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This paper describes a study of the development and evaluation of incident
detection algorithms for electronic-detector systems on freeways. The 
study was in 3 parts. The first part reviewed existing detection algorithms 
and the development of 2 new detection algorithms. During the develop
ment of these 2 algorithms, a section of a freeway lane formed by 2 detec
tors at both ends was treated as a system, and an attempt was made to 
express traffic movements by using dynamic equations. The second part 
involved the development of a microscopic simulation model of freeway 
traffic performance. The simulation model was capable of simulating 
traffic conditions on a freeway under incident and nonincident situations. 
The output of the simulation model, which was recorded at presence detec
tors in each lane at 0.125-mile (0.20-km) spacings, was stored on a mag
netic tape and played back later to test each detection algorithm. The 
third part evaluated the newly developed algorithms. The California 
model, which is considered to be the most widely known algorithm, was 
compared to the 2 proposed algorithms. 

•INCIDENT-FREE flow conditions on urban freeways are abnormal. Previous studies 
have noted that freeway incident rates may be as high as 1 incident per directional mile 
(0.62 incident per directional kilometer) per hour (1) . Freeway incidents are hazardous 
to all in the traffic stream. And reduction in freeway capacity may be significant enough 
to cause congestion and thus create further hazards and delay for passing motorists. 

Knowledge of incidents that reduce capacity is extremely important for freeway
control strategies. Previous work has been undertaken by us and by others to evaluate 
incident-detection systems (!, ~ !). But the development and evaluation of electronic
detector systems have received only limited attention. These systems generally are 
based on uncontrolled empirical experiments only. The results of these empirical 
experiments are discussed in the paper. 

This paper describes a study of the development and evaluation of incident-detection 
algorithms for electronic-detector systems. The study consisted of the development 
of 2 detection algorithms and a simulation model of freeway traffic performance. In 
addition, the algorithms were evaluated by using the simulation model, TRAFFIC. 
Two detection algorithms were proposed. One was the dynamic model, which applies 
the information-theory technique (5). The other was the stream discontinuity model, 
which is based on a macroscopic treatment of the dynamic model. This study also 
evaluated the detection algorithms. The California model, which is considered to be 
the most widely known, was evaluated along with the 2 newly developed algorithms. 

AUTOMATIC DETECTION ALGORITHMS 

Several unique studies of automatic detection systems have been completed. This 
paper will describe 2 operational systems and 2 experimental systems. 
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Port of New York Authority Method 

The Port of New York Authority method is described in detail elsewhere (J_, Q_). Con
trol strategy for the Lincoln Tunnel is based on the number of vehicles in each of 3 
sections. If Yk =the number of vehicles in a section at the beginning of the kth obser
vation period, ulk = the number of vehicles that have entered the section in the kth 
time period, and U2lc =the number of vehicles that have left the section in the kth time 
period, then the number of vehicles at the beginning of the k + 1 period should be 

(1) 

The traffic density in each section of the tunnel was estimated by this relation, and in
cidents were predicted for abnormally large values of density. This method, however, 
accumulates errors because of miscounts by the sensors. Therefore, it requires 
microscopic identification of vehicles after a certain time. This method can be used 
in the tunnel because of the tunnel's accurate detection system and because vehicles 
are not permitted to change lanes in the tunnel. Recently this method was improved by 
applying the extended Kalman filtering theory to it. 

The California Model 

The California model (6), which has produced promising results, uses occupancy as a 
measure of traffic concTitions . It is less accurate than that used in the Lincoln Tunnel 
in New York. The basic concept of the method is a comparison of occupancies at the 
neighboring detectors in the same time interval and a comparison of occupancies at 
adjacent time intervals at the same detector. Occupancies are 1-min values updated 
every 20 or 30 sec. The detection criterion should predict an incident when all the 
calculated values of X1, X2, and X3 exceed K1, K2, and & at the same time. 

where 

OCC1 

t 
X1, X2, X3 
Ki, K2, K3 

B 

occupancy at station i that is counted in the direction of travel, 
time instant, 
X occupancy values, 

(2) 

(3) 

(4) 

K occupancy values (K1, K2, and &, which can be adjusted depending on 
location, are 8, 0.55, and 0.10 respectively for the nonpeak period and 
8, 0.55, and 0.15 respectively for the peak period), and 
a time period of 20 or 30 sec (backward shift operator). 

Texas Transportation Institute Method 

Experimental studies conducted by the Texas Transportation Institute (!!) suggest several 
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new approaches to automatic detection systems, one of which is the kinetic energy ap
proach. Kinetic energy is computed as follows. 

Ea: kµ2 

that is, 

where 

E kinetic energy, 
k density, 
µ. speed, 
q flow, and 
e occupancy. 

In a study based on this approach, the 1-min kinetic energy values were compared with 
preestablished limits and a probable incident was reported whenever the measurements 
exceeded their lower limits. This approach was extended to an individual-lane-energy 
approach that was done lane by lane. The results of the experimental study tended to 
show that this method has a high false-alarm rate. 

Double Exponential Smoothing Method 

Cook and Cleveland (10) introduced another new approach for automatic incident
detection: a time-series analysis technique called the double exponential smoothing 
method. In this method, the smoothing function of observation at the t th time incre
ment, St (x), is expressed as 

where 

a smoothing constant, 
Xt = t th observation, and 

f3 = 1 - ll!. 

(5) 

Traffic parameters were forecast, and incidents were predicted for parameter values 
that exceeded the preset limit based on Eq. 5. Experiments have shown that this method 
is comparable or superior to the California model. 

DEVELOPMENT OF INCIDENT-DETECTION ALGORITHMS 

To develop incident-detection algorithms, one should treat a section of freeway lane 
formed by 2 detectors at both ends as a system. An upstream detector would provide 
the system with certain output traffic measures. This system is shown in Figure 1. In
side the system, vehicles do or do not change lanes. The function of the system is ex
pressed by a travel-time distribution. 



Figure 1. Freeway system. 
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differ, depending on whether the traffic
flow rate is larger than, smaller than, or 
equal to the reduced capacity. When only 
local disturbances are observed, shock-
waves propagate neither upstream nor 
downstream of the incident. When the input 
flow rate is larger than reduced capacity, 
shockwaves propagate both upstream and 
downstream of the incident; consequently, 
extreme changes occur in traffic-flow 
measurements, and these changes permit 
one to look at either individual detectors 
or a pair of neighboring detectors on the 
freeway. When significant changes are 

observed in the detector measurements, an incident is predicted. On the other hand, 
when the input flow rate is smaller than capacity, sudden changes in the system do not 
occur. This phenomenon requires the automatic-detection algorithm to detect local 
disturbances that do not have the characteristics of extreme changes. 

Most detection algorithms, including the California model, predict incidents by ob
serving sudden changes in detector measurements. In this paper, an effort has been 
made to develop detection algorithms that detect accurately not only the occurrence of 
incidents at situations when flow is higher than reduced capacity but also incidents in 
the lower flow level, particularly when this level is far less than reduced capacity. Two 
detection algorithms are proposed in this paper. The first, the dynamic model, deals 
with the impulse-response function of the system, which is interpreted as a probability 
density function of travel time between 2 detectors; the second, the stream discon
tinuity model, tries to detect discontinuities in a traffic stream by comparing occu
pancies at 2 locations on a freeway by using proper time shifts in measuring occupancies. 

Dynamic Model 

It is assumed that the arrival pattern of vehicles on a freeway lane remains essentialiy 
unchanged under nonincident conditions. It is also assumed that the occurrence of an 
incident creates disturbances in the arrival pattern downstream of the incident location. 
In developing the dynamic model the first task is to formulate a model that can represent 
the traffic phenomena previously described. 

Formulation of the Model 

Consider a longitudinal pair of detectors in a freeway lane. Traffic information (such 
as occupancy or number of vehicles) is obtained at each detector for each equally spaced 
time interval. Using the sampling intervals as the unit of time, one denotes input in
formation and output information at t as Xt and Yt respectively. If all the vehicles 
travel with the same speed and no lane changing takes place between the 2 detectors , 
then the input and output have a relationship such that 

(6) 

where 7' = travel time (time shift) between the 2 detectors. But, in the real world, all 
vehicles do not travel at the same speed or without changing lanes. So the relationship 
between the input and output is a little more complicated. Let us define Xt and Yt as 
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the respective deviations of t from the mean of input and output information over a long 
time period. Then output of the RyRtem Yt iR rP.prP.sented as a linear aggregate of 
input deviations at t, t - 1, t - 2, ... , and the noise sequence, Nt, is such that 

Yt = VaXt + V1Xt - 1 + v2Xt - 2 + .•• + Nt 

(va + v1B + v2B2 
+ ••• )Xt + Nt 

v(B)Xt + Nt (7) 

In the field of time-series analysis, the weights of Vo, v1, ... in Eq. 7 are the impulse
response function of the system and v(B) is the transfer function of the filter. B is 
defined by BXt = Xt _ 1. The sum of the weights v0 , v1, ... is equal to the steady-state 
gain of the system, g. 

(8) 

The steady-state gain inthis application is interpreted as the ratio of the mean values 
of traffic information at the upstream and downstream detectors. Under nonincident 
conditions g is assumed to come very close to 1, and v1 represents the travel-time 
probability between the 2 i detectors. 

Nt in Eq. 7 corrupts the linear dynamic system; this is mainly due to lane changing 
and detector errors. It is assumed that Xt is uncorrelated with Nt. 

If it is known that the v1s are effectively zero beyond i = K, then, in order to deter
mine the v1s of the system (N + 1) :<?: (K + 1), sets of Xt and Yt have to be made. Obser
vations would yield equations of the form 

(9) 

If only K + 1 sets of measurements are made, then unique solutions would exist for Vu 

but noise and measurements errors would cause Eq. 9 to yield incorrect values. Thus 
more measurements than the number of unknowns are taken. If substitution of the 
values v0 , v, ... ,vK for the unknown v0 , v, ... , vK on the left sideof Eq.9yields Yt, Yt-i, 
.. ., Yt - N, which differ from Yu Yt - i. ••. , Yt - N by e1 = Yi - y1 (where i = t, ... , t - N), 
then vi is to be determined such that the V1S have the smallest mean square deviation; 
that is to say that 

t 

I: e: 
i=t-N 

is a minimum. 

t 
L (Y1 - Y1)

2 

i=t -N 

If the vectors V and Y and the matrix X are defined such that 

(10) 



V= 

x 

y = 

Vo 

v1 

Yt 
Yt -1 

Yt - N -1 

then the y that gives the smallest possible mean square deviation is given as 
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(11) 

(12) 

(13) 

(14) 

where T = average travel time of vehicles in each T-sec interval. For a large value 
of N, Eq. 14 can be rewritten 

where 

(16) 

(17) 

c .. (j) and cxy(j) are the respective estimates of the autocovariance coefficient of the x 
series and the cross-covariance coefficient between x and y that are given as 
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(19) 

If the input series is not autocorrelated, then matrix Cxx can be considered as a diagonal 
matrix, and y would be given as 

(20) 

(21) 

where rx
1
(i) =estimate of the cross-correlation coefficient at lag i. 

If the input series is autocorrelated, then either Eq. 14 can be computed directly or 
the input series can be prewhitened in obtaining the v1 s. But prewhitening the input 
series considerably simplifies the solution process. As shown in the next section, the 
autocorrelation functions of several input series that are obtained from TRAFFIC were 
computed, and it was found that these input series were not autocorrelated. The dy
namic model does not have a prewhitening routine, and all input series are treated as 
nonautocorrelated series. 

Detection Criterion 

It is assumed that each vehicle's travel time between the 2 detectors under a certain 
traffic condition follows a certain distribution. Observed sets of v1 s are considered 
similar to each other. If the observations of v1s are performed for only certain time 
periods that would effectively cover the necessary range of the impulse-response func
tion under the nonincident condition, then the sum of v1s would be close to 1, but the sum 
of v1s under incident conditions would become much smaller than 1 because travel-time 
distribution would be disturbed by the existence of an incident. At the same time a 
large difference is assumed to be observed in values of upstream and downstream mea
surements if the proper shifted T is used in measuring them. Let 

ex E Vi (22) 
V observed i 

t+N+T I T+N 

f3 E X1 l~=t Y1 
i=t+T 

(23) 

where N + 1 =number of input and output noise observations. The detection criterion 
should predict an incident for a small value of a and a large value of {3. Or, more 
precisely, an incident should be predicted if an observed ex, f3 point is in the critical 
region that is shown in Figure 2. The Clio and f3o values in Figure 2 were determined 
empirically. 
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Numerical Example 

Before applying the dynamic model to a simulated traffic condition, we first observed 
whether the input series was autocorrelated. Estimated autocorrelation functions in 
the right lane at input levels of 400, 1,000 and 1,600 vehicles per hour (vph) per lane 
were obtained. The study showed that the input series was not autocorrelated in most 
cases. 

Figure 3 shows the estimated cross-correlation function of the vehicle arrival counts 
at 2 detectors located in the right lane that are 0.125 mile (0.20 km) apart. Because 
observed variances of the input and output series were nearly equal in all the 3 flow 
levels, the estimated cross-correlation function was almost identical to the impulse 
response function of the system. There were 80 upstream and 80 downstream 1-sec 
arrival counts. No incident occurred when the cross-correlation function was observed. 
The flow level was 1,000 vph per lane. 7' (estimated from the downstream detector) 
was 8.1 sec. Here, v1, va, V9, and V10 formed the observed travel-time distribution. 

Figure 4 shows the estimated cross-correlation function of the arrival counts at the 
same 2 detectors but with an incident located between them. Again there were 80 up
stream and 80 downstream 1-sec arrival counts, and the flow level was 1,000 vph per 
lane. Figure 4 shows that no v1 values, when compared to standard error, are signif
icantly large. 

Figure 5 shows the plot of 01, fJ values in the incident lane under both nonincident and 
incident conditions. Flow was 1,000 vph per lane, and detectors were spaced 0.125 
mile (0.20 km) apart. It is evident that the points under the incident condition are dis
tinctly separate from the points under the nonincident condition as shown by the ellipse 
in the figure . 

Stream Discontinuity Model 

The dynamic model estimates by the least squares method the probability function of 
the travel time between the longitudinally placed detectors. It is assumed that, if an 
incident occurs, the probability function of travel time would be disturbed. In the stream 
discontinuity model, average travel time instead of travel-time distribution is esti
mated, and it is assumed that the occurrence of an incident creates a large difference 
in traffic measurements at the upstream and downstream detectors. 

Formulation of the Model 

Consider a pair of detectors in a lane on a freeway; occupancies are measured at each 
detector for equally spaced time intervals. Occupancies at 2 detectors in a T ending 
at t are expressed by 0x,t and 0y,t where 

0x,t upstream detector occupancy in seconds, and 
0y,t = downstream detector occupancy in seconds. 

If the ending time of each T at the upstream detector is shifted by 7', then 0x,t and 07 ,t 
are assumed to differ greatly under incident condition. In a similar manner to that of 
the California model, the stream discontinuity model considers 2 measures such that 

(24) 

and 

(25) 
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The detection criterion s hould predict an incident when calculated values of Z1 and Z 2 
exceed Zf and Zf at the same time. The values Zf and zr are determined empirically. 

T can vary depending on detector spacing. Larger T values would give stable re
sults but larger detection times. On the other hand, smaller T values would give 
shorter detection times but more false alarms. 

The amount of shifted r is estimated from downstream detector information. r is given as 

where 

Ld = detector spacing in feet (meters), 
t' = average vehicle length plus effective detector length in feet (meters), and 
f = number of vehicles counted at downstream detector in T. 

Numerical Example 

(26) 

This example was taken from a simulation result produced by TRAFFIC. The flow 
level was 1,000 vph per lane. An incident was generated in the right lane of a 3-lane 
freeway 10 min after the simulation began. The detectors were set 0.25 mile (0.40 km) 
apart. Twas 60 sec. 

Figure 6 shows the plot of observed r, Z1, and Z 2. It is clearly seen that both Z1 
and Z2 values were stable before the incident occurred, but they became unstable after 
the incident. Because shifted r, which represents estimated average travel time be
tween the 2 detectors along the freeway lane, is estimated from the downstream de
tector, the value of r tends to be smaller after the incident. 

DEVELOPMENT OF A SIMULATION MODEL 

TRAFFIC Simulation Model 

A simulation model, TRAFFIC, was developed to evaluate various incident-detection 
schemes. TRAFFIC is a microscopic Monte Carlo simulation model. The program 
consists of 12 subprograms and 11 functions. Its program length is about 1,800 state
ments, and it uses about 36,000 octal core locations . Simulation was carried out for a 
1.5-mile (2.4-km) section, but the first 0.5-mile (0.8-km) section was used for warm-up, 
so no output was obtained from this subsection. The physical structure of the freeway 
section and detector arrangements are shown in Figure 7. The detectors were uniformly 
spaced 0 .12 5 mile (0 .20 km) apart, and each transverse lane had a separate detector. 
Traffic information was obtained through these detectors and stored on a magnetic tape. 
The information from each detector consisted of occupancies (or pulse lengths) and 
actual speeds of vehicles. This information was the input for the detection algorithm 
programs: By storing the traffic information on tape, one is able to avoid repetitious 
runs of the simulation program. The scanning time of the model is 1 sec, which is 
considered to be an allowable maximum value for this type of freeway simulation. 

Per fo rmance Anal ysis 

To check the reasonableness of the simulated traffic performance, we analyzed the 
output data from 9 selected detectors and compared the results to field measurements. 

Analyzed items included spot-speed distribution, headway distribution, volume-
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density relationship, lane-changing phenomena, queue evolution, and capacity estimation. 
Analysis of the output shows that the simulation model gave realistic results. The 

simulation results are shown in Figures 8, 9, and 10. Figure 8 shows the speed dis
tribution at 3 flow levels; speed distribution curves from the Highway Capacity Manual 
(11) are superimposed on the figure's 3 graphs. At the 400 vph per lane flow level the 
speed distribution of the simulation was almost the same as the Highway Capacity 
Manual's distribution. But at the 1,000 vph per lane and 1,600 vph per lane flow levels, 
simulation results differed greatly from the distributions of the Highway Capacity 
Manual. But it should be noted that on newly constructed freeways the mean of the 
speed distributions at these flow levels is even higher than simulation results. 
Makigami, Woodie, and May (12) noted that on the East Bayshore Freeway in the San 
Francisco Bay area the observed mean speed for 400 vph per lane was 95.3 fps (29.07 
m/s); for 1,000 vph per lane it was 86.5 fps (26.38 m/ s) and for 1,600 vph per lane it 
was 83.6 fps (25.50 m/ s). Figure 9 shows headway distributions for these 3 flow levels. 
These distributions are compared in Figure 9 to the observed distributions noted by 
May and Wagner (13). Simulation results reasonably fit the observed distributions. 
Figure 10 shows the volume-density diagram obtained from the 3 simulation runs. The 
resulting curve, which was drawn from 12 observations, appears reasonable. 

Transition matrices that show lane-changing phenomena under nonincident condition 
were constructed and compared to the field observation values reported by Worrall, 
Bullen, and Gur (15); it was found that the simulation model gave reasonable results. 
Lane-changing phenomena under incident conditions were not tested because empirical 
data were not available. Queue evolution was observed at the 1,600 vph per lane flow 
level; it was found that the average speed of the queue front was 103 ft/ min (0.523 m/ s) 
or 1.2 mph (1.9 km/ h). The capacity was found to rangefrom2,200vphperlaneto2.300 
vph per lane as shown in Figure 10. The reduced capacity (calculated for the 1,600 
vph per lane level) was 4,518 vph or 2,259 vph per lane. The capacity values showed 
reasonable results. 

EVALUATION OF THE DETECTION ALGORITHMS 

Production runs were made with the simulation model for the 3 traffic levels (400, 
1,000, and 1,600 vph per lane) and for 2 different incident occurrerices (an incident in 
the right lane and an incident in the middle lane). Each simulation run was conducted 
in 20 min of real time. Approximately 10 min after the beginning of the simulation run, 
an incident was generated in the right lane (or middle lane) of the freeway midway be
tween the 5th and 6th detector sets. This simulation procedure provided a simulation 
run of 10 min before the incident and 10 min after the incident. Detector information 
from all the detectors was stored on a magnetic tape. 

The aforementioned detection algorithms were computerized and evaluated by using 
the traffic performance on the simulation runs. The California model was computerized 
and compared to the newly developed models. 

Experiment Design 

The variables considered in designing the experiment were as follows: 

1. Detection algorithms (California, dynamic, and stream discontinuity models); 
2. Detection configurations [0.125-mile (0.20-km), 0.25-mile (0.40-km), 0.5-mile 

(0.80-km), and 1-mile (1.6-km) spacings (Fig. 11)]; 
3. Traffic-flow levels (400, 1,000, and 1,600 vph per lane); and 
4. Incident location [2 locations: right lane and middle lane, both of which were 

2,970 ft (990 m) from origin of effective simulation section]. 

Combinations of these variables made 36 experiments for each algorithm. Evaluation 
of algorithms and detector spacings was based on these experiments. 



Figure 6. Observed T, Z1, Z2 values from the 
simulation results. 

Figure 7. Detector arrangement on the freeway 
section. 
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Evaluation Criteria 

The criteria of evaluation considered in this experiment were as follows: 

1. Probability of no detection, pnd• which is the probability of having no alarm indicat
ing an incident in t)le 10 min after an incident; 

2. Average detection time, t4 , which is calculated; and 
3. Average number of detections in 10 detection trials (lld). In each incident case, 

the detection of the incident was tried 10 times after the incident generation to show 
how many times an incident is detected in the 10 trials. A large n4 value would indi
cate that the algorithm is highly reliable. 

False-Alarm Probability 

False-alarm probability (p,a) is the probability of having a false alarm at a detection 
trial when no incident is on the freeway section. False-alarm probability is related 
directly to the critical values of each detection algorithm. This probability can almost 
be controlled by changing the critical values. Although Pra is often one of the evaluation 
criteria of incident-detection algorithms, it is treated not as an evaluation criterion 
but as a controllable variable in this experiment. The algorithms are evaluated for 
the Pra of 0.001. 

In reality, this Pra should be different depending on the number of detectors used in 
the surveillance system and the number of detection trials per unit of time. For ex
ample, if the number of detectors used is 100, and detection trials are performed each 
minute, then 6,000 detection trials would be performed in 1 hour. If a p,. of 0.001 is 
used, then the expected number of false alarms in 1 hour in the system would be 6. 

Detection Algorithm Results 

The experiment was initiated by using several critical values set up for each incident
detection algorithm. The resulting operating characteristics of the 3 algorithms are 
shown in Figure 12. In Figure 12, the vertical axis represents Pn4 , and the horizontal 
axis represents pr.. In any incident-detection algorithm, there is a trade-off between 
p04 and p,. . For example, at the 0.00 Pr. level, the California model has a probability 
of 0.40 of not detecting an incident; the stream discontinuity model has a lower value 
of 0.19; and the dynamic model has the lowest value of 0.07. To achieve the 0.00 prob
ability of no detection, the California model has to allow the highest false-alarm prob
ability of 0.031; to achieve the same level, the dynamic model only has to allow 0.012. 
Obviously the dynamic model shows the best result. 

Com;.•.lrison of Detection Algorithm Results 

At the false-alarm probability 0.001, a comparison of detection algorithms was made 
for the t4 for each flow level and n4 • Figure 13 shows the comparison at the 3 flow 
levels. td was calculated for each flow level and detector spacing. In calculating t 4, 

no detection was counted as 11 min of detection time. In Figure 13, the observed points 
that contain no detections are shown. 

At the flow level of 400 vph per lane, the effect of detector spacing on detection time 
was not strong. Because of no-detection observations in the original data, a straight
forward comparison is difficult. But it can be seen that at the 0.125:-, 0.25-, and 0.5-
mile (0.20-, 0.40-, and 0.80-km) detector spacings the dynamic model had the best re
sults; at the 1-mile (1.6-km) detector spacing the dynamic model again showed the best 
results. The stochastic elements of the traffic flow prevented any monotonic trend in 
the curves for any of the 3 algorithms. 

At the 1,000 vph per lane flow level, a monotonic increase of the average detection 



time was observed in all of the 3 algorithm results. In this case also, the dynamic 
model had the best results for td except at the 0.25-mile (0.40-km) detector spacing. 
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At the 1,600 vph per lane flow level, the 4s of the 3 algorithms increased mono
tonically as a function of the detector spacing. The dynamic model showed the best 
result at all 4 detector spacings. It is rather surprising that the California model 
showed very poor results at the 0.5- and 1- mile (0.40- and 0.80-km) detector spacings. 

Looking at the 3 graphs in Figure 13, one should notice that especially the California 
model shows rather unpredictable results. This may indicate that the California model 
tends to pick up stochastic elements of the traffic flow more easily than the other 2 
algorithms. 

Figure 14 shows the n4 trials under the same false-alarm level <Pta = 0.001). At the 
400 vph per lane flow level, the dynamic model showed the best results. 

Atthe 1,000 vph per lane and 1,600 vph per lane flow levels, the dynamic model and 
the stream discontinuity model showed better results compared to the California model. 
The number of detections in 10 min tended to decrease as space increased except for 
the flow level of 400 vph per lane for the California model. 

CONCLUSIONS 

Two detection algorithms were proposed and tested with the microscopic simulation 
model that was developed to analyze detector schemes. The California model was 
compared to these 2 detection algorithms, and they compared favorably at all flow 
levels, particularly when detectors were spaced far apart. 

The results of this study have revealed the influence of detector spacings and flow 
levels on the 3 detection algorithms. Further research is required to obtain more 
comprehensive results and to perform more exhaustive evaluations of these and other 
possible detection algorithms. The simulation model is limited in terms of its geo
metrics, demand patterns, and its ability to change capacity and demand over time and 
over the length of route. However, these limitations are not inherent in the method
ology. More flexible models can be constructed, and other detection algorithms can 
be developed based on the results given in this paper. In addition, some modifications 
in the methodology such as reducing the decision interval for incident prediction and 
additional and longer simulation runs are desirable. Finally, field experiments should 
be conducted to validate the results of this study under real-life situations. 
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Figure 12. Operating characteristics of the 3 algorithms. 
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