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In recent years it has been shown that the relationship between flow and 
concentration is probably not continuous under maximum flow conditions. 
A previous paper (2) concerned with the evaluation of traffic flow models 
examined the steacIY-state equations derived from the generalized car
following model designed by Gazis, Herman, and Rothery. These macro
scopic relationships were subjected to 45 data sets, in which most of the 
data were from freeway lanes, for both single- and two-regime models. 
From the results of these data sets, the deficiencies of the various models 
using the two-regime approach were identified and the need for investigat
ing a new two-regime approach was stressed. This paper discusses the 
development of a new model at both the microscopic and macroscopic 
levels. The steady-state equation derived from the new model is analytically 
evaluated by using 45 data sets. The model, based on a new car-following 
sensitivity component, shows that the free-flow regime and the congested
flow regime are fairly well adapted to convexity and concavity properties 
respectively in a speed-concentration relationship. By using the analysis 
of driver performance as a sensitivity measurement, model parameters 
are defined and evaluated. In addition, the two flow regimes are incorporated 
by means of breakpoint evaluation procedures. In .the light of two~regime 
phenomena the new steady-state formulation may be superior to the steady
state equations derived from the generalized car-following model, particu
larly in simplicity and clarity. 

•EDIE (1) was the first to point out the possibility of discontinuity in the flow
concentration curve under maximum flow conditions. He proposed two separate models. 
These models, which describe macroscopic relationships, are based on the convert
ibility models developed from the microscopic car-following model. 

Because more and more road facilities are operating at near-capacity level, the 
importance of considering this discontinuity phenomenon is apparent. Furthermore, 
in a description of traffic behavior, this phenomenon will make the limitations more 
severe for hydrodynamic applications. 

A previous paper (2) concerned with the evaluation of traffic flow models examined 
the macroscopic relationships derived from the generalized car-following model 
formulated by Gazis, Herman, and Rothery (~_) as 

c:xll ., Ct + T)J" Q ex,, Ct) _ xn+l CtJJ 
[X. (t) - x;,. 1 (t)J 

(1) 
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X., Xn+i = positions of the leading car and the following car, 
T = time lag of response to stimulus, and 

m, t, and a = some constant parameters. 

Forty-five sets of speed-concentration measurements (~were used to show the 
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most appropriate speed-concentration relationships based on steady-state flow formula
tion obtained by integrating equation 1. These relationships were investigated in an m, 
t matrix format to study the variability of those exponents of the sensitivity component 
that belong to equation 1. The results were summarized in a two-dimensional m, t 
matrix for both single- and two-regime traffic flow models. By investigating single
regime models, other microscopic and macroscopic theories that can be reduced to the 
form of equation 1 can be evaluated. On the other hand, investigation of two-regime 
models stimulates speculation about the simplicity and clarity of the generalized car
following model for the two-regime approach. 

The purpose of this paper is to develop and evaluate a simpler and more reliable 
traffic flow model than the generalized car-following model for two-regime traffic 
behavior. 

This paper discusses the development of a new model at both the microscopic and 
macroscopic levels and presents on analytical evaluation of the new model by using 
actual traffic flow data. 

The 45 data sets used in a previous work (2) are also the basis for the quantitative 
analysis performed in this paper. These data sets are described in detail elsewhere 
(2). The data sets can be separated into two groups: the first 32 data sets based on 
1-=min time interval samples and the remaining 13 sets based on 5-min samples. In 
both groups, the mean speed and mean concentration are calculated for each interval. 

The sources of the first 32 data sets are given in Table 1. The remaining 13 data 
sets were taken on the Santa Monica Freeway, 11 (SM-12 to SM-22) on freeway lanes 
and two from a CD road and an on-ramp. The data selection procedure and other de
tails concerning the data are described elsewhere (2). 

The use of large amounts of actual data emphasizes the possibility that the new 
model could be applicable not only to traffic flow theory but also to planning new road 
facilities, road improvements, and freeway control projects. 

After the deficiencies of two-regime traffic flow models based on equation 1 were 
identified, a new model was developed. Based on analysis of driver performance, this 
model shows how one can take into consideration the discontinuity phenomenon under 
peak flow conditions from gross aspects of traffic flow. 

MODEL DEVELOPMENT 

Previous studies in car-following (!, ~ ~)note the following stimulus-response rela
tionship: 

(
driver's ) = (sensitivity) x (gi~en ) 
response t+r factors , stimulus , 

(2) 

Although attempts to improve the car-following theory have been made, two parts of 
this equation have not been modified. The first part of this relationship is the response 
of the following vehicle at time (t + T) in terms of deceleration (or acceleration). This 
response is proportional to the second part, the stimulus. A given stimulus is described 
in terms of relative speed (between the pair of vehicles under consideration) at time t. 

The third part of equation 2, the sensitivity component, has undergone several stages 
of refinement. It has had the following functions: constant factor, inversely propor
tional to spacing (headway distance), inversely proportional to spacing squared and 
proportional to the absolute speed of the following vehicle, and the generalized ex
pression as shown in equation 1. 
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Because there are some difficulties in the generalized car-following model (equation 
1), an attempt will be made to develop a new sensitivity component. The deficiencies 
of equation 1 are particularly emphasized for the two-regime approach and are sum
marized below. 

1. It has a rather complicated sensitivity function, namely, 

aC:&+1(t + T)J• 

[~ (t) - x.+l (t)J 2 

where a, i-, m are arbitrary and are not subject to independent measurements (ex
cluding particular m, £ combinations) for the two-regime models. 

2. When equation 1 is converted to steady-state flow equations, the boundary param
eters, free-flow speed and jam concentration, are not always defined for the entire m, 
;, plane. 

3. Nine steady-state flow equations can be derived from equation 1 for the entire m, 
£, plane, which increases the complexity of such macroscopic relationships. 

4. It is difficult and perhaps impossible to make stability evaluation of the nonlinear 
model shown in equation 1 (excluding the case where m = £ = 0). 

Herman and Potts (4) suggested that driver response to a given stimulus varies in
versely with spacing and that there is a sensitivity function ex.ls, where s is the spacing 
between vehicles and a0 is a constant. Edie (1) proposed the introduction of the absolute 
vehicle speed into the sensitivity !unction andthe square of the spacing (ax u.+1)/s 2

, 

where U.+ 1 is the absolute speed of the following vehicle and a is a constant. Later, 
these two sensitivity functions were examined by Rothery et al. (5), who found that these 
two sensitivity components during the car-following mode improved the results obtained 
from the linear model, which has a constant sensitivity function. However, they indi
cated that there was no significant difference between the two functions that makes either 
of these sensitivity components superior to the other. 

In addition, Pipe and Wojcik (6) used perceptual factors (rate of change of visual 
angle) to derive a car-following model. They demonstrated a sensitivity function of 
the form a/s 2

• Finally, the previous paper (~) investigated two-regime models based 
on equation 1 and indicated that the m value (the speed exponent belonging to equation 1) 
tends to be closer to 0 than to 1 in both regimes. Therefore, the search for a simple 
model was narrowed to those situations where the sensitivity function is only inversely 
proportional to the spacing in various degrees. In addition, the following criteria for 
the new sensitivity component were considered: 

1. It should be capable of describing real-world traffic data; and 
2. The steady-state flow equations derived from the car-following model should 

minimize the deficiencies of equation 1 stated and, therefore, should (a) be reasonably 
simple, (b) provide a complete definition of all traffic flow parameters (free-flow speed, 
jam concentration, and optimum parameters), and (c) describe differences between the 
free-flow regime and congested-flow regime on the basis of average car-following 
behavior. 

These criteria led to the decision that a sensitivity function be a combination of a 
weighting factor and a reciprocal spacing function. In addition, macroscopic modelR 
frP.qnP.ntly inr.lnrlP.rl thP. nnrm~li7.Prl rnnrPntr!)th'!'. '?0!!!~0!'.<>!'.f: (k/ k) m!f:!>_i_'! f:!>_i> ~~<>~

concentration relationship (2). Based on the assumption of steady-state flow, this 
normalized concentration becomes equivalent to the ratio between jam spacing and 
spacing. This ratio is used in the proposed sensitivity function as a power of a crucial 
weighting factor. 

Consequently, the following sensitivity function is proposed: 



where 

sand sJ 
A 

spacing and jam spacing and 
nondimensional weighting factor. 

MODEL SENSITIVITY 
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(3) 

The microscopic form of the proposed model, which assumes that the (n + 1) th vehicle 
will react in a stable way to any motion of the lead nth vehicle, is 

an+ 1(t + T) 

where 

an+i = deceleration or acceleration response at time t + T, 
un, un+i = speeds of the leading and following vehicles at time t, 

T = time lag of response to stimulus, and 
o: = a constant dependent on A and s J. 

(4) 

The sensitivity term (equation 3) may not immediately indicate that the deceleration 
response increases inversely with spacing, which is required from a logical standpoint. 
Therefore, the following mathematical derivation is presented. 

For convenience, a progressive ratio between the response and concentration is 
maintained (assuming a steady-state traffic stream) instead of an inverse ratio between 
the response and spacing. Thus, from equation 4, the required constraint will be 

(5) 

By using boundary conditions, the maximum value of A in equation 5 for all k and ~k is 

MaxA 
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Therefore, the range of A values that will maintain the deceleration response inversely 
with spacing is 

0 <A< e2 (6) 

If the time lag between response and stimulus and the variations in behavior from 
one driver to another are neglected, a steady-state equation can be derived from equa
tion 4 since it is a perfect differential in t. 

Thus, converting the symbols of equation 4 gives 

and integrating gives 

u 

where k = 1/s and kJ = 1/sJ. 
From boundary condition, i.e., 

u ... 0, k-+ kJ = jam concentration, 

k ... O, u ... u, = free-flow speed, 

the following macroscopic model can be obtained [note that a = u,A x .enA/kJ (A - 1)]. 

u, (A1-ktkJ ) 
u=A-1 -1 (7) 

for A f 1.0. Note that, in the case of A = 1.0, equation 4 becomes the same as the Pipe 
and Wojcik car-following model (6), which, in turn, is convertible to the Greenshields 
model ('.!) in steady-state flow. Therefore, an extension of the proposed model is 

(8) 

for A= 1.0. 
Using the steady-state flow equation, q = uk, where q is the flow in vehicles per hour 

per lane, u is the speed in mph (km/ h), and k is the concentration in vehicles per mile 
(per km) per lane, one can arrive at ·an equation satisfying optimum conditions, i.e., for 
dq/dk = 0, as follows: 
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for A f. 1.0 and 

(9) 

for A = 1.0. Furthermore, 

where u0 is obtained from equation 7 or 8 by substituting k0 for k. 
By drawing families of speed-concentration curves as functions of the weighting 

factor A and holding u, and kJ constant with reasonable values, one can determine that 
for 0 <A < 1.0 convex curves result, but, for A > 1.0, the curves are concave. As A 
goes to 1.0 from both sides, the concave and convex functions converge to a linear func
tion and vice versa. Mathematically speaking, 

u(k); < 0 and u(k)~ < 0 

for 0 < A < 1.0 and 

u(k): > 0 and u(k)~ < 0 (10) 

for A> 1.0, where the prime and double prime represent the first and second derivatives 
with respect to k. 

Based on analysis of driver performance the correlation between microscopic and 
macroscopic traffic behavior will now be examined with respect to the sensitivity com
ponent in equation 3 . 

According t o Michaels (8), one can have an approximate relationship between spacing 
and the minimum absolute relative speed (min. Is I) that can be detected for a given 
spac ing . ';l' his relationship is s hown in the upper right part of Figure 1. It is based on 
the mean value for the absolute thres hold to angular velocity (d0/ dt = 6 x 10-4 rad/ sec) 
and on the car-following model, whiCh is based on the rate of change of visual angle as 
derived by Pipe and Wojcik (6). 

The minimum absolute relative speed curve (Figure 1) includes the following points: 

1. Small spacing, s1,4, and small relative speed, (~~) 1) 
2. Large spacing, s2,3, and small relative speed, (~~)1 , 2 ; 

3. Large spacing, s 2,J, and large relative speed, (~~) 3 , 4 ; and 

4. Small spacing, s1,4, and large relative speed, (~~t, 4 • 

Let the associated responses of the following vehicle be a1, a2, a3, and ~ to correspond 
with these points. If deceleration responses are considered, then the following relations 
between the responses can be obtained: 
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(11) 

where a2 ... 0. 
By using the steady-state flow assumption, s2,3 and s1,4 can be applied to the free

flow and congested-flow regimes respectively. 
Note that the only relation in equation 11 that is not trivial is between a1 and a3. 

Although the driver is able to detect (ds/dt)J,4 in large spacing, s2,3, he still has time to 
either switch lanes or remove his foot from the accelerator. On the other hand, in 
small spacing, s1,4, it is not likely that he will have these two choices, and, therefore, 
he will decelerate with higher magnitude. 

In addition, the upper part of Figure 1 includes a chart of the proposed sensitivity 
function (equation 3) or af(s) versus the weighting factor A, where, for the a computa
tion, u, and kJ were taken as 60 mph (95 km/h) and 220 vpm (138 vehicles/km) respec
tively. 

By appiying the resuits in equation 11 to the car-foiiowing equation, the reiatiorns 
between the sensitivity values corresponding to the four situations are similar to equa
tion 11, i.e., 

[af(s)]4 > i:af(s)Ji > [o:f(s)J3 > Caf(s)J2 

where [af(s)]2 .... 0. 
The two sensitivity values corresponding to the congested-flow regime (points 1, 4) 

will yield values of A in such a way that A4 > A1; that is, because ~ > a1, by applying the 
steady-state speed-concentration relationship in equations 7 and 8 and by using the 
mathematical properties indicated in equation 10, we see that as A increases the speed 
decreases (for the same value of concentration) and, obviously, that the speed is pro
portional to the response magnitude. 

Figure 1 shows that the relation A4 > A1 can be obtained only for A > 1.0, since one 
is concerned with the congested-flow regime where if can be assumed that k/kJ > 0.5. 
For example, following the curve fork/kl = 0.6 shows that the two requirements that 
[af(s )] 4 > [af(s )] i and A4 > A1 (for any two states on the curve) are fulfilled only for A > 
LO. Similarly, Figure 1 shows that [af(s)]2 .... 0 only for values of A less than LO but 
that there are no limitations on the A values for [af(s)]3. Hence, A values for the free
flow regime should be [O <A < LO n 0 <A < =J, i.e., for 0 <A < LO. The validity of 
these results will be shown with real-world data. 

In the lower part of Figure 1, the sensitivity component multiplied by spacing can be 
compared with the constant 0:0 • Herman and Potts (4) used this constant in their recip
rocal car-following model. Their results show thaC o:o ranges approximately from 18 
to 30 in the Lincoln, Holland, and Queens Midtown Tunnels and on the General Motors 
test track. Thus for the congested-flow r egime (k/ki > 0.5), the A values are then 
approximately greater than 4.0. That is, following the curve for k/kJ = 0.6 shows that 
18,;; af(s) x s ,;; 30 can be obtained only for A> 4, approximately. If one changes u, and 
kl for the a computation, the 4.0 value will be varied but will always be greater than 
LO, another confirmation that, for the congested-flow regime, the A values should be 
greater than LO. Another result from the General Motors test track is that a0 = 82.6; 
this run involved high speed and violent maneuvering. Figure 1 shows that the 82.6 
value results in A < LO and k/kl > 0. 75. Therefore, for A < LO, high speed can be as
sociated with free-flow regime, and for k/kl > 0. 75 violent maneuvering can be associated 
with small spacing at high speed. 

"[il.;...,,,...11 ...... J...,....f.\.. ,.... ..... ,..,,....1-.,.. .;....,, "[ii.;,...,. .. ,,..,.. 1 ..,J..,..,.n ........... nnf.,......,, .fl,.,.,,..f. .... nf..;,......,. ,....f +.\..,... .-.n ..... ..,.;.f..;,. ... .;.f.,...,. ,.,...,,....,........,,.......,.,.......,,.f. 
..._ .._ • ._...,., ,,_,,_J; '"-"'-''!.-·J..L Q-'- !..-1,,l-'-'--'-!.....' -'-.!..!. A -'-C, '!.-!-L V ..._ W.1..L•_• '! Q""- .._.. !.~._..._, _.._ -'--'-'-"-'-''-""-~V-._._._,_,_._.!. •-•-".. t.r.t.1. .. ...- W .... .!.-'-~-'.L" .L ~ "'- " .) .,__,..__,_,__.__._l-"'-''--'-'V-'-.!."' 

when 0 <A < LO than when A > LO. Inconsistency is greater in the free-flow regime 
than in the congested-flow regime; therefore, again, 0 <A < LO best represents the 
free-flow regime, and A > LO best repr esents the congested-flow regime. 

The reasonable range for the weighting factor is 0 <A < e2 as was shown in equation 
6. If we assume that a better fit to the congested-flow regime is obtained at A values 
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greater than e2
, this range can be increased within a reasonable limit. If we assume 

that in very high concentration conditions the spacing is, for example, less than 
40 ft (12 m) and the speed is less than 10 mph (16 km/h), it is likely that drivers in a 
bumper-to-bumper situation will behave differently from those in congested traffic 
that does not stop. Therefore, from a very high concentration value k', up to kl> one 
may not cons ider the constraint of equation 5, i.e., for k' s; k s; kJ. Thus , the range for 
A that is based on the derivation used in obtaining the previous range given in equation 
6 can be increased as follows: 

2k lk' 
O<Ase J 

and the determination of k' from equation 12, at the boundary condition, is 

k' 

where kJ and A are associated with the congested-flow model. 

(12) 

(13) 

In addition to the above analysis of deceleration situations, acceleration responses 
should be considered. 

When the lead vehicle accelerates, the spacing increases and the response (if any) 
of the following vehicle should be positive with an increase in the acceleration magni
tude. However, this interpretation results in a progressive ratio between the spacing 
and the acceleration response, which means that those situations could occur for A > 
exp(2k/k') and for A = exp(2k/k') where k > k' in a congested-flow regime. There
fore, when the above ranges of A are adopted, the car-following rule cannot be applied 
in acceleration situations, particularly in the free-flow regime. 

The above analysis examines the car-following problem from the standpoint of 
driver performance when a steady-state stream of vehicles is assumed. However, 
more accurate consideration can be made for the car-following model in equation 4. It 
is possible to evaluate the stability of the nonlinear model in equation 4. Furthermore, 
the dynamic responses of the suggested nonlinear system in equation 4 result in rea
sonable values for spacing and relative speed, particularly for the two-regime traffic 
behavior (~). 

ANALYTICAL EVALUATION OF MACROSCOPIC DATA 

The two-regime traffic flow models based on equation 4 and corresponding macroscopic 
equations 7 and 8 were calculated by using the 45 speed-concentration data sets. In 
addition, the two flow regimes were incorporated by means of concentration breakpoint 
procedure. 

Based on the availability of a digital computer an optimization program was used. 
This program relies heavily on mean deviation, which has proved to be a good indicator 
of the appropriateness of the data. This mean deviation is definitely preferred to 
correlation coefficients, particularly in the nonlinear case. The statistical procedure 
is based on the linearization of the input data (speed and concentration); consequently, 
a linear regression model of the form y = ax can be applied to determine the free-flow 
speed, Ur, in the equation 

U UrX (14) 
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Table 1. Two-regime traffic-flow models. 

Congested- Flow Regime Two-Regime Model Characteristics 
Free-Flow Regime Model Model 

k Break-
Location A u, k, MD A u, k, MD q~. u, k, point 

!. Eisenhower at Harlem 0.009 49.9 70 3.69 10.00 58.1 195 3.24 1,868 38.6 48.4 54 
2. Holland Tunnel 1.100 49.8 120 2.84 5.50 34.B 215 1.44 1,305 21.B 59.B so· 
3. Hollywood at Sunset 1.400 50.6 225 5.71 12.00 58.2 205 5. BB 1,966 37.6 52.0 52 
4, Hollywood at Sunset 0.090 50.5 140 3. 12 12.00 58.3 205 2,13 2,116 44.0 48.0 
5. Hollywood at Hollywood 0.090 46.4 190 4.16 12.00 61.0 230 3,47 21117 42.3 50.0 
6. Hollywood at Hollywood 0.001 45.6 75 3.30 10.00 68.8 200 2, 30 2, 102 38.1 55.2 66 
7. Hollywood at Bronson 0.001 43.B 55 2.64 11.00 56.1 230 3.63 1,555 37.5 41.4 50" 
8, Hollywood at Bronson 0.090 54.1 95 3.22 19.00 107.1 175 5, 62 2, 025 40.5 50. 0 5o" 
9. Hollywood at Fifield 1.100 53,9 100 3.16 5.00 43.3 300 3, 39 1,448 26.6 54.3 56 

10. Hollywood at Fifield 0.090 43 ,0 110 4.64 7.00 37.9 300 2,75 1, 932 28.3 68.2 80' 
11. Hollywood at Franklin 0.500 48,6 145 3.82 7.50 71.2 190 3.23 2, 079 26.5 78.4 so· 
12. Hollywood at Franklin 0.900 48.3 300 4.46 9.00 70.6 190 4. 61 1, 965 40.9 48.0 48 
13. Pasadena at College East 0.018 48.3 85 1.41 0.55 29.7 300 4,09 2,057 35.9 57.3 
14 , Pasadena at College East 0.110 53.4 105 1.60 B.00 48.1 260 2. 65 2,217 34.5 64.3 
15. Pasadena at Castelar West 0. 110 49.B 110 2. 76 7.00 40.3 300 1.90 1,860 28.5 67.0 
16. Pasadena at Castelar West 1.700 49.B 220 1.44 7.00 48.7 260 1.12 2,285 28.6 80.0 
17. Pasadena at Castelar East 0.130 13.8 85 2.21 8.00 59.3 220 1.22 11650 32.1 51.1 
18. Pasadena ~_t Castelar East 2.000 49.3 215 3.00 7.00 46.7 300 2. 84 2,009 30.4 66.0 66 
19. Pasadena at Bishop West 0.400 39.4 300 1.47 B.50 45.5 300 1, 59 1,816 34.9 5?.0 52 
20. Pasadena at Bishop West 0.800 55.B 185 1.59 8.00 55,9 235 2. 58 1,912 30.8 6;1,0 42 
21. Penn-Lincoln at Laurel 0.380 44.1 300 4. 92 9.00 62.5 205 4.47 2,487 37 .7 66.0 66 
22. Penn- Lincoln at Laurel 0.080 48.3 105 6.07 7.50 55.3 225 2,61 2,101 32 .1 65.5 
23. Penn-Lincoln at Braddock 0.120 52.5 BO 5.66 5.00 31.B 300 4,71 1, 640 33.7 48.6 
24. Penn-Lincoln at Braddock 0.080 54.B 80 4.10 B.00 54.0 245 3, 50 1,822 36.4 49.9 
25. Penn-Lincoln at tunnel 0.070 39.0 105 2.69 15.00 46.4 300 3. 89 1,540 32.1 48.0 48 
26 . Penn-Lincoln at tunnel 0.400 39.6 200 I. 75 7,50 51.4 220 2, 59 1, 740 32.2 54.0 38 
27. Virginia in lane 1 1.500 62.6 170 2. 84 15.50 64.9 205 2.98 1, 798 46.l 39.0 39 
28. Vifi;infa l_n lane 2 0.800 72.5 175 3.01 19.50 98.! 185 4. 88 2,416 56.l 43.0 43 
29. MunlulJ .. Snlzburg in lane 1~ 0.090 61.5 55 5.41 10.00 85.l 130 2.76 1,383 40.5 34.1 46 
30. Mur1fch MS;iil~1Ju1·~ in laHt::! 2b 0.110 70,0 [j[j 0.92 IJ , [jQ 74.7 ll[j 2 , 01 ! , GOO 49.0 33.G "2 
31. Munich-Salzburg in lane le 1.100 64.0 85 4.95 9. 50 70.6 160 3.43 1,396 29.9 46.5 38 
32. Munich-Salzburg in lane 2c 0.800 71.7 80 5.22 5. 50 71.7 155 7.02 1,680 48.1 34.9 50 

aconcentration breakpoint tends to approach either 0 or k1 values as specified by the overlap interval. bNorthbound_ csouthbound 

Figure 1. Sensitivity of the weighting 
factor A. 
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1-k/kJ .L I where x = [l/ (A - l)] (A - 1) for Ar 1.0 and 1 - (k kJ) for A= 1.0. 
The mean deviation is then determined from the sum of squares of the deviations of 

the data points from the considered model. Minimization of the mean deviation within 
certain concentration intervals is satisfactory, and no other criteria, such as those 
used in the single- and two-regime models based on the generalized car-following 
model (equation 1), are necessary. However, an upper limit is imposed on kJ such 
that kJ ~ 300 vpm (188 vehicles/ km) in order to restrict the time required for running 
the program. 

From inspection of the plot of the data sets, an interval along the concentration axis 
is determined where it is likely that discontinuity or unstable flow will result. By using 
a concentration-incremented technique (i.e., within the concentration interval, the con
centration range is increased by increments), the program covers this concentration 
interval separately for each regime. The search for the free-flow regime model con
siders data points from k = 0 to k =kl (lower bound) to k = k2 (upper bound) by means 
of the concentration-incremented technique. 

For the congested-flow regime, a similar search is performed by going backward 
from k = kl to k = k2 (in the first step) down to k = kl. The optimization policy for 
finding a breakpoint within the concentration interval is 

min[(min MD1)m + (min MD1)CFR] 
i 

for i = 1, 2, ... , (k2 - kl)/ .6.k where 

FFR,CFR 
MD 

i 
.6.k 

free-flow regime and the congested-flow regime respectively, 
mean deviation, 
each upper or lower bound, and 
concentration-increment within the concentration interval (kl, k2) . 

(15) 

After starting with initial values of A and kJ, in each step the program holds A constant 
until the kl associated with minimum MD is found. Then A is changed, by a given incre
ment, until the overall minimum MD is found for a particular A, kl (after several 
iterations). 

Figure 2 shows part of the minimization procedure, for the two regimes, by using 
the Eisenhower Expressway data set. In that case, kl = 45 vpm (28 vehicles/ km), k2 = 
60 vpm (25 vehicles/ km), .6.k = 3 vpm (1 vehicle/ km), im = 1 (data points considered up 
to k = 45 vpm), and im = 5 (data points considered from k = 60 vpm to kJ ). It can be 
seen that the minimum mean deviation is obtained in fewer steps and more smoothly in 
the congested-flow regime than in the free-flow regime. This figure illustrates a 
higher consistency in the congested-flow regime than in the free-flow regime. 

Results 

As mentioned earlier, two groups of data sets were considered. By using a procedure 
similar to the one used previously (2), the results of the first group of data sets form 
a basis to estimate the results for the second group. Of the first group of data sets, 
28 of 32 are from the center or left freeway lanes. Therefore, the conclusions drawn 
herein are particularly applicable to freeway facilities. 

By running the data sets through the optimization procedure, three cases were 
identified: 

1. Where an absolute breakpoint exists; 
2. Where overlap exists, i.e., an unstable zone is created; and 
3. Where the data points tend toward single-regime rather than two-regime phe

nomenon. 
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The criteria for determining each of the possible cases are as follows. 

1. From inspection, a concentration interval is determined. If there is either a 
breakpoint or an overlap interval, it results within this concentration interval. 

2. If an absolute minimum ~MD, based on equation 15, within the considered interval 
is found, the program assumes that a breakpoint exists. 

3. If either one of the neighboring concentration values to a breakpoint does not have 
the second minimum l:MD, an overlap is determined between those concentration values 
associated with the first and second minimum EMD. 

4. If the absolute minimum EMD belongs to either one of the concentration interval 
boundaries, then a trend toward a single regime exists. 

The results of this investigation of two-regime models using the first 32 data sets 
are given in Table 1. It should be noted that kJ of the free-flow model and u, of the 
congested-flow model are only parameters, but u, of FFR and kj of CFR are important 
traffic characteristics of the two-regime model. 

Figure 3 shows different speed-concentration curves. These curves illustrate the 
above three cases. Also, on the upper right side of each curve the fluctuations of the 
mean deviations for the two regimes and for both regimes within the considered concen
tration interval (kl, k2) are shown. 

In Figure 3 there are eight numbered curves. To associate each curve with the 
freeway location, the numbers on the curves are those given in Table 1. In curves 1, 
27, and 28 there is a breakpoint, case 1; in curves 4, 24, and 17 there is an overlap 
that can be interpreted as an unstable zone, case 2; and in curves 8 and 11 a trend 
toward single regime exists, case 3. Among the eight curves in Figure 3, curve 8 
shows a trend toward a single regime, with the use of only the congested-flow model, 
whereas curve 11 shows the same trend, but with the use of only the free-flow model. 
The most typical results among the 32 data sets are like curves 1 or 28 (breakpoint 
exists) and curve 4 (unstable zone exists). In addition, it is interesting to note that 
curves 27 and 28 are concerned with lane 1 and lane 2 of the same road facility. 

Figure 4 shows the 32 data sets in an A, k3 matrix format. These results confirm 
the following hypotheses: 

1. As 25 out of 32 data sets suggest, the free-flow regime models had A values of 
less than 1.0; and 

2. As 31 out of 32 data sets suggest, in the congested-flow regime models the A 
values were greater than 1.0. 

However, it appears that A may have values greater than 1.0 in the free-flow regime 
when road facilities other than nonshoulder freeway lanes are considered, i.e., tunnel 
lanes and shoulder lanes. The results for such lanes are indicated in the A, k3 matrix 
in Figure 4. 

Additional 13 Data Sets 

The results of the first group of 32 data sets formed the basis to estimate the param
eter values for the second group of 13 data sets. That is, in the A, k 3 matrix the esti
mations were that the free-flow regime models associated with freeway lanes will be 
centered within the region of 0 <A,;; 0.2, 50,;; k 3 ,;; 120, where the on-ramp and CD road 
will be scattered above the line where A = 1.0. In the congested-flow regime models 
the region of 5 ,;; A ,;; 10, 150 < k, < 300 was estimated for all road facilities. The re
sults of the Santa Monica data sets are given in Table 2 and shown in Figure 5. Gen
erally, these results follow the estimations. However, the congested-flow regime 
models have somewhat lower A values for the second group of data sets (Figure 5). 

From the overa.11 45 congested-flow regime models, the range of k' that belongs to 
the constraint in equation 12 was determined. This range was 160 to 250 vpm (100 to 
156 vehicles/km), which agrees with the analysis of driver performance mentioned above. 



Figure 3. Typical and 
extreme speed-concentration 
output curves. 
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Table 2. Two-regime traffic-flow models (13 data sets) . 
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Congested- Flow Regime Two-Regime Model Characteristics 
Free-Flow Regime Model Model 

k Break- Overlap 
Station Number A u, k, MD A u, k, MD q~. Uo ko point [kl, k2] 

SM-12 0,060 58,2 75 3.93 5. 50 52. 0 215 0,62 1, 892 39 .7 47 .7 50 
SM-13 0.050 60,3 80 3.70 4. 00 62. 6 175 1.09 2.150 41.8 51.4 55 
SM-14 0,009 54,6 70 3.32 18. 00 76.9 215 2.25 2,042 42.2 48.4 50, 60 
SM-15 0.060 58.4 80 2. 61 5. 00 64, 0 175 0,60 2, 027 39,9 50.8 60 
SM-16 0.030 60.4 65 3. 30 21, 00 77. 4 200 0, 99 1, 861 43 , 6 42.7 50 
SM-17 0.090 62,l 85 2. 65 22. 50 69.4 230 1.00 2 155 40.9 52.7 55, 65 
SM-18 0.090 57.4 75 2.77 6, 00 64, 0 175 0,88 1, 758 37. 8 46.5 40, 60 
SM-19 0.080 61.7 80 2.90 5. 00 59.8 1B5 1.35 2, 052 41.0 50.0 60 
SM-20 0.009 52.9 70 3.33 7. 00 74.9 170 I.BO 1, 978 40.9 4B.4 40, 55 
SM-21 0,200 61.2 90 2. 57 4. 50 55, l 195 0.73 1,963 37 .2 52.8 40, 60 
SM-22 0.400 62.1 90 3.3B 4. 00 72. 5 150 1.06 1 892 34. 8 49.7 45, 60 
LaBrea (on-ramp) 4.200 47.4 250 2.33 0. 50 34. 1 200 1.06 2,023 20. l 100.4 BO' k ~kl 
Venice (CD-on) 7,000 49.3 165 4.40 9. 50 33. 5 290 O.BB 1,20B 20. 1 60.2 Bo' k ~ ki 

aconcentration breakpoint tends to approach either 0 or ki values as specified by the overlap interval . 
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Figure 4. The two-regime models in 
A, ki matrix (32 data sets). 
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Figure 5. The two-regime models in 
A, ki matrix (13 data sets). 
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As mentioned earlier, the two flow regimes were incorporated by means of break
point evaluation procedures. The results of either the overlap intervals or breakpoints 
within a specified concentration range are given in Tables 1 and 2. Of the 45 data sets, 
22 have a breakpoint and 16 have an overlap interval. The remaining seven data sets 
have a tendency toward single regime. 

Comparison With the Generalized Car-Following Model 

The generalized car-following model {equation 1) and the corresponding macroscopic 
equations were evaluated earlier (2) by using the same 15 data sets analyzed here. 
However, instead of a breakpoint procedure, in the free-flow regime and in the 
congested-flow regime only data points with concentration values less than 60 vpm (38 
vehicles/ km) and more than 50 vpm (31 vehicles/km) respectively were included in 
analysis of equation 1. Therefore, to form a comparison basis, the proposed model 
was run along the same concentration ranges. In addition, because no criteria were 
imposed on the proposed model (excluding the uppe1· limit on kJ), the comparis on be
tween the two approaches is based on consideration of only the minimum mean devia
tion models (2). 

A comprehensive comparison of the proposed model and equation 1 is reported else
where (Q). A summary of this comparison for the free-flow regime models follows: 

1. Of the 45 data sets, 36 have lower MD when the proposed model is used than when 
equation 1 is used, and five data sets have the same MD; and 

2. With regard to the preselected criteria (2), 43 and 45 of the data sets meet the 
q. and lit criteria when the proposed model is used, but only 25 and 39 of the data sets 
meet the q. and u, crit.eria when equation 1 is used. 

The summary of the comparison for the congested-flow regime models is as follows: 

1. Twenty-five data sets have lower MD when the proposed model is used than when 
equation 1 js used, and five data sets have the same MD; and 

2 . Twenty-six of the data sets meet the preselected kJ criterion (~)when the proposed 
model is used, but only nine of the data sets meet the kJ criterion when equation 1 is 
used. 
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CONCLUDING REMARKS 

This paper has developed a car-following model based on an analysis of driver perfor
mance from which relatively simplified macroscopic models can be derived. The 
comparison made in this paper is between the suggested model (equation 4) and the 
generalized car-following model (equation 1), which is found to be representative of 
previous microscopic and macroscopic theories. -

Based on a criterion from previous apprQ_aches, a new sensitivity component of the 
stimulus-response relationship (equation 2) was suggested. Through analysis of driver 
performance, it becomes apparent that the suggested model is capable of describing both 
microscopic and macroscopic traffic behavior. The model is particularly useful when the 
two-regime phenomenon is considered for a single-lane traffic stream in a multilane en
vironment. By using the 45 data sets, a comparison between the new and the generalized 
car-following models was performed, based on results obtained in the previous work 
(2). With respect to the two-regime phenomenon one can conclude that the proposed 
model is superior to the generalized car-following model, particularly in simplicity 
and clarity. The advantages of the proposed model can be summarized as follows: 

1. Better actual data fit; 
2. No need for criteria for u,, ki, and q0 (excluding an upper limit on kJ); 
3. u, and kJ (boundary characteristics) always defined; 
4. Fewer arbitrary parameters in the car-following equation; and 
5. Fewer basic macroscopic forms. 

Besides the advantage of having a simpler nonlinear model, a stability analysis can be 
performed on the microscopic proposed model (9). Because drivers do not completely 
follow any deterministic behavior, the results orthe stability analysis are valid at best 
only in some average sense. However, this analysis provides a method for under
standing traffic behavior and the potential for modifying such behavior. 

This paper has examined discontinuity, one of the most important characteristics of 
traffic behavior, under maximum flow conditions. Observations of the data sets suggest 
that discontinuity can result in an unstable traffic flow zone. It is realized, however, 
that the considered concentration breakpoint procedure is only one method for evaluating 
two-regime models. With regard to two-regime traffic behavior, perhaps a more 
reliable method is to consider the data points with respect to time (9). Such a method 
sheds light on traffic behavior, particularly under peak conditions. Because additional 
quantitative information about speed-flow-concentration relationships is required, 
particularly near the capacity level, future research should examine the traffic-flow 
behavior under these flow conditions. It is felt, however, that for the interpretation of 
the discontinuity phenomenon human factors as well as traffic -flow characteristics 
should be considered (10). 
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