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A simulation procedure is used to analyze the influence of a randomly 
varying coefficient of permeability on the one-dimensional consolidation 
settlement of clay layers. The method of analysis involves (a) simulating 
of soil profile when the basic characteristics of the homogeneous random 
function describing the soil permeability are known, (b) making the govern­
ing field equation discrete by means of an implicit finite difference scheme, 
and (c) statistically analyzing the resulting sample population when the 
simulation has been performed a sufficient number of times. When com­
pared with results determined by the classical deterministic approach, the 
application of this analysis to a specific case shows significant differences 
and allows the use of standard procedures in significance testing, rather 
than the single estimate provided by the deterministic case, to make deci­
sions at a given significance level. 

•THE classical theory of consolidation incorporates two constitutive relations in its 
derivation: Darcy's law, which governs the flow of water through the pores of the soil, 
and Hooke's law, which governs the deformational behavior of the soil skeleton. In the 
one-dimensional situation, each of these relations involves one material parameter, 
the coefficient of permeability kx in the case of flow and the coefficient of volume change 
mx in the case of deformation; both are usually assumed to be constant. However, 
Alonso and Krizek (1) have shown that the parameters defining the soil behavior vary 
randomly in space and are conveniently described by a random function of spatial 
coordinates. In this paper the process of one-dimensional consolidation of randomly 
heterogeneous strata subjected to a constant load is studied. Only the effect of a 
random variation will be considered because the effect of deterministic heterogeneity 
has been studied elsewhere (5). An approach of this kind will enable us to (a) con­
veniently describe the complexity of the heterogeneous variation in soil properties; (b) 
formulate the problem by considering, in an unambiguous way, the random variation 
of the soil; and (c) provide probabilistic answers that indicate a range of possible 
values with an associated confidence level, rather than a single deterministic estimate. 
This will be demonstrated by studying the dissipation of pore-water pressures and the 
increase in the degree of consolidation for a consolidating clay layer. 

CONSOLIDATION EQUATION 

Generally, kx and mx are both functions of position and the effective vertical stress 
within the consolidating layer. However, under the hypothesis of small strains, little 
error is obtained by considering k, and mx as functions of only the spatial coordinates. 
Therefore, the increment of volume change undergone by an element of soil can be 
explained solely in terms of the time-dependent changes in the void ratio e, and the 
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continuity equation for the flow of pore water can be written as 

~ [k.(x) ou. ] ae 
ax y. ax = at 
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(1) 

where u.. denotes the excess of pore-water pressure, and Y, is the unit weight of water. 
Considering the definition of mx, equation 1 becomes 

__!_ au [kx(x) ou] = -m. (x) acr 
y. ax ax at 

(2) 

where 7i represents the effective vertical stress, which can be readily expressed in 
terms of the total applied stress a, and u.. as a = a - u... If time-dependent variations 
of the externally applied load are not considered, equation 2 may be expressed as 

__!_ ~ [ kx (x) ou., ] = mx (x) au. 
y. ax ax at 

which, in terms of the coefficient of consolidation, c.(x) = kx(x)/mx(x)y., becomes 

(3) 

(4) 

If k.(x) and cx(x) are assumed to be random functions K(x) and C(x) of the space coordi­
nate x, the differential equations given above become random differential equations 
for the excess pore pressure. Such equations are analytically untractable mainly be­
cause of the nonlinearity in the random component of the equation, and the only suitable 
approach currently seems to be the use of a simulation procedure in conjunction with 
some numerical technique and a digital computer. Although this approach can be costly 
if an extensive parameter study is undertaken, the answers for the specific cases 
studied here are complete in that the full probability structure of the solution, including 
first and second moments, is a natural output of the procedure. The first step toward 
the solution requires a method whereby random processes can be generated from basic 
characteristics. 

SIMULATION OF RANDOM COEFFICIENTS 

If kx(x) and m.(x) are considered to be random functions, there is usually a positive 
correlation between them, and any simulation procedure must account for this fact if 
rather conservative results are to be avoided. To simulate multivariate processes, 
Shinozuka (6) proposed methods that depend on a knowledge of the cross-spectra func­
tion between the two processes. This situation presents a major difficulty in this prob­
lem because no data are available to find such a cross-spectra function between the 
coefficient of permeability and the coefficient of compressibility. Two continuous or 
quasi-continuous records of soil permeability and compressibility would be required in 
the same location, provided both processes can be shown to be homogeneous in the 
stochastic sense. 

However, when the type of soil does not change much with depth, the changes in 
permeability can be associated with similar changes in the coefficient of volume change 
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(5). In such cases, c. in equation 4 can be considered constant. As a matter of fact, 
the condition of homogeneity of records (in Urn slochaslic sense) is nut really salisfied 
if rather different types of soil are included in the same record, and the homogeneity 
condition must be invoked to enable the randomness of soils to be analyzed in some de­
tail. This also implies that there is no significant change of soil type within the layer 
undergoing consolidation, and little error is introduced by considering Cx as a constant 
instead of as a random function. Therefore, equation 4 reduces to 

0 2ue 1 dK(x) au. 1 OUo --+-------=--
ox2 K(x) dx ox Cx ot 

where Cx is now a constant and independent of position. When the following changes 
are made in the variables, 

X = x/H 

T = Cxt 
Hz 

U=U.=Ue 
Uo ao 

(5) 

(6) 

(7) 

(8) 

where H is half of the thickness of the layer, and uo is the initial constant increment 
of pore pressure (equal to the total applied stress ao), equation 5 becomes 

o"u 1 dK*(X) ou ou 
-+-- -=-
oX2 K*(X) dX oX oT 

(9) 

where K*(X) = K(XH). Equation 9 can be more conveniently expressed as 

"'
2u d o o 

-
0 -+ - [~ K*(X)] ~ =~ 
oX2 dX oX oT 

(10) 

which involves the random coefficient~ K*(X). If the properties of the random process 
defining the permeability in the soil are known, the main concern is now directed to­
ward the simulation of ~ K* (X). 

A homogeneous normally distributed process Z(x) can be represented as (~) 

(2)1/i N Z(x) = a2 N :E cos (wkx - <tlk) 
k=l 

(11) 

where a2 is the standard deviation of the process, N is a large positive integer (to en­
su1·e normality), Wk is a random variable that is distributed with a density function 
Si(w)/a~ [where Sz(w) is the two-sided power spectra of the process as a function of the 
frequency in terms of cycles per unit of spatial length w], and ({Jk is a random variable 
that is uniformly distributed in the interval O to 211. This representation can be used 
for the permeability of the soil if the conditions of homogeneity and normality hold. 
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[Although more efficient techniques for the simulation of multidimensional processes 
have been proposed for the case in which the spectral distribution is not obtainable in 
closed form (7), the present problem, which involves a one-dimensional process with 
a simple power spectra function, can be adequately handled by equation 11 and requires 
relatively little computation.] 

Since we are dealing with statistically homogeneous layers, the first condition is 
generally satisfied; however, there are important reasons why a normal representation 
of the coefficient of permeability is not realistic. For example, a negative permea­
bility makes no sense physically, and its logarithm is undetermined mathematically; 
this gives rise to difficulties in the process of simulation. However, if permeability 
is thought to be governed by the pore-size distribution, a log-normal representation 
seems more appropriate: The most salient features of a log-normal distribution are its 
positive skewness and definition for positive values only. Physical substantiation for 
this concept is provided by the process of particle breakage, which leads to a log-normal 
distribution of particle sizes (3, 4). However, when the coefficient of variation of a 
log-normal distribution becomes small, it resembles a normal distribution. 

Since the logarithm of a log-normal distribution is a normal distribution (referred to 
random variables), it is worthwhile to investigate the possibility of a representing GT! 
K* (X) in the form given in equation 11. Consider a two-dimensional random vector, 
W = (W 1, W2), of two jointly distributed and correlated normal random variables and 
define the transformation 

where 

Y1 = g1(W1, W2) = exp[Wi] 

Y2 = g1(W1, W2) = exp[W2] 

(12) 

(13) 

(14) 

Since the transformation given in equations 13 and 14 is monotonic and one-to-one, 
the joint probability density function of Y 1 and Y 2 can be written as 

where h = (h1, h2) denotes the inverse transformation of g = (g1, g2) and IJ I is the 
Jacobian of the h transformation: 

oh1 ah1 
ay1 ay2 

\J\ 
1 = - -

Y1Y2 
oh2 ah2 
ay1 ay2 

However, since W 1 and W2 are jointly correlated and normally distributed, we can 
write 

(15) 

(16) 
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(17) 

where P12 is the correlation coefficient between W1 and W2 and is defined by 

(18) 

where C12 is the covariance between W1 and W2. Consider now that W1 and W2 are two 
specific random variables, which are defined at points x1 and X2 from a normal sta­
tionary random process W(x). Since W(x) is assumed to be stationary, the mean and 
variance of the process are constant along x, and the probability density function of the 
random vector Y, given by equation 15, can be written as 

(19) 

where P, a2, and µ represent the correlation coefficient, variance, and mean of the 
____ - - - - TT?" __ - --- - -L! -- -1--

prUt..;t:::i:)~ vv J. c:;:opca.,1...1. v cJ..y. 

Assume now that the transformation g is defined in a continuous manner for the en­
tire process W(x), and thus a new process Y(x) is originated by the relationship 

W(x) = 0n Y(x) (20) 

Then, the autocorrelation function of Y(x), defined as the expected value of the product 
Y1Y2 of two random variables of the process Y(x) for any two points 1 and 2, becomes 

Using equation 19 with equation 21, we get 

E[YiY2J = 1: 1: dy1dy2 expL 2 2(~ 2) [(0n y1 - µ)2 
211a\/ 1 - p2 I a - P 

- 2p(0ny1 - µ)(01!y2 - µ)+ (0ny2 - µ)2]} 

(21) 

(22) 

Note that, if W(x) is a homogeneous process, p is only a function of the distance between 
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points 1 and 2. Calling this distance r, using the subscript W for the parameters of 
the process W(x), and introducing in equation 22 the change of coordinates v1 = Pl/! y1 - µ 
and V2 = Pl/! y2 - µ, we are able to write equation 22 as 

( ~ = exp(2µw) /co /o:;i { 1 [ 2 2 } Rv r, -= -= exp 2( 2) V1 - 2PwV1V2 + V2 J 
2mrt-.Jl - P! 2aw 1 - Pw 

exp(v1 + v2)dv1dv2 

which can be further reduced to 

Rv(r) = (;lexp(2µw) J: exp(-o:vl + v2)dv1 

fr: exp [-o:V~ + V2(20:wV1 + l)]dv2/ 

where 

and 

On integration in v2, equation 24 transforms to 

and finally transforms to 

Rv(r) = exp[2µw + a~(l + Pw)J 

In terms of the autocovariance functions Cv(r) and C 11(r) of processes Y and W, 
equation 28 becomes 

Cv(r) + µ~ = exp[2µw +a~+ C1h)J 

(23) 

(24) 

(25) 

(26) 

(27) 

(28) 

(29) 

where µv designates the mean of the Y process. Note, however, that, if Y(x) has a 
log-normal distribution and at every point W = Pl/! Y, the mean and variance of W can be 
expressed as 
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µw = 0n µ (_!_)2 
'VY w 

(30) 

and 

er! = 0n (V~ + 1 ) (31) 

where Vv represents the coefficient of variation of Y. If Equations 30 and 31 are intro­
duced into equation 29, we get 

(32) 

Note in all these derivations that the process Y can be identified with the soil permea­
bility K* (X), and W with its natural logarithm. Therefore, if K* (X) is a homogeneous 
log normally distributed process, its logarithm is also homogeneous. Note in Equation 
32 that Cw(T) depends only on the shift -r, and it is normally distributed. This allows 
us to perform the simulation of 0n K*(X) according to equation 11. The following suc­
cessive steps are required: 

1. Analyze the record of soil permeability and find its autocovariance function 
Cv(-r ); 

2. Use equation 32 to derive Cw( 'T ), the autocovariance function of 0n K* (X); 
3. Obtain the power spectra density function of 0n K*(X) by use of a numerical pro­

cedure :md the Fourier transform of c .. (-r): and 
4. Apply equation 11 to the process 0n K*(X), whereby the standard deviation crz is 

given by equation 31 and the frequencies WK are distributed in accordance with the unit 
two-sided power spectra function derived in step 3. 

As shown in equation 6, the spatial coordinate X is actually dimensionless; therefore, 
if we denote the dimensionless frequency w.H by Fk, equation 11 can be written as 

(
2 )1/i N 

0n [K*(X) ] = U Qn K•(X ) , N r cos(FkX - CAc) 
k=l 

where the frequencies Fk are distributed in accorda:Qce with the density function 
SQn K•(F)/ ot, K· (see Appendix), where H is the characteris tic length of the problem 
(half the thickness of the consolidating layer in this case). 

METHOD OF SOLUTION 

(33) 

A finite difference technique has been used to solve the differential equation for each 
realization of the random process, 0n K* (X). Since implicit schemes generally allow 
larger spacings in the time domain than explicit schemes without sacrificing conver­
gence and since a simulation procedure requires a large number of computations, the 
reduction in computer time afforded by the implicit schemes made them more suitable 
for this problem. In particular, the Crank-Nicholson implicit scheme (2) has been 
used here because of its accuracy and simple formulation. -
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Figure la shows the domain of integration of equation 10. The time domain extends 
from Oto co, and the spatial domain has a finite length, namely, the depth of the layer 
undergoing consolidation. A discrete solution at the nodal points of a rectangular mesh 
(defined by its finite space and time increments, h and k) was sought by means of a 
difference approximation for the differential operators appearing in equation 10. If we 
consider a central difference approximation of the derivatives at point P in Figure la, 
a good compromise for the space derivative consists of the following average values 
for the central difference at ·j and j+ 1: 

(34) 

(35) 

(36) 

where L stands for 0n K*(X). For ouhT, the central difference at point P is 

(37) 

Inserting these expressions into equation 10 and denoting the grid parameter k/h2 

by>.., we get 

As i varies from 1 (zero depth) to M (full depth of the layer), equation 38 can be viewed 
as a set of linear equations for each elapsed time j, and these can be expressed as 

[AJJ (u}J+ 1 = (b}J (39) 

with the following convention: 

~. k-1 = Lk+l - 4-1 - 4 j = 2, 3, . .. (40) 

~. k = 8(1/>.. + 1) k = 2, 3, ... , M - 1 (41) 

(42) 
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(u p+i = [ui+1, u~+1 ... u~+1] j = 1, 2, 3, ... (43) 

k = 2, 3, ... , M - 1 

j = 2, 3, .. . (44) 

The remaining coefficients in equations 40, 41, and 42 are O, except for the bound­
ary conditions at k=l and K=M. For the example case of free drainage at both ends, 
we get 

(45) 

and 

l l b1 = O; bM = 0 j = 2, 3, ... (46) 

Note that the system of equations given by equation 39 is nonsymmetric but is banded; 
in fact, equations 40, 41, and 42 show that the bandwidth is 3, which allows the required 
storage and computation to be reduced substantially. The procedure just described 
does not require a constant time increment. Rather, since the method is stable for 
large values of the parameter A, the possibility exists of varying the time increment 
to reduce the number of steps up to a given time. 

- o 1 .. 1• tot• ..... 10 10 ••1 I I ppo o I #0 

.t" rt::VlUUb K.llUWll bUlULlUllb UL Lilt: \.:UllbUUUaLlUll t::quauu11 WlLll a \.:UllbLallL \.:Ut::LU\.:lt::llL UL 

permeability or with a deterministic variation of the coefficient of permeability show a 
decrease in the pore pressure at any point until almost zero excess pore pressure is 
reached. Not only the pore pressure decreases with time, but the rate of decay also 
decreases. Therefore, the error in the solution is expected to vary with both the in­
crement of time used and the total elapsed time. This provides a means for maintaining 
the accuracy of the results approximately constant thoughout the region of integration, 
provided we adapt the time-dependent function describing the inverse of the time incre­
ment to the curve describing the rate of decrease of the excessive pore pressure with 
time. In reality, a discrete approximation is more suitable for actual applications. 
Figure lb shows four successive increments of time computed with this criterion. The 
curve of 1/~T(T) versus T corresponds to the rate of decrease of the degree of con­
solidation; this actually represents the mean rate of decrease of the excess pore pres­
sure in the layer. If a simplified expression is chosen for the degree of consolidation 
with constant soil coefficients, we have 

(47) 

and the rate of decrease of U is proportional to exp(-rr2T/4). Then, the first time in­
crement, 1/ ~T1, is identified with 1 in the curve of Figure lb, and the remaining in­
crements are computed according to the number of different time increments desired. 
Other criteria can be used to find time increments according to the time at which the 
solution is desired. A computer program was written to perform the simulation of the 
proposed problem. 

Figure 2 shows a simplified flow chart of the simulation process, which includes 
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(a) the simulation of the Rill K*(X) process, (b) the strategy used to fix the time incre­
ments, (c) the specification of the initial and boundary conditions, (d) the solution of 
the resulting system of linear equations for each elapsed time, (e) the computation of 
the derived parameters (mainly the degree of consolidation), and (f) the statistical 
analysis of the desired quantities. 

ANALYSIS OF SPECIFIC CASE 

The simulation process associated with the general flow chart shown in Figure 2 can be 
summarized as follows. First, a sample soil profile with a permeability variation is 
artificially generated in the computer by the techniques explained. Second, the initial 
excess pore pressure is allowed to dissipate through this artificially generated medium 
until a given degree of consolidation is reached; the significant variables of this process 
(mainly the excess pore pressure and the degree of consolidation) are recorded for each 
elapsed time. Third, the first two steps are repeated many times to get a statistically 
satisfactory number of realizations of the time-dependent variations in the excess pore 
pressure and the degree of consolidation. Finally, a statistical analysis is performed 
on the set of derived sample populations. 

The initial selection of increments in the time domain can be done on the basis of 
the method previously described. However, if better computer efficiency is desired, 
more satisfactory time increments can always be obtained for the specific problem 
under consideration by using a trial process in which the initial selection of increments 
is used as a starting point. The selection of the spatial increment of the finite differ­
ence mesh is, however, more closely related to the probabilistic aspects of the prob­
lem. In fact, the criterion for the selection of the space increment should be an ac­
curate representation of the random process defining the natural logarithm of the per­
meability coefficient. A suitable criterion is suggested by the special form of equation 
33, since the oscillations of the process in the X direction are governed by the cosine 
modulation of this equation. In particular, if F, •• represents the maximum frequency 
component of the process describing Rill K* (X), a maximum number of F .... /21r cycles per 
unit of length X would be obtained in a representation of the form given in equation 33. 
When the number of points np needed to numerically define a cycle is fixed, an estimate 
of the necessary number of layer divisions Np for a given process with F ••• is easily 
computed from 

(48) 

since 2 is the maximum dimensionless length in this case. 
The preceding development will be demonstrated for a practical situation by analyzing 

the consolidation of a 66-ft-thick (20-m), randomly heterogeneous clay layer that is 
freely drained at both ends and the total stress distribution that is uniform with depth. 
The clay layer is assumed to have a randomly varying (constant mean) permeability 
distribution with depth, but it can be conveniently represented by a homogeneous random 
function whose underlying probability distribution is well described by a log-normal 
model. 

This study involves four different values for the coefficient of variation of the per­
meability process VK•: 0.1, 0.325, 0.7, and 1.1 corresponding to variances of 0.01, 0.1, 
0.4, and 0.8 respectively for the derived Rill K*(X) process. These values cover the 
range of variation likely to be encountered in the permeability of relatively homogeneous 
clayey soils. These cases were approximated in an actual situation by the special form 
of the normalized (unit area) power spectra density function shown in Figure 3. This 
function was chosen arbitrarily with the following considerations in mind. Equation 32, 
which described the autocorrelation function of the Rill K*(X) process, gives an indication 
of the frequency content of this process in terms of the behavior of the K*(X) process. 
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Figure 1. Finite difference approximation. 
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In fact, if IJ,K• is considered to be 1, the rate of decay of the autocorrelation function of 
£nK*(X) is c~.(r)/[1 + CK•)r)J, where c~. is the rate of decay of the autocorrelation 
function of the K*(X) process. 

For autocorrelation functions, CK•(T), of the form exp(-ar), the derived autocorrela­
tion function of £n K*(X) will decay at a slower rate than CK• (r ), and consequently the 
low frequency components of the associated power spectra will be enhanced. Note, 
however, that this tendency is attenuated for autocorrelation function of the form 
exp(-ar )cos2'1T/fr because of the negative lobes of this representation. In any case, it 
does not seem that frequencies larger than the maximum ones associated with K*(X) 
will appear in £n K*(X). However, dominant frequency ranges between O and 0.5 m-1 

were commonly encountered in the analysis of actual field records. Therefore, the 
hypothetical power spectra function shown in Figure 3 does not seem to differ much from 
real situations. These considerations have been treated in detail by Alonso and 
Krizek (1). 

According to equation 48, 40 intervals in the definition of the finite difference mesh 
in the X direction give np = lO'IT points for the definition of a cycle in the worst case; 
this figure was judged to be sufficiently accurate for this analysis. After a number of 
trials using the classical consolidation equation, the following criteria were used to 
determine the time increments: 

1. .6. T = 0.025, if O ,, T < 0.25; 
2. -6.T = 0.05, if 0.25,, T < 0.6; 
3. -6.T = 0.1, if 0.6,, T < 1.0; 
4. .6. T = 0.15, if 1.0,, T < 1.5; and 
5. ~T = 0.25, if T ~ 1.5. 

This distribution also satisfies the criteria given previously for the variable time 
increment. One hundred realizations were performed in each one of the four simula­
tions [corresponding to the four different variances of the £nK*(X) process]. For a 
maximum time factor of 1, it took less than 4 min on a CDC 6400 computer to perform 
a complete simulation for the above-mentioned conditions. 

The relevant results obtained from this simulation are shown in Figures 4 through 9. 
Figure 4 shows three typical realizations (out of 100 performed) of the degree of con­
solidation U versus the time factor T for a coefficient of variation of 1.1 for the soil 
permeability. Histograms of the values assumed for U at a time factor of T = 0.5 are 
shown in Figure 5 for the four cases studied. Note how the histogram spreads over 
the values of U when the coefficient of variation for K*(X) increases. Parallel to this 
increase in the variance of the soil permeability increases is a reduction in the mean 
of the degree of consolidation. This tendency is better shown in Figure 6, in which 
U has been plotted against T for values of T < 1. Curves corresponding to the mean 
values and one standard deviation of dispersion are shown, and the deterministic solu­
tion is given by the classical theory. Several histograms are superimposed in these 
figures to give an idea of the amount of dispersion. 

The field equation given by equation 10 shows clearly that the mean value of the 
excess pore pressure does not satisfy the classical one-dimensional consolidation 
equation. In fact, by taking expectations of both sides of equation 10, by letting M(X) = 
(d/dX) [£n K*(X)J, and by intercbanging derivation and expectation operators, we get 

o2u + E[M(X) au] 
oX2 21X 

(49) 

Since M(X) and u(X) are obviously correlated, the second term on the left-hand side of 
equation 49 is not zero, and consequently it modifies the usual one-dimensional con­
solidation equation. However, the decrease in the mean degree of consolidation with 
an increase in VK• can be explained on the basis of physical grounds only. In fact, when 
the coefficient of variation of the soil permeability increases, there is a larger dis-
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versus time. 
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persion of the soil permeability, and this can reach very low values at some places. 
These low values tend to govern the entire process of consolidation, even though highly 
permeable regions contribute to a significantly different mean value. 

Figure 7 shows the decrease in the mean value of the degree of consolidation for 
increasing dispersion of the permeability coefficient. If only the mean value (U curves) 
is considered, the curves in Figure 7 represent deviations of nearly 20 percent from 
the values predicted by classical consolidation theory; however, much larger deviations 
can be found in the dispersion observed in the histograms. The correct prediction of 
the degree of consolidation at a given time must be based on some confidence level, and 
the procedures of significance testing must be used. Figure 7 also shows the increase 
in the standard deviation of the degree of consolidation, cru, with VK• for several different 
time factors. The limited information provided by this example indicates that the cru 
versus VK• relationships are nearly linear in some cases. No regular pattern was ob­
served with respect to the elapsed time. 

Figure 8 shows two typical realizations (corresponding to a time factor of 0.5 and a 
coefficient of variation of soil permeability of 1.1) of the pore pressure developed in the 
consolidating layer, and these are computed with those realizations predicted by classi­
cal consolidation theory. The values of the excess pore pressure at the middepth of 
the layer were statistically analyzed and plotted against time in Figure 9, and histo­
grams at several time factors are shown to illustrate the variability expected. 

In the case of the degree of consolidation, increases in the standard deviation and 
in the mean values of the pore pressure are observed for increasing dispersion of the 
soil permeability. Note the skewed character of the histograms for both the degree of 
consolidation and the excess pore pressure, especially for high values of elapsed time. 
Any significance testing must take this feature into account, because the skewness of 
the distributions toward small values of the degree of consolidation and pore pressure 
increases the chances of reaching smaller degrees of consolidation when compared with 
the results from symmetrical distributions with the same variance. 

SUMMARY AND CONCLUSIONS 

A simulation technique has been used to analyze the influence of a randomly hetero­
geneous soil permeability on the one-dimensional consolidation of a clay layer subjected 
to a constant load. After the governing field equation was made discrete by an implicit 
Crank-Nicholson finite difference scheme, a digital computer was used to implement a 
step-by-step marching procedure in the time dimension. The simulation technique for 
the process defining the random soil variability depends on the stationary character of 
the soil permeability and its underlying log-normal probability distribution. 

It was assumed that the changes in the coefficient of consolidation of the soil are 
reflected in the permeability changes; this is approximately the case if the type of soil 
does not change appreciably within the consolidating layer. If this is not the case, the 
governing field equation will contain two different correlated random processes as 
random coefficients, and its simulation will require an explicit knowledge of such a 
cross-correlation; this latter knowledge is currently difficult to obtain. The simulation 
procedure involves 

1. Generation of a realization of the properties of the soil according to its prob­
ability structure, 

2. Application of the Crank-Nicholson method to derive a step-by-step procedure 
that involves the solution of a system of simultaneous linear equations at each step, 

3. Use of a numerical integration procedure to obtain the degree of consolidation at 
each elapsed time, 

4. Computation of pore-pressure histograms at selected locations, and 
5. Determination of the degree of consolidation with its corresponding statistical 

parameters (mean and variance). 

Steps 4 and 5 are undertaken after the entire simulation has been completed; that is, 



Figure 7. Variation of statistical parameters for degree of 
consolidation. 
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after steps 1, 2, and 3 have been performed the desired number of times. This method 
has been applied to a particular case, and an attempt has been made to represent as 
nearly as possible a real situation based on previous results. Four levels of dispersion 
of the coefficient of soil permeability were successively simulated to evaluate its influ­
ence; however, the same power spectra structure of the process describing soil prop­
erties was used in all the cases. 

Within the limitations given, the following conclusions can be made. 

1. The simulation method is a versatile tool for analyzing the influence of hetero­
geneous soil properties; unlike methods that rely on second-order moments, it is able 
to give more complete probabilistic answers but is limited in that general conclusions 
are costly to obtain. 

2. The dispersion of soil permeability around its mean value results in a reduction 
in the degree of consolidation for a given time, as indicated by the mean values, which 
are progressively smaller than those obtained from the classical one-dimensional equa­
tion when the dispersion of the permeability coefficient increases. Therefore, if the 
true random coefficient of permeability (or its associated coefficient of consolidation) 
is replaced by its mean value, unsafe results are obtained in that a given degree of 
consolidation will take more time than predicted. 

3. The randomness associated with the degree of consolidation introduces the pos­
sibility of obtaining results that are rather different than those predicted by the classical 
theory. Decisions concerning the amount of settlement expected at a given time should 
be based on a desired confidence level, and adequate importance must be given to the 
skewed character (toward smaller degrees of consolidation) of the resulting distributions. 

4. Pore pressures behave qualitatively similar to their derived parameter, the 
degree of consolidation; thus, not only is the dispersion of the pore pressure affected 
by the dispersion of the coefficient of soil permeability, but also the mean is shifted to 
a higher value (which results in a lower value of the degree of consolidation) than that 
predicted by the theory of one-dimensional consolidation. The results may differ sub­
stantially from those obtained by the classical theory, and distributions skewed toward 
increasing values of the pore pressure are observed as time increases. 
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APPENDIX 

DISTRIBUTION OF DIMENSIONLESS FREQUENCIES 

To find the probability distribution function of the dimensionless frequencies F consider 
first the influence of the dimensionless variable X = x/H on the two-sided power spectra 
SA(w) of a homogeneous random process A(x). If RA(r) is the autocorrelation function, 
we have by definition 

(50) 

If r = r*H (where r* is a dimensionless lag parameter) and w = F /H (where F is a 
dimensionless frequency), a change of variables allows the expression for SA (w) to be 
written as 

where 

arm 

RA(r*H) = E[A(x)A(x + r*H)J = E[A(HX)A[H(X + r*)J} 

= E[A*(X)A*(X + r*)J = RA•(r*) 

(51) 

(52) 

A(HX) = A*(X) (53) 

where the operator denotes the expected value of the operand. Therefore, SA(w) 
can be written as 

Consider now the new frequency, F = wH. When SA(w) is known and the probability 
distribution of Fis fr, the theory of derived distributions can be used to write 

(55) 

This result justifies equation 33, where the dimensionless frequencies Fk were dis­
tributed with a density I unction S2" K,(F )a~" K' (the di vision by a~" K' normalizes tl)e fre­
quency spectra function to obtain a unit area under the curve). 




