13 -0.10 
In-vehicle travel time -0 .31 -0.26 -0.05 -0.03 
Out-of-pocket cost -0.40 -0 .91 -0.13 -0.23 
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The most striking variation in Table 2 is in the cost elasticity. The mode choice 
model derived from an estimated joint probability gives cost elasticities that are about 
half the elasticities computed from a recursive mode choice model. 

The differences among the models could be attributed to specification errors, which 
affect a mode choice model and a destination choice model differently. The effects 
could be in the opposite directions, and therefore the joint probability model gave es­
timates that are in some way between the estimates of the two other models. 

The marginal probabilities of the recursive models, which were formulated with 
composite variables, also demonstrated significant differences from the corresponding 
probabilities derived from the simultaneous models. 

Thus, the chosen structure can make a big difference in terms of the values of the 
estimated coefficients. Inasmuch as there are a priori reasons to assume a simulta­
neous rather than a recursive structure, we should estimate the joint probabilities 
directly. Then, if necessary, we can derive any conditional probability. 

CONCLUSIONS 

Models based on disaggregate data and choice theory were estimated in the past 
either for a single travel choice, primarily mode choice, or for several choices but in 
a recursive structure. The empirical study that was conducted in this research demon­
strated the estimation of a disaggregate simultaneous model. The results from the es­
timation of a simultaneous destination and mode choice model indicate that this approach 
is feasible within reasonable computation cost. Moreover, the estimation results of 
models with recursive structures for the same two choices show that important coef­
ficient estimates vary considerably with the different model structures. 

This empirical study was limited in scale, and it is recommended that the evidence 
should be extended to include alternative data sets, different trip purpose categories, 
a complete set of travel choices, and a more extensive set of explanatory variables (in 
particular, attraction description). 

The empirical evidence taken together .with the theoretical assumptions of a simul­
taneous structure and the advantages of disaggregate models suggests that future efforts 
in travel demand modeling should be in the direction of simulta neous disag~regate prob­
abilistic models. Given the joint probability (from the simultaneous model), one can 
derive conditional probabilities and use the model for forecasting in sequential stages, 
corresponding with the UTMS procedure. 

One of the important problems in using disaggregate models for forecasting is the 
aggregation problem. Future research efforts should investigate this problem. How­
ever, for the short run, simplified aggregation procedures, such as market segmenta­
tion, are available and can be used. 

The use of disaggregate models suggests new emphasis in data collection efforts for 
transportation planning. The amount of data needed for disaggregate models has not 
yet been determined, but it is clear that a change in the general method of collecting 
travel data is appropriate. The comprehensive home interview survey covering an en­
tire planning region might be replaced by several more descriptive small samples, in 
selected areas of the region. Thus, the emphasis should be to represent the full range 
of socioeconomic characteristics affecting travel behavior, rather than to sample all 
parts of the region at a uniform rate. Smaller scale surveys will make possible the 
collection of the detailed information (not conventionally collected) important for dis­
aggregate demand models . For example, information on car pooling, how often a trip 
is made (instead of repor ting only the trips made during the last 24 hours), institutional 
constraints such as preferred arrival time, and so forth, would be obtained. In addi­
tion to the travel data requi rements, better information is also needed with respect to 
the attributes of alternative trips. In particular, the attraction data available from con­
ventional data sources used in urban transportation planning are not very descriptive. 
More detailed attraction data are needed to achieve better predictions of destination 
choice. 

In-depth studies of travel behavior based on detailed interviews and attitudinal data 
could be fruitful. However, it appears that the most beneficial directions for research 
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toward improvements of transportation planning capabilities are the aggregation prob­
lem, behavioral modeling of round trips with non-home-based links, and experimental 
application of simultaneous disaggregate models to case studies of important transpor­
tation issues at different levels of planning. 

In conclusion, this research has indicated the desirability and the feasibility of a 
simultaneous disaggregate travel choice model. 
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DISAGGREGATE ACCESS MODE AND STATION CHOICE 

MODELS FOR RAIL TRIPS 

Peter S. Liou, New York State Department of Transportation; and 
Antti P. Talvitie, University of Oklahoma 

In this study disaggregate probability choice models are developed for ac­
cess mode and for access station selection. In each of the models, there 
are at least two alternatives available to the individual traveler. A multi­
nomial logit model that is based on the axiom of the "independence of ir­
relevant alternatives" is used. Two methods of approach concerning 
travelers' decision-making processes are used. The first is the simulta­
neous approach, which assumes that the traveler may make the access 
mode and station choice decisions in one of two sequences: station choice 
preceding mode choice or mode choice preceding station choice. In the 
sequential approach, the choices of access mode and access station are 
modeled separately. Results suggest that the traveler's decision-making 
process for the access mode and station choices is behaviorally separate, 
the sequence being station choice followed by access mode choice. The 
study also shows that travelers do not assign the same weights to the set 
of transportation system attributes when making these decisions and that 
the pedestrian and bus modes are preferred to the automobile mode. For 
the station choice, the accessibility of the train station has the greatest 
effect on the traveler's decision. 

•A PERSON planning any type of an intraurban trip makes a number of choices includ­
ing those on destination, mode, and travel route. These decisions have an important 
bearing on transportation planning, and therefore the knowledge of how travelers go 
about making their decisions is essential to transportation planners. 

This research discusses the access part of the rail journey. It is assumed of course 
that decisions on trip origin, trip destination, rail line, and so on have already been 
made; consequently, travelers are faced with two access choices: access mode and 
access station. 

The main purpose of this study is to develop disaggregate choice models of the access 
mode and station selection for rail work trips. At the same time, this study investi­
gates whether travelers make the two choices simultaneously or in a sequence and, if 
the latter, which specific sequence? Another objective of this study is to determine 
the types of transportation and socioeconomic attributes that affect travelers' choice 
decisions and how much. 
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FORMULATION OF ACCESS MODE AND STATION CHOICE MODELS 

In this study, a multinomial logit model (15) is used because there are usually at 
least two alternatives available in each choie€: The generalized expression of the mul­
tilogit model is 

where 

P1 =probability of an individual choosing alternative i E fj} and 
U1 =utility function associated with alternative i. 

(10) 

The utility of an alternative travel choice is represented by attributes of the alternative 
(e.g., travel time, travel cost) and the socioeconomic attributes of the individual (e.g., 
income). A basic assumption to formulation of these models is that travelers ration­
alize their choices by selecting alternatives with the highest utilities. 

Construction of the access mode and station choice models in this study is approached 
from two behavioral process assumptions: (a) the simultaneous assumption in which the 
choices of access mode and station are made together and in which the joint probability 
of the two choices, P(m, s), is contained in a single model and (b) the sequential as­
sumption in which station and access mode choices are made one at a time. In the 
latter case, the joint probability of the two choices is the product of a conditional prob­
ability of one choice and a marginal probability of the other choice, e.g., P(m, s) = 
P(m Is) x P(s) for the station-mode sequence and P(m, s) = P(s Im) >< P(m) for mode­
station sequence. Clearly, both sequences can be justifiably assumed, and therefore 
both are studied. 

For the station-mode sequence, the (conditional) mode choice is modeled first, where 
utility is a function of the level-of-service attributes of the mode and mode-specific 
socioeconomic attributes of the traveler. The (marginal) station model, on the other 
hand, contains three types of station level-of-service attributes: station accessibility 
level of service; in-train level-of-service difference resulting from choosing the se­
lected station instead of other stations in the vicinity of the trip origin; and intrinsic 
level of service of the station, such as parking facility. The last two types of attri­
butes may be directly obtained. However, accessibility to a station is related to the 
effort that is required of the individual to reach the station by the available modes. 
Therefore, it is obtained by combining the probabilities of choosing the access modes 
with either the access mode level-of-service variables or the utility associated with 
each access mode. The former method results in a number of weighted modal level­
of-service variables called weighted price variables. The latter method produces a 
single variable called the weighted inclusive price variable. In the weighted price 
method the same attributes may have different coefficients in the estimated models at 
the two choice levels, whereas in the weighted inclusive price method the values of the 
coefficients for the modal level-of-service variables remain unchanged. This is be­
cause the entire utility function in the access mode model is weighted in the weighted 
inclusive price method. From a behavioral standpoint, the weighted price method 
simply assumes that travelers value the same modal level-of-service attributes dif­
ferently when they choose modes and stations. On the other hand, the weighted in­
clusive price method assumes that travelers view the relative importance of the modal 
level-of-service attributes equally at the two choice levels. An interesting consequence 
of this method of approach, as reflected in the estimated weighted inclusive price sta­
tion model, is that, if this assumption is valid, then the coefficient of the weighted in­
clusive price variable should be 1. 

The other possible sequence is the mode-station sequence in which the conditional 
station choice P(s Im) is modeled first and then the marginal mode choice P(m) is 
modeled. 

In the simultaneous model structure, the probability that a traveler chooses access 
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mode m and access station s is a function of the level-of-service variables of each 
available mode, the in-train level-of-service difference variables, and the intrinsic 
station variables. Again, the socioeconomic attributes of the traveler are included in 
the level-of-service variables. 

DATA AND METHODS 

Data Source and Sample Selection 

The trip data used in this study were taken from an origin-destination survey con­
ducted for the Southward Transit Area Coordination (STAC) committee in Chicago. The 
inner part of the STAC area (21) was chosen as the study area because most rail work 
trips in the area originate there. The trip origins may be identified from the survey 
by a 1

/ 4-square mile centroid. The access mode, access station, and the access dis­
tance to the station can also be either directly or indirectly obtained from the survey. 

A total of 150 work trips were randomly selected from the Illinois Central (IC) Rail­
road surveys. Those samples with incomplete information were replaced with valid 
samples, also randomly picked. Sets of 25 samples each were selected in a similar 
manner from the Rock Island (RI) and the South Shore and South Bend (SS) Railroad data. 
Table 3 gives the number of travelers by access mode and rail line. 

Construction of the access mode and station selection models is based on data on 
travelers' work trips on the Illinois Central. Rock Island and South Shore data are used 
only to test the various operational models. 

The dependent variable of a multinomial logit model is the choice probability, P1, 

where i is one of the alternatives in the choice set. Because only the actual choic.e is 
observed and not the probabilities, when model parameters are estimated P1 equals one 
for the chosen alternative and zero otherwise. 

For the access mode choice models, the alternatives considered are automobile, 
bus, and walk. (Even though it was determined whether travelers drove or were driven, 
the data did not permit further detail in modeling access mode choices.> However, each 
person in the sample was not always considered as having all alternatives available to 
him. Automobile (driven or drove) was always considered a relevant alternative. Walk­
ing was considered to be unavailable to a person if walking distance to a station was 
more than 20 minutes. The bus mode was available if a traveler was within a 1/rmile 
walk of a bus route. 

For the station selection model, alternative stations were chosen on the basis of 
data and were usually near the chosen station. 

Notation 

The notation (22) used in the models is defined as follows: 

OVT = out-of-vehicle time, the sum of walking time and waiting time during the in­
dividual's access trip to the station; 

AT= automobile time, the amount of time the individual spends in an automobile 
during his station access trip; 

BT = bus time, the amount of time the individual spends on a bus during his station 
access trip; 

Table 3. Sample distribution. 

Railroad 

Access Mode IC RI SS 

Automobile 
Driver 27 4 4 
Passenger 20 4 4 

Walk 50 9 9 
Bus 53 ...!! 8 

Total 150 25 25 

OC = operating cost of an automobile during the access 
trip to the station; 

PC = out-of-pocket parking cost for automobile driver 
or bus fare for the bus user; 

TC = total cost, the sum of the operating cost and the 
out-of-pocket cost; 

LHT = line-haul time difference, the on-train travel 
time difference resulting from choosing the sta­
tion instead of the alternative stations; 

PD = parking dummy of the available parking space per 
automobile driver; and 

S = socioeconomic attribute, the ratio of total cost to 
median income. 
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Estimation Method and Evaluation Criteria 

The models are evaluated in three ways: (a) The statistical significance of each var­
iable in the model and the model as a whole is determined; (b) the reasonableness of the 
magnitude of the coefficients of the model variables is examined (elasticities are studied 
to determine the effects of the attributes on the choice probability and the value of time); 
and (c) the model is applied to situations different from that on which the model is es­
timated. 

Inasmuch as the choice probabilities are not observed, a statistical test such as the 
estimated residue measurement (R2

) ordinarily used for linear regression analysis is 
not valid. The statistical tests used for the disaggregate models in this study are mainly 
the t-test, which determines the statistical significance of each variable in a model, and 
the x2-test, which determines the statistical significance of the entire model. 

Both the sign and the magnitude of the coefficient of a variable are examined. The 
sign of a coefficient must be logical: The coefficients for out-of-vehicle time, auto­
mobile time, bus time, operating cost, out-of-pocket cost, weighted price, and socio­
economic variables must have negative signs, whereas the coefficients of line-haul dif­
ference, parking dummy, and weighted inclusive price variables must have positive 
signs. 

The magnitude of the coefficients of the variables may be examined by studying the 
elasticities of the choice probabilities with respect to each of the variables. The math­
ematical expression for the direct and cross elasticities of a multilogit model are 

where 

Exli=b1X11(l - P1) 

Ex1j = -b1X1J(pJ) 

P1 = choice probability of alternative i, 
X11 and X1J =Ith explanatory variable describing alternatives i and j, 

b1 = coefficient of X1, and 
Exli' Ex1i = direct and cross elasticities with respect to X1. 

(11) 

(12) 

Furthermore, the implied value of time obtained from this research is compared 
with the value of time obtained from other studies. 

The disaggregate access mode and station models are further evaluated by applying 
each model to different situations. As mentioned previously, the base data for the mod­
els estimated in this study are the set of IC data; the RI and SS data are the control data 
and are used solely for testing the models. The service areas, operators, number of 
rail tracks, distances between adjacent stations, train operating frequencies, and types 
of signal and train facilities of the Rock Island and South Shore Railroads are different 
from those of the Illinois Central Railroad. 

For each individual sample, the expected probability of the chosen mode or station 
is compared with the expected probabilities of the alternative modes or stations in their 
respective choice set. If the expected probability of the chosen mode or station is 
greater than or equal to those of the alternatives, then the model has made a correct 
prediction. Otherwise, the prediction is wrong. Furthermore, for the access mode 
model, the expected number of users of each mode is compared with the actual number 
of users of the same mode. 

RESULTS AND EVALUATION OF ESTIMATED 
ACCESS TRIP CHOICE MODELS 

Models were estimated for the conditional mode choice p(m \ s), the marginal station 
choice P(s), and the conditional station choice p(s \m>. However, estimation of the 
marginal mode choice model P(m) and the simultaneous choice model P(s, m) resulted 
in models with incorrect signs. These models and evaluations of them are discussed 
below. 
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Conditional Mode Choice Model 

Two of the estimated access mode models appeared to have the correct signs and 
statistically acceptable coefficients for each variable. The coefficients of these two 
models and other relevant information are given in Table 4. Both of these models in­
clude the out-of-vehicle, automobile, and bus times. The cost variable is different, 
however, in the two models. In the first model it is the operating cost (OC), and in 
the second model it is the tofal cost divided by income (s). 

Statistical tests indicate that all the variables in model 1 and the model itself are 
significant at the 0.99 level of confidence. In model 2, the socioeconomic variable is 
statistically significant only at the 0. 75 level of confidence. The bus time variable is 
statistically significant at the 0.95 level of confidence. The out-of-vehicle and automo­
bile time variables, along with the model itself, are statistically significant at the 0.99 
level of confidence. Therefore, on the whole both models are statistically acceptable. 

From the coefficients in model 1, the implied values of time (in dollars per hour) 
are as follows: 

Variable 

Out-of-vehicle time 
Automobile time 
Bus time 

Value 

0.48 
0.75 
0.41 

standard 
Deviation 

0.25 
0.50 
0.25 

Comparisons of these values with the submode values of time in other studies are not 
available. However, the value of in-vehicle time is approximately the same in this 
research and in some other recent demand model studies, approximately 70 cents/hour 
(2, 19). However, the values of the out-of-vehicle time in this research are much lower 
tKalllhe value of the out- of-vehicle time of other studies, $ 3.00/hour and more. It 
should be noted, however, that the trips under investigation in this study are access 
trips, whereas the other studies considered either the major part of the trip or the en­
tire trip. 

From the coefficients of the second model, the implied value of automobile time is 
$80/hour, which is too large to be reasonable. Therefore, model 2 is considered 
invalid. 

The direct elasticities of the access mode model, computed at the means of each 
variable, for each fixed probability are given in Table 5. It can be seen from Table 5 
that most of the variables are elastic when computed at the means of these variables. 
OC, which is associated exclusively with the automobile mode, has the greatest elas­
ticity, and AT, OVT, and BT have smaller elasticities in that order. Values of the 
direct elasticities in this study are not in line with the a priori knowledge of the elas­
ticities from previous studies. However, the differences between this study and others 
must again be noted. Also, as the probability increases, the elasticities decrease. 
This suggests logically that travelers grow less concerned with changes in the trans­
portation attributes if their chosen mode is chosen with a high probability. The model 
is further evaluated by applying it to both IC and RI/SS data and comparing the results. 
The misclassifications and the predictive rates are given in Table 6. 

The expected number of travelers by mode can be computed as the sum of the ex­
pected probability values of each mode: 

N.(expected) = L p; 

where 

P; = probability of mode m being chosen by person i and 
N.(expected) = expected number of travelers to use mode m. 

Comparisons of the expected and the actual number of travelers by mode are given in 
Table 7. 
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The comparisons show that the expected and actual values by mode are compatible. 
For the RI and SS data, the absolute percentage of difference for bus mode is 69 as com­
pared to approximately 80 for the other modes. This may be attributed to the fact that 
bus frequencies in the areas of the RI and SS Railroads are often quite low. Though 
the waiting time for bus was set at no more than 8 minutes during the process of data 
preparation, 30-minute headways for buses in these areas are not uncommon. This 
may interfere with a traveler's time schedule for reaching the station and eventually 
the jobsite and therefore force him to choose another access mode. 

Marginal Station Choice Model 

Two of the estimated station models appeared to have correct coefficient signs and 
statistically acceptable indications. One of the models used the weighted prices and the 
other used the weighted inclusive price as part of their level-of-service variables. 

The Weighted Price Station Model-The statistical tests of this model (Table 8) in­
dicate that the variables are significant at the following levels of confidence: 

Variable 

Weighted OVT 
Weighted AT 
PD 

Level of Confidence 

LHT 
Whole model 

0.99 
0.99 
0.95 
0.80 
0.99 

The direct elasticities are computed at the means for the weighted OVT and weighted 
AT, at 4 minutes for LHT, and at 1 minute for PD (Table 9). 

These elasticities indicate that, when selecting the access stations, travelers are 
most sensitive to out-of-vehicle time and automobile time. The results also show that 
travelers are relatively unconcerned about the extra amount of time spent (or saved) 
inside the train in choosing the access station. In spite of the incompleteness of the 
parking availability variable, it appears that it has an effect on the choice of access 
station. Information on the value of time is not available, inasmuch as this model has 
no cost variable. Misclassifications and the predictive accuracy rates of the model are 
given in Table 10. 

The Weighted Inclusive Price station Model-The coefficients of the weighted inclu­
sive price station model and other relevant information are given in Table 11. Statis­
tical tests of this model indicate that the variables are significant approximately at the 
levels of confidence given below: 

variable 

Weighted inclusive price 
PD 
LHT 
Whole model 

Level of Confidence 

0.97 
0.97 
0.90 
0.99 

The direct elasticities are obtained in the same way as in the previous station model 
(Table 12). The elasticities indicate that the weighted inclusive price variable is the 
most important attribute to travelers selecting a station. 

The coefficient of the weighted inclusive price variable in this model is 0. 5850. It 
is tested to be significantly different from 1.0000. This indicates that the above­
mentioned assumption is invalid. In other words, the traveler does assign different 
weights to the set of transportation system attributes when making his access mode and 
station choice decisions. 

The misclassifications and the predictive accuracy rates of the model are given in 
Table 13. Comparisons of the actual number of travelers choosing a certain train sta­
tion with the expected number are not made for the two access station models because 
the small number of travelers observed is distributed to a relatively large number of 
alternative stations. 
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Table 4. Coefficients of conditional 
mode models. 

Variable 

Out-of-vehicle time 
Automobile time 
Bus time 
Operating cost 
Socioeconomic atlribute 

Model 1· 

Coefficient 

-0.441 
-0 .681 
-0.382 
-0 .556 

Standard 
Error 

0.094 
0 .291 
0.120 
0.193 

Model 2' 

Coefficient 

-0 .286 
-1.122 
-0.164 

-0.084 

Standard 
Error 

0 .059 
0.260 
0.091 

0.111 

ax: = 99.498 with 4 degrees of freedom. 
b>f = 87.647 with 4 degrees of freedom. 

Table 5. Direct elasticities of conditional mode model. 

Mean Direct Elasticity 
(minutes 

Table 6. Accuracy of conditional 
mode model. 

M "'= 1-N 
Variable or cents) p = 0 .30 p = 0.50 p = 0.70 Data N M {percent) 

OVT 6.7 2.08 1.49 0.89 
AT 6.7 3.19 2.28 1.37 
BT 10 .1 2.71 1.94 1.16 
oc 15.5 6.03 4.31 2.58 

Table 7. Comparison of number of mode users. 

Absolute 
Percentage of 

Data Mode N, N, Difference 

IC Automobile 56 47 81 
Walk 40 50 80 
Bus 54 53 98 

RI/ SS Automobile 13 16 81 
Walk 15 18 83 
Bus 21 16 69 

Note: Ne =expected nu mber of travelers and NA =actual number 
of travelers. 

Table 9. Direct elasticity of 
weighted price station model. 

Table 10. Results of 
application of weighted price 
station model. 

M 
,,. ~ 1 - N 

Data N M (percent) 

IC 150 32 78.7 
RI/ SS 50 l 98.0 

Variable 

Weighted OVT 
Weighted AT 
LHT 
PD 

IC 150 12 92 
RI/SS 50 7 86 

Note: N = total number of observations, 
M = number of misclassificat ions, and 
a= predictive accuracy. 

Table 8. Coefficients of weighted 
price station model. 

Standard 
Variable Coefficient Error 

Weighted OVT -0 .385 0.102 
Weighted AT -0 .957 0.172 
LHT 0.138 0.167 
PD 0.827 0 .469 

Note: -x! = 90.391 with 4 degrees of freedom. 

Variable Direct Elasticity 
Value 
(minutes) p = 0.30 p = 0.50 p = 0.70 

6.44 
2.16 
4.00 
1 

1.73 1.24 0.74 
1.44 1.03 0 .62 
0.39 0.28 0 .17 
0.57 0.41 0 .25 

Table 11. Coefficients of weighted inclusive 
price station model. 

variable 

Weighted inclusive price 
LHT 
PD 

Coefficient 

0.585 
0.230 
1.189 

Note: x' • 100.4353 with 3 degrn1 of freedom. 

Standard 
Error 

0.107 
0.194 
0.563 
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Direct Elasticity 

Variable Value p = 0.30 p = 0.50 p = 0.70 

Weighted inclusive price 
LHT 

8.07 
4.00 

3.31 2.36 
0.64 0.46 

Table 13. Results of 
application of weighted 
inclusive price station model. 

M °' = 1 - N 
Data N M (percent) 

IC 150 27 82 
RI/SS 50 2 96 

PD 

Table 15. Accuracy of conditional 
station models. 

M °' = 1 -w 
Model Data N M (percent) 

IC 110 20 82 
RI/SS 23 3 87 

2 IC 110 20 82 
RI/SS 23 3 87 

Conditional Station Selection Model 

1 0.83 0.59 

Table 14. Coefficients of conditional station models. 

Model 1 Model 2 

Standard 
variable Coefficient Error Coefficient 

OVT -0.664 0.180 -0.653 
BT -0.310 0.208 
In-vehicle time -0.184 
oc -0.136 0.066 -0.062 
PD 0.859 0.480 0.833 

Table 16. Marginal mode choice models. 

Variable Model 1 Model 2 Model 3 

OVT -0.083 -0.082 -0.347 
BT 0.137" 
In-vehicle time 0.142" 0.210· 
oc -0 . 189 -0.248 -0.093 
Dl 2.837 
D2 3.638 

Note: Dl and 02 are the dummy variables such that 01 = 0, 
02 = O for automobile mode, 01 = 0, 02 = 1 for walk mode, 
and 01=1, 02 = 0 for bus mode, 
a Incorrect coefficient sign. 

1.42 
0 .28 
0 .36 

Standard 
Error 

0.177 

0.173 
0.094 
0.480 

Estimation of the conditional station model is the first step of the mode-station 
modeling sequence. The coefficients of the two models and other relevant statistical 
information are given in Table 14. 

The values of time implied by the coefficients of model 1 are approximately $3.00 at 
a = 1. 73 for OVT and $1.40 at a = 1.12 for BT. The values of time implied by the coef­
ficients of model 2 are approximately $6.00 at a= 9.94 for OVT and $1.80 at a= 4.20 
for in-vehicle time. The misclassifications of these two models when applied to the 
base and the control data are given in Table 15. 

These two station models appear to be fairly good. Nevertheless, it must be noted 
that the station models only constitute part of the sequential modeling process. The 
access mode models also have to be examined before the validity of this particular 
mode and station decision-making sequence assumption can be determined. 

Marginal Mode Choice Model 

The level-of-service variables describing access to a station by mode were aggre­
gated by the weighted price method. All the models involved incorrect coefficient signs 
(Table 16). The fact that no valid access mode model could be estimated raises doubt 
about the validity of the mode-station decision-making sequence assumption. There­
fore, the marginal mode models as well as the conditional station models cannot be 
applied with confidence to planning problems. 
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Simultaneous Choice Model 

No valid models could be obtained by using the simultaneous model structure. An 
example of the estimated simultaneous models is given below: 

Variable 

OVT 
AT 
BT 
PD 

Coefficient 

-0.0119 
-0.0571 
0.1974 
1.340 

(Note that the coefficient for bus time shows an incorrect sign.) The results tend to 
suggest that the simultaneous model structure is also an invalid traveler decision­
making assumption, 

SUMMARY 

The main purpose of this study was to develop disaggregate choice models of the ac­
cess mode and access station for those travelers who make their work trip by rail. 

The multinomial logit model, which is used in this study, is based on the indepen­
dence of irrelevant alternatives assumption and is capable of dealing with a different 
number of choice alternatives for each of the behavioral units; it is considered to be 
the most suitable model for the situation under investigation. 

The data used for the estimation and evaluation of the various probability models 
were obtained from the Chicago area. 

It is assumed that a person makes the access mode and station choice decisions 
either simultaneously or in the station-mode sequence or the mode-station sequence. 
In the case of the sequential assumption, the joint probability of the access mode and 
station is separated into a conditional probability of one choice given the other choice 
and a marginal probability of the other choice, depending on the particular choice se­
quence assumed. The investigation in this study of the simultaneous model structure 
and the mode-station sequence structure failed to produce choice models with intui­
tively correct coefficient signs. 

The results of the research based on the station-mode sequence revealed some in­
teresting behavioral characteristics of individual travelers when they make their access 
trips. Even though some studies have reported rather high cost elasticities for the 
automobile mode and rather low elasticities for out-of-vehicle and in-vehicle time (2, 
19), it is a common belief that travel demand is insensitive to changes in travel cost 
and pos sibly in-vehicle time, al'though it is quite sensitive to changes in out-of-vehicle 
time (2, 5, 23). It should be noted, however , that the latter are derived from travel de­
mand models, whereas the former are so-called modal-split elasticities (i.e., trip 
frequency decisions were not modeled). 

The results from the access mode model, P(m Is), of the present study indicate that, 
of the travel time (modal-split) elasticities, the automobile time elasticity is the highest 
followed by bus time and out-of-vehicle time elasticities. Surprisingly, the automobile 
operating cost elasticity is the highest of all by a wide margin, and several attempts to 
include automobile ownership costs and bus fare in the models failed to produce plaus­
ible models. Finally, the value of automobile time was estimated at 74 cents/ hour; 
this is in accordance with previously obtained values. 

An income variable was also considered in the estimation of one of the access mode 
models. A very rough income figure, the median income of the traffic zone, was the 
only available income information. It is not known whether this is why the model in 
which this variable was included yielded an implausible model; income information for 
each individual would have been desirable. 

These results indicate that paying for a car trip to a station and spending travel 
time inside an automobile are disliked by travelers as compared to spending travel 
time inside a bus. The relatively low elasticity of out-of-vehicle time (as compared 
to automobile operating cost) suggests, furthermore , that it should not be difficult to 
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convince a traveler to choose access modes such as walking and even the bus for which 
the out-of-vehicle time may constitute a large part of the total price. 

These "discoveries" appear contradictory to the information obtained from previous 
travel demand studies. Nevertheless, it must be realized that those studies considered 
the entire trip, whereas this study deals only with the access part of the trip. These 
two are different in nature, and consequently the behavioral responses of the travelers 
should not be expected to be the same. 

An important consideration in this context is whether access trips can be separated 
from the rest of the journey. This assumption was made in this study, but it is by no 
means the only assumption that can be made. In similar vein, whether automobile 
ownership and location decisions of households should be linked with the work trip de­
cisions must also be asked. This research does not provide answers to such questions, 
of course, but the somewhat counter-intuitive results tend to suggest that automobile 
ownership and location decisions are important in work trip decisions (and vice versa). 

Still, the different behaviors may be intuitively justified. For the entire journey, 
the travel distance between the trip origin (home) and the trip destination (jobsite) is 
generally quite large. Therefore, comfort, privacy, and other advantages offered by 
the automobile mode become important to travelers and thus make their response in­
sensitive to changes in automobile travel time and cost characteristics. Of course, 
the walk mode is usually not considered as one of the available alternatives for such a 
trip. On the other hand, for the access trip, the travel distance between the trip origin 
and the trip destination (train station) is very short. For example the average access 
trip travel distance of the 150 observed travelers in the set of base data is only 1.5 
miles. Clearly, not much comfort or privacy can be derived by using a car for a trip 
of this length. On the contrary, the various inconveniences of using an automobile, 
such as finding a parking space, leaving the car in a parking lot close to home where 
it is not available for use by other members of the family, or having someone else 
drive the traveler to the station, become predominant disadvantages. 

Access station selection models, P(s), were more in keeping with current beliefs 
about travel behaviors: Travelers' choice decisions are most sensitive to out-of­
vehicle time followed by the automobile time, whereas bus time and travel cost vari­
ables failed to enter the model. Also, in the weighted inclusive price station selection 
model, the coefficient of the inclusive price variable is significantly different from 1.0, 
which suggests that travelers do not assign the same weights to the set of transportation 
system attributes when they choose access mode and station. 

In regard to the simultaneous and mode-station sequential models, no conclusive ex­
planation can be given of their failure to obtain plausible choice models. The results 
of this research only give empirical support to such travelers' decision processes in 
which the access mode and station choice is done sequentially-station choice followed 
by mode choice. This is, of course, a tentative suggestion. 

Finally, when the access mode and station selection models were applied to different 
situations they produced good predictive results. 

WHAT HAS BEEN LEARNED 

It has been learned through this research that more detailed information than was 
available on the level of service of the transportation system and on the individuals in 
the sample is required in order to estimate disaggregate choice models effectively. 
Within the extent of this study, for example, the exact location of the trip origin, the 
individual's income, specific information on parking conditions at the stations, and 
most importantly relevant alternatives to the choices actually considered by each in­
dividual behavioral unit should be specifically determined when surveys are taken for 
disaggregate choice modeling. Of specific concern is the automobile mode, which in 
this study is considered a relevant alternative for every traveler. 

The somewhat counter-intuitive results also suggest that there is a clear need to 
relate household location and automobile ownership decisions to choice of (access) mode 
and other (work) trip decisions if truly behavioral models are to result. 

In conclusion, the disaggregate modeling technique and the information obtained 
were quite instructive. Only a small sample of data was required to estimate the 
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models; thus, considerable savings of money and time can result from the use of dis­
aggregate models. However, before disaggregate models can be confidently used in 
transportation planning, their transformation into aggregate travel demand models 
must be accomplished. To date, little work (24) has been done on forecasting aggre­
gate travel demand by means of (transformed) disaggregate models. Of the few ag­
gregation procedures, more empirical studies are warranted. 
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DISCUSSION 
Gerald Kraft, Charles River Associates, Cambridge, Massachusetts 

I want to clarify an issue raised in both papers that leads to serious confusion. Both 
papers contrast simultaneous models with what they call sequential models. Unfortu­
nately, the urban transportation planning models of the generation-distribution-modal 
split-route assignment variety give particular meaning to the issue of simultaneity and 
sequentiality that is not the same as those presented in these papers. Whereas the 
papers address a sequential decision-making process, the mathematical formulations 
used imply no such concept. These formulations are simply a factoring of a joint prob­
ability distribution into the product of a conditional and a marginal distribution. Thus, 
it is a process of estimating probability functions sequentially and does not imply any­
thing about decision-making in any sequence. 

Recursive, the term used by Ben-Akiva, is far more appropriate. Although it is of 
course true that travelers may make sequential decisions, there is no particular reason 
to assume that they do. In this sense Ben-Akiva, arguing for simultaneous structures, 
is quite correct. On the other hand, to assume a joint probability distribution and then 
ask questions about conditional probabilities or marginal probabilities are perfectly 
natural and reasonable. In any event, I would prefer using recursive to sequential to 
avoid any possible ambiguity. 

GENERAL REMARKS 

Both papers are very interesting and appear to provide us with some very useful in­
formation. A puzzle appears when they are regarded together. In effect, Ben-Akiva 
says that the recursive approach to modeling does. not work because there is no a priori 
reason to have the model go in one order, say destination to modal split, rather than 
the other, modal split to destination. He shows that, by changing the order, he obtains 
disparate empirical results. He then argues that a simultaneous estimation not only 
avoids the ambiguity of ordering the conditional distributions to be estimated but also 
is mathematically and statistically feasible for estimation. 
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Liou and Talvitie also look at two alternative recursive structures, one in which 
access mode precedes station selection and the other in the opposite order. They also 
find the results different, as does Ben-Akiva, but, when they attempted a simultaneous 
model, no useful results were obtained. 

Thus, although both papers agree that the two recursive structures give different 
answers, one paper argues that the solution is to use simultaneous estimation and the 
other says that simultaneous modeling produced no useful results. Furthermore, Liou 
and Talvitie argue that the order is important and care should be given to the selection 
of the order. They even suggest that. the order can be determined from the empirical 
results. 

Neither paper really addresses the question of why the authors came out with the re­
sults they did. Neither Ben-Akiva nor Liou and Talvitie tell us why the different order­
ings on the recursion yield substantially different results, nor do they tell us why the 
results obtained by using recursive estimation differ from those that were obtained by 
using simultaneous equations. 

Before going into the possibilities, I should state a basic inconsistency in the Liou­
Talvitie paper that may be the root of at least part of the problem. They assume that 
the station and access mode decision process can be divorced from the selection of the 
basic line-haul mode. In a sense, by assuming such independence they have already 
assumed the appropriateness of the recursive system and may have thus "cooked" the 
results. This may explain in part why their simultaneous model does not work. The 
authors recognize this, but perhaps they do not place enough emphasis on the problem 
in their interpretation of the results using the recursive model. 

In evaluating the reasons for discrepancies between the recursive and simultaneous 
approaches, I see four possibilities. 

1. The theory and assumptions used in constructing the model itself may be in-
adequate. 

2. The specification of a structure may create problems. 
3. The variables used in the model may be inadequate or inappropriate. 
4. The techniques used for estimating the parameters may be inadequate. 

Before I begin to consider these possibilities in turn, I apologize for not having a spe­
cific answer to the confusion, but I hope my discussion can be useful as a guide to seek­
ing the reason. 

MODEL THEORY 

In considering the problems of theory, we must examine probability theory and utility 
theory. In probability theory, the equivalence between simultaneous and recursive es­
timates as defined by the authors appears simple; as I indicated earlier a joint prob­
ability distribution can be expressed as the product of a conditional distribution and a 
marginal distribution. Furthermore, in a multiple decision framework, repeated ap­
plication of this process can be used to develop a chain of probabilities that can be 
modeled. 

In another but similar context, Manheim demonstrated the equivalence of simulta­
neous and sequential or recursive models (12). As for probability theory at this level, 
the joint probability function is independentm the order of recursion. Thus the results 
obtained in the papers are totally inconsistent with the probability theory, which I be­
lieve we all would accept as given. 

On the other hand, the utility theory on which the models are based might be ques­
tioned. This concerns principally the assumptions of separability or additivity in the 
utility functions. (These assumptions are too technical to take up here, but they are 
extremely powerful tools for simplifying the development of models and for enhancing 
the power of their application.) They may, nevertheless, do violence to reality with 
the consequence that they lead to the kinds of results presented here. This suggests 
some merit in further investigation but it is not likely that this is the most fruitful first 
step. 
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MODEL STRUCTURE 

Have the theoretical considerations of probability and utility been applied properly 
in development of a specific structure for the model? The model development leading 
to the logit models used by the authors and in other work appears to be quite sound. 
As a fairly general form for an ogive it would appear to be very robust. The specific 
forms of the variables entering the model, however, may not be entirely appropriate. 
There may be interdependencies, for example, that are not taken into full account in 
the types of linear functions that have been explored. 

Whereas the logit model has substantial advantages because of its ease in manipula­
tion and ease with which new alternative choices are added, it may be too simplified 
and we may have to forgo some of its benefits. We want to be extremely careful before 
discarding the model, however, because the advantages seem to be so overwhelming. 
In addition to the ease of adding alternatives to modes, destinations, and the like when 
the logit model is used, we must also consider possible future developments to add 
choices of an intermediate-run nature such as automobile ownership or a long-run na­
ture such as the location of residence or place of work. The axiom of independence of 
irrelevant alternatives may be a mixed blessing, but before throwing it out we should 
be sure that we are unable to make the judicious decisions about alternatives that would 
avoid conflict between the axiom and reality. That assumes, of course, that we can 
find no similarly endowed alternative. 

VARIABLE SELECTION 

The variable selection and definition used in the models also may lead to the results 
obtained. Leaving out important variables or introducing spurious ones may have seri­
ous ramifications for model misspecification. It is well known that model misspecifica­
tion can lead to peculiar results; all model estimation may suffer some from this prob­
lem. One problem is the attribution of effects to the wrong variables. In the case at 
hand the problem may be more subtle and serious. In particular, it seems that Liou 
and Talvitie's failure to distinguish between automobile driver and automobile passen­
ger trips seriously compounds the problem. Also, their use of aggregate zonal income 
may explain some of the inconsistencies. This is suggested, for example, by the very 
poor statistical results obtained for their socioeconomic variable, the ratio of total 
cost to median income. 

The idea of a combined price or cost variable with income is an interesting one; it 
was also used by Ben-Akiva in his dissertation (2). The inability of such a variable to 
pick up separate price and income effects, however, is a serious weakness (although 
there may very well be a relationship between the level of income and the size of the 
price effect). 

An additional problem may arise in the Liou and Talvitie study because no variable 
i s provided for a difference in rail fares between the alternative stations. If there is 
no difference, they should tell us so, but one might suppose that such a difference (at 
least at the margin) would have an effect on station choice. 

It seems that a fruitful avenue of exploration to explain the differences in results as 
we change the direction of recursion and between recursive and simultaneous estima­
tion approaches might lie in better variable selection, which may isolate effects that 
are currently being related improperly. 

ESTIMATION TECHNIQUES 

The last area that may lead to discrepancies between recursive approaches and be­
tween the recursive approach and the simultaneous approach is in the estimation tech­
niques themselves. The idea of an inclusive price developed by Charles River Asso­
ciates (4) was to simplify the estimation process. The results obtained through the 
use of such a variable were extremely encouraging. In terms of parameter estimates 
obtained, the inclusive price was statistically quite significant, and the weight seemed 
to be reasonable. Ben-Akiva's dissertation (2) reaffirmed those characteristics. The 
use of such a function, if it is consistent with the theory, is extremely beneficial. It 
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reduces the number of variables that must be considered at any single stage of the es­
timation and may make an otherwise intractable estimation problem relatively simple. 
Nevertheless, it may be that the process using alt inclusive price creates estimation 
problems. 

Ben-Akiva informs us that the estimation times for the recursive and simultaneous 
models were not very different when input-output differences were considered, the 
simultaneous being somewhat longer, but not significantly so. On the other hand, when 
the computing time itself is considered, the simultaneous model took nearly four times 
as long as the recursive model. With larger samples, more variables, and more 
stages of the recursion to be processed, such as trip frequency and time of day, the 
differences in computation time between methods may be substantial. Furthermore, 
estimating equations with large numbers of variables is an extremely difficult procedure. 
I ani not fully convinced that we should discard recursive estimation in favor of simul­
taneous estimation. Rather, we should explore further the use of the inclusive price, 
including the possible introduction of constraints in the estimation process that will 
ensure consistency between the different recursion orders and between recursive and 
simultaneous estimation techniques. 

DECIDING AMONG THE MODELS 

An important question remaining is, How can we decide which of the models are 
good? The tests suggested by Liou and Talvitie seem to be good ones. They suggest 
we look at statistical significance, reasonableness, and application of the model to a 
new set of data to compare the estimated and observed values. I would put the reason­
ableness test first and insist that the results agree with theory and that parameter 
values have correct signs and be of reasonable magnitude with respect to a priori con­
siderations. statistical significance without reasonableness produces very questionable 
results. 

Application of the three tests suggested may help us to reject one model over another; 
however, it does not tell us what is wrong with the rejected model nor indeed what is 
possibly wrong with a model that is accepted. Unfortunately, we cannot pick models in 
any general way by using these techniques. We can only compare model results with 
results in the real world. Even here, we must be extremely cautious because theory 
is all we have. If the results of statistical estimation are inconsistent with our theory, 
we may wish to explore the theory itself or, alternatively, go back to the entire esti­
mation process to locate the difficulty. Indeed, the results reported in both papers ap­
pear to have problems with statistical significance. 

USING THE MODELS 

In closing, there are two problems that need a great deal more attention before we 
will be able to use disaggregate models generally in the planning process. Both papers 
indicate that further research is essential to develop these models for general applica­
tion. This is not to say that we have not learned a great deal through the development 
and estimation of the models to date. We are making extraordinary advances in model 
development for urban transportation planning purposes, but it is important that we ex­
plore the causes for the problems cited in these papers. 

Both authors make brief mention of the aggregation problem in the use of disaggre­
gate models. The problems are not trivial. They cannot be dealt with by simple hand­
waving and suggesting that aggregation can be accomplished by estimation followed by 
addition of the results for many individuals. Some basic requirement is called for to 
examine the possibility of developing aggregate models from the disaggregate or alter­
natively learning how to use parameter estimates from the disaggregate models for 
broader, more aggregative decision-making. Indeed, this has been the genesis of 
these models where Lisco, Thomas, Stopher, and others attempted to measure val­
ues of time and where others have been concerned with estimates of price and service 
level elasticities. 

The fundamental problem confronting us is, "Can we develop a model structure that 
does not do violence to our theories or to reality yet is both mathematically and sta­
tistically tractable ?" 
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Peter R. stopher, Associate Professor of Civil Engineering, Northwestern University 

The impression that is gained from reading these two papers is that the authors draw 
diametrically opposing conclusions. Ben- Akiva claims that a simultaneous model of 
destination and mode choices for a shopping trip can be constructed and is to be pre­
ferred over a recursive procedure comprising two models for destination and mode 
choices. In contrast, Liou and Talvitie are unable to construct a satisfactory simul­
taneous model of station and access mode choices for the access segment of a work 
trip and conclude that these choices must be modeled recursively. 

In my opinion, neither of these conclusions is sufficiently supported by the papers, 
and I must conclude that there is no basis for accepting either conclusion at this time. 

These papers may be discussed from a number of viewpoints. I have elected to 
consider the statistical evidence supplied and will leave it to other discussants to con­
sider matters of philosophy, structure, and the like. 

First, both papers are lamentably deficient in the reporting of statistical measures 
of assessment and comparisons for the models. Hence, many of my comments are in 
the form of requests for more information. Ben-Akiva bases his conclusions on the 
fact that the coefficients of identical variables are numerically different in the simul­
taneous model from those in the recursive model. However, he does not establish 
whether these differences are statistically significant. Liou and Talvitie dismiss the 
simultaneous choice model on the grounds of an incorrect sign for one variable in each 
simultaneous model built, but do not establish whether the incorrectly signed coefficient 
is statistically significant from zero. Further testing of differences between the models 
is largely left alone because of the incorrectly signed coefficient. The question of sta­
tistical differences between the other coefficients remains open. 

Both papers make model comparisons on the basis of derived travel time values. 
These values are obtained by computing the ratio of the coefficients of travel time and 
travel cost. Both papers report a standard deviation for these computed travel time 
values, but neither paper r eports on the method us ed for computing this standard de­
viation. Correctly, this is determined (25) as 

vfa1) = a~v<a1) + a~V(a2) - 2a1a2 cov(a1, a2) 
\a2 a2 

where 

a1 and a2 = coefficients whose ratio is being determined, 
V( ) =variance of, and 

cov( ) = covariance of. 

If both E(a1) and E(a2) are nonzero, then this variance has a distribution. However, 
this distribution is likely to be seriously skewed (26) and will not permit the standard 
deviation to be used as a means of establishing confidence limits in the normal manner. 
Hence, the reporting of values of travel time and their standard deviations provides 
little or no information for comparison between models. Based on the actual values 
derived by the authors, and the untenable assumption that the ratio is normally dis­
tributed, none of the values of time reported in either paper is significantly different 
from zero and hence each other. Thus, I must dispute the statement by Ben-Akiva 
that "Estimated values of time from the simultaneous model are greater than those 
estimated from a mode choice model (given destination) and smaller than those esti­
mated from a destination choice model (given mode)." 

Neither of the two papers reports the values of one or more constants for the 
multiple-choice models. However, the estimation of one or more constants permits 
coefficient estimates to be made with minimal bias and also allows overall goodness­
of-fit measures to be determined. In binary choice models, the constant determines 
the position of the logit curve in relation to the values of the fitted linear function. It 
serves an identical pur pose (in more dimensions) for a multiple-choice logit model. 
In conceptual terms, the constant may be considered as providing some of the informa­
tion lost by an improperly specified model (27). The lack of a constant therefore pre-



57 

supposes a fully specified model (i.e., a constant equal to zero) and also changes sig­
nificantly the meaning of the chi-square test of model fit. 

A further problem with both papers concerns the data base for the choices. In both 
cases, it appears that the choice sets have been assigned to the individuals in the data 
set and the alternative options have been provided with engineering measures of the 
relevant variables. Many previous studies have shown this to be behaviorally incorrect. 
First, it is necessary to define the perceived choice set for each individual and, second, 
it is the perceived attributes of the alternatives that determine behavior. Because 
neither of these sets of perceptions was determined, the data bases of both studies 
must be considered suspect. The computation of models based on relative measured 
attributes for an arbitrarily defined set of potential alternatives provides no behavioral 
information and consigns the exercises to academic esoterica. 

Finally, it should be noted that, in Ben-Akiva's paper, the coefficients of the vari­
ables relating to characterization of alternative destinations are generally not signifi­
cantly different from zero. This is indicated by the fact that the reported standard 
errors of the coefficients are generally more than half the value of the coefficients for 
the variables EMPd and DCBDd. However, the coefficient of each variable is a function 
of the variances and covariances of all variables used in the model, including those that 
yield nonsignificant coefficients. The presence of these variables in the simultaneous 
model may be the sole cause for the difference in the coefficient values from the mode 
choice model, where the destination variables do not appear. Similarly, the destination 
choice model has nonsignificant coefficients for the destination variables, which makes 
comparisons between the recursive and simultaneous models trivial. 

In summary, neither of the conclusions drawn by these papers can be accepted un­
less the authors can provide much more evidence. Given the questions raised here 
concerning the data base and the significance of the destination descriptors in Ben­
Akiva' s models, it is doubtful whether the conclusions can be accepted under any cir­
cumstances. The primary contributions of the two papers are, first, to highlight the 
problem of model structure in disaggregate, behavioral, travel demand models and, 
second, to demonstrate that it is methodologically possible to formulate simultaneous 
models within this approach. The failure of both authors to achieve statistically and 
conceptually acceptable simultaneous models is more likely to be a function of the data 
available than to be a major methodological problem. No matter how convincing the 
statistical evidence may be, the final test of recursive models versus simultaneous 
models is their comparative predictive accuracy and ease of operation. Neither paper 
addresses these questions. Hence, I conclude that the matter of the preferred structure 
of travel demand models remains a matter for future research, preferably the near 
future. 
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David T. Hartgen, Planning and Research Bureau, 
New York state Department of Transportation 

These papers represent important research in disaggregate demand modeling and 
its application to transportation planning. The papers emphasize both the theoretical 
structure of these tools and model calibration using conventional travel data. 

The previous discussions have concentrated on the differences in the findings of 
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these studies, particularly the authors' results on the sequentiality or simultaneity of 
model structures. However, I am impressed more with the similarities between the 
authors' approaches and their general conclusions than with the differences in their 
empirical findings. 

1. Both authors investigate in detail whether sequential or simultaneous structures 
are more valid for modeling travel behavior and rely heavily on multinomial disaggre­
gate techniques for studying these problems. 

2. Both authors conclude, generally speaking, that choice of a model has consider­
able influence over the coefficients that will be obtained and very likely the conclusions 
that may be drawn based on such models. Therefore, both authors call for great care 
in the selection of models and in their use. 

3. With respect to data bases, both authors suggest the use of very small data sets, 
concentrating on the detail within records rather than the collection of large data bases. 
It is interesting to note that both research efforts were conducted with less then 150 
observations, extremely small by current standards. 

4. Both authors mention the aggregation problem as one that needs to be addressed 
as these models are applied in transportation planning. 

5. Finally, both authors suggest a variety of detailed applications as a key element 
of further research. 

The differences in the specific findings of these studies only serve to emphasize 
the authors' own caveats concerning the models and their use. We are dealing here 
with two very different kinds of problems, as the authors have pointed out . In Ben­
Akiva' s case a commonly studied travel component (off-peak shopping t rips) is inves ­
tigated within the context of several prior travel decisions (purpose and time of day) . 
In Liou and Talvitie's case, a rather specialized problem in transportation planning 
(rail commuter trips) is further broken down for study into only the access portion. 
Given such differences, it is not surprising that the empirical findings of these studies 
are different. In fact, I would have been surprised had they been identical, given the 
great differences in the contexts being studied. 

Of particular interest are the implications in this research for use of these tools in 
transportation planning. It seems that a number of events must occur before the tools 
described here will be included in the general repertoire of transportation planning 
procedures. The first of these is that the profession must know a great deal more 
about the kinds of transportation problems to which such tools can be logically applied. 
This is particularly true with complicated choice combinations, including purpose, time 
of day, route, mode, and destination choices. There are not many cases in which a 
planner would want to model that entire choice sequence as one set of simultaneous 
choices. Ben-Akiva' s results, it seems, obtain partially because he chooses a prob­
lem that by its nature lends itself easily to the assumptions of the Luce model. On the 
other hand, Liou and Talvitie' s findings probably stem from the fact that they study a 
problem drawn from the context of a broader but integral choice decision. It is doubt­
ful whether either of these authors would have obtained the same results had they ex­
tended their choice contexts to, say, trip purpose choices in Ben-Akiva's case or 
primary mode choices in Liou and Talvitie's case. The models constructed by these 
authors have only been demonstrated and tested in problems involving logically paired 
choices and have not been extended to more complicated sequences. 

This is a situation the profession will have to live with for some time. It appears 
unreasonable to expect that the simultaneous models suggested by Ben-Akiva will im­
mediately be applicable to a broad range of intricate transportation choices. There 
are certainly choice contexts to which these models can be applied, but perhaps first 
these tools should be embedded within the overall multichoice transportation planning 
procedure currently in common use, perhaps replacing one or more of those steps. 

This phase is probably required for practical reasons as well. Except for a few in­
dividuals primarily in the academic and consulting environments, transportation plan­
ners are not, generally speaking, well acquainted with the underlying theory and appli­
cation of disaggregate techniques. By and large, the profession consists of individuals 
trained in conventional UTPS procedures. There is a general dissatisfaction with the 
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conventional UTPS approach, but the disaggregate techniques are not perceived to hold 
the answer to these problems, at least not yet. What is required now are demonstra­
tions of the application and potential savings of these procedures, with particular at­
tention to computer processing and institutional constraints to model implementation. 
It is simply not an easy job to bring on line a disaggregate model and to make a case 
in an agency for its use, as opposed to a currently used conventional procedure. Par­
allel use of both tools is more feasible in the short run. In the interim, it seems prob­
able that these procedures will remain relatively unused until the profession is more 
convinced of their utility. 

Of particular concern here is the relevance of models to the profession in general. 
Most transportation planners are much more concerned with the usefulness of models 
to their work than they are with the theoretical niceties of their structure. If models 
do not have the right policy variables or cannot be used to address questions at issue 
today, then whether they are constructed by using disaggregate techniques or conven­
tional aggregate procedures will be equally irrelevant, for in neither case will the 
models be used. Therefore I suggest that the most important step we can take to en­
sure that the results of research such as this will be used is to ensure that our models 
are capable of addressing relevant policy questions. This means not just the study of 
demand model structures, although that is important, but also the specification of ap­
propriate variables and identification of particular problem contexts in which those var­
iables can be used to predict behavior and to estimate impact. How many of us today 
can say we have on-line demand models capable of addressing questions related to the 
energy crisis, car pooling, pricing schemes, fuel policies, and parking modal inter­
face? I doubt that many of us can. 

AUTHORS' CLOSURE 
Moshe Ben-Akiva 

The discussions by Kraft, stopher, and Hartgen deal with three important aspects 
of the proposed travel demand models: model structure and estimation procedure, em­
pirical evidence, and applicability to transportation planning. Before discussing these 
topics, I will briefly restate my line of argument and in particular the precise purpose 
of the empirical study. 

RESEARCH STRATEGY 

The research begins with the assumption (which was not questioned by any of the 
discussants) that the choices of frequency, destination, mode, and time of day for a 
specific trip purpose (e.g., shopping) are elements in a single decision. In other words, 
it is assumed that a potential traveler compares alternative trips and therefore jointly 
selects a frequency, destination, mode, and time of day for a given travel purpose. 
Any sequence assumed for choices that are elements of a single decision is arbitrary. 
For some decisions, a conditional decision-making process implying a specific sequence 
of choices may be a realistic assumption. However, a joint decision-making assump­
tion is more realistic for nonwork trips such as shopping trips. 

Alternative assumptions about the decision-making process or about the causal re­
lationships among choices result in different model specifications. A simultaneous 
structure is used to represent jointly determined choices, whereas a recursive struc­
ture is used to represent a specific choice sequence. In addition to differences in their 
mathematical formulations, the alternative models are estimated differently. In a 
simultaneous structure a model for the joint probability is estimated directly, whereas 
models for the conditional and marginal probabilities in a recursive structure are es­
timated separately. 

Based on a priori reasoning, the simultaneous model is superior to a recursive 
model because it is a more realistic representation of the behavioral process. We do 
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not expect these different models to produce identical estimation results. The value 
of empirical evidence is in determining the consequence or practical significance of the 
differences between the models. The differences are in the estimation results and po­
tentially also in the ease and cost of estimation and application. 

The empirical study that was conducted and reported in the paper was therefore not 
designed to test which model is better. Rather, it was designed to determine the feasi­
bility of the simultaneous model and the practical significance of the differences in the 
estimation results between the alternative models. The empirical study indicated that 
a simultaneous model is feasible and that the differences in parameter estimates are of 
significant practical importance. Based on these results, it was recommended that 
travel demand models be developed by using the simultaneous model structure. 

Since completion of this study, several other empirical studies have strengthened 
these conclusions (28, 30, 34). The results of Liou and Talvitie also support the con­
clusions that the esnmanon of a simultaneous model is feasible and that the alternative 
models produce differences in estimation results that are of practical importance. (The 
fact that the estimation results of their simultaneous model were not satisfactory can 
be attributed to a poor specification.) 

MODEL STRUCTURE AND ESTIMATION PROCEDURE 

Kraft states that models formulated with a recursive (or conditional) structure do 
not imply a sequential (or conditional) decision-making process but "are simply a fac..., 
toring of a joint probability distribution into the product of a conditional and a marginal 
distribution." Furthermore, the fact that alternative model structures produced dif­
ferent estimation results leads Kraft to conclude that the results obtained are incon­
sistent with probability theory. 

There are no inconsistencies between the results and probability theory. The dif­
ferences between the simultaneous and the recursive models are the direct result of 
different mathematical formulations and different estimation procedures. 

Any given model, whether simultaneous or recursive, can be expressed mathemat­
ically as a joint probability or as a sequence of marginal and conditional probabilities. 
However, the mathematical expression for a joint probability derived from a recursive 
model will, in general, be different from the formulation of the joint probability in a 
simultaneous model. Likewise, marginal probability derived from a joint model will 
in general be different from its specification in a recursive model. The reason for 
these differences is the need to introduce additional assumptions in a recursive model 
in order to formulate composite variables. This is the basic difference between simul­
taneous and recursive structures. An additional behavioral assumption of a sequence 
of choice is embedded within a composition rule. Thus, the two structures are mathe­
matically different, and we should not expect identical results. 

This is illustrated by using the logit model and the example of mode and destination 
choice as in my paper. We can estimate a single logit model that explains directly the 
joint probability of shopping destination and mode choice as follows: 

eudm 
p(d, m :DM) = ------=-=u­L e d·m· 

d'm't:DM 

(13) 

This model treats the choices of mode and destination jointly (i.e., simultaneously), 
does not require any sequence assumptions, and allows for a realistic representation 
of choice between complete alternatives (e.g., shopping trip to the CBD by bus versus 
a car trip to a suburban shopping center). 

Using the logit model for each choice separately in one specific sequence, we es­
timate the following two models: 

(14) 
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(15) 

The basic difficulty with a recursive structure is the representation of variables 
that vary across more than one choice in the utility function of the marginal probability. 
Travel time, for example, varies between mode and destination combinations. There­
fore, this variable enters directly into the joint utility Udm in Eq. 13 and the conditional 
utility Um\d in Eq. 15, but it cannot be directly represented in the marginal utility Ud in 
Eq. 14 because the mode is indeterminate. Denoting this variable as Xdm, for a joint 
model we can write the following [for simplicity other variables in the utility functions 
are not explicitly included (~, ch. VI)]: 

(16) 

where the travel time variable, for example, enters directly the utility function. For 
the sequential model, we can write the conditional utility as 

(17) 

and the marginal utility as 

where Xd is assumed to represent the values of Xdm by all alternative modes. Thus, 

where g( ) is some composition rule and Xd is a composite variable of Xdm across modes. 
An example of such a definition is 

Xd = 2:: Xdm X P(m:Mi) 

mEMd 

(20) 

This is the rule that was used in the shopping model estimated by CRA (4) . It im\)lies 
a sequence assumption, and it requires that a lower level conditional prObability (to 
compute these composite variables) be estimated before a higher level marginal prob­
ability can be estimated or predicted. 

The assumption implied for the variable of travel time, for example, is that des­
tination choice is based on expected travel time across modes. This means that the 
actual choice of mode is indeterminate when the destination choice is made; it is as­
sumed that destination is chosen first, and then conditional on the destination alterna­
tive chosen a mode is chosen. 

Thus, modeling a set of choices, which are realistically assumed to be made jointly, 
in a recursive structure with composite variables will result in errors due to model 
mis specifications. 

The difference in estimation procedures between the simultaneous and the recursive 
structures also contributes to differences in the results. The differences can be at­
tributed to both efficiency issues and specification errors. Consider a simultaneous 
model such as the one for the joint probability of mode and destination in Eq. 13. We 
can mathematically derive the expression for any conditional or marginal probability. 
Therefore, although the model is specified as simultaneous we can estimate the model 
coefficients in two ways. We can either estimate the joint probability directly or es­
timate any sequence of marginal and conditional probabilities, say P(d) and P(m \ d). 
What are the differences between these two estimation procedures? [The answer to 
this question is discussed in detail by Ben-Akiva (!,ch. IV).J 
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First, the estimation results obtained by the direct estimation of the joint probability 
are more efficient than those obtained for the marginal and conditional probabilities. 
This is because all the data are used to estimate the coefficients appearing in P(m \d) 
in the first case, whereas only the data on alternative modes to the chosen destination 
are used in the second case to estimate the same coefficients. In addition, the coef­
ficients estimated for the conditional probability are used to create the composite vari­
ables used in the estimation of the marginal probability. Thus, there is also a propa­
gation of errors in a sequential estimation, where the randomness in lower stage es­
timates shows up as measurement errors in the higher stage models. Thus, in the 
absence of specification errors, the difference in the estimation results can be ex­
plained by random variation. The direct estimation of the joint probability provides 
the most reliable estimates. 

Second, the differences between the two estimation procedures are also attributed 
to specification errors. Specification errors will affect both estimation procedures. 
Because the effect of the error on the joint probability estimation will be different from 
that on a conditional and a marginal probability estimation, it contributes to the dif­
ferences that will be observed between the two procedures. A more careful selection 
of variables may reduce the specification errors and therefore reduce the differ ences 
between the estimation results of the joint and conditional probabilities. However, 
even if the model is fully specified, the differences between simultaneous and recursive 
models that result from use of composite variables in a recursive structure will still 
be present. 

To overcome these difficulties, Kraft suggests that constraints be included in the 
estimation process that will ensure consistency between different sequences. This 
suggestion is implemented in the direct estimation of the joint probability of a simul­
taneous model. 

The logical answer to Kraft's question, Can we develop a model structure that does 
not do violence to our theories or to reality yet is both mathematically and statistically 
tractable? is the simultaneous model recommended in my paper. If we consider a 
wider range of travel-related choices, such as employment location, automobile owner­
ship, and residential location in addition to short-run choices, the appropriate model 
structure may be termed block recursive. In this structure, the blocks of long-run 
and short-run choices are recursive with respect to each other. However, within 
each block the choices are made jointly and modeled in a simultaneous structure. 

EMPIRICAL EVIDENCE 

The essence of Stopher's discussion is that the conclusions are not supported by the 
supplied statistical evidence. However, as noted earlier, my conclusions are not based 
on hypothesis testing or solely on comparisons of goodness-of-fit measures. From a 
theoretical point of view the simultaneous model is superior to the recursive model. 
The empirical evidence is used to demonstrate the feasibility of the simultaneous 
model and to determine the practical significance of the differences that we expect a 
priori. 

Stopher states that I did not establish that the differences of the estimates of the re­
cursive and the simultaneous models are statistically significant. (It is not clear to 
me what specific statistical test can be used for this purpose because the models have 
different nonlinear mathematical formulations. The goodness-of-fit measures of the 
different models are almost identical.) Suppose for the moment that the differences 
are not statistically significant at a reasonable significance level. Should this be a 
reason to revise my conclusions? One knows a priori that there are differences due 
to different mathematical formulations and estimation procedures; therefore, it can be 
concluded that the lack of significant statistical differences is due to the small sample 
size . Furthermore , the coefficient estimates of the simultaneous model are more re­
liable because of the direct estimation of the joint pr obability. Inasmuch as a simul­
taneous model does not cost much more to estimate a nd apply than a recursive model, 
which has been indicated, the simultaneous model structure -should be recommended. 

Stopher further questions the empirical evidence due to the use of so-called engi-
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neering rather than perceived choice sets and attribute values. He goes so far as to 
say that using engineering data in model estimation "provides no behavioral information 
and consigns the exercises to academic esoterica." Alternatively, the use of perceived 
values can be considered the academic esoterica, inasmuch as the models are intended 
to provide decision-makers with forecasts of the impacts of alternative policies or plans. 
A prerequisite for the use of a model estimated with perceived (or reported) values for 
forecasting is a set of relationships between perceived and engineering values. Further­
more, perceptions are only intermediate variables formed by individuals on the basis 
of physical objects and characteristics that are measured by the engineering values. 
Thus, a model that uses engineering estimates explains directly the individual's re­
action to physical objects and characteristics, circumventing the need to deal with the 
intermediate variables of perceptions. It is clear, however, that the model functional 
form and parameters embody both the formation of perceptions and the behavioral re­
sponse to these perceptions. This rationale is the basis for a large body of econometric 
literature, and I am not aware of any studies that have shown it to be "behaviorally in­
correct" as Stopher claims. 

I agree with Stopher's statement that a lack of constants in a choice model specifica­
tion presupposes a fully specified model. Constants can be excluded from the model 
only if it can be shown that they have no explanatory power; i.e., the constants are equal 
to zero. (The specification used by Liou and Talvitie did not include constants. This 
may explain their unsatisfactory estimation results for the simultaneous model.) This 
was not done in this study. The constants included are a mode-specific constant, DA, 
and a CBD destination constant, DCBD. It does not make sense to use a constant for 
every possible destination because there are so many. 

In summary, the conclusion that the simultaneous structure is preferred does not 
depend on additional statistical evidence. Future effort should be directed at the steps 
necessary to make fully specified simultaneous travel demand models available for ap­
plication rather than at further comparisons of alternative model structures. 

APPLICABILITY TO TRANSPORTATION PLANNING 

The applicability of the proposed models to transportation planning, the essential 
issue of research in travel demand modeling, is the focus of Hartgen' s discussion. I 
agree with Hartgen's conclusion that "what is required now are demonstrations of the 
application and potential savings of these procedures, with particular attention to com­
puter processing and institutional constraints to model implementation." Furthermore, 
the overall direction for the development of travel demand models should be toward op­
erational models that are more reliable in a forecasting context. 

Several studies that have been completed since my paper was written have further 
shown the practicality of estimating simultaneous choice models in situations with more 
than two dimensions of choice and with a very large number of alternatives and obser­
vations. First, the simultaneous model of destination and mode for the shopping trip 
has been extended to include frequency as well in the simultaneous structure (29). A 
similar simultaneous model was also applied successfully with a data set fromllie 
Netherlands (30). Simultaneous disaggregate choice models have also been successfully 
applied to the automobile ownership and work mode choices (31) and are currently being 
applied to the entire set of long-run locational and automobileownership choices (33). 

From the point of view of aggregate forecasting the use of simultaneous models 
places no additional burden on data requirements and computational efforts. Two on­
going research efforts at M.I. T. focus on the application of simultaneous travel demand 
models to aggregate forecasting. The first study is investigating alternative procedures 
of using these models for aggregate predictions (32). The second study (sponsored by 
DOT University Grant Research Program) is implementing these models and procedures 
for a transportation planning case study. 
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Peter S. Liou and Antti P . Talvitie 

The issues raised by the discussants are well taken, and perhaps we can clarify 
some of the questions that have been brought up. 

It is true that mathematically the joint probability should have the same value as the 
pr oduct of a conditional probability and a margim\l probability and be indeJ?endent of any 
specific mathematical for mulation; e .g ., P (s, m) = P(s Im) x P(m) = P (m Is) x P(s). 
However, the conditional probability, by definition, means the probability of one event 
taking place given that the other event has already taken place. Therefore, from the 
behavioral viewpoint, decisions of the access mode and station choices may be ap­
proached from three directions: the simultaneous decision-making process and the 
two ·sequential decision-making processes. It appears in this study that empirically 
it is possible to estimate choice models based on the station-mode sequential assump­
tion. Further research is necessary to determine whether the joint probabilities would 
indeed be the same had it been possible to estimate choice models based on the other 
sequential structure or based on the simultaneous modeling structure. 

With regard to the modeling aspect of this study, the importance of including one or 
more constants in the utility function was investigated. In fact, in the various access 
mode and station models, mode-specific dummy variables were included to indicate 
the access mode with which the in-vehicle time was associated. Nevertheless, all the 
models estimated in this fashion involved (significant) coefficients with incorrect signs. 
One such model is in Table 16 (model 3). 

Another point concerning the modeling aspect is the access mode alternatives. Al­
though it was observed in the survey whether a traveler drove or was driven to a sta­
tion, the detail of the data did not permit separating these two modes. Consequently, 
the automobile mode was viewed as a single mode and the value of each level-of-service 
variable associated with the automobile mode was obtained by averaging the values by 
automobile-driver mode and automobile-passenger mode (22). 

In formulation of the station selection models, differences in train fare among alter­
native stations were not included because the alternative stations were generally adja­
cent to each other and were located within the same fare zones. 

With regard to the model evaluation aspect of this study, two points need to be men­
tioned. As reported in the paper, no valid models could be obtained by using the simul­
taneous model structure. The estimated models were considered invalid on the basis 
of incorrect coefficient signs. The coefficients with wrong signs were statistically 
significant; therefore, further testing between the models was not carried out. For 
the simultaneous model, for example, the standar!i error of the bus time variable is 
0.0427, whereas the variable coefficient is 0.1974. The second point concerns the 
standard error of the implied value of time. The variances of the implied values of 
time were determined in the same way as suggested in one of the discussions (19). It 
was not known, however, whether their distributions were normal or skewed. -

Another important aspect discussed concerns the applicability of the multinomial 
logit modeling technique to transportation planning and forecasting. This is a laudable 
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goal for transportation research. However, it seems that the objective is not only to 
replace the existing UTPS package with a new package but to replace it with a better 
and more valid modeling system or concept. Therefore, it ought to be realized that 
transportation planning should be done on the basis of methodology and assumptions 
that are consistent with travel choice behavior and consumer theory, especially when 
such planning involves both short-range predictions and long-range projections ex­
tending 20 years into the future. This would require a full and extended knowledge and 
understanding of the extent and limitations of this and other modeling techniques. 

In closing, we would like to emphasize that formulation of the access mode and sta­
tion choice models in this study was based on the assumption that the modeling of the 
access trip can be separated from the rest of the journey. Further research is neces­
sary to determine whether this consideration is proper. On the other hand, the be­
havioral decision-making process involved in making a trip is so complex that struc­
turing a single simultaneous model to include all the trip choices such as purpose and 
household location on the one hand and trip frequency, time of day, trip destination, 
travel mode, and route on the other is clearly not advisable, if not impossible. Some 
assumptions have to be made to separate the various trip choices and thus simplify the 
modeling process. This study only explores one of the many such assumptions that 
could be made. 

Finally, it is stressed in all the discussions that further research in this area is 
warranted. As pointed out, knowledge of the relevant alternatives as perceived by in­
dividual travelers and specific socioeconomic information (e.g. , individual income, 
hous ehold expendable income) are impor tant in formulating behavioral models. Un­
fortunately, these types of information were not available for this study. Furthermore, 
the validity and the effects of a number of assumptions that are essential for disaggre­
gate multinomial modeling such as the separability assumption and of course the axiom 
of independence of irrelevant alternatives should be investigated in the near future. 
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THE NATURE OF TRAVEL DECISION-MAKING 
Reid H. Ewing, Department of City and Regional Planning, Harvard University 

Travel decision-making is described in behavioral terms, and an alterna­
tive to conventional travel forecasting is suggested. Two issues are con­
sidered. The first is the order of travel decision-making. The second is 
the interaction of travel decisions. This paper defines the order of travel 
decision-making with expected utility theory, and it describes the inter­
action of travel decisions withdynamic programming. The resultingtravel 
model is based on theories of decision-making and is unique in this respect. 

• TRANSPORTATION planning has been dominated by engineering ::ind economics 
throughout its brief history. As a result, conventional travel forecasting neglects the 
human element in intraurban trip-making. It is possible to improve travel forecasting 
by first defining the nature of travel decision-making and then applying the result to 
travel demand modeling. That is the purpose of this study. 

Two issues are addressed: In what order are travel decisions made, and in what 
way do travel decisions interact? The literature on decision-making under uncertainty 
provides an answer to the first question. And the literature on dynamic decision­
making provides an answer to the second. These answers lay the foundation for a unique 
travel demand model based on current theories of human behavior. This model is 
proposed as a practical alternative to existing travel demand models. 

THE APPEAL OF SEQUENTIAL TRAVEL MODELS 

In a recent paper, Brand (4) described alternative methods of travel demand model­
ing. His alternatives included sequential and simultaneous models. This paper is 
limited to sequential travel models for two reasons. First, they are more efficient 
than simultaneous models because the number of travel options (each of which must be 
evaluated) increases multiplicatively when decisions are combined. Two departure 
times for each of two modes, each with 10 alternative routes to 10 destinations, 
translate into 400 (2 x 2 x 10 x 10) travel options for each origin in a simultaneous 
travel model. With literally hundreds of origins and additional times, modes, routes, 
and destinations, simultaneous travel demand models become unwieldy. Second, travel 
decisions are apt to be made sequentially rather than simultaneously. The multitude 
of options available to travelers forces them to simplify the decision-making process. 
They do this by making sequential decisions, thereby greatly reducing the number of 
travel options they must consider. Just as trave~ demand is modeled sequentially in 
response to the limitations of the digital computer, so may travelers simplify the 
decision-making process in response to their own limitations. Arguments of this 
nature are persuasive enough to justify the present emphasis on sequential travel 
models. Simultaneous travel models and the empirical choice between simultaneous 
and sequential models will be the subject of future research. 

EXPECTED UTILITY THEORY APPLIED TO TRAVEL DECISION-MAKING 

Conventional travel forecasting assumes that travelers choose a time of departure, 
a destination, a mode, and a route in that order. In some travel models, the choice of 
mode precedes the choice of destination, but the order is always predefined and in­
variant. This can be criticized on two counts. First, the conventional order is based 
on neither theory nor observation. It would certainly be fortunate if the conventional 
order proved to be correct. Second, it is likely that the order of travel decision­
making depends on the available alternatives and thus varies with the situation. Any 
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model that assumes a fixed order of travel decisfpn-ti:iaking cannot consistently re-
produce the decision-making process. The following discussion is motivated by these 
concerns. 

The order of travel decision-making has been ignored in the literature with the ex­
ception of a paper by Brand (!). Brand suggests several alter native methods of order­
ing travel decisions: order based on (a) information, decision-making proceeds from 
the most informed to the least informed decisions; (b) adjustment, decision-making 
proceeds from the least easily adjusted to the most easily adjusted decisions; and (c) 
timing, decision-making proceeds from the latest to the earliest decisions in time 
(that is, the logical order of decisions runs counter to their sequence in time). 

It is not possible to choose among the three methods with the limited evidence avail­
able [see Feger and Feger (12) and 'Dtte and Howell (23)]. Fortunately, no choice is 
necessary because a single theory incorporates them alt This theory is well estab­
lished empirically and ranks among the foremost theories of decision-making under 
uncertainty. 

Few subjects in psychology have received more attention than decision-making under 
uncertainty. Two reviews of this subject are noteworthy. Edwards (9) provides a use­
ful introduction to the subject. Luce and Suppes (16) go into much greater detail. 
Readers who desire additional information should consult these reviews. 

A prominent theory of decision-making under uncertainty, expected utility theory, 
defines the order of travel decision-making. Expected utility theory states that 
decision-makers, when faced with uncertainty, make decisions that maximize their 
expected utility. That is, they select the option with the greatest expected utility, 
where the expected utility of an option is given by 

where 

Ut utility of outcome i, 

EU = L U1P1 

n 

p1 = probability that outcome i will occur, and 
n = number of possible outcomes. 

(1) 

Consider a decision-maker with several options. His first option has two possible 
outcomes. One outcome has a utility of 10 and occurs 40 percent of the time, and the 
other has a utility of 5 and occurs 60 percent of the time. From Eq. 1, the expected 
utility of this option is 7 (10 x 0.4 + 5 x 0.6). The decision-maker will choose this 
option only if his other options offer less expected utility. 

Travel decision-making necessarily involves uncertainty if it is a sequentialprocess. 
This is true even if individual travel decisions are made under certainty because future 
decisions are unknown. For example, if their first travel decision is the choice of de­
parture time, travelers' neglect of destinations, modes, and routes introduces uncer­
tainty into decision-making. Only after all travel decisions are made can the choice of 
departure time be evaluated with certainty. 

Travel decision-making is comparable to gambling. Each decision represents a 
gamble. It is assumed that travelers evaluate all four travel decisions and make the 
decision with the greatest expected utility; then they reevaluate the remaining travel 
decisions and make the decision with the greatest expected utility. This continues until 
they have made all travel decisions. 

Travelers are assumed to have complete knowledge of alternative departure times, 
destinations, modes, and routes. Individual decisions are therefore made under cer­
tainty, and the following equation applies (.,!1 22): 

(2) 

where p1 is the probability that alternative i will be chosen, Ut is the utility of alterna­
tive i, and the summation is taken over all n alternatives. 



68 

Combining Eqs. 

i 
i 

1 and 2 gives a!n ~pected utility of 
"' ;, 

EU = I: uUL: ui 
n I n 

(3) 

Equation 3 defines the order of travel decision-making. Let us assume that a depar­
ture time and destination have been chosen already. Either a mode is chosen next and 
then a route or vice versa. It will be shown that the order of travel decision-making 
depends on (a) the number of alternative modes and routes and (b) the similarity of 
alternative modes and routes. Consider the following examples. 

In the first example, there are more alternative routes than modes, but alternative 
modes and routes are equally similar. The utility of mode and route pairs is 

M1R1 = 11 = R1M1 
M1R2 8 R2M1 
M1Rs 5 RsM1 
M2T1 7 R1M2 
M2R2 4 R2M2 
M2Rs "" 1 RsM2 

M1 refers to mode 1, M2 to mode 2, R1 to route 1, and so on. The expected utility of 
travel is 7. 50 if the choice of mode precedes the choice of route and 7.46 if the choice 
of route precedes the choice of mode. These values are obtained from Eq. 3 by first 
calculating the expected utility prior to the last decision and then the expected utility 
prior to the next to last decision. This indicates that travel decisions with few alter­
natives are made before travel decisions with many alternatives. 

In the next example, alternative routes are more similar than alternative modes, 
but the number of alternative modes and routes is the same. The utility of mode and 
route pairs is 

M1R1 = 10 = R1M1 
M1R2 8 R2M1 
M2R1 4 R1M2 
M2R2 2 R2M2 

The expected utility of travel is 7. 56 if the choice of mode precedes the choice of route 
and 7.62 if the choice of route precedes the choice of mode. This indicates that travel 
decisions with similar alternatives are made before travel decisions with dissimilar 
alternatives. 

The conclusions of the last two paragraphs may surprise readers. Intuitively, deci­
sions with many dissimilar alternatives should precede decisions with few similar 
alternatives. Yet these examples indicate that the reverse is true. There is nothing 
inconsistent about this. Just as the expected utility of travel is calculated by evaluat­
ing the last decision first and just as Brand's third method of ordering travel decisions 
assumes that the logical order of decisions runs counter to their sequence in time, 
travel decision-making may begin with the last travel decision and work backward. 

It is encouraging that order based on information and order based on adjustment 
represent special cases of the present theory. Incomplete information about travel 
alternatives results in uncertainty in decision-making and causes the probabilities of 
selection to converge. In the limit, if no information is available, the probability of 
selection is the same for every alternative. This decreases the expected utility of 
corresponding travel decisions and causes travelers to postpone these decisions until 
other decisions are made. Order based on information applies in this case. When 
travel decisions are long-lived, the probabilities of selection are affected, but in this 
case they tend to diverge rather than converge. It is likely that travelers exercise 
greater care when they make long-lived decisions, and therefore they select alternatives 
with maximum utility. This increases the expected utility of long-lived travel decisions 
and causes travelers to advance these decisions relative to other travel decisions. 
Order based on adjustment applies in this case. 
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I 

DYNAMIC PROGRAMMING APPLIED TO 
1

'llRA VEL DECISION-MAKING 

Conventional travel demand models assume that travel decisions are made inde­
pendently, whereas direct demand travel models assume that travel decisions are fully 
integrated. It is likely that travel decisions are neither so independent nor so fully 
integrated as assumed in these models. 

In his review of sequential decision-making, Edwards (8) divided sequential decisions 
into six classes. His sixth class included dynamic decisions of the type made by 
travelers, which are characterized by the dependence of later decisions on earlier de­
cisions. Because travel decision-making is a dynamic process, the literature on 
dynamic decision-making applies and a substantial body of knowledge is available. 
During the 1950s Bellman (2) developed an analytical technique known as dynamic pro­
gramming. At that time Beilman suggested that dynamic programming could be used 
to simulate dynamic decision-making. Dynamic programming has since been applied 
to dynamic decision-making in a variety of theoretical and empirical studies (~ 14). 

Several studies have compared the performance of subjects on dynamic decision­
making tasks to the results of dynamic programming. Using variations of the Reader's 
Control Problem to simulate recurrent business decisions, Rapoport and Ray applied 
dynamic programming to stochastic problems (19), adaptive problems (18), adaptive 
problems of unknown duration (20), and deterministic problems (21). Inall cases 
dynamic programming adequately described subjects' performance on dynamic decision­
making tasks. 

Dynamic programming is based on the principle of optimality, which states that the 
best decision at each stage in the decision-making process is the decision that optimizes 
the remainder of the process. Dynamic programming therefore begins with the desired 
objective (a maximum benefit from travel) and works backward through the sequence 
of decisions to the starting point (the decision to work, shop). Each decision in the 
sequence is optimized according to a predefined decision rule. A decision-maker can 
ignore past and future decisions and evaluate his present alternatives with this decision 
rule. 

In many ways, travel decision-making is an ideal problem for dynamic programming. 
Problems must. be divided into stages in dynamic programming. Travel decision­
making has four stages-the choice of departure time, destination, mode, and route. 
Alternative states must be defined at each stage. Alternative departure times, destina­
tions, modes, and routes represent alternative states of the various travel decisions. 
An objective function must be optimized in some manner. The objective function in travel 
decision-making is the utility of travel and, of course, it is maximized. Actions and 
policies must be defined. Choices among alternative departure times, destinations, 
modes, and routes represent actions, and sets of choices represent policies. Returns 
on all actions and policies must be evaluated. This presents a problem because no 
utility accrues in travel until all travel decisions are made. However, it may be pos­
sible to associate utility with individual travel decisions. The utility of individual 
travel decisions will be a function of independent measures of performance (i.e., mea­
sures that do not depend on other travel decisions) such as distance between zones in 
trip distribution, smoothness of ride in modal split, and directness of route in network 
assignment. 

Once the utility of individual decisions is determined, a dynamic programming model 
can be developed. The following notation is used: 

fn (a) = maximum utility of all remaining travel decisions if alternative a is chosen 
in the nth decision (= objective function in state a and stage n j.f decision­
making is optimal); 

u,.b utility of travel alternative bin the n+l stage of travel decision-making if 
travel alternative a was chosen in the nth stage (= the return from the action 
of choosing state b in stage n+l when state a was chosen in stage n); 

t alternative departure times; 
d alternative destinations; 

m = alternative modes; 
r = alternative routes; and 
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o = state of travelers after travel decision-making. 

If travel decisions are made in the conventional order (i.e., departure time, destina­
tion, mode, and route), the following equations can be derived from the principle of 
optimality: 

f4(r) max [ u,. 0 ] 

Uro 

fs(m) max Cu.r + f4(r)J 
U.r 

f2(d) max [ ud• + fJ (m)J 
~. 

f1 (t) max [ Uu + f2(d)] 
Uu 

By way of example, the third equation says that the maximum utility of all remammg 
travel decisions if destination d is chosen in the second stage of travel decision-making 
is equal to the maximum value of the sum of the utility of destination d plus the maxi­
mum utility of all remaining travel decisions if mode m is chosen in the third stage of 
travel decision-making. f2(d) is evaluated for all modes that serve destination d. 
Modes that do not are ignored. The other equations are analogous. 

Dynamic programming identifies the optimal departure time, destination, mode, and 
route. It does not distribute trips among alternative departure times, destinations, 
modes, and routes as conventional models do. Distribution is a separate process. 
Several methods of distribution are available. The most promising is an intervening 
opportunities approach that assigns a constant fraction of all remaining trips to the 
best of the remaining travel alternatives (the process is then repeated without this 
alternative). 

The use of dynamic programming to simulate travel decision-making has one major 
drawback. Dynamic programming simulates optimal decision-making, but travel 
decision-making is apt to be suboptimal. The issue in travel forecasting is not how 
travelers should make decisions but how travelers do make decisions. Arriving at the 
same conclusion (for decision-making in general), Rapoport extended his earlier analysis 
to include suboptimal decision-making (17). He began by noting that shortcomings of 
the human memory, the cost of information-gathering and -processing, the inability to 
plan ahead, the ignorance of interdependencies, and so on limit our ability to make 
decisions. Decision-making "in non-trivial tasks will, in general, not be optimal." 
He went on to propose a theory of dynamic decision-making that makes use of pro­
gramming algorithms. Decision-makers are assumed to plan ahead one, two, or even 
more decisions in dynamic decision-making tasks. The extent to which they plan ahead 
depends on their ability and the nature of their tasks. Rapoport described empirical 
tests of his theory. Subjects' performance on Elithorn' s perceptual maze test (10) was 
compared to the results of three algorithms. The first algorithm assumed that subjects 
plan ahead one move when choosing among alternative paths through a maze, the second 
that they plan ahead two moves, and the third that they plan ahead three moves. The 
performance of many subjects corresponded to one of the three algorithms (particularly 
to the third one) and varied with the design of the maze. It would appear that planning 
horizons do vary from individual to individual and from task to task. 

If travel decision-making is suboptimal, Rapoport's algorithms can be used in travel 
forecasting. One algorithm applies to travelers with a planning horizon of one travel 
decision, another to travelers with a planning horizon of two travel decisions, and a 
third to travelers with a planning horizon of three travel decisions. (A planning horizon 
of four travel decisions leads to optimal decision-making.) Algorithms can be chosen 
by comparing the results of each to the behavior of travelers. The algorithm that best 
describes the travel behavior of each socioeconomic class can be used in forecasting. 

It should be noted that existing travel models correspond to the extremes of travel 
decision-making. Conventional travel demand models assume that travel decisions 
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are independent of each other. Trip generation, trip distribution, modal split, and 
network assignment are modeled independently and undertaken sequentially. Each is 
completed without reference to the others. Conventional travel forecasting corresponds 
to the simplest type of travel decision-making, where travelers ignore all future deci­
sions. The result of sequential decision-making is identical to that of dynamic decision­
making if the planning horizon of travelers is one travel decision. In contrast, direct 
demand models assume that travel decisions are fully integrated. Trip generation, 
trip distribution, modal split, and network assignment are combined in a single model. 
Because all stages are undertaken simultaneously, they are allowed to fully interact 
and influence each other. Direct demand forecasting corresponds to the most sophis­
ticated type of travel decision-making, where travelers consider all travel decisions 
simultaneously. The result of simultaneous decision-making is identical to that' of 
dynamic decision-making if the planning horizon of travelers includes all remaining 
travel decisions. Existing models can describe the extremes of travel decision­
making, but only behavioral models can describe travel decision-making in general. 

Transportation planning has been dominated by engineering and economics throughout 
its history. Hopefully, this paper and another by the author (11) have demonstrated the 
potential of behavioral models in transportation planning. I believe that transportation 
planning is ready to incorporate psychological theory into its simple economic models. 

ACKNOWLEDGMENTS 

I gratefully acknowledge the assistance of Daniel Brand of Harvard University who 
suggested I restructure this study along the present lines and critiqued the first draft 
of this manuscript. 

REFERENCES 

1. Abelson, R. The Choice of Choice Theories. In Decision and Choice (Messick, S. 
and Brayfield, A. H., eds.), McGraw-Hill, 1964-:-

2. Bellman, R. Dynamic Programming. Princeton University Press, 1957. 
3. Brand, D. Theory and Method in Land Use and Travel Forecasting. Highway Re­

search Record 422, 1973. 
4. Brand, D. Travel Demand Forecasting: Some Foundations and a Review. HRB 

Spec. Rept. 143, 1973. 
5. Ebert, R. J. Sequential Decision Making: An Aggregate Scheduling Methodology. 

Psychometrika, Vol. 36, 1971, pp. 303-316. 
6. Edwards, W. A Bibliography of Research on Behavioral Decision Processes to 

1968. Report 7, University of Michigan, Ann Arbor, 1969. 
7. Edwards, W. Bibliography: Decision Making. Engineering Psychology Group. 

University of Michigan, Ann Arbor, 1964. 
8. Edwards, W. Dynamic Decision Theory and Probabilistic Information Processing. 

Human Factors, Vol. 4, 1962, pp. 59-73. 
9. Edwards, W. Behavioral Decision Theory. Annual Review of Psychology, Vol. 12, 

1961, pp. 473-498. 
10. Elithorn, A., Jagoe, J. R., and Lee, D. N. Simulation of a Perceptual Problem­

Solving Skill. Nature, Vol. 211, 1966, pp. 1029-1031. 
11. Ewing, R. H. Psychological Theory Applied to Mode Choice Prediction. Trans­

portation, to be published. 
12. Feger, H., and Feger, B. Contributions to the Content Analytical Investigation of 

Decisions. Archiv flir die gesamte Psychologie, Vol. 121, 1969, pp. 205-254. 
13. Fishburn, P. C. Decision and Value Theory. Wiley and Sons, 1964. 
14. Kaufmann, A. The Science of Decision-Making. McGraw-Hill, 1968. 
15. Luce, R. D. Individual Choice Behavior. Wiley and Sons, 1959. 
16. Luce, R. D., and Suppes, P. Preference, Utility and Subjective Probability. In 

Handbook of Mathematical Psychology, (Luce, R. D., Bush, R. R., and Galanter, E., 
eds.), Vol. 3, Wiley and Sons, 1965. 

17. Rapoport, A. Optimal and Suboptimal Decisions in Perceptual Problem-Solving 
Tasks. Behavioral Science, Vol. 14, 1969, pp. 453-466. 



72 

18. Rapoport, A. Dynamic Programming Models for Multistage Decision-Making Tasks. 
Journal of Mathematical Psychology, Vol. 4, 1967, pp. 48-71. 

19. Rapoport, A. A Study of Human Control in a Stochastic Multistage Decision Task. 
Behavioral Science, Vol. 11, 1966, pp. 18-32. 

20. Rapoport, A. A Study of a Multistage Decision- Making Task With an Unknown 
Duration. Human Factors, Vol. 8, 1966, pp. 54-61. 

21. Ray, H. W. The Application of Dynamic Programming to the Study of Multistage 
Decision Processes in the Individual. Ohio State University, Phd. thesis, 1963. 

22. Restle, F. Psychology of Judgment and Choice: A Theoretical Essay. Wiley and 
Sons, 1961. 

23. Tate, J. D., and Howell, W. C. Term Expectation and Uncertainty in Human De­
cision Behavior. U.S. Air Force Aerospace Medical Research Laboratory, TDR 
63-118, 1964. 



STRUCTURAL MODEL FOR 
EVALUATING URBAN TRAVEL RELATIONSHIPS 
Edward J. Kannel, University of Illinois at Urbana-Champaign; and 
Kenneth W. Heathington, University of Tennessee 

Urban travel forecasting equations are typically developed by analyzing 
only the relationships between several possible explanatory variables and 
the ultimate variable of interest, trip production. Seldom is the full degree 
of interaction among explanatory variables such as automobile ownership, 
household size and income, and accessibility understood. In this paper, a 
structural model is used to examinethe relationships among an entire sys­
tem of variables rather than just the simple isolated effects. The basic 
concepts and limitations of the modeling approach are discussed, and 
models of urban household trip production are evaluated. Several con­
clusions about the causal structure of urban travel relationships are 
drawn. The structural model is felt to be an important methodological 
tool for developing urban transportation theory. 

•THE AVAILABILITY of multiple linear regression computer programs has made the 
linear regression model a popular technique for estimating travel demand in urban 
transportation planning studies. The user can handle large quantities of data and de­
velop models without fully understanding the procedure or assumptions of the regres­
sion model. Evaluation of the model is based more on statistical goodness of fit than 
on an understanding of the causal structure that exists among the variables examined. 

In a traditional trip generation model, evaluation of the relationships among a set 
of variables would be desirable. A typical trip generation model may use automobile 
ownership and household size to forecast home-based trip production. However, be­
fore auto ownership can be used, a forecast of this variable must be developed. Aver­
age family size and income might be used as the explanatory variable to estimate car 
ownership. These two models do not allow examination of the entire structure of the 
relationships that exist among family size and income, auto ownership, and trip pro­
duction. 

A complementary analysis technique is discussed that can be used to evaluate the 
direct effect of income on trip production as well as the indirect effect of income on 
car ownership rates. The approach discussed has alternatively been referred to as 
causal models, structural models, path models, and recursive models. These terms 
will be used interchangeably. 

A structural model is a system of equations that allow the analyst to evaluate fully 
the interrelationships among a system of variables. To be sure, multiple regression 
analysis allows the analyst to observe the effects of several independent variables, 
either alone or in combinations, but this is possible only for the single response vari­
able under immediate consideration. Although cross-product terms of selected in­
dependent variables may be included to show the effects of interaction among the in­
dependent variables, neither the nature of this interaction nor the relative contribution 
of the component parts can be evaluated. The structural model, on the other hand, 
uses a set of equations that outline the causal priorities of the variables and permit 
predictions of how a change in any variable in the system affects other intermediate 
variables in the system as well as the dependent variable of interest. 

DEVELOPMENT AND APPLICATION OF STRUCTURAL MODEL 

Pioneer work in the analysis of path coefficients, the parameters of a structural 
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model, was done by Wright in the area of genetics (13). Blalock, drawing on the 
writings of Simon (10) and Wold (12), provided the major thrust for a study of causal 
inferences in nonexperimental research of the social sciences (1). Duncan (3), Land (8), 
and Heise (4) described their studies of causal models and outliiled systematic ap- -
proaches for interpretation of the model. 

Analysis of structural models has also received attention in the development of 
transportation forecast models. Kain used a system of recursive equations to evaluate 
the interrelationships among variables that affect work trip length (5). He hypothesized 
a four-stage recursive model in which the decision process is such that the worker 
first selects an environment in which he wishes to live (space preference). This choice 
is influenced by factors such as sex, income, and housing prices. The first decision 
will then affect the choice of car ownership, which in turn affects the travel mode choice. 
Finally, all three of these affect the length of the work trip. In any of these equations 
additional variables may contribute to the variation in the dependent variables; however, 
these variables were taken to be exogenous to the system, and no attempt was made to 
define the interrelationships among exogenous variables. 

More recently, de Neufville and Stafford summarized the difficulties in interpretation 
that arise when strictly correlational models are used rather than when the causal 
structure among a set of variables is examined (2). They also evaluated travel 
demand through structural model studies. -

BASIC CONCEPTS OF CAUSAL MODELS 

The goal of causal modeling is to develop a set of relationships that correspond to 
real-world causal processes. Analysis of a causal structure requires specification of 
a network of causal paths that exist between the variables of interest and identification 
of the parameters of causation so that the effects of each variable on the other variables 
in the model can be measured. The mathematical equations that make up the causal 
structure are a set of recursive equations. [For more detailed discussion of the com­
putational procedures, readers are referred to Heise (4) and Land (8). Also, Blalock 
(1) offers extensive arguments on the need for caution fn making causal inferences and 
clarifies the conditions under which causal inferences may be possible. J The following 
four-variable system is an example of a set of recursive equations (Fig. 1): 

Z1 PiaZa 

Z2 P21iZb 

Z3 P31Z1 + P30 Z0 

Z4 P41Z1 + P42Z2 + P43Z3 + P44Z4 

The structural model is composed of three types of variables. Exogenous variables 
are considered input to the system. It is assumed that these variables are completely 
determined by other variables outside of the system and that neither the nature of their 
origin nor the correlation that may exist between these inputs is of concern for the 
model being considered. Paths between the exogenous variables are represented in 
the figure as two-headed curvilinear arrows. These paths indicate only that some 
correlation exists. No direction of causality is assumed. In Figure 1, Z1 and Z2 are 
the exogenous variables of the system. 

Measured variables within the structural model are endogenous variables. Unlike 
exogenous variables, the total variation in the endogenous variables is of interest. The 
total variation in the endogenous variables is assumed to be completely determined by 
some linear combination of exogenous variables, other endogenous variables, and some 
unmeasured residual or error variable. The postulated causal relations among the 
variables are shown in Figure 1 by unidirectional arrows extending from each deter­
mining variable to each variable dependent on it. In the models discussed, it is as­
sumed that there is only one direction of causation; i.e., if X causes Y, Y cannot in 
turn be a cause of X. Variables Z3 and Z4 are endogenous. 

Because it is unrealistic to assume that the variation of a system variable can be 
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determined completely by other measured variables of the system, residual variables 
are introduced. It is assumed that residual variables are uncorrelated with the set of 
variables immediately determining the variable under consideration and that they have 
a mean value of zero. 

Residual variables are represented on a path diagram by unidirectional arrows. 
The residual variable paths have alphabetic subscripts to distinguish them from the 
paths of the measured variables, which have numerical subscripts. For simplification, 
the residual paths and the paths between the exogenous variables are often eliminated 
from the causal model diagram. Variables z., Zb, Z0 , and Zd are the residual variables 
in Figure 1. 

The exogenous variables, Z1 and Z2, are assumed to be completely determined by 
outside forces z. and Zb, which are either unknown or just not of interest in the anal­
ysis. The path coefficients Pia and P21> are equal to one and are not normally included 
in the model or diagram. 

Estimation of the model parameters for each equation revolves around fitting a 
model to the data so that the amount of variation contributed by the residual variables 
is minimal. The parameters of the structural model are computed by using the least 
squares criteria common to linear regression analysis; however, the relative im­
portance of the determining variables is interpreted by using standardized regression 
coefficients. This standardized parameter or path coefficient P 1J is a measure of the 
fraction of the standard deviation of the dependent variable for which the independent 
variable is directly responsible. More definitely, it is the fraction that is found if the 
factor varies to the same extent as in the observed data, all other variables being 
constant. 
· The relationship between the regular regression coefficient bu and the path coef­
ficient P1 J is 

where a1 and aJ are the standard deviations of the dependent and independent variables. 
The path coefficients are also referred to as beta coefficients. 

Use of the standardized parameter facilitates the computations necessary to evaluate 
how consistently the model reproduces the interrelationships that exist in empirical 
data. Using standardized coefficients, we can show that, for the model given in Fig­
ure 1, the structural model predicts the following linear correlation between variables 
Z4 and Z1: 

where 

rf1 = predicted correlation for the hypothesized model; 
r12 = observed correlation between the exogenous variables; and 

P41, P42, and P31 = path coefficients estimated in regression analysis (Q). 

The total correlation between Z4 and Z i is composed of three elements. First, 
there is a direct effect between the variables indicated by path coefficient P42. Secondly, 
there is an indirect effect, p43P31, caused by the influence that variable Z4 has on Z3, 
which in turn influences Z4. Finally, there is another indirect effect, P42r12, that en­
compasses the correlational effect of the exogenous variables. It must be cautioned 
that these direct and indirect effects can be interpreted only for the model under study. 
The direct effect is a true, isolated direct effect only if the other independent variables 
are orthogonal to the variable being considered and if the effects of all other variables 
are removed. In practice, these conditions are seldom completely met. 

The entire correlation matrix could be reproduced in like manner by using the addi­
tional relations derived for the model in Figure 1: 
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Figure 1. Example of four­
variable causal model. 

Figure 2. Causal ordering of household travel relationships 
based on the first model. 
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Table 1. Observed correlation matrix of causal model variables. 

Home -
Family Labo1· High Low Based 

Variable Size Force Occupation Occupation Income Accessibility Automobiles Trips 

1964 

Family size 1.00 0.24 0. 01 0.10 0.08 -0. 07 0. 16 0.52 
Labor forc e 1. 00 0.07 0.14 0.34 -0. 03 0.26 0.3 1 
High occupation 1.00 -0.83 0.46 - 0. 23 0.25 0.06 
Low occupation 1.00 -0 .2 8 0.15 -0 .1 8 0.05 
Income 1. 00 -0 .33 0.47 0.29 
Accessibility 1.00 -0.35 -0.20 
Automobiles 1.00 0 .35 
Home-bas ed trips 1.00 

1971 

Family size 0.41 0 .12 0.20 0.15 -0 .11 0. 37 0.55 
Labor force 0 .16 0.32 0.36 -0.10 0.44 0.33 
High occupation -0.65 0.50 -0.27 0. 25 0.24 
Low occupation -0.15 0 .10 0. 08 0.06 
Income -0.32 0.49 0.31 
Accessibility -0.27 - 0.27 
Automobiles 0.42 
Home-based trips 
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r£4 P42 + P41r12 + P4aPa1r12 

r14 P43 + P41P31 + P42P31r12 

If a variable explains a significant portion of the variance in a dependent variable, it 
would exhibit a strong direct effect in the causal model and would logically be con­
sidered an important element of the model. However, if a particular variable does not 
show a strong direct contribution in a given equation, the analyst would not immediately 
reject the variable from the entire structure. Instead, the importance of the variable 
in the other equations of the system would be considered. If the variable is significant 
in other relationships it would be an important variable in the overall system. The 
advantage of the structural model is that all relationships can be examined simulta­
neously and the faithfulness of that system in reproducing the empirical relationships 
in the data set can be evaluated. 

EVALUATING THE MODEL 

The purpose of developing a causal model is to help the analyst understand the rela­
tionships among a set of variables that are important in some behavioral process. An 
objective in testing these relationships is to obtain a model that adequately reproduces 
the conditions that occur in empirical data and yet is as parsimonious as possible. For 
any postulated model, one can compute the correlation matrix and compare this with an 
observed correlation matrix. In the least parsimonious case in which all possible paths 
are included, there are no conditions imposed on the model to test the adequacy of that 
model. Any ordering of the variables results in a reproduced correlation matrix that 
exactly equals the empirical correlations (8). In this case only the knowledge of the 
causal priorities determines selection of one model over the other. The problem then 
is to make an initial determination of the significance of the paths in the model. 

If sufficient data are available, analysis of variance models may serve as a starting 
point for evaluating the significance of variables that might be introduced in the model. 
The analysis of variance provides a measure of significance not only of the main ef­
fects of the variables but also of possible interactions. Because interaction terms are 
not included in the simplified model, there may be incorrect interpretations from the 
structural model. 

A second method for eliminating paths in the causal models is to retain only those 
variables that are statistically significant according to the F-test criterion used in 
regression analysis. However, as the sample size becomes large, path coefficients 
that make very small contributions to the total variance may be judged statistically 
significant and retained in the model. For this situation, Land suggests that the analyst 
choose a minimum value below which a path coefficient is considered substantively in­
significant. 

Finally, when an over-identified model has been structured, (i.e., a model in which 
one or more possible paths have been eliminated) additional constraints will be estab­
lished. A model is judged adequate if it reproduces correlations between the system 
variables in accordance with the imposed constraints. If these predicted correlations 
adequately represent the empirical correlations, the analyst might accept this as the 
best representation of the causal structure or he might check the possibility of eliminat­
ing other paths. If the model is not adequate, the analyst either reverts to the pre­
viously accepted model or tests some other model in which a different link is eliminated. 

APPLICATION TO URBAN TRANSPORTATION PLANNING 

The data analyzed in this paper were collected as part of a research project de­
veloped to study the temporal stability of household trip production (§., J). The data 
were obtained from home interview surveys in Indianapolis. The first survey was 
conducted in 1964 as part of a traditional urban transportation planning study. The 
second survey was conducted in 1971. The same families were interviewed in both 
studies so that variation in household travel behavior, which may be due to family 
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preferences, type of dwelling unit, er location within the urban structure, would be 
minimized. This sample of households was specifically selected to represent all 
levels of three principal socioeconomic variables, i.e., family size, automobile avail­
ability, and income; however, this simultaneously provided a wide range of other char­
acteristics such as occupational status, educational levels, and location of residence 
within the urban area. 

Although travel relationships at the household level of analysis do not have the ap­
parent statistical strength of those obtained from zonal averages, it was hypothesized 
that relationships existing at the household level have greater behavioral validity and 
causal significance and therefore are more temporally stable than zonal model analyses. 
The stability of these household relationships over a 7-year period was examined in 
this study. 

One of the causal model relationships of interest in this study was an evaluation of 
the hypothesis that the trip production from households is affected by the accessibility 
of the household to major activity centers within the urban area. The measures of ac ­
cessibility used in the study were those developed by Nakkash for the 1964 highway 
network (9). Relative accessibility variables were determined from the friction factors 
of the calibrated gravity model. The relative accessibility variable was therefore a 
function of trip purpose and auto travel time, but was weighted by the amount of a given 
activity in a zone. Nakkash developed relative accessibility measures for several ac­
tivity types such as employment, retail floor area, and school floor area, but these are 
all intercorrelated and only employment accessibility is used in the discussion. This 
variable tends to decrease with increasing travel time from the central city. Also it 
must be noted that accessibility measures comparable to the 1964 study could not be 
reproduced in 1971 because a complete new transportation study was not being conducted. 
The relative accessibility of each household in 1971 was therefore assumed to be equiv­
alent to the 1964 calibrated values. All statistical tests were performed on the 1964 
data. 

STRUCTURE OF THE CAUSAL MODEL 

The ordering of the causal network was based on a priori knowledge of the variables 
under col).sideration and on previous research models (5). Although several simplified 
models were tested to evaluate items such as the direct and indirect influence of in­
come on trip production, only two models are discussed. The hypothesized formulation 
is a four-stage recursive model. The model hypothesizes that a family chooses a 
residential location based on a desire for a certain life-style, quality and style of 
housing, and preference or need for more or less space. Differences in preferred 
housing conditions may be shaped by factors such as individual attitudes, age, stage 
in the family life cycle, and family size. A family that needs more space would tend 
to locate in lower density areas that are relatively less accessible to major activity 
centers. The ability to satisfy the desire for housing type and space consumption, 
however, is controlled by the ability of the family to pay for the desired living style. 
Thus, income level of the family must be considered. Income might be determined by 
several factors such as education, occupation, age, and number of working members 
in the household. 

Once the decision about housing requirements and residential location is made, the 
level of available transportation from that location influences the level of car owner­
ship. Families living in high-density neighborhoods with greater accessibility may 
have the opportunity to satisfy some of their transportation needs by use of public 
transportation. Further, because of greater accessibility, more travel needs such 
as school or social-recreational trips are satisfied by the walking mode. The level 
of auto ownership may also be affected by family size, labor force, household income, 
and social status of the family. 

Finally, the trip production rate of the household may be affected by any of the vari­
ables mentioned. The task is to evaluate and understand the degree of influence a 
change in one variable has on other variables in the model. 

The causal ordering assumed in this study is shown in Figure 2. Only a small 
number of possible exogenous variables were actually considered in the model. Further, 
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many of the possible linkages that could be included in the model have been eliminated 
because they were found to be of little importance as explanatory variables. 

The correlation matrix for the variables is given in Table 1. The exogenous vari­
ables were family size, labor force, and occupation of the head of household. Occupa­
tion of the head of household was stratified into three groups and used as a dummy 
variable in the analysis. The groupings were nongainful, high status, and low status. 
The high status group was composed of professionals, managers, and salesmen; the 
low status group contained all other employed individuals. The nongainful dummy 
class was omitted from the analysis to allow solution of the least squares equations (11). 

ANALYSIS OF THE MODEL 

Examination of Figure 2 shows that many of the path coefficients are very stable 
for the 7-year period. The ability of the model to reproduce the correlations that exist 
among all of the variables can be evaluated by examining Table 2. If the model ade­
quately represents all the existing relationships, these differences should approach 
zero. Although several of the possible links have been removed, the model does re­
produce the correlation matrix quite well. The major discrepancy occurs in its ability 
to reproduce the relationship between family size and auto ownership in the 1971 data 
set. The calculated correlation was 0.20, whereas the observed correlation was 0.37. 
The changing relationship between family size and auto ownership may be due to the 
maturation process that has occurred. As the families moved through fitages of the 
life cycle and children from the larger families moved out of the household, the rela­
tionship between family size and car ownership stabilized. As a result, the linear 
correlation between these variables increased substantially from 0.16 to 0.37. The 
same basic change was noted between labor force and auto ownership. 

The model was examined for other possible links that might be removed to make the 
model more parsimonious. Earlier analysis suggested that the effect of accessibility 
on home-based travel is indirect because of its association with auto ownership (6). A 
two-way analysis of variance of the 1964 data set indicated that, when ownership and 
accessibility were tested, ownership was the significant variable and no interaction was 
found. The path coefficient in the model (-0.08) also indicates that the direct path is 
small and explains only a small portion of the variance in travel. 

A second model, in which the direct link from accessibility to home-based travel 
has been removed, is shown in Figure 3. The differences in observed and empirical 
correlations are given in Table 3. The ability of the structural equations of the second 
model to reproduce the empirical correlation matrix is essentially the same as that of 
the first model. Only the relationship between trip production and accessibility is 
altered by removing this causal link. Because new measures of accessibility were 
not available in 1971, we could not determine whether the difference in the correlation 
in 1971 was a function ofnonmeasurement error or actual changes in the effect of 
accessibility over time. Because the analysis of variance of the 1964 data found ac­
cessibility to be insignificant, the second model was chosen as the final structural model. 
This model was accepted as the most plausible explanation of the causal relationships 
among the variables. 

, SUMMARY 

The causal relationships investigated in this study were restricted to models that 
meet the following assumptions. 

1. A change in the dependent variable always occurs as a linear function of changes 
in the determining variables, and the effects of all other variables are assumed to be 
held constant. 

2. The system contains no reciprocal causations, i.e., the model is strictly a re­
cursive system. Reciprocal causations cause problems in identification. Although 
methods of treating such models are available, the procedure is more complex and 
the interpretations are clouded. 

3. The causal priorities are sufficiently well known so that the structure of the 



80 

Table 2. Differences between empirical and reproduced correlations based on the first model. 

Family Labor High Low 
Variable Size Force Occupation Occupation Income Accessibility Automobiles 

1964 

Family size - -. 0.00 -0.04 0.09 
Labor force - - -. 0.00 0.08 -0 ,02 
High occupation -. 0.00 -0.08 0,05 
Low occupation -. 0.00 0.05 -0 .08 
Income -. 0.00 0.00 
Accessibility -. 0 .01 
Automobiles -. 
Home-based trips 

1971 

Family size -0.04 -0.05 0.17 
Labor force 0.00 0.01 0 .00 
High occupation 0.00 -0.10 0 .01 
Low occupation 0.00 0.06 0.03 
Income 0.00 0.00 
Accessibility 0.04 
Automobiles 
Home-based trips 

arhese differences, by definition, must be zero. 

Table 3. Differences between observed and reproduced correlations based on the second model. 

Variable 

1964 

Family size 
Labor force 
High occupation 
Low occupation 
Income 
Accessibility 
Automobiles 
Home-based trips 

1971 

Family size 
Labor force 
High occupation 
Low occupation 
Income 
Ac cessibility 
Automobiles 
Home-based trips 

Family 
Size 

Labor 
Force 

-. -

High 
Occupation 

. - . -

a For the model specified, these differences must be zero 

Low 
Occupation 

----

Income 

0.00 
0.00 
0.00 
0.00 . -

-0.04 
0. 00 
0. 00 
0.00 

Accessibility Automobiles 

-0.04 
0.08 

-0,08 
0.05 
0.00 . -

-0. 05 
0.01 

-0.11 
0.06 
0.00 

0 . 0~ 

- 0.02 
0.05 
0.08 
0.00 
0.01 . -

0.17 
o.oo 
0.00 
0,03 
0 .00 
0.00 

Home-
Based 
Trips 

0.02 
0.12 

-0 .01 
0.03 
0.10 

-0.02 
0 ,04 

-

0.04 
0 .03 
0 .11 

-0,03 
0 .07 

-0.02 
0 ,08 

Home­
Based 
Trips 

0 .0?. 
0.12 
0.00 
0.03 
0.12 

-0.09 
0.04 -· 

0.04 
0.03 
0.12 

-0 .04 
0 .10 

-0.17 
0.08 



Figure 3. Causal ordering of household travel relationships 
based on the second model. 
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model can be established as the correct ordering of the variables. It is not necessary 
that all correct paths are known, but the order of causation should be clear. 

4. The data are generally measured on an interval or ratio scale, but, as in 
regular regression analysis, dummy variables may be used if caution is exercised in 
the interpretation of the results. 

5. The usual assumptions of multivariate regression analyses are met. 

The analysis model is a simplification of the real-world system and allows the 
analyst to evaluate the relative direct and indirect effects of the variables within the 
system. The model examined here is simplistic from the practical standpoint, for not 
all determinants of travel could be included. The model is simplistic in the statis­
tical sense in that only linear relationships are considered and no interaction terms 
are specifically introduced for consideration. 

Variables that have been found significant in household trip generation analyses 
were evaluated. The inferences obtained from the analysis indicate that auto ownership 
and family size have the most direct influence on trip generation rates. Income and 
level of accessibility to activity centers in the urban area also have an impact on 
travel, but this influence is indirect because of their influence on auto ownership. As 
household income increases the families tend to live farther from central employment 
concentrations and thus have lower relative accessibility to employment. In turn, these 
households exhibit higher auto ownership rates. The number of household members 
in the labor force also is a determinant of auto ownership rates, both directly and 
through its corresponding relationship with household income. 

Finally, the effect of occupational status of the head of the household can best be 
understood by the extent to which it affects household income. Occupational status is 
an important variable for explaining variations in income, but the direct effects on any 
other variables in the causal model are negligible. 
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Although the analysis of causal inferences is subject to practical limitations, when 
properly used and interpreted it can provide a methodological tool for theory develop­
ment. 
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A COMPARATIVE EVALUATION OF INTERCITY 
MODAL-SPLIT MODELS 
John C. Bennett, Raymond H. Ellis, and John C. Prokopy, 

Peat, Marwick, Mitchell and Company; and 
Melvyn D. Cheslow, U.S. Department of Transportation 

Proposals for improved intercity transportation service, ranging from im­
proved high-speed rail service to short take-off and landing or restricted 
take-off and landing air service, have been advanced for many intercity 
corridors in the United States. Transportation planners have been called 
on to forecast patronage and revenue of new transportation services and the 
diversionfrom existing services. Frequently, however, newtravel surveys 
or model development is not possible, and reliance must beplacedon exist­
ing models and secondary data sources. This paperprovides a comparative 
evaluation of seven intercity modal-split models that have been developed 
in the last 5 years and recommends models for application in intercity 
transportation sketch planning analyses. The models discussed are eval­
uated in terms of their ability to replicate the observed travel patterns and 
in terms of their implied elasticities for the rail mode. Model CN27 was 
selected as the best overall model. It is stratified by purpose, which 
creates a data requirement that cannot always be reliably fulfilled. Thus, 
unstratified model CN22, second best among those tested, is recommended 
for use when base year travel data on trip purpose are unavailable. 

eTHE SEVEN intercity modal-split models considered in this paper are all calibrations 
of the cross-elasticity model(~,~.!, E_). This model has the following formulation: 

where 

i = index identifying a mode, 
j =index identifying a modal attribute, 
x = transportation network variable, 
S = variable identifying modal split, and 

C1, Olu = calibrated coefficients. 

(1) 

Equation 1 is calibrated on a base mode (generally automobile). The ratios of the 
share of each mode i to that of the base mode (modem) are considered as follows: 

C1 I,l(X 1Jt 11 

~ - J (2) s. - c. n(x.)amj 
j 

In turn, the logarithmic form of Eq. 2 is 

J.h = r1 + 'E °'1J Vu - 'E o;.J v.J 
j j 
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Table 1. Calibrations of cross-elasticity model. 

Model Description Remarks 

CN22 Abstract mode, 1969 Calibrated early in the NEC Project; rail coefficient 
was lowered to improve model during NEC work 

CN25 Abstract mode, 
CN26 Abstract mode 

1969 ~) Basis for analysis present.ed in first NECP report ('.!) 

CN27 Stratified, abstract mode, 1971 Used for some analyses in second NECP report (8) 
CN28B Stratified, abstract mode, 1971 Used for some analyses in second NECP report (lf) 
HSGT Abstract mode, 1972 (!!_) Used in High Speed Ground Transportation Alternatives 

Study in 1972 (!!_) 
SRI Abstract mode, 1971 (.!Q., .!!) 

Table 2. Parameters for cross-elasticity model calibrations. 

Model Mode c a, a, a , k 

CN22 Air 1.01 - 2.23 - 1.11 0 .53 0 .12 
Rail 1.46 -2.23 -1.11 1.05 0.12 
Bus 0.83 -2.23 -1.11 0.05 0.12 
Automobile 1.0 -2.32 -1.16 0 0 

CN25 Air 1.1144 -1.9102 -0.9551 0.3247 0 .12 
Rail 1.1144 -1.9102 -0 .9551 0 .3247 0 .12 
Bus 1.1144 -1.9102 -0 .9551 0 .3247 0.12 
Automobile 1.000 -1.9288 -0.9644 0 0 

CN26 Air 1.8978 -1.9135 -0.8555 0.5536 0.007 
Rail 3.8547 -1.9135 -0.8555 0.5536 0.007 
Bus 1.4486 -1.9135 -0.8555 0.5536 0.007 
Automobile 1.0 -1.9135 -0.8555 0 0 

CN27 
Business Air 1.1232 -3.384 -0 .483 2.279 0 .12 

Rail 1.4813 -3.384 -0 .483 2.279 0 .12 
Bus 0.3767 -3.384 -0.483 0 0 
Automobile 1.0 -3.384 -0.483 0 0 

Nonbusiness Air 0 . 7767 -1.5821 -1.5821 2.0462 0.18 
Rall 1.9881 -1.5821 -1.5821 2.0462 0.18 
Bus 1.3872 -1.5821 -1.5821 0 0 
Automobile 1.0 -1.5821 -1.5821 0 0 

CN28B 
Business Air 0 .937 -3.384 -0.483 5.587 0 .50 

Rail 1.2368 -3.384 -0 .483 5.587 0.50 
Bus 0 .3767 -3.384 -0.483 0 0 
Automobile 1.0 -3.384 -0 .483 0 0 

Nonbusiness Air 1.1163 -1.5821 -1.5821 5.587 0.672 
Rail 1.4710 -1.5821 -1.5821 5.587 0.672 
Bus 0.9324 -1.5821 -1.5821 0 0 
Automobile 1.0 -1.5821 -1.5821 0 0 

HSGT Air 1.90 -1.9135 -0 .8555 0 .5536 0 .007 
Rail 1.90 -1.9135 -0.8555 0 .5536 0.007 
Bus 1.135 -1.9135 -0 .8555 0 0 
Automobile 1.00 -1.9135 -0.8555 0 0 

SRI Air 1.50 -1.5 -1.5 0.3247 0.12 
Rail 0 .75 -1.5 -1.5 0.3247 0.12 
Bus 0 . 75 -1.5 -1.5 0.3247 0.12 
Automobile 1.00 -1.5 -1.5 0 0 



where 

S1 
µ.1 =log S 

m 

V1 J =log Xu 

Calibrations of the cross-elasticity model considered in this paper are given in 
Table 1. The specification for these calibrations is as follows: 

where 

t = total average one-way door-to-door travel time in hours, 
c = total average one-way door-to-door travel price in dollars, and 
f =average number of daily one-way departures in one direction. 
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(The automobile per-person price is 1 cent per mile for CN22, CN25, and nonbusiness 
trips for CN27 and CN28B. The price is 1.2 cents per mile for CN26 and HSGT and is 
2.3 cents per mile for business trips for CN27 and CN28B. The price for SRI is 1.76 
cents per mile.) 

The calibrated parameters for the models are given in Table 2. 

STRUCTURING THE ANALYSIS 

Data for city pairs in and outside the Northeast Corridor (NEC) were used to test 
the modal-split models. Each set of data consisted of annual volumes and measures 
of service attributes for each of the four modes serving the city pair. 

A list of NEC city pairs that were considered best for testing the models was de­
veloped. Each potential city pair for which data were available was examined for the 
reliability of the modal travel volume information and the uniqueness of the impedance 
measures. City pairs involving Trenton were generally eliminated, for example, 
because of the lack of a clear-cut air service alternative. A traveler could use rel­
atively poor service at Trenton Airport or drive for more than an hour and use good 
service at Newark Airport. A test data set consisting of data for 64 city pairs in the 
NEC was assembled. 

Travel volume data for 44 city pairs outside the corridor were assembled from 
previous surveys (12, 13). Detailed modal travel volumes were available for 22 city 
pairs, whereas reliable secondary source travel volume data existed for the other 
22. 

The following criteria were used to evaluate the models: 

1. Total number of trips by mode, 
2. Root mean square error (RMSE) between the observed and the estimated modal 

trips, 
3. Correlation between observed and estimated modal trips, 
4. Slope of a linear regression fitted between the estimated modal trips (dependent 

variable) and the observed modal trips (independent variable), and 
5. Intercept of the linear regression. 
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EVALUATION OF MODELS WITH NEC DATA 

A comparison of the models with respect to the NEC data is given in Table 3. A 
comparison of the overall accuracy of the models suggests that, with some notable 
exceptions, all of the models exhibit similar error tendencies. Each of the models 
underestimates the total number of automobile trips. Bus travel is overestimated 
and air travel is underestimated by all models except CN25. Five of the models over­
estimate and three underestimate rail travel. The correlation between observed and 
estimated trips by automobile and air is above 0.9 for all models, and the correlation 
between observed and estimated rail travel is approximately 0 .9 for all models, 
whereas the correlation for bus travel is generally lower than 0.9. This result and 
the fact that the ratio of RMSE to aggregate trips is high for rail and bus travel for 
all models indicate that the models generally estimate bus and rail travel more poorly 
than they estimate automobile and air travel. 

Each model produces a positive value for the intercept of the linear regression 
[estimated= f (observed)] for all modes, which indicates that the models tend to 
overestimate modal travel for low-volume modal trip interchanges. The slopes of 
the linear regressions are less than one for automobile and air travel, the two largest 
segments of the intercity travel market, for all models. This suggests that the 
models tend to compensate for the overestimation at low volumes by underestimating 
automobile and air travel at higher volumes. In general, the variation in observed 
versus estimated modal volumes is sufficiently high to invalidate any conclusions 
drawn strictly on the basis of the regression parameters. · 

Table 4 gives a ranking of the models according to their ability to replicate modal 
totals (1 is best; 7 is worst). The models perform relatively unevenly among modes. 
CN28B ranks first for automobile, bus, and rail trip totals but last for air travel. 
CN27 is best for air travel but fourth for the other modes. CN22 and CN27 are the 
most consistent, for they are the only models that rank among the top four for all 
modes. 

A comparison of the weighted average RMSE (weighted by observed modal split) 
and the RMSE for each mode estimated by each model is given in Table 5. The aver­
age ranking of all models is almost identical to the ranking for automobile travel be­
cause the automobile captures approximately 70 percent of the travel market in the 
test data set and the values of RMSE are higher for the automobile than for the other 
modes. CN27, a stratified model calibrated with the most recent data prior to the 
effort undertaken for this project, is ranked first overall. CN22, ranked third over­
all, is the most consistent for the four modes. 

EVALUATION OF MODELS WITH NON-NEC DATA 

T.he modal-split models were applied to the data for the 44 city pairs outside the 
Northeast Corridor, and the modal estimates were compared to observed travel 
volumes. The results are given in Table 6. In general, model performance was 
similar to that obtained by using the NEC data. Total automobile travel was under­
estimated by all models, and common carrier travel was overestimated in all but 
two cases. 

The models may be ranked in order of prediction accuracy for modal trips (Table 7). 
The HSGT model is most accurate for rail, least accurate for bus, sixth for automo­
bile, and second for air. This characteristic of the HSGT model is not unexpected, 
for it is an adjusted version of CN26 used for forecasting travel patronage for can­
didate high-speed ground transportation systems outside the NEC; the rail forecast­
ing accuracy of the HSGT model is consistent with its principal application. Models 
CN22 and CN27 are relatively consistent. 

The rank of each model on the basis of the RMSE measure for each mode is given 
in Table 8. Model CN22 is best overall. Model CN27 provides the least amount of 
variability between observed and estimated rail volumes and is ranked third for both 
automobile and bus; it ranks a relatively poor sixth, however, for air travel. As was 
the case for the test using NEC data, CN22 is the most consistent model among the 
modes, ranking in the top four for all modes. 
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Table3. Summary statistics for model comparison using NEC data. 

Mode Statistic Observed CN22 CN25 CN26 CN27 CN28B HGST SRI 

Automobile Trips• 40.79 39.08 36.65 36.32 36.50 39.20 36.99 38.53 
RMSE' 176.0 215.6 213.9 175.7 176.7 216.0 194.4 
r 0.96 0.97 0.98 0.96 0.96 0.96 0.98 
Slope 0.92 0.86 0.83 0.89 0.91 0.85 0.90 
Jntept' 27.2 28.1 39.4 36.6 34.2 36.6 31.5 

Bus Trips• 3.28 5.04 7.19 4.77 5.16 3.83 9.62 7.56 
RMSE' 70 .4 125.6 83.8 72 .7 51.8 185. 1 136,9 
r 0.82 0 .80 0.77 0.81 0.80 0.79 0 .82 
Slope 1.21 1.74 1.27 1.22 0 .93 2.22 1.92 
Intept' 17 .o 22.9 9.4 16.1 12 .3 36.7 19 .8 

Air Tripsa 6.18 5.77 6.48 5.60 5.99 7.08 5.53 5.95 
RMSE' 75.7 88.1 69.4 56.4 81.1 70.5 93 .0 
r 0.96 0.91 0.97 0.97 0.91 0.97 0.92 
Slope 0,66 0 .63 0 .68 0 .78 0.76 0.68 0.59 
Jntept' 26 .7 39.9 21.3 18.6 37.7 20 .5 36.2 

Rail Trips• 8 .15 8.52 7.89 11.71 8,74 8.29 6.27 6.36 
RMSE' 157.5 183.2 178.9 144.2 160.8 193.9 202.2 
r 0.91 0.90 0.88 0.92 0.91 0.89 0 .92 
Slope 0.65 0.54 0.85 0.72 0.62 0.50 0.45 
Jntept' 50.6 54.8 75.3 44.8 50.0 33.8 41.7 

•Millions of annual trips. b°fhousands of annual trips. 

Table4. Ranking of models according to Table 5. Ranking by root mean square error between 
their ability to replicate modal totals observed and estimated trips (NEC data). 
(NEC data). 

Model Automobile Bus Air Rail Model Automobile Bus Air Rail Average 

CN22 2 3 4 3 CN22 3 2 4 2 3 
CN25 6 5 3 2 CN25 7 5 6 5 6 
CN26 7 2 5 q CN26 5 4 2 4 5 
CN27 4 4 1 4 CN27 1 3 1 1 1 
CN28B 1 1 7 l CN28B 2 1 5 3 2 
HSGT 5 7 6 6 HSGT 6 7 3 6 7 
SRI 3 6 2 5 SRI 4 6 7 7 4 

Table 6. Summary statistics for model comparisons using non-NEC data. 

Mode Statistic Observed CN22 CN25 CN26 CN27 CN28B HSGT SRI PML 

Automobile Trips' 35.76 33.59 30.96 33.97 33.83 33 .51 31.06 32.83 26.30 
RMSE' 133.2 234.1 137.8 137.8 152.5 242.7 181.0 569.8 
r 0.99 0.99 0.99 0.99 0 .99 0.99 0 .99 0.98 
Slope 0.94 0.86 0.92 0.92 0.91 0.85 0.90 0.61 
Jntept' 1.8 3.2 23.1 22.7 23.5 12.9 15.1 104.0 

Bus Trips' 1.31 2.72 3.85 1.69 2.69 1.95 5.78 3.26 10.57 
RMSE' 82.4 124.5 44.0 82 .1 57 .6 197 .6 103 ,0 437.0 
r 0 .63 0.70 0.74 0.62 0 .63 0.69 0.69 0 .72 
Slope 1.26 2.01 0.99 1.21 0.93 2.83 1. 71 6.21 
Intept' 24.2 27.6 6.6 24.9 16 .7 47 .2 23 .3 55.3 

Air Tripsa 2.36 2.66 3.32 2.72 3.10 3.70 2.43 2.39 1.71 
RMSE' 56.7 71.6 62.3 67.1 97.5 64.0 65.l 122.8 
r 0.86 0.76 0.82 0.77 0.75 0.60 0 .81 0.19 
Slope 0.73 0.70 0.71 0.94 0 .96 0.61 0.54 0.14 
Jntept' 26.4 37 .8 23 .8 19.8 31.7 22.3 25 .6 31.1 

Rail Trips• 0 .58 0.82 1.86 1.64 0.39 'l.84 0.73 1.53 1.44 
RMSE' 24 .7 69.0 60.1 16.9 38.0 19.7 52 .9 76.4 
r 0.83 0.60 0.82 0.66 0.88 0.84 0.74 0.86 
Slope 1.13 2.15 2.03 0.68 1.71 0.94 1.57 2.68 
Jntept' 3.8 14.4 10.5 -0.1 -3.4 4.3 14.0 -2.6 

•Millions of annual trips. ll"lhousonds of annual t rips. 
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Table7. Ranking of models according to 
their ability to replicate modal totals 
(non-NEC data). 

Model Automobile Bus Air Rail 

CN22 3 4 4 3 
CN25 7 6 6 7 
CN26 1 1 3 6 
CN27 2 3 5 2 
CN28B 4 2 7 4 
HSGT 6 7 2 1 
SRI 5 5 1 5 

Figure 1. Elasticity with respect to rail time. 
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Table 8. Ranking by root mean square error between 
observed and estimated trips (non-NEC data). 

Model 

CN22 
CN25 
CN26 
CN27 
CN28B 
HSGT 
SRI 

KEY 

Automobile 

1 
6 
2 
3 
4 
7 
5 

MODAL 
SHARE 

1 CN27, CN28B BUS I NESS 
2 CN27, CN288 NON-BUSINESS 
3 SRI 
4 CN22 
5 CN25, CN2 6, HSGT 
6 PML, TIME = 4 HOURS 
7 PML, TIME = 8 HOURS 

Bus Air Rail 

4 1 3 
6 2 6 
1 2 3 
3 6 1 
2 7 4 
7 3 2 
5 4 5 

Average 

1 
6 
2 
3 
4 
7 
5 


