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A rational method for estimating prestress losses in pretensioned concrete 
members is presented. The method is based on linking experimentally de
veloped stress-strain-time relationships of steel and concretematerials. 
It enables a direct determination of stress and strain distributions in a 
member at any time within the service life of the member and avoids the 
need for step-by-step methods. Wide ranges of variation for concrete ma
terial characteristics and other design factors are permitted. The new 
method is illustrated by a practical design problem. Comparisons with 2 
recently proposed procedures show good agreement of results. 

•METHODS for estimating prestress losses in prestressed concrete members vary 
widely. At one time, a simple flat percentage or flat value was used in many design 
codes (.!, ~· Today, complicated procedures involving the use of numerous equations, 
tables, charts, and a step-by-step method of calculation are required (_; 1)· Neither 
extreme is satisfactory to the design engineers who want a simple, accurate, and 
flexible method that can accommodate variations in the numerous design and fabrication 
factors of prestressed concrete members. 

This paper presents a rational method that permits a direct and accurate prediction 
of prestress losses throughout the service life of the member. Variations in material 
properties, geometrical design, and fabrication schedule are allowed for, and step-by
step calculations are avoided. In the present form, this new method applies only to 
pretensioned members, but the basic concept is equally valid for post-tensioned 
members. 

In this paper, prestress is the stress in steel or concrete when all external loads, 
including the weight of the member, are temporarily and instantaneously removed. 
Consequently, the actual stress under a loaded condition is the sum of prestress and 
stress caused by all prevailing loads. Loss of prestress is due to the initial steel 
stress 'after anchorage. Therefore, prestress loss for a pretensioned member includes 
the effects of elastic shortening, shrinkage, creep, and relaxation. But friction and 
anchorage losses are not considered. 

BASIC CONCEPT 

The basic concept of the new method involves the use of stress-strain-time relation
ships to represent elastic as well as long-term rheological behavior of the steel and 
concrete materials. In the most general form, these relationships are given by the 
following equations: 

f 1 = f(E:., t,} = f,, e2 - f., re2 

E' 0 = g(f., t.) = E'o, •2 + E'o, 1b + E:o, or 

(1) 

(2) 

Equation 1 shows the steel tensile stress f, as a function of steel strain £, and time 
after tensioning t., and as the difference between the elastic stress f., 0 2 and relaxation 
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loss f,, .. 2 • Equation 2 shows the concrete compressive strain £0 as a function of con
c:rete t:l.bei' stress r. and time aiier end of curing t0 • It is the sum of elastic, shrinkage, 
and creep components. Here it is assumed that transfer of prestress occurs im
mediately after curing. Hence shrinkage and creep are controlled by the same time 
factor. 

For a pretensioned concrete member, the stress-strain-time relationships of the 
concrete and steel materials are linked by the following 3 sets of linking conditions: 

1. Time compatibility, 

2. Strain compatibility at the location of each prestressing strand, 

3. Equilibrium conditions over the cross section, 

J t.,dA., - !:f,ap• = P 

f f.,xdA., - I;f.xap. = -M 

where 

(3) 

(4) 

(5) 

(6) 

k1 time interval from tensioning of steel to transfer of prestress (this includes 
time for form setting, casting, and curing), 

k2 initial tensioning strain in steel, 
A0 area of net concrete section, 
a.p. area of individual prestressing element, 

x distance to elementary area from the centroidal horizontal axis, 
P = thrust on section caused by external loads, and 
M = bending moment on section caused by external loads. 

The positive directions of x, P, and Mare shown in Figure 1. In equations 5 and 6 the 
integrations are over the entire net concrete area, and the summations are over all 
pretensioning elements. All of the quantities defined for equations 3 to 6 are design 
or fabrication factors and are known or specified for the estimation of prestress losses. 
Thus equations 1 through 6 represent a set of 6 conditions ·for the 2 time variables 
t 1 and t.., and the 4 stress and strain variables E:,, £0 , f., and fo, which are functions of 
the location parameter x. A reasonable assumption was made that concrete stress 
varies linearly across the section 

(7) 

When this condition is added, sufficient equations are available to evaluate all unknowns 
for any given time. That is, the time variations of stresses and strains can be deter
mined. Thus, when the member design and the initial conditions k.i and k e are known, a 
complete solution of the stress and strain distribution can be obtained by repeatedly 
solving equations 1 through 7 for different values of time. It is important to note that, 
for any specified time, solution is direct and not dependent on the solution at preceding 
times. Thus step-by-step accumulation is not needed. It also should by pointed out 
that f. and fo in the aforementioned equations include the effects of applied loads and, 
therefore, are not the prestresses as defined earlier. By definition, steel prestress 
and prestress loss are evaluated by the following equations: 

(8) 

(9) 



where 

fP = steel prestress, 
f, 2 = steel stress caused by applied loads including member weight and all per

manent loads, 
.::ifP loss of prestress, and 
f, 1 initial steel stress immediately at anchorage. 

STRESS-STRAIN-TIME RELATIONSHIPS 
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The functions f and g in equations 1 and 2 were developed experimentally based on ob
servations of elastic, relaxation, creep, and shrinkage behavior of simple steel and 
concrete specimens. Steel relaxation data were obtained from strand specimens tested 
in fixed-length loading frames under various initial tensile stresses. To gather infor
mation on concrete strains, we used concentrically pretensioned rectangular concrete 
specimens in conjunction with similar specimens containing untensioned strands. 

In selecting time functions for regression analyses of relaxation, shrinkage, and 
creep data, we placed special emphasis on the suitability of these functions for ex
trapolation because long-term projections based on short-term observations would be 
necessary. For this purpose, we made analyses by using data covering different 
periods of time and compared them with projected values for an arbitrarily chosen 
future time (100 years after tensioning). Lack of sensitivity of the projected final 
value to the amount of experimental data used in the analysis was used as a criteriori in 
selecting time functions (5). A modified form of the logarithmic function was chosen 
because it was simple andbecause it satisfied the criterion of insensitivity. 

Relaxation loss data from steel strand specimens were first analyzed for time and 
initial stress. The resulting expression then was combined with the elastic stress
strain relationship to form the stress-strain-time equation. The form of this equation 
is as follows: 

(10) 

where fpu = specified ultimate tensile strength of steel in kips per square inch (mega
pascals). f, is measured in kips per square inch (megapascals); £ 1 is measured in 
units x 10-2

; t, is measured in days starting from initial tensioning. 
The applicability of equation 10 is restricted because of the limited test ranges of the 

controlled factors. These ranges are 

0.5 S: f./fpu S: 0.8 

1 s; t. s; 36, 500 

The experimental work dealt with 270-kips/ ln. 2 -grade (1860-MPa}, stress-relieved, 
7-wire strand specimens 7/16 in. (1.11 cm) and % in. (1.27 cm) in size. No significant 
size effect was found. The values of the regression coefficients are given in Table 1. 

Equation 2 for concrete characteristics was developed in a similar manner by 
combining expressions representing elastic, shrinkage, and creep strains (6). Elastic 
strains were measure directly at the time of·prestress transfer. The shrillkage strain 
of a prestressed member was defined to be the same as that of plain concrete containing 
no reinforcement. Creep strain was obtained from the measured total strain by de
ducting elastic-shrinkage and elastic-rebound strains. Time function for shrinkage 
and creep strains was selected by using the same criteria that were used for relaxation 
behavior. Coincidentally, the same function was chosen. The functional form .of the 
concrete stress-strain relationship is as follows: 
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Figure 1. Sign convention for applied 
ioads. 

p 

Table 2. Coefficients for concrete stress·strain
time relationship. 

Value 

Upper Bound Lower Bound 
Coefficient Loss Loss 

Elastic strain, C1 0.02500 0.02105 
Shrinkage 

D1 -0.00668 -0.00066 
o, 0.02454 0.01500 

Creep 
E1 -0.01280 -0.00664 
E2 0.00675 -0.00331 
E, -0.00060 -0.00371 
E, 0.01609 0.01409 

Note: C1 , E3 , and E4 values will be combined with fc. Multiply C,, 
E3 , and E4 values by 0 .145 to convert to megapascals. 

Figure 2. Example problem for predicted prestress losses. 

70 

Table 1. Coefficients for steel stress-strain-time 
relationship. 

Coefficient Value Coefficient Value 

Elastic Relaxation 
A1 -0.04229 B1 -0.05867 
A, 1.21952 B2 0.00023 
A, -0.17827 B, 0.11860 

B, 0.04858 

Note: All coefficients are dimensionless and are the same in SI units. 
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+ [ D1 + D2 log (t0 + 1)] 

+ [E1 + E2 log (t0 + 1)] + f,, [E3 + E4 log (t
0 

+ 1)] (11) 

Eo is measured in units x 10-2; f,, is measured in kips per square inch (megapascals); 
and t., is measured in days starting from the time of transfer, which is the same as the 
end of curing period. 

In the experimental study, 2 concrete mixes were used, both of which satisfy the 
same minimum strength requirements [5.0 kips/in.2 (34.5 MPa) at transfer and 5.5 
kips/in.2 (37.9 MPa) at 28 days]. However, their composition and manufacturing proce
dure were sufficiently different so that their rheological behaviors differed significantly. 
Two sets of regression coefficients were developed to reflect this wide variation. They 
are given in Table 2. The applicability of equation 11 is restricted because of the 
limited test ranges of the controlled factors. These ranges are 

0 s: f0 s: 3.3 kips/in. 2 (22.8 MPa) 

1 s; t
0 

S: 36, 500 

FORMULATION OF PROCEDURE 

For any specified time, equation 10 reduces to a simple quadratic function of E,. Equa
tion 11 is linear in terms of f0 • Their combination with equations 3 through 7 results 
in a pair of simultaneous quadratic equations in g1 and g2. The solution of g1 and g2 
then enables one to evaluate steel and concrete stresses and strains over the entire 
cross section. Note that a general solution in this manner would result in different 
losses in the several prestressing elements and thus cause a gradual shift of the 
centroid of prestressing. 

For practical purposes, all prestressing steel usually is regarded as concentrated 
at 1 point, the c.g.s., for stress calculations. When this simplification is used, the 
simultaneous quadratic equations can be simplified into a single quadratic equation in 
terms of the concrete fiber stress at c.g.s., f01 , as follows: 

where 

f.,, concrete fiber stress at c.g.s. in kips per square inch (mega.pascals), 
g1 + g2e., 

f:~ nominal concrete fiber stress at c.g.s. caused by applied loads in kips per 
square inch (mega.pascals), 

-!, + ~e, (tension positive), and 

{3 dimensionless geometrical parameter. 

{3 also can be represented as follows: 

where 

A
5 

= area of gross cross section in square inches (square centimeters), 

(12) 
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I. = moment of inertia of gross cross section in inches4 (centimeters4), 
e5 = eccentricity of prestress for gross cross section in inches (centimeters), and 

AP• = total area of prestressing steel in square inches (square centimeters). 

Equilibrium equations 5 and 6 also can be simplified to yield the value of steel stress 
at any arbitrary time: 

f, = (/3 - l)f0 , + /Jt:~ (13) 

DERIVATIONS OF EQUATIONS 

The set of equations used in the development of the basic analytical procedure includes 
the 2 stress-strain-time relationships (equations 10 and 11), the 4 linking relationships 
(equations 3 through 6), and the linear relationship defining concrete stress distribution 
in the member section (equation 7). In these equations, fa, f,, (0 , and £, are functions of 
x. In equations 5 and 6, the integrations are over the net concrete section area, and the 
summations cover all prestressing steel elements. Substituting equation 7 into 5 and 
6 and performing the integrations yields 

lgg2 - ~(£. + f01 )x1~. = -M 

where 

fa, concrete fiber stress at the level of prestress steel, and 
x, = x distance for an individual prestressing element. 

Therefore, 

To simplify further derivation, we introduce a group of parameters. 

Then, 

P2 [A2 - B1 - B2 log(t. + l)]fpu 

P3 [A3 - B3 - B4 log(t, + l)]fPu 

Qi D1 + E1 + (D2 + E2) log(t0 + 1) 

Substituting this information into equation 4 yields 

Substituting this into equation 16 gives 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 
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(20) 

where 

Ri P1 + P2(k2 - Qi) + P3(k2 - Qi)2, 

R2 - Q2[ P2 + 2P3(k2 - Qi)], and 

fu P3Q~. 

Substituting equations 16 and 20 into equilibrium condition equations 14 and 15 gives 

A
1
g1 - "E[R1 + (R2 + l)(g1 + g2X,) + fu(g1 + g2X1 )

2Ja,.1 = P 

Igg2 - "E[ R1 + (R2 + l)(g1 + g2X,) + Rg(g1 + g2x,)]x,a,., = -M 

These equations are simultaneous quadratic equations in gi and g2. 

(21) 

(22) 

In the simplified case when prestressing steel is regarded as concentrated at 1 level, 
x, becomes a constant for all elements and is equal to e, by definition. 

Replacing x, bye, in equations 21, 22, and 19 gives 

A,g1 - [R1 + (R2 + l)(g1 + g2e,) + fu(g1 + g2e,)2]Ap• = P 

1sg2 - [R1 + (R2 + l)(g1 + g2e1 ) + R3(g1 + g2e1 )
2]Ap0 e1 = -M 

(23) 

(24) 

(25) 

Multiply equation 23 by I. and multiply equation 24 by A,e,; add these 2 equations and 
substitute equation 2 5. This gives 

A1 J.f01 - [R1 + (R2 + l)f01 + Raf!1 JAP1 (I. + A,e:) = Pig - MA,e, 

Therefore, 

f - [R (R 1) ]A (_!_ ~) - .E_ - Me, 
01 1 + 2 + fc• P• A + I - A I 

I g g g 

(26) 

When we introduce 

equation 26 is transformed into equation 12. 
It is important to note that f:R is the nominal concrete stress caused by the applied 

loads based on gross section properties. It uses a tension positive sign. The dimen
sionless geometrical factor fj is associated closely with the ratio of steel prestress to 
concrete prestress. 

Equation 13 for steel stress is obtained by subtracting equation 12 from equation 20. 
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ANALYSIS PROCEDURE 

The procedure for an analysis of prestress losses in a pretensioned member is as 
follows when material, geometric, and fabrication factors, including the concrete char
acteristics {3, f: , k 1, and k2, are known or specified for the problem: 

1. Evaluate Ri, R2, and Ra for each specified time t 0 ; 

2. Solve equation 12 for f0 .; 

3. Evaluate the steel stress f. by using equation 13; 
4. Calculate concrete and steel strains £0 and e-. by using equations 2 and 4 respec

tively; and 
5. Evaluate steel prestress and prestress loss by using equations 8 and 9 respectively. 

EXAMPLE AND COMPARISON 

This new method enables a direct solution of prestress loss at any time during the ser
vice life of the member without requiring a step-by-step accumulative technique. How
ever, to determine the complete history of prestress variation in a member, theanalysis 
procedure must be repeated many times for different values of t 0 • The number of 
calculations involved is considerable. A computer program has been developed to 
carry out these calculations. 

An example is presented here to illustrate calculations according to the new proce
dure and to compare the results with those from other procedures. This example deals 
with a Pennsylvania Department of Transportation standard 20/ 33 I-beam (~)that spans 
60 ft (18.3 m) center to center. This beam is prestressed with thirty-four 1/2-in. 
(1.27-cm) stress-relieved strands of the 270-kips/ in.2 (1860-MPa) grade. The concrete 
used corresponds to the lower bound of prestress losses. e, = 7 .95 in. (20.2 cm) ; 
ki = 2.3 days; and f. 1 = 183.6 kips/in. 2 (1266 MPa) = 0.68 fPu' The beam is part of a 
highway bridge on which the deck slab is 7.5 in. (19.05 cm) thick and cast in place 140 
days after transfer. The spacing between beams is 6 ft 10 in. (208 cm) center to center. 
An additional dead load of 30 lb/ft2 (1440 N/m2

) is applied later to be resisted by the 
composite section. 

For the sake of simplicity, the 30-lb/ft2 (1440-N/m2) superimposed load is treated as 
applied together with deck gravity load at 140 days. From the geometry of the given 
section, it is calculated that fJ = 50.5. Before application of superimposed loads, f;Q = 
0.417 kips/ in.2 (2.88 MPa) and f. ~ = 1.93 kips/ in.2 (13.3 MPa). Afterwards, f.:2 = 1.171 
kips/ in.2 (8 .07 MPa) and f d = 5.4 kips/ in.2 (37.4 MPa). 

Detailed calculations according to the new procedure are illustrated for the time 
just before the application of deck and other superimposed loads. At that time, t 0 = 
140 days, t. = 142.3 days, f:2 = 0.417 kips/in. 2 (2.88 MPa), and f. 2 = 1.93 kips/in.2 (13.3 
MPa). The coefficierits Ri, R2, and Ra in equation 12 will now be evaluated. 

From the steel stress-strain relationship (coefficients Ai, A2, and Aa from Table 1) 
for the initial tensioning stress, f.1 = 0.68 fPu and k2 = 0.65509. 

Pi -0.04229 (270) = 11.4 

P2 [ 1.21952 - (-0.05867) - 0.00023 log (142.3 + 1)] (270) = 345.0 

Pa [-0.17827 - 0.11860 - 0.04858 log (142.3 + 1)](270) = -108.4 

Qi -0.00066 - 0.00664 + (0.01500 - 0.00331) log (140 + 1) = 0.0178 

Q2 0.02.!.05 - 0,00371 + 0.01409 log (140 + 1) = 0.0476 

k2 - Qi = 0.655 - 0.0178 = 0.637 

Ri = -11.4 + 345.0 (0.637) - 108.4 (0.637)2 164.4 



R2 = -0.0476 [345.0 - 2(108.4)(0.637)] -9.85 

R-i = -108.4(0.0476)2 = -0.246 

Substituting this into equation 12 gives 

(164.4 - 50.5 x 0.411) + (-9.85 - 49.5):(,, - 0.246 e. = o 

or, more simply 

143.3 - 59.3 :f,,. - 0.246 :r:. = 0 

The solution for f01 is 2.39 kips/in.2 (16.5 MPa). From equation 13 

Hence 

f1 = 49.5 (2.39) + 50.5 (0.417) = 139.5 kips/in.2 (962.5 MPa) 

fP = 139.5 - 1.93 = 137.6 kips/ in.2 (959.4 MPa) 

~fP = 183.6 - 137 .6 = 46.0 kips/in.2 (317 MPa) 

It should be reemphasized that prestress loss is calculated directly from initial and 
present conditions without any reference to intervening loading history. Figure 2 
shows the computer results of similar calculations at other times. 
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From Figure 2, it is easily seen that the growth of prestress loss is nearly linear 
with respect to log t0 as long as the load remains unchanged. It would be reasonable, 
therefore, to simplify the calculating procedure by taking advantage of this phenomenon. 
Direct solution will be needed only at a few key stages, and prestress loss at an inter
mediate time can be estimated easily by means of this linear semUogarithmic rela
tionship. 

Figure 2 also shows estimates based on a step-by-step procedure recommended by 
the Prestressed Concrete Institute (PCI) (!) and by a procedure of the American As
sociation of State Highway and Transportation Officals (AASHTO) (8). Calculation ac
cording to a 1973 specification (7) resulted in an extremely high loss estimate of nearly 
80 ltips/ in.2 (552 MPa) and was not shown in Figure 2. Two of these methods appear to 
have implicitly defined prestress to include the stress caused by applied loads (1, ~
For the comparison to be meaningful, all estimates shown in Figure 2 have been ad
justed to conform to the definition for prestress given in this paper. 

Very good agreement is noted between the PCI method (!)and the new method pre
sented in this paper, particularly during the initial period before the increase of ex
ternal load. The low estimate of the final loss by the PCI method [ 55. 5 kips/ in.2 (383 
MPa)] is believed to be a reflection of a relatively short assumed service life. 

The AASHTO method (8) deals with the final loss only and does not yield as much in
formation as the other 2 methods do. Although the final loss predicted by the AASHTO 
method [62 .6 kips/in.~ (432 MPa)] appears to agree quite well with the prediction by 
the new method [ 61.1 kips/ in.2 (421 MPa)J, there are indications that AASHTO also 
considered a service life shorter than 100 years. Consequently, it would be more 
appropriate t.o recognize the difference and conclude that the AASHTO method results 
in slightly higher loss predictions than the new method does. It should be reiterated 
that, in this example, concrete corresponding to lower bound losses is considered. 
The new method is very sensitive to the characteristics of concrete, but the AASHTO 
method is not. In the AASHTO method, only the elastic loss is affected. When the 
same example was repeated using high-loss concrete, the new method yielded a final 
loss of 76.9 kips/ in.2 (530 MPa) at 100 years· the AASHTO method resulted in a signif
icantly lower loss of only 65.4 kips/ in.2 (451 MPa) at an w1specified time. Similar 
comparisons have been observed in other examples. In general, it can be stated that 
the AASHTO procedure yields predicted final loss values lying within the range predicted 
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by the new method, but they are much closer to the lower bound. 

CONCLUSION 

The new method for estimating prestress losses is a workable alternative to the 
several methods currently available. It allows for wide ranges of variation in ma
terial characteristics and other design factors, and it enables the direct determination 
of prestress loss at any time during the service life of the member. 
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