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FOREWORD 
The papers contained in this RECORD focus on new and emerging techniques in travel 
forecasting that supplement traditional techniques and extend the potentials of forecast­
ing technology. 

Difiglio and Reed describe a transit sketch planning process that uses an aggre­
gated data base. A logit modal-choice model is adapted to operate at a level of aggre­
gation that produces transit demand estimates consistent with detailed estimates. 
Difiglio and Reed state that policy alternatives can be evaluated with respect to various 
levels of impact, and that, with cost analysis, the degree of subsidy for each policy 
alternative can be estimated. Policies that appear most promising can be further 
tested in the traditional urban transportation planning system to evaluate the detailed 
impacts at zone-to-zone and facility levels. 

Brand focuses on research related to improving the understanding of travel behavior. 
The paper discusses 7 major research issues around which research on travel behavior 
may be structured. Recent findings related to each question are presented, and current 
uncertainties and untested hypotheses are exposed for discussion. 

Lerman and Ben-Akiva describe a series of disaggregate behavioral models that 
forecast the probability of a household's selecting various automobile-ownership and 
mode-to-work combinations. The model assumes that workplace and residential lo­
cation are predetermined. The paper describes the considerations in choosing inde­
pendent vai·iables and specifying utility functions. The estimation results for each of 
7 distinct socioeconomic groups or market segments with different behavioral distri­
butions are presented and analyzed. 

Burns, Golob, and Nicolaidis focus on automobile-ownership behavior that is modeled 
as a function of socioeconomic factors and the availability and levels of service of 
public transportation systems. According to the authors, the results from the initial 
tests of some hypotheses of the automobile-ownership theory are encouraging. Es­
timated coefficient values of the variables of the models derived for the theory are 
correctly signed in all cases, and the traditional goodness-of-fit measures are at 
values that are acceptable for nonlinear estimation equations of the multinominal logit 
type. In conclusion, Burns: Golob, and Nicolaidis state that the models help to begin 
to identjfy causal mechanisms in urban-ho:usehold travel behavior but that much re­
mains to be done before the models can be effectively applied in predicting automobile­
ownership changes that result from transportation system changes. 

Smith and Cleveland use data from 1953 and 1965 home-interview surveys in Detroit 
to test the time stability of disaggregate trip-generation and predistribution modal­
choice models. According to Smith and Cleveland, initial cross classification analysis 
showed 4 to 18 percent increases in household trip generation for households with cars 
available. A statistical test of the overall time stability of multiple, linear-regression 
trip-generation equations indicated that the equations were not stable unless non-trip­
making households were removed. The individual regression coefficients also were 
tested for time stability, and, despite the lack of overall statistical time stability, 
disaggregate wol'k and home-based trip-generation equations for 19 53 produced rea­
sonable estimates of 1965 zone-level trips. 

Zaryouni and Kannel discuss research results related to trip-distribution functions 
that may be appropriate for estimating zone-trip interchange in small- to medium­
sized urban areas. The proposed model is one in which trip-generation and trip­
attraction estimates can be obtained primarily from census data. Although the validity 
of the distribution model has been tested, the total synthetic modeling approach must 
still be examined. 

Berg, Koushki, Krueger, and Bittner discuss a recreation-travel simulation model 
developed for use in analyzing the impact of outdoor recreation travel by residents of 
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a 9-state Upper Midwest r egion to Michigan, Minnesota, and Wisconsin. Travel data 
wer e collected for 6,441 r andomly selected households by using a telephone home­
interview sur vey procedur e. 

Ben-Akiva and Richards describe a disaggregate modal-choice model with 6 travel 
modes. A number of alternative model specifications were tested, and the results of 
these tests were analyzed. The model specification that was considered to be most 
satisfactory overall is based on treating in-vehicle travel time as a generic variable 
and out-of-vehicle travel time as a series of modal-specific variables. 

Peers and Bevilacqua discuss a set of direct-demand models for estimating intercity 
trans it travel for a Sacramento-Stockton-San Francisco Bay Area corridor study. A 
series of judgments are described that identify why structural models were chosen in­
stead of operational models and why direct-demand models wer e used r ather than 
probabilistic-choice models. The methodology of calibration, including various se­
lection and equation development, validation, and forecasting, is outlined. 

Adler and Ben- Akiva discuss a joint frequency-, destination- , and modal-choice 
model for shopping trips that is an extension of models developed earlier. Estimation 
of the expanded joint-choice model proved to be feasible and resulted in acceptable 
parameter values. Adler and Ben-Akiva also give an example of an application of the 
shopping m0del. 

' vi 



TRANSIT SKETCH PLANNING PROCEDURES 
Carmen Difiglio and Marshall F. Reed, Jr., Highway Users Federation 

The current urban transportation planning process is highly dependent on a 
complex set of travel demand models that operate at a relatively fine level 
of detail. These models ultimately produce travel assignments on alterna­
tive modes of travel. Unfortunately, these travel demand estimates are 
often insensitive to policy variables, and the process is often too cumber­
some and time consuming to be used to test a wide range of transportation 
policy alternatives. This paper describes a complementary analytical 
method called the transit sketch planning process. Its purpose is not to 
supplant traditional, more detailed urban transportation planning but ·to ex­
tend the range of existing procedures. The transit sketch planning process 
uses a much more aggregated data base. A logit modal-choice model is 
adapted to operate at such a level of aggregation while producing transit­
clemand estimates that are consistent with detailed estimates. Policy al­
ternatives can be evaluated with respect to their overall impact on central 
business district, city center, and suburban transit demand. With a com­
plementary cost analysis, the degree of subsidy required for eachpolicy al­
ternative is estimated. Those policies that appear to be most promising 
can be further tested in the traditional urban transportation planning sys­
tem to evaluate the detailed impacts at a zone-to-zone and facility level. The 
procedures do not attempt to advance the state of the art of transportation 
demand forecasting. Rather they attempt to use the best of existing proce­
dures in a framework that can provide quick responses to transit policy 
questions that local planner s must anffiver . 

•SEVERAL urban areas, especially those of moderate size, are confronted with diffi­
cult planning problems precipitated by the need to plan for public transit. Many urban 
area planners, in the past, have concentrated their efforts entirely on highway planning 
and have left public transit issues to the private sector or the public operating agency. 
Even the largest regional planning agencies that have been involved in planning public 
transit typically have not developed policy-sensitive procedures for evaluating public 
transit. 

The current urban transportation planning process is highly dependent on a com­
plex set of travel demand models that operate at a relatively fine level of detail. These 
models ultimately produce travel assignments on alternative modes of travel. Unfor­
tunately, these travel demand estimates are often insensitive to policy variables and 
the process is often too cumbersome and time consuming to be used to test a wide 
range of transportation policy alternatives. A complementary analytical method, 
called the transit sketch planning process, is suggested to fulfill the need for a 
streamlined, policy-sensitive planning procedure. Its purpose is not to supplant tra­
ditional, more detailed urban transportation planning but to extend the range of exist­
ing procedures. 

At the center of this process (Figure 1) is a model or formula that, when calibrated, 
synthesizes current ridership from base-year trip information and then is used to fore­
cast future transit ridership. The primary objective of the model is to simulate the 
potential changes in transit ridership resulting from alternative transit capital and 
operating policies. Because of this, the model is designed to be sensitive to variables 
that reflect transportation planning policy such as transit accessibility, transit speed 
and fares, automobile speed, and parking charges. The other nonpolicy variables used 
are population, work force, and automobile availability, but these are used only to 
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determine captive transit ridership. 

MODAL-SPLIT MODEL 

Although several transportation supply variables theoretically could be identified as 
having an impact on the choice of travel mode, only time and cost of travel have been 
statistically tested. It certainly would be desirable to evaluate other characteristics 
of transit, such as travel comfort, but without new data sources these variables can ­
not be handled quantitatively. Their consideration must be addressed in a more quali­
tative marketing analysis performed at a more detailed planning level. 

All modal-split-model variables used are either travel cost or travel time. Travel 
cost includes the out-of-pocket automobile costs for gas, oil, and parking charges and 
transit fares for transit travel. 

Travel time for the transit mode is divided into 2 types: (a) access and wait time 
and (b) line-haul (on-board) time. These are converted into monetary values by using 
value-of-time estimates that are substantially different for each type of time spent in 
traveling. Automobile travel time also converts to a monetary value. 

The difference between the total cost of transit travel and automobile travel is used 
to determine the percentage of noncaptive trip makers who select the transit mode. A 
nonlinear modal diversion curve is used for this purpose: 

P
1 

= ___ 1 
_ o · 

where 

P 1 =probability of transit mode choice for trip purpose i , 
a = calibration factor, and 

Xi = difference between automobile and transit cost for purpose i (equation 2). 

Xi = Chwy - Ctr - W Ai Atr + W Li (Lhwy - Ltr) 

where 

( 1) 

(2) 

Chwy =out-of-pocket automobile costs= D at $0.05/ mile ($0.03/ km) +parking+ tolls 
where D = typical trip distance, 

Ctr = transit fare, 
W Ai = value of wait or walk time for each trip purpose i, 
Atr = accessibility time to and from transit service (includes half headway time), 
W LI = value of vehicle trip time for each purpose i, 
Lhwy = automobile trip time, and 
Ltr = line-haul trip time on transit. 

The modal-split formula is a logit probability model. When graphed as a function 
of its independent variables, Xi, the resulting diversion curve appears as shown in 
Figure 2. It should be noted that the possible values of the dependent variable (prob­
ability of modal choice) range between 0 and 1. This formula has certain properties 
that are consistent with common sense or intuitive notions regarding modal choice. 
For example, a cost differential of 0 between automobile and transit (Xi = 0) implies 
an equal split between automobile and transit use (Pi= 0.5). Also, at this point where 
transit and automobile are equally attractive, changes in either automobile or transit 
costs will have the largest impact on modal use. At the point on the diversion curve 
where P 1 = 0.5 and X1 = 0, the curve has the steepest slope. 



3 

The slope of the diversion curve is quite flat at the extreme values of Xi. When 
transit service is poor relative to automobile travel, the variable takes on a large nega­
tive value. In that range, improvements in transit service bring about a very small in­
crease in transit diversion. Similarly, if transit service is far better than automobile 
service (Xi has a large positive value), improvements in transit service also bring 
about a small increase in transit diversion. 

Because the logit function is asymptotic to the extreme probabilities 0 and 1, the 
estimated probability of transit usage is never 0 and 1. Even under the most extreme 
cost differentials, some individuals may choose to take the most costly mode even 
though the probability of such a choice is low. 

MODEL CALIBRATION 

The modal-split model can be calibrated by using a trial-and-error process instead of 
the usual approach of using regression analysis when thousands of travel interchanges 
are involved. Only 3 parameters need to be determined: 

1. WA, the value of wait or walk time, 
2. W L, the value of in-vehicle time, and 
3. a, the exponential factor in equation 1. 

In all of the applications of the model thus far, the exponential factor a has been set 
equal to 2. This factor can be interpreted as determining the spread of the diversion 
curve in Figure 2 along the x axis. A high value of a produces a diversion curve that 
is quite steep, which indicates a great sensitivity of modal choice to the differences in 
transit and automobile trip costs. A low value of a produces a gradual diversion curve 
that shows a relative insensitivity of modal choice to travel cost differences. These 
effects are shown in Figure 3. 

The value-of-time parameters WA and W Lare unknown but are reasonably bounded 
by the research already available on the value of traveler's time. Often this research 
determines the value of time as a function of the traveler's income. However, because 
of the large areal aggregations used in this sketch-planning process and the uncertainty 
involved in forecasting future income levels, income was not used explicitly to set the 
value of time. 

Initial trials for the value-of-time parameters used $3.00/h for walk and wait time 
and $1.00/h for in-vehicle time. The final value-of-time parameters selected differed 
only slightly from these levels. 

Calibration Process 

The overall process of calibrating the model to estimate base-year transit trips is il­
lustrated by using work-trip data for Nashville, Tennessee. 

The Nashville urban area was divided into 3 sectors (Figure 4). 

1. Sector A is the central business district ( CBD). 
2. Sector B is the remainder of the Nashville city center. 
3. Sector C is the suburbs. 

A 9-cell trip table showing the number of base-year trips made between and within 
all sectors was assembled from home-interview travel survey data for the home-to­
work and home-to-nonwork trip purposes. The base-year home-to-work trip tables 
for total trips and transit trips are given in columns 2 and 3 of Table 1. 

The modal-split model estimates the probability of choosing the transit mode over 
the automobile mode. It presumes that there is a choice of mode, but many individuals 
do not have access to the automobile mode for many of their trips and are captive tran­
sit riders. To properly calibrate the modal-split model, one should subtract captive 
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rider trips from observed total transit trips. Unfortunately, adequate survey data on 
captive ridership are not generally available. But, it is widely acknowledged that cap­
tive ridership is, in many instances, a significant proportion of total transit patron­
age, especially when transit service is unattractive. An estimate of captive ridership, 
however compromised by the lack of reliable data, is superior to no estimate at all. 
No estimate is implicitly an estimate of no captive ridership. A 0 estimate would 
likely bias the calibration of the modal-split model in low-income trip corridors. 

The number of captive transit travelers making a work trip in each sector was es­
timated by analyzing automobile ownership and work-force data. The excess number 
of work-trip origins over automobile seats available for the work trip was determined 
by using estimates of the automobile occupancy rate and the proportion of automobiles 
used for the work trip. 

Having determined the number of captive transit trip origins in each sector, we 
distributed the trip destinations by using information regarding the commuting patterns 
in Nashville by socioeconomic class in the base year. This information was not quan­
titative but rather was based on the predominance of domestic workers traveling be­
tween certain sectors. The resulting captive transit demand trip table is given in 
column 4 of Table 1. 

The model variables for each of the 9 trip interchanges were aggregated from base­
year highway and transit "networks" for the Nashville area. Each model variable was 
averaged over all zone pairs "in each sector-to-sector interchange. The model inputs 
for Nashville are given in Table 2. 

Aggregation Bias 

Typically, modal-split models are used in the urban transportation planning process 
to determine the percentage of transit use between pairs of zones. The zone is a very 
small area compared to the sectors used in this sketch-planning process. 

It is desirable for the modal-split model to be accurate regardless of the level of 
areal aggregation. Consequently, the modal-split model was calibrated by using both 
zone-to-zone travel characteristics and sector-to-sector travel characteristics. How­
ever, because of the nonlinear nature of the modal-split model, the forecasted sector­
to-sector modal split tends to be biased downward relative to the modal splits calcu­
lated at the zone -to -zone level. 

This effect is especially large for suburban trips because the degree of variation of 
suburban transit service is very high, and many areas have no transit service at all. 

Fortunately, accurate estimation of the degree of bias from available Nashville 
transit data was possible. Each input variable in Table 2 was aggregated from zone­
to-zone travel characteristics. For example, in sector A to sector C, the average 
transit line-haul time was 24 min. Of the zone pair interchanges that comprise the 
sector A to sector C interchange, the transit line-haul times could vary substantially. 
The degree of variation can be measured by the standard deviation cr. The cr of each 
input variable therefore was determined. 

Calculating the amount of aggregation bias in any particular instance by using modal­
split model calibrations at both the zone-to-zone and sector-to-sector level is also 
possible. The calculated bias (expressed as a ratio) was regressed with the cr of all 
model variables. The ratio was calculated for individual observations of the regres­
sion by performing a number of individual zone-to-zone modal-split estimates and an 
aggregate estimate based on the average zone-to-zone characteristics in Nashville. 
Because of the relatively large variance of the variable for transit access (wait and 
egress time), explaining 96 percent of the variance of the bias ratio by using only the 
standard deviation of that variable was possible. 

p 
:;--- = 0.41656 + Q,Q9530(0'A..) 
p 

(3) 
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for all aA such tlrat 6.12214 aA < 30 and the coefficient of determination r 2 = 0.962 
h 

h h w ere 
A 

P = average of zone-to-zone modal-split estimates selected at random (observa­
A tion i), 
P =aggregated zone-group-to-zone-group modal-split estimate-all independent 

variables used to estimate P 1 were averaged to a single set of independent 
variables, and 

a A,, = standard deviation of the independent variable a Ai, used in the modal-split 
A A 

model that produced both P and P. 

An alternate aggregation correction equation, also based on the variance of the logit 
model variables, is: 

where 

A 

P1 = P1 + [Var(X1.)JP1(P1 - l)(Pi - 0.5) (4) 

Pi = expected value of Pi aggregated from zone-to-zone modal-choice esti-
A mates; 
Pi = value of P 1 evaluated at the average sector-to-sector travel character­

istics for automobile and transit-the mean values of all model variables 
are used to calculate X1, which is used to determine P 1; and 

Var(X1,) =variance of X1 for each zone-to-zone interchange-the function X1z would 
be used to calculate an individual modal choice for zone pair z. 

This formulation is an approximation based on a Taylor expansion of the logit esti­
mator of Pi about the mean of X1, provided by Talvitie (18). It requires estimating a 
more complex variance than does the regression approach, but the estimates can be 
used over any range of P 1 , and the regression relationship can be applied only over a 
range of P1 within that used to estimate parameters. The variance of Xu can be more 
easily calculated by assuming that the model variables are uncorrelated ( 18) so that 

Var(X1z) = Var(Chwy) - Var(Ctr) - ((WA1)
2 [Var(Atr)J} + ((WL1) 2[Var(Ltr)J} (5) 

Nashville Modeling Results 

After several trial-and-error iterations to account for the aggregation bias and several 
estimates for time values, the modal-split model was calibrated to produce base-year 
choice transit ridership within acceptable limits. The estimates of modal split and 
choice transit demand are given in columns 5 and 6 of Table 1. The estimated choice 
transit demand plus the estimated captive transit riders (column 4 in Table 1) produces 
a total transit demand estimate that can be compared with observed transit demand in 
the base year and in column 7 in Table 1. The error of the estimated versus the ob­
served transit demand is best expressed as a percentage and an absolute number be­
cause either may be misleading unless total trips are taken into account. These errors 
are given in column 8 and column 9 in Table 1. 

SELECTING TEST ALTERNATIVES 

Ridership tests of alternative systems are a relatively simple and quick procedure. 
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Therefore, depending on the scope and the time limitations of the transit planning 
project, a great many alternatives can be analyzed at least for their impact on rider­
ship. However, because of constraints on time and personnel to develop cost estimates, 
the number of test plans subjected to the complete analysis should be limited to those 
that are likely to show discernible differences in either ridership or cost effectiveness. 

In designing alternative test systems, the number of changes to transit service vari­
ables should be limited. Ideally, only 1 variable at a time should be changed in each 
test to fully assess the effects of the change. Both significant reductions in fares and 
increases in line-haul speed will enhance ridership, but taking both into account in 1 
test will make it difficult to assess the cost effectiveness of either service change. 

A likely candidate for the initial test of the future of transit is the extension of cur­
rent or base-year service levels (accessibility, speed, and fares) to target-year popu­
lations and land areas. This initial test serves as a base for comparing ridership, 
costs, and benefits of service improvements in other alternative plans. This was 
identified as alternative A for forecasts that were based on the Nashville application 
of this sketch-planning method. 

Because improved accessibility (the average time to get to the rail station or bus 
stop plus the average wait time for a transit vehicle) has been found by transit planners 
and researchers to be the most important factor in enhancing ridership, a basic test 
alternative is one that improves accessibility. In physical terms, improved accessi­
bility means either increased route miles (kilometers) or decreased headways or 
both. 

Cutting transit-vehicle headways in half will cut the average wait time· for patrons. 
Wait time, because of its problem in inclement weather and its general uncertainty, has 
a significant influence on transit ridership. This improvement means a doubling of 
transit vehicles in service. This was identified as alternative D; a more modest re­
duction of headways by a third was identified as alternative B. 

New freeway express-service corridors were selected in appropriate Nashville 
corridors from sector C to sector A. On the basis of the available freeway corridors, 
30 percent of the suburban market was assumed to be served by the express bus ser­
vice. Alternatives C and E were then defined to be alternatives B and D respectively 
with express bus service added. 

In general, the current bus or rail transit systems in the large urban areas provide 
regularly scheduled service to all parts of the city center but relatively little service 
in suburbs. The density of city center development makes scheduled service efficient 
in the city center but inefficient in the lower density suburbs. To narrow the suburb and 
city center difference in transit service levels, demand-responsive, small-bus ser­
vice was added in the suburbs of each test plan. The dial-a-ride service included in 
the test plans closely approximates existing systems in the United states and Canada. 
Some of the dial-a-ride trips generated are merely a short link in a longer trip in 
which line -haul bus or rail service is the principal service mode. These are accounted 
for in the ridership estimates for the principal mode. Other dial-a-ride trips were 
principally nonwork, suburb-to-suburb trips and were estimated to attract 2 percent 
of the total suburb-to-suburb trips. The modal-choice model was not used to estimate 
these trips because the wait time characteristics of this type of service cannot be com­
pared with scheduled, fixed-route service. 

Fare policy also could be tested by using additional alternatives. However, for the 
purposes of this exercise in applying the sketch planning procedure, fares were not 
changed. Many studies (2, 5, 10, 11, 12, 13, 14, 17, 19, 20) have shown that reducing fares 
has less significant influence on transit ridership thanother service improvements 
have. The resulting fiscal deficit from fare reduction (caused by a relatively low de­
mand elasticity of transit fare) requires additional funding that might better be spent 
on further service improvements to gain ridership. Consequently, fares were held at 
the calibration-year level, but we emphasize that the sketch planning method we have 
described can quite easily account for different future-year fare policies. 

The 5 test alternatives can be summarized as follows: 

1. Service for alternative A is the same as 1959 service but with routes extended 
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to serve the expanded urban area and population; 
2. Service for alternative B is the same as for alternative A but with a 33% percent 

decrease in bus headways, a 50 percent increase in buses, and dial-a-ride service 
added throughout most of the suburbs; 

3. Service for alternative C is the same as for alternative B but with freeway ex­
press bus service; 

4. Service for alternative D is the same as for alternative A but with a 50 percent 
decrease in bus headways, 100 percent increase in buses, and dial-a-ride service 
added throughout most of the suburbs; and 

5. Service for alternative E is the same as for alternative D but with freeway ex­
press bus service. 

Transit fares for all 1990 alternatives equal 1959 levels adjusted to 1970 dollars. 

NASHVILLE STUDY RESULTS 

The results of the travel demand analysis for the 5 alternative plans are given in 
Table 3. The largest increases of ridership result from wait time reductions pro­
vided by alternatives B and D. The express bus service provided in alternatives C 
and E does not change the overall ridership estimates as significantly, but the propor­
tion of suburb-to-center-city riders does increase quite significantly (Table 4). 

In Table 4, ridership by each sector-to-sector interchange by available mode of 
travel is given for each forecast alternative. Because work trips and nonwork trips 
were estimated separately (peak and off-peak travel characteristics were different in 
the base year), the impact of each alternative on peak-hour CBD-oriented travel can 
be identified as follows: 

Alternative 

A 
B 
c 
D 
E 

Average Daily Work Trips to and 
From CBD 

Transit 

21, 713 
25,073 
28,877 
27,599 
30,977 

Automobile 

98,287 
94,927 
91,123 
92,401 
69,023 

Percent 
Transit 

19 
21 
24 
2~ 

26 

No attempt is made here to analyze the competing alternatives and make any recom­
mendations. The numbers produced show the kind of planning data yielded by the 
sketch planning process. Other considerations, including cost and income and, ulti­
mately, detailed network-level testing, should be taken into account before specific 
public transit programs are implemented. 

The sketch-planning process does not account for various qualitative changes in 
transit service that should be evaluated (air conditioning, carpeting, and reduced 
noise). Also any directly related financial analysis would not necessarily account for 
possible improvements in operating efficiency of transit operators. Similarly, pro­
posals to deregulate the urban transit industry to allow paratransit competition (jitneys) 
with current scheduled bus and regulated taxicab service must be evaluated outside the 
context of the described procedures. 



Table 1. Actual and estimated trip demand. 

Absolute 
Choice+ Overestimate 

Captive Choice Captive Percentage Error or Underestl-
Sector-to- Observed Transit Modal- Transit Transit of Estimated mate of Ob-
Sector Trip Total Transit Demand Split Demand Demand Versus Observed served Transit 
Interchange Demand11. Demand a Estimate Estimate Estimate Estimate Transit Demand Demand 
(1) (2) (3) (4) (5) (6) (7) (8) (9) 

A-A 1,205 232 0 0.325 392 392 +69.0 +160 
A-B 1,337 232 34 0.150 201 235 +1.3 +3 
A-C 473 162 137 0.054 26 163 +0.6 +l 
B-A 25,898 6,095 313 0.225 5,827 6,140 +0.7 +45 
B-B 29,953 3,707 1,251 0.083 2,486 3,737 +0.8 +30 
B-C 10,547 1,861 1,564 0.016 167 1, 731 -8 .5 -166 
C-A 13,256 1,144 0 0.085 1,127 1, 127 -1.5 -17 
C-B 12,621 266 0 0.016 202 202 -10.6 -24 
C-C 13,677 80 0 0.005 68 68 -15.0 -12 

Total 108,967 13, 769 3,299 10,496 13, 795 0 +26 

•From 1959 Nashville home-interview survey, internal trip file, 

Table 2. 1959 work-trip characteristics. 

Transit 
Sector-to- Transit Transit Line-Haul Highway Parking 
Sector Trip Fare Access"' Time Time Cost 
Interchange (cents) (min) (min) (min) (cents) 

A-A 15 8 8 4.4 24 
A-B 15 15 15 9.3 0 
A-C 20 32 24 17.0 0 
B-A 15 15 15 9.3 24 
B-B 15 20 24 11.6 0 
B-C 20 41 34 19.0 0 
C-A 20 32 24 17.0 24 
C-B 20 41 34 19.0 0 
C-C 15 45 25 14.0 0 

,.Wait and egress time. 

Table 3 . 1990 average daily work trips on transit. 

Increase 
Over 

Freeway Demand Modal Plan A 
Alternative Bus Bus Responsive Total Split (percent) 

A - 57,587 - 57,587 5.2 
B - 75,627 6,920 82,547 7.5 43 
c 5,352 74,079 6,920 86,351 7.9 51 
D - 92,038 6,920 98,958 9.0 72 
E 5,352 90,070 6,920 102,342 9. 7 77 

Table 4. 1990 average daily passenger trips. 

Sector-to-
Sector Trip 
Interchange Service Alternative A Alternative B Alternative C Alternative D Alternative E 

A-A Bus 2,416 2,668 2,668 2, 796 2, 796 
A-B Bus 1,254 1,433 1,433 1,547 1,547 
A-C Bus 291 391 391 485 485 
B-A Bus 27,337 30,425 30,425 32,457 32,457 
B-B Bus 16,321 25,001 25,001 31,361 31,361 
B-C Bus 2,894 4,544 4,544 6,009 6,009 
C-A Bus 4,372 7,131 5,583 9,503 7,535 
C-A Express bus 0 0 5,352 0 5,352 
C-B Bus 1,248 2,848 2,848 4,272 4,272 
C-C Bus 1,454 1,186' 1,186 3,608 3,608 
C-C Dial-a-ride 0 6,920 6,920 6,920 ~ 
Total 57,587 82 ,547 86,351 98,958 102,342 



10 

SKETCH PLANNING PERSPECTIVE 

The pr incipal purpose of this t r ansit sketch planning process is not to determine the 
future with precision but to compare the probable impact of alternative transit planning 
policies. We understand that relationships such as those used in the modal-split 
model may explain a given set of data for a particular time period but may not always 
hold true when used to forecast future activity. Even with the most sophisticated pro­
cedures, cause-and-effect relationships between current and future behavioral data 
cannot be determined. The future is always full of imponderables-and indefinitely 
numerous sets of possible courses of development-that never can be determined with 
certainty. 

More sophisticated modeling procedures are certainly possible, and some are being 
advanced in many large, urban, regional transportation planning studies. However, 
the sketch planning process described here serves a different role, one in which alter­
native transit policies can be quickly evaluated, which is a task that no detailed urban 
modeling process has yet accomplished. 
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APPROACHES TO TRAVEL BEHAVIOR RESEARCH 
Daniel Brand, Department of City and Regional Planning, Harvard University 

Research approaches to improving the understanding of travel behavior are 
outlined in this paper. The objective of the travel behavior research is to 
make more informed judgments concerning trade-offs between the basis in 
behavior, and thus the logic and plausibility of travel forecasts , and the 
time, money, a nd skills required to carry out the forecasts. The behav­
ioral assumptions to be evaluated l'elate to the perceptions, valuation, and 
structure· of choice and possible conditioned or learned behavior resulting 
from the stimuli that give rise to travel decisions for various household 
and individual travelers. The paper focuses on 7 major issues around 
which research on travel behavior may be structured. Some recent find­
ings related to each issue are presented, and current uncertainties and un­
tested hypotheses are e>..lJOsed for discussion. The significance of the 
research issues also is discussed. Cl'iteria for evaluating alternative be­
havioral approaches to travel theory are presented. 

•THE PURPOSE of this paper is to describe various travel behavior research ap­
proaches for evaluating the behavioral assumptions underlying the different models 
curre1itly in use and models being proposed for passenger travel demand fore casting. 
The behavioral assumptions to be evaluated relate to the perception, valuation, struc­
ture of choice, and possible conditioned or learned behavior resulting fro m the stimuli 
that give rise to travel decisions for various households and individual travelers. 

In transportation planning, planners have come to take for granted the detailed simu­
lations and forecasts of travel on multimodal transportation networks that current urban 
travel estimating procedures make possible. Social scientists are awed by the bold­
ness of planners in applying at different times and places relationships derived by using 
data from choices exercised over limited sets of travel and householcl-loca:tion oppor­
tunities. Psychology, for example, is much more tentative and fundamental. Models 
of pe1·ceptiou and preference are derived from precisely defined axioms. Behavior is 
observed under controlled and fully described conditions. Burnett (27) said, "What 
knowledge we possess of the relations between human learning, perception, and choice 
derives from experimental psychology, and the couu..::(;Lions between the simple non­
spatially- oriented decision-making tasks of the laboratory and real life spatially oriented 
decision-making are tenuous . " Travel modelers working on transportation studies have 
not enjoyed such luxury. 

Nevertheless, transportation planning has made sizable strides in recent years io 
applying a variety of travel models that replicate urban ttavel patterns. The models 
address a great variety of transportation policy issues arising at both the aggregate 
policy level (for exrunple, free t ransit) and the more fi ne-grained network levels or 
detail. 

Recently, travel modelers have analytically derived several of ·the rules of travel 
behavior implied (or required) by the alternative travel modeling approaches that have 
been taken (21). These rules allow them to evaluate how well alternative travel models 
match their understanding of travel behavior. What travel modelers lack, of course, 
is the basic understanding of travel behavior. 

TRAVEL MODELING 

Except for the arrows from box 1, the current state of understanding of the interactions 
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Figure 1. Travel modeling diagram. 1. Travel Behavior and 2. Observed Choices: 

Human Opportunities Individual travel choices 

and aggregate travel 

4. The rules of behavior 

implicit in alternative replicate travel choices 

trave 1 mode 1 s 

of travel behavior, travel models, and observed travel data may be represented as 
shown in Figure 1. In Figure 1, travel behavior and the set of spatially distributed 
lmman opportunities (box 1) drive the travel choices observed in urban areas (box 2). 
These, together with critical criteria such as time, budget, and available .work-force 
skills, drive the travel models (b~x 3) that should be used in a particular transportation 
planning situation. Recently acqmred knowledg_e ~f the chc~ice_behavior implicit in al­
te:rnative travel models (box 4) allows use of this information m selecting and using al­
ternative travel models. Notice, however, that no arrows go from the remaining boxes 
back to the fravel behavior box. Statistics cannot demonstrate causality. In this case, 
statistics cannot discern the reasons why particular travel choices have been made. 
New approaches to understanding travel behavior are needed. These approaches will 
have to corne from outside the traditional data collection and statistical methods in 
which transportation planners and researchers become quite expert. Because data can 
be used ultimately only to x·eject hypotheses, powerful theoretical development ac­
companied by ca~·eful and il~ormed dat~ c?ll~ction procedures clearly is needed. Skills 
and techniques will be required from d1sc1plmes that have developed experience in un­
derstanding human motivation and behavior. 

As transportation planners and economists move toward psychology in trying to un­
del·stand travel-choice behavior, they find psychologists and other behavioral scientists 
moving to meet them in exploring ways to mesh individual-level data with aggregate­
level data in real-choice situations. The main focuses to .date have been where 
aggregate-level data were readily available (primarily in the fields of election fore­
casting and market research), but the trend is also apparent in other substantive areas 
such as demographic research that uses family-planning attitudes and behaviors in vari­
ous cultures. These developments have become possible only recently mainly because 
of the increasing availability of high-speed, large-capacity computers and problem­
oriented software that implements many of the new psychometric techniques. 

The ultimate objective of the research approaches outlined in this paper is to allow 
trade-offs to be made in specific planning situations between the basis in behavior (and 
thus the logic and plausibility of travel forecasts) and the time, money, and skills re­
quired to carry out the forecasts. For certain kinds of situations, some models will 
dominate·. That is, they will be better on all counts and thus should be used. In effect, 
a certain kind of code or set of recommendations of "what models to use when" must 
be a pragmatic and hopefully not naive goal of travel behavior research. Such recom­
mendations and modeling choices always are being made, implicitly or explicitly, based 
on one's knowledge of all factors in a particular planning situation. However, because 
of the great variety of pla1mi11g circumstances, a complete code of recommendations ill 
obviously an elusive goal. 

TRAVEL BEHAVIOR 

Travel behavior may be defined as the observable reactions of people when they are 
confronted with choices involving travel. Travel choices include staying in one place 
or acqµil'ing for the long term either the means of transportation (a car 01· a prepaid 
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t r a nsit pass) or the spatial prerequisites for travel (residence and employment loca­
tions). Travel observed in the agg1·egate is the s ummation of all individual decisions 
to locate and travel at a particular frequency and time of day by a particular mode and 
route to a particular destination. 

Clearly, a vast number of variables could be used to describe the array of individual 
travel options and individual and household opportunity and need structures. The cir­
cumstances that give rise to travel and changes in travel behavior are as varied as life 
itself. An improved understanding of these circumstances (trip purpose, the proposed 
change in the travel-choice environment, physical and nonphysical characteristics of 
households, individual traveler characteristics, and length of time at place of r esidence) 
requires a systematic and well-structured research program. In this paper, such a 
research program is structured around a list of research problems. 

RESEARCH PROBLEMS 

There are 7 research problems or issues. 

1. The scaling-specification problem asks the question, What attributes of the 
travel-choice environment give rise to or influence amount of travel? 

2. The choice-abstract versus choice-specific problem, which is a subset of the 
scaling-specification issue, asks the question, Are the attributes influencing travel, 
such as modes used to produce transportation, perceived together with travel choice 
or independently of travel choice? 

3. The measurement problem asks the questions, Are perceived values of attributes 
that influence travel related to "objectively measured" values and, if so, how? 

4. The separability issue asks, What is the structure, or set, of alternative travel 
choices from which the traveler actually chooses; are travel decisions decomposed; 
and are there "natural" partitionings such as by frequency, time of day, destination, 
mode, and path? 

5. The independent-choice issue asks, Do attributes influencing travel choices vary 
in their relative and absolute effect from one travel choice, or subchoice, to another, 
such as from modal choice to destination choice in a presumed hierarchy of subchoices 
to make up a complete travel decision? 

6. The stochastic issue asks, Can travel be considered to be the manifestation of 
a set of conditioned behaviors that involves learning and changes in behavior over time? 

7. The household behavioral unit and competing demands issue asks, What are the 
circumstances of households, or other basic behavioral units to be identified, that af­
fect the findings in items 1 through 6 ? 

These 7 research approaches together constitute an initial attempt to list the 
issues relevant to the study of travel behavior. The questions go beyond the scaling of 
the kinds of stimuli that govern travel behavior, their relative and absolute importance, 
and t hei r interrelationships (problems 1 and 2) and include questions r elating to mea­
s urement (problem 3), choice structur e (problems 4 and 5), learning and conditioning 
(problem 6), and the i nfluence of the household and other decis ion units on t ravel be­
havio r (problem 7). 

Each of these 7 research problems is important in its own right. All of the prob­
lems, of course, are interrelated. The first 5 are pragmatically stated questions 
brought about by the requirements of the travel models in use today or proposed for 
use in travel forecasting . The last 2 describe more fundamental approaches to under­
standing human behavior. The following sections outline the substance and significance 
of each of these research problems. 

Problem 1: Scaling 

A general statement of the scaling problem is that it is the problem of defining the di-



1. 

15 

mensions of the travel-choice environment that influence travel behavior. The sig­
nificance of the scaling problem is certainly well recognized. The problem of identi­
fying the important stimuli that influence the selection of travel choices is central to a 
better understanding of travel behavior. The next few paragraphs indicate how the prob­
lem of scaling intersects with other research questions and how its "solution" may ulti­
mately be affected by data limitations. 

Definition of Behavioral Variables 

Long lists of attributes that may influence travel abound in the literature. However, 
travel times and costs are behavioral variables just as are comfort, convenience, re­
liability, safety, weather, number of transfers , and journey units . A usable behavioral 
model is not one that identifies a new behavioral variable but does not characterize it 
well enough for it to be measured (problem 3) and forecast. In fact, many definitions 
of comfort and convenience in transportation include time and cost components that are 
measur ed relatively easily (162). 

Path analysis (151), a technique for rejecting on the basis of observed behavior cer­
tain causal orderings in an assumed completely recursive travel model structure, would 
appear to hold some promise for defining independent behavioral variables. However, 
it has seen only limited application in travel demand modeling (88). 

The last 10 years have seen a sudden proliferation of psychometric analysis tech­
niques for dealing with data on perception and preferences. At first, psychometric 
analysis was used primarily in academic psychology, but, more recently, it has come 
into favor in market research. The techniques of psychometric analysis differ in the 
ways perceived similarities are represented and in the ways they are mapped into be­
havior in particular choice situations. Of substantial interest in pursuing the scaling 
problem are techniques that allow the mapping of aggregate or individual "psychological 
domains" of items in multidimensional spaces from data on perceived similarities, 
characteristics, preferences for items, and substitutability of items (67, 106, 185). The 
initial applications of psychological scaling techniques in travel research are very re­
cent (44, 135, 162) and certainly do not exhaust the capabilities of the technique . Multi­
dimensional scaling is an important research technique that will see increased applica­
tion in travel behavior research in the near future. 

Limits on Human Discrimination Among Attributes 

The number of variables that should be inc;luded in models of travel behavior must be 
limited to the number among which humans can discriminate. Theories of human 
discrimination and choice indicate the presence of a minimum variance needed for 
discrimination and that the number of variables that can be considered in any single 
decision is finite (160). One of the contributing factors to making destination choice 
the most difficult of the short-term travel choices to model is the great variety of al­
ternative destinations that are available and the subtleness and temporal nature of the 
attributes needed to differentiate among possible destinations ('70). Also, it is unclear 
whether the traveler, when confronted with a large nwuber of travel choices, breaks 
down the choice into smaller subchoices (problem 4) each of which is characterized 
by a larger number of attributes, or whether all choices are considered simultaneously 
but in terms of a smaller number of attributes. 

Deducing Values From Behavior 

The major emphasis to date in travel-choice modeling has been in deducing the relative 
importance of modal attributes through people's revealed preferences. Revealed pref­
erences are what one may deduce about people's preferences or values from their be­
havior. The values are deduced by relating people's observed travel, either as indi-



16 

viduals or in t he agg1·egate, to measured changes in transportation system character ­
is tics. For e>..·ample, the well- known value-of- time studies (108, 167) generally r elate 
travel behavior in a simple model to measurement values of traveTtrme and cost by 
alternate modes and routes. 

However, deducing values from travel behavior is not entirely satisfying because 
travel choices depend not only on people ' s values but also on the travel a nd other op­
por tunities open to them. Bouldi11g (23) said that choices are "necessitated when the 
elements in the set of choices are scarce, in the sense that there is a limitation in the 
quantities that can be obtained which prevents the chooser [from] reaching the point of 
satiety" and revealing his or her true values or preferences. 

Value-of-time studies deduce activity-specific, time-cost t rade-offs for the limited 
set of choices (often only 2) that have been defined for the particula1· study. In r eality, 
travel choices, although limited, are not nearly so restricted. In this sense, value of­
time models are in danger of being seriously misspecified. Lansing, Mueller, and 
Barth (102) stated that "the fact [is] that there is a tradeoff and what that tradeoff is, 
depends on where you are. Thus, what is a good thing at one point becomes a bad thing 
at another, and vice versa." 

Also, in deducing values from behavior, there is the problem of the limited available 
measurements of transportation system characteristics. A severe limitation on the 
use of the most widespread available data on observed travel, namely existing home­
interview survey data, is the lack of data on, for example, alternative travel choices. 
There are and likely always will be severely limited resources with which to measure 
everything about available travel choices. 

In summary, in deducing values from travel behavior, there is the dual problem of 
limited choices and limited measurements of the characteristics of the available choices. 
Both severely hamper the ability to deduce preferences and obtain the underlying values 
and trade-offs that govern travel behavior. 

Deducing Values From Attitudes 

Attitudes may be defined as people' s "tendencies to r espond in a particular manner to 
social or phys ical obj ects" (74), or their "dispos ition to r eact towards alternatives 
either positively or negative!y1"1 (70L In the sense of defining and filling in the gaps in 
the existing and potential output space within which travel decisions are made, informa­
tion from the so-called transportation attitude survey literature can be helpful. Mea­
surement problems with existing and contemplated surveys can be bypassed for im­
mediate travel-research purposes, and the limitations of current modes can, to a 
limited extent, be ignored. However, the use of attitude survey results assumes that 
expressed attitudinal values can be related to behavioral and to corresponding measure­
ment values. 

On the relationship of attitudinal values to behavior, the most ambitious study to 
date, the Maryland study, found "a modest positive linkage between expressed attitudes 
and r epor ted behavior, particularly for the work trip" (130). Wachs (176), in another 
study, reported, -- --

Drivers seem to be able to satisfy their preferences for many route characteristics. Drivers who 
express preferences for many route characteristics actually tend to travel on routes which possess 
them, whereas drivers who express little preference for such characteristics tend to drive on 
routes which do not possess them. 

Watson (180) reported observing a positive relationship between estimated coefficients 
on modal-choice variables and the stated relative importance of those variables from 
a single attitudinal question asked together with those on behavior. Such positive gen­
eral statements of the relationship are supported by the variations in reported attitudes 
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of different mode- and route-user groups toward the modes and routes in question and 
toward their attributes (83). 

On the relationship between attitudinal values and corresponding measurement values, 
the picture is not so clear. The results of attitude surveys must be used with caution. 
The Maryland study reported that "the importance of a particular attribute is a function 
of both the underlying strength of the human need or needs it is related to, and its 
present satisfaction level" (83). This function shows up in the results of many of the 
attitude studies in the literature. It requires that the use of attitude study results on 
the relative importance of attributes be weighted by current satisfaction levels. Other­
wise, the importance of current, poorly satisfied modal attributes will be overesti­
mated. This means that relative attribute importance ratings from one survey cannot 
be used as attribute weighting factors in a travel demand model separate from or inde­
pendent of the values of the attributes in a proposed transportation system. Unfortu­
nately the same can hold true for revealed preference (economic) models. We may 
safely agree with Wallace (177) that "one area which still needs considerable research 
because of the need for demand elasticity estimates is that of determining the relation­
ship between attribute satisfaction i·atings and the levels of attributes." 

Problem 2: Choice Abstract Versus Choice Specific 

The problem of choice abstract versus choice specific is a subset of the scaling prob­
lem. It is the question of the relationship of the stimuli to the travel choices: Are 
travel attributes perceived by themselves, or are they mapped on particular supply 
side choices such as mode and route or choice of technology? The question similarly 
can be extended to attributes of alternative destinations. These alternate perceptions 
of the travel environment imply that attributes of the transportation system can be in­
cluded in travel-demand models in 1 of 2 ways: as choice-abstract or choice-specific 
attributes (21). For example, the gravity model as conventionally applied in trans­
portation studies is a choice-abstract destination-choice model both with respect to its 
trip-attraction variables and its travel-time variables. 

The significance of the question as a separate research focus in this project is that, 
if attributes are choice abstract, then the numbers of interaction terms in a travel 
model will be greatly reduced and the model will be much simpler to estimate and apply. 
Thus the possible payoff is great, and the question becomes well worth researching. 

Lancaster (97) provided the classic statement of the choice-abstract concept in 
economics. 

Utility or preference orderings are assumed to rank collections of characteristics and only to 
rank collections of goods indirectly through the characteristics that they possess .... Further­
more, the same characteristic may be included among the joint outputs of many consumption 
activities so that goods which are apparently unrelated in certain of their characteristics may be 
related in others. (The traveler is assumed to derive utility, U, from the attributes, Z, consumed 
and obtained as a result of the transportation activity.) 

A variation on the choice-abstract concept overlaps research problems 4 and 5, 
which relate to choice structure. This is the possibility that at least some attributes 
may be considered independently not only of 1 choice (such as mode) but also of all sub­
choices. The attributes may themselves provide the choice structure. For a 
simultaneous-choice model, the resulting choice-abstract model would be the same 
as a simultaneous model of choice-abstract attributes. However, if the choice-abstract 
attributes are themselves considered sequentially, a new choice structure results that 
corresponds to a recent model in mathematical psychology, the elimination-by-aspects 
model ll 73). The model is relatively easy to apply to travel choices (21), and, for this 
reason alone, problem 2 becomes significant and worth investigating. In addition, the 
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elimination-by-aspects method may have its greatest usefulness in defining separable 
(strict-utility) models (problem 4) (21). 

Problem 3: Measurement 

Whether and how perceived values of attributes relate to physically measured values of 
attributes is the third scaling issue and has specific measurement implications. The 
question is not new. Transportation studies over the last 20 years confronted it, not 
very directly, when plotting perceived travel times from home-interview surveys 
against objective engineering estimates from skimmed trees. The correlation was 
observed to be considerably less than 1. Some data have been collected specifically 
for the purpose of relating perceived and engineering estimates of the times and costs 
of travel (100). However, the pl'oblem generally has been ig1101·ed until recently when 
data at the individual traveler level used to estimate (disaggregate) models have shown 
poor results. Ignoring the issue can result in biased parameter estimates with aggre­
gate models and nonsignificant parameters with disaggregate models. The issue can 
be ignored no longer. 

The problem of measurement is a classic problem in psychophysics, the branch of 
experimental psychology that relates stimulus to sensation or, in more conventional 
transportation terminology, the physical measuxement of the stimulus to the perceived 
magnitude. The Stevens power law (159), which relates the magnitude of the sensation 
to the magnitude of the stimulus, may have important ramifications for the mathematical 
form in which physically measured variables should be included in travel models. rt 
already has been applied to travel forecasting (with as yet uncertain results) by 
Ewing (52). 

In en'Vfronmental psychology and the newer subfield of psychogeography, a substan­
tial body of literature relevant to travel has been accumulated (48). For example, it 
has been found that spatial judgements are influenced by traverse time and the quality 
of that time. Orme (138) found that "if two parts of a journey are of equal distance, 
that part will generally seem greater which is traversed at a slower speed for a longer 
time." Filled time and active participation in complex activity (driving, for example) 
make time seem to pass faster and possibly at considerably lower behavioral cost or 
disutility. The converse may be expected to be true for l'assengers in cars or transit 
vehicles, particularly if they are not permitted (or not inclined) to read or engage in 
some form of activity or stimulation. Recent work with children ( 73) shows that we 
learn about the environment by active manipulation of it (for example, by driving rather 
than by being driven), which indicates some profoundly different consequences on 
residential-location and car-purchase decisions of travel time by different available 
modes. (Thus there is an overlapping with research problem 2.) 

The measurement problem can be attributed, at least in part, to a lack of informa­
tion on travel costs and opportunities as distance increases. Thus travel may decline 
with distance in the absence of any additional travel costs of distance. If information 
levels decrease with distance, then travel models may be falsely attributing declining 
travel interaction rates entirely to increased travel costs. Hanson (70) reports that 
"the set of known opportunities (the cognitive opportunity set) consti1:iites a rather 
limited proportion of the total opportunity set." 

The measurement problem relates also to the question of how changes in the trans­
portation system affect perceptions of the cost of movement. A better understanding 
of the measurement problem as an aspect of travel behavior could lead to an ability to 
organize transportation improvements in such a way as to transform the spatial pattern 
of travel demand in potentially more desirable ways for society. 

Problems 4 and 5: Choice Structure 

Problems 4 and 5 are the major choice-structure research problems. Are travel de­
cisions decomposed into smaller decisions and, if so, hoi.1.r? Problem 4 relates to the 
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issue of separable choice, and problem 5 relates to the issue of possible independence 
among travel choices (and the mobility choices of problem 7). Quite different travel 
demand models can be derived analytically from or shown to be consistent with alter­
nate behavioral assumptions on whether and how travel decisions are decomposed or 
partitioned into choice subsets between or within levels in the choice hierarchy shown 
in Figure 2 (21). 

There arebasically 3 levels of assumptions relating to the choice-structure issue. 
These are described in the context of the hierarchy of the short-run travel choices 
shown in Figure 2. 

1. Simultaneous choice means that all attributes of the choice situation confronting 
the traveler are considered simultaneously. The complete trip is 1 decision. The 
relative valuation or relationships among the attributes are constant in any travel choice 
in the hierarchy shown in Figure 2. The hierarchy and the assumption could, of course, 
be extended to include longer term automobile-ownership and residential-location 
decisions. 

2. In separability there is a set of travel decisions in which certain travel decisions 
are considered and may be modeled separately from other decisions. However, the 
relative valuation of choice attributes is constant in any complete travel decision (that 
is, any single path through the travel-decision tree shown in Figure 2). 

3. In independence there is a set of travel decisions (choices) in which certain travel 
decisions are made independently of other decisions. Thus the relative valuation of 
choice attributes common to 2 or more travel choices is not likely to be the same in 
successive travel choices. 

The first structure assumption is the simultaneous-choice assumption. The number 
of explanatory variables and the allowable inter actions among variables that may be 
needed to explain (model) simultaneous travel behavior can multiply rapidly for realis­
tic travel-choice situations in urban areas. The second and third assumptions restrict 
the attributes the traveler is assumed to evaluate in making his or her travel decision. 
Restricting the choices that are presumed available to the traveler is an appealing and 
popular way in which the complexity of travel demand models can be reduced. However, 
this involves making some important assumptions on the separability and possible inde­
pendence of travel choices. The second assumption (separability) requires that the 
relative valuation of choice attributes be constant throughout the set of travel choices. 
Models of some subset of travel decisions can be calibrated based only on the subset of 
attributes describing those choices (33). The estimated utilities are then included in 
the models of the larger set of choices. Use is made of the separability property of 
strict-utility models derived from the indepEmdence of irrelevant alternatives axiom 
(110) under this recursive modeling method. Separability is a property (and therefore 
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a behavioral assumption) of all share models in use today including the gravity model 
and the logit model (21). 

There is some uncertainty and disagreement in the field on whether and when the 
assumption of sequential behavior is a requirement for the previously mentioned method 
of estimating or applying recursively estimated models. One school of thought holds 
that, when utilities are preserved in later estimated models of a larger set of travel 
choices , the sequence is assumed that is implied by the order of the conditional state­
ment used to determine the choice attributes input to the utility function. That is, if, 
in Figure 2, utilities are estimated for the modal-choice decision by using modal travel 
costs that are defined by, or conditioned on, destination choice [that is, P (MI n)J, and 
these utilities are preserved later in models of the larger set of choices, then sequen­
tial behavior is a required assumption. However, the opposite view is that the sequen­
tial estimation of utilities implies no such sequential behavior assumption. According 
to this second school of thought, the method of inclusive prices is simply a first ap­
proximation to the utility function estimated simultaneously over all the travel choices, 
and no sequential behavior is assumed (47). 

There is, however, no disagreementon the requirement that separability must be 
assumed when one estimates share models on a subset of the entire set of travel choices 
or when one forecasts to a set of choices (such as destinations) that is larger or is a 
different partitioning from the choice set used in model estimation. Separability (the 
property that the relative probability of choice between 2 alternatives is independent of 
the presence of third or additional alternatives) constitutes a strong behavioral assump­
tion by itself. Travel choices must be defined that may be considered substitutable for 
each other and not special cases of each other, or the separability assumption will be 
too strong. For example, the results of a gravity model forecast (which presently as­
sumes destination choice as being separate and independent from the remaining choices) 
are vitally dependent on which destinations are considered to be substitutable for each 
other and which are considered to be special cases of each other. In current practice, 
all destinations are considered simple substitutes for each other. This is clearly con­
trary to the previously stated finding that "the set of known opportunities ... constitutes 
a rather limited proportion of the total opportunity set" (70). Modal-split and path­
choice models make the same complete substitutability and pe rfect information assump­
tions. Rules for logically 2·estl'icting choice sets could considerably simplify the me­
chanics of travel forecasting as well as greatly improve the accuracy of travel forecasts. 

The third assumption is the current assumption of urban transportation planning 
models that sequentially and independently estimate the different travel choices with 
different valuations of the independent variables in each model. The assumption does 
not by itself place restrictions on choice ordering. For example, the place of modal 
split in the order of trip-choice decisions has been called "the most actively debated 
issue in modal split" (181) . Howe, re r, application of the models in different sequences 
results in different sets of travel predictions. Also the assumJ?tion does not necessarily 
restrict independently modeled choices to levels (such as mode) in the choice hierarchy 
shown in Figure 2. They could be sets of alternative complete travel decisions. The 
t hird assumption may not be rejected on any sequence assnmption so much as on the 
requirement that, for utilities derived from separately modeled travel decisions to be 
considered additive, their component attributes must be neither substitutes nor com­
plements (have no interaction terms) (112). That is, if the utilities are assumed to be, 
strictly speaking, additive and independent sets of attributes governing each separate 
travel choice, the choices may indeed be modeled separately and independently. For 
example, some would say that automobile manufacturers appear to have successfully 
separated consumption of the automobile from consumption of travel. That is, at least 
until the current concern with energy-supply limitations came about, the attributes 
governing car-purchase decisions may have overlapped only insignificantly with attri­
butes governing travel decisions. 

In fact, if travel choices may be modeled separately only if their attributes are 
neither substitutes nor complements to attributes in the utility functions of other sep­
arately modeled choices, then the whole discussion of separately modeling the usually 
defined ehoices (Figure 2) perhaps should give way to structuring travel choices for 
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modeling purposes by independent sets of choice-abstract attributes themselves (prob­
lem 2). If it can be demonstrated that travel choices are considered sequentially by 
travelers, the powerful evidence can be applied to support nonsimultaneous models of 
travel decisions. Three researchable hypotheses supporting sequential travel behavior 
have already been described (21): 

1. Sequential choice ordering based on timing, 
2. Sequential choice ordering based on adjustment time, and 
3. Sequential choice ordering based on experience. 

Other rationales for choice sequences no doubt also exist. There is considerable 
overlap here with the stochastic issue (problem 6) as well. That is, the results of re­
search on problem 6 may provide considerable support for assuming certain kinds of 
choice structures under various circumstances. 

The significance of the choice-structure issue is that considerable economies in 
time, money, and the use of existing skills and computer programs can be achieved if 
certain behavioral assumptions relating to travel-choice partitions can be shown to be 
acceptable under certain conditions. Also, to minimize some possibly grievous errors 
in application, the appropriate set of choices over which travel models should be ap­
plied in prediction is vitally dependent on an early resolution of this issue. 

Problem 6: Learning 

Problem 6 relates to the almost totally ignored possibility in transportation that travel 
patterns may be the manifestation of a series of conditioned behaviors and not simple 
behaviors stationary over time. Behaviorists, such as Skinner (152), would seriously 
question the integrity of anyone who thought otherwise. The basic truth of the "learning" 
hypothesis can hardly be questioned. Boulding (23) asserted that "a most serious de­
fect" in transportation is to "assume simple preference or welfare functions on the one 
hand and opportunity functions on the other, without further inquiry and particularly 
without inquiring as to how these functions came into existence." Boulding accused 
most practitioners of believing in the "doctrine of the immaculate conception of the in­
different curve." He cited the well-established theory that, 

as people communicate with each other, individual preferences and value systems tend to con­
verge into something which might almost be called a common value system .... Most people .. . 
are socialized into the society in which they grow up, accepting its preference structures and 
learning its technology. 

Hartgen (74) reported that, "of all groups, the family is perhaps the most important in 
influencingindividual behavior." Outside the household there are important differences 
in people's values, conditioned by the opportunities to which they have been exposed. 
On a very small scale, Wachs (176) found that "people's preferences for various route 
characteristics do vary, and the variations can be related to the characteristics of the 
people, their trips and the routes to which they have been exposed." On the urban scale, 
McMillan and Assael (123, 124) found that 

people in the five rail mass transit cities (in the U.S.) placed a higher value on public transpor­
tation compared to people in the rest of the country. They held (relatively) less favorable at­
titudes toward the automobile both as a mode of transportation and in relation to the satisfac­
tion of specific transportation and personal needs in terms of its social role. 

Similar examples of differences in values and relative attitudes toward public and pri-
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vate transportation between cities have been reported (71, 101). Because of learning 
and conditioning, therefore, potential limitations exist on me complete transferability 
of even a behavioral travel demand model from one population to another. The major 
issue of problem 6, therefore, is not so much whether travel can be considered to be 
a set of conditioned behaviors but what conditioning theory can tell us about changes in 
the transportation system and other circumstances surrounding travel that are likely to 
.Produce changes in travel behavior. Research on this issue, althougb it may be difficult 
(27), can be of great value in identifying attributes that influence travel choice (the scal­
ing problem) and in yielding evidence on the structure of choice (as noted for problems 
4 and 5). However, more specifically, research on this question can identify specific 
nonlinearities in the effects of certain attributes (threshold effects), variability or re­
liability from trip to trip in attributes (effect of reward schedule), and changes in direc­
tion or change in the circumstances surrounding the travel. With regard to the last, 
Shaffer (147) reported that, in the field of job and personnel research, it has been 
"demonstrated that job satisfaction is a function of the presence of variables different 
from those that are present in job dissatisfaction .... Correction of the dissatisfying 
elements is not enough to produce satisfaction." 

Support for the hypothesis that improvement in the travel-cost dimension (dissatis­
fiers) achieves limited results in increasing mode usage was suggested by Rosinger 
et al. (144): 

It should be recognized that lists of negative attributes of transit do not necessarily imply ap­
propriate positive actions. There may be better ways to generate demand than simply to con­
centrate on making transit 'unbad' .. .. There is no a priori reason why transit might not de­
velop its own set of positive attributes in comparison with the auto. Certainly such an approach 
is more likely to generate patronage than is an absence of negative orientation. 

Unfortunately, it is not clear that transit currently has any of its own set of positive 
attributes (such as attributes on which users score it higher than the automobile) (83). 
Attitudes and behavior such as this appear to be explainable by the concepts of condi­
tioning theory. 

There are several concepts from learning and conditioning theory that provide fruitful 
approaches to research on problem 6. 

1. In stimulus generalization, the traveler may generalize conditioned travel be­
havior even in different circumstances. For example, the car that was used to "find" 
the residential location (active manipulation of space) continues to be used for the jour­
ney to work even though the utility of the trip by transit is greater than the utility by 
automobile. 

2. In discrimination learning by contingencies, the traveler may learn to associate 
a different set of utilities with work trips than shopping trips and a different set with day 
trips than night trips. 

3. In the reward schedule, the resistance to behavioral change by the traveler is a 
function of both quantity of rewards (the utility set consists of time, cost, comfort, and 
the like) and the frequency and pattern with which rewards are administered. In general, 
partial rewards are more difficult to extinguish than full rewards; for example, some 
bad trips will not extinguish certain behavior. 

4. Satisfaction generally results in a conservative bias in the system of choice. That 
is, over time, levels of aspiration tend to adjust to levels of achievement. (The differ­
ence in levels is said to motivate search for new alternatives.) A new alternative may 
or may not change the traveler's perception of difference between current and possible 
(future) alternative states if he or she changes travel behavior. The reward schedule 
will have an important effect. 

The 2 primary objectives of research on problem 6 are whether and how to incorpo­
rate learning into travel models and to discover whal cumliliou.i.ng can tell us about 
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travel behavior as it relates to all the other research questions (such as the formation 
of values governing travel-choice decisions in households, which is problem 7). 

Problem 7: Decision Making by Large Behavioral Units 

Problem 7 concerns how the circumstances of the household or other units affect travel 
behavior. Certain kinds of research questions relating to long-term household behavior 
and short-term travel behavior are similar. For example, just as short-term travel 
models may or may not assume that the marginal value of time and money is the same 
over the various travel choices (separability issue of problem 4), long-term models of 
household- and employment-location and car-purchase decisions may or may not as­
sume the same marginal value of time and money for all categories of expenditur es 
(including travel). And long- term choices may or may not be interdependent on each 
other or on s hor t-term (travel) choices (problem 5) depending on the s timuli affecting 
those choices, their interactions, and their correlations. 

It may be hypothesized that individual travel behavior results from the individual's 
perception of the quality of the transportation choices available to him or her that he 
or she evaluates in light of the requirements of a set of tasks or activities assigned by 
the household. rt may be further postulated that these tasks are selected by the house­
hold through a decision process that considers the various needs of its members and 
the various alternative activities that may satisfy those needs and the constraints im­
posed by the cultural and financial circumstances of the household. The process may 
be said to have 3 components. First, through past experience, the individual selects 
alternative activities that satisfy his or her needs. Second, the activities and resources 
allocated to each household member are defined. Third, the elements of individual 
travel behavior are structured and performed to complete the assigned task. 

Hartgen and Tanner (75) summed up the interplay of individuals and the groups to 
which they belong: -

Each individual has associated with him a set of needs defined by the roles he assumes in his 
interaction with other persons and groups. Through experience, individuals and groups develop 
both awareness of and attitudes toward alternate courses of action that may satisfy needs. 
Through awareness, a person or group recognizes the existence of those particular actions 
offer ing some potential for satisfying needs. 

Various categories of needs (such as physical, social, and psychological needs) 
exist, and the circumstances of the household will affect the awareness of and attitudes 
toward alternative courses of action to satisfy those needs. For example, physical 
and nonphysical characteristics of individuals and groups will have an effect on the 
for mulation and perception of their needs(~ 116) and on the information levels that 
they have on alternative trip-end opportunities (17). 

It can be hypothesized that the family decision=-making process evaluates the ac­
tivities preferred by its members along 2 dimensions: the importance of the need that 
the activity is intended to fulfill and the resources and opportunities available for the 
activity. The task of child rearing may be completed within the physical confines of 
the household. However, other tasks such as income earning normally are accom­
plished in other locations, which gives rise to travel. 

In the context of household needs and allocation of scarce resources (time and money) 
each individual must make subsequent decisions for completion of his or her assigned 
tasks. It is hypothesized that he or she reviews these activities and resources in rela­
tion to his or her own needs and experiences and determines those tasks that will best 
satisfy both the household's and his or her personal requirements. He or she then ar­
ranges these activities in a sequence for completion. 

This social psychology stream of research already has been the subject of reviews 
as it relates to travel and car-purchase decisions (76). A second stream of research 
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is the set of more purely economic investigations of household budgets, their changes 
over time, and their changes with respect to varying household circumstances, location 
in the metropolitan areas, and proximity to public transportation services. Such con­
sumer budgeting studies at the household level, can be helpful in determining how 
changes in circumstances at the household level affect travel behavior. 

A research approach that included household-level examination of problems 1 through 
6 allows considerable perspective to be gained on the behavior of individual travelers. 
Households have sets of final demands and ways of accomplishing those final demands 
that are not available to individual travelers. The trade-offs within the household for 
time, money, and other resour ces are not visible and r esearchable at the individual­
traveler level. Research on problem 7 can be expected to yield findings and insights 
that will be valuable both in terms of developing substantially new approaches to 
household-level travel modeling and in terms of clarifying issues and approaches to 
research on the scaling, structure, and learning questions. 

CONCLUSIONS 

Each of the 7 research problems is important in its own right, and all, of course, are 
interrelated. An improved understanding of travel behavior as articulated by each 
question can be a great help in efficient use of travel-forecasting models, and in ap­
propriate selection of what forecasting model to use in the first place. Lack of knowl­
edge of how travelers behave under different circumstances when confronted with high­
versus low-capital-intensive transportation alternatives may be requiring the profession 
to always apply very complicated models. This has been called model overkill. 

Four types of criteria are appropriate for evaluating alternative behavioral ap­
proaches to travel theory: 

1. Travel behavior criteria ("truth"); 
2. Ability to incorporate behavior in a model; 
3. Ability of the behavioral model to improve the accuracy of the conditional fore­

casts (policy and issue responsiveness); and 
4. Planning process considerations (such as time, cost, data needs, and trans ­

parency). 

The 4 tyPes of criteria are divided into endogenous (item 1) and exogenous (items 2, 
3, and 4) classes. Endogenous means evaluation on the basis of internally generated 
indicators. A travel demand model, like any model, is ultimately a subjective imi­
tation of reality. Ultimately the modeler's understanding of behavior in the system of 
intereet must be the starting point. Evaluating the "truth" endogenously means evalu­
ating how well the theory incorporates the essential phenomena addressed in the first 
place. The 7 research problems represent 7 useful perspectives from which to evalu­
ate endogenously the alternative behavioral approaches. It may be superfluous to in­
dicate that each of the resulting 7 endogenous criteria incorporates the usual list of 
internal evaluation criteria such as adherence to theory, internal logic, reasonable­
ness, conformance with prior knowledge, and the like. The remaining 3 types of cri­
teria are essentially exogenous to the research questions. They are the wholly prag­
matic considerations of the usefulness of incorporating alternative behaviors in models 
applied to relevant policy issues. 

The second criterion (modeling ability) is important becaus e only a limited number 
of tractable models that employ behaviorally different underlying assumptions for mak­
ing operational alternative approaches to travel behavior appear to exist (10, 16, 21). 

Three related issues are involved in the third criterion; they fall under theheadings 
of accuracy, option responsiveness, and effects. Accuracy issues relate to the ac­
curacy and the detail in space and time with which models implementing the behavioral 
assumptions can replicate and forecast travel. Option-responsiveness criteria are, 
of course, central to the concerns of travel forecasting and transportation planning. 
That is, for behavioral models to estimate travel and related consequences of trans-
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portation options, variables (attributes) describing those options must be i ncluded in 
the set of stimuli influencing travel behavior (the scaling problem). However, option 
sensitivity is only 1 criterion. If the option truly does not affect travel, the model 
should not be abandoned or distorted in some way to make it policy responsive. Knowl­
edge of such travel-behavior insensitivity will have important consequences in policy 
analysis and evaluation. Effect-related criteria are a third type of policy-responsiveness 
criteria. It is important to clearly draw the distinction between travel forecasting and 
forecasting other effects. However, insofar as improved forecasts of travel can lead, 
for example, to improved air quality forecasts, the effect criteria are important for 
evaluating alternative behavioral approaches to travel theory. 

The fourth criterion for evaluating alternative behavioral approaches to travel theory 
is planning process considerations. The practicing transportation planner is con­
fronted with a bewildering proliferation of travel forecasting models and an increasing 
array of transportation planning options on whose consequences he or she must provide 
information. The growing number of options and the growing involvement of citizens in 
planning are resulting in greatly increased information requirements for decision making, 
shrinking time available for travel forecasting and forecasting other than strictly travel 
consequences, and greatly increasing "transparency" requirements placed on technical 
transportation planning procedures. Travel forecasting is not standing up well to any 
of these new developments. Although the second and third types of criteria act to a 
certain extent as constraints on what behaviors can be modeled and what policy issues 
can be accurately addressed, it is on the basis of this fourth criterion that the decisions 
in the field are going to be made concerning which travel forecasting techniques will be 
used in particular planning situations. An initial list of types of process criteria might 
include: 

1. Time requirements, 
2. Cost requirements, 
3. Forecastability of independent variables, 
4. Transparency of the models, 
5. Hardware (computing) requirements, 
6. Skill requirements, 
7. Universalityof the modeled behavior (suchastransferability over time and space), 
8. Reproducibility of the forecasts, 
9. Ptovision of intermediate output, and 

10. Ease of aggregating or disaggregating output. 

It is clear that considerable research on travel behavior and the application of be­
havioral travel models will be requi red before specifi c planning frade-offs between the 
basis in behavior (and thus the logic and pl aus ibility of travel forecast s ) and the time, 
money, and skills required to carry out the forecasts can be made. However, such 
trade-offs are made either knowingly or unknowingly each time a travel-forecasting 
technique is applied. The research approaches suggested in this paper are directed 
toward making these trade-offs from a more informed basis. 
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DISAGGREGATE BEHAVIORAL MODEL OF 
AUTOMOBILE OWNERSHIP 
Steven R. Lerman, Cambridge Systematics, Inc.; and 
Moshe Ben-Akiva, Massachusetts Institute of Technology and Cambridge Systematics, 

Inc. 

This paper describes a series of disaggregate behavioral models that 
forecast the probability that various combinations of automobile ownership 
and travel modes to work will be selected by households. The models as­
sume that workplace and residential location are predetermined. The 
multinomial logit model is used in a joint structure that captures the com­
plex interrelationship of automobile ownership and travel-t9-work deci­
sions. The paper describes the considerations in the choice of independent 
variables and the specification of the utility functions. The estimation re­
sults for each of 7 distinct socioeconomic groups, or market segments, 
with different behavioral characteristics are presented and analyzed. One 
of the models then is used to examine the shifts in automobile ownership 
for a suburban household resulting from alternative levels of transit ser­
vice improvements. 

• FORECASTING automobile ownership has always played an important role in the 
transportation planning process. The car ownership of a household is a major deter­
minant of its trip-making behavior. For example, car ownership has been found to be 
the single most important variable in trip-generation models (10, 12) and a major de­
terminant of modal choice (3, 5, 7). Thus, to predict trip-making oehavior adequately, 
one must first ;model the process underlying car-ownership decisions. 

In most major transportation studies, car ownership typically has bridged the gap 
between urban land use models, which focus on the spatial pattern of urban activities, 
and the traditional 4-step transportation planning process of trip generation, trip dis­
tribution, modal split, and traffic assignment. This relationship between car ownership 
and the traditional transportation forecasting cycle is shown in Figure 1. Note that, 
in this figure, the transportation level of service should enter into the factors deter­
mining car ownership. However, despite its fundamental importance as a determinant 
of how people use an urban transportation system, forecasting car ownership often has 
been treated outside the basic forecasting cycle. It has been relegated to a side calcu­
lation made with simple models that rely on trend extrapolations or correlations be­
tween 1 and 2 variables and car ownership rather than on a strong causal theory. Few 
studies have ever addressed the basic behavioral factors underlying the household's 
car-ownership decisions, and still fewer have attempted to embody a behavioral per­
spective in a valid econometric model. Furthermore, no modeling efforts have at­
tempted to incorporate in a behaviorally consistent way the interaction of the way in 
which households choose the number of cars they own and the other transportation­
related decisions they make. This paper describes a study that developed a series of 
models that represent car-ownership behavior in a way consistent with a credible 
theory of the choice process at the household level. This series therefore can be used 
with reasonable confidence in a broad range of policy-testing situations. 

The basic objectives of the study were 

1. To formulate and test behavioral hypotheses about the relationships between car 
ownership and the transportation system, 

2. To develop and estimate models of car ownership that can be used as part of an 
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overall transportation planning process and that are behaviorally structured and sta­
tistically valid, 

3. To provide a tool for transportation policymakers to assess the impacts of poli­
cies on car ownership and in particular to assess the role that transit level of service 
plays in determining car ownership, and 

4. To develop models that allow policymakers to separate the impacts of various 
transportation policies on different socioeconomic gr oups. 

ISSUES IN MODEL DEVELOPMENT 

Car ownership is a household-level decision that is highly dependent on how workers 
in that household choose to travel to work. Previous models ( 4, 6, 11) have failed to 
treat this interaction in a credible way; they have either ignored Tt entirely, assumed 
some arbitrary sequence of decisions, or used other highly simplistic behavioral 
assumptions. 

Each household makes its car-ownership decision as part of a larger range of 
transportation-related choices. How many cars one owns depends on where one lives 
and how orie uses those cars. For this reason, considering car ownership as part of 
a complex group of decisions that are hierarchically structured is desirable; that is, 
car-ownership decisions are made conditional on the outcome of some household choices 
and are made before the outcome of other decision processes. Figure 2 shows the 
choice hierarchy on which this study is based. The choices of employment location, 
residential location, and housing are assumed to be made on the longest term basis. 
Car ownership and travel mode to work, the medium-term choices, are made condi­
tionally on the results of the long-term decisions. The short-term travel decisions of 
trip frequency, destination, mode, and the like, for various non-work-trip purposes 
are made last conditionally on the locational, work-trip, and car-ownership decisions. 

This general hierarchy of choice has important implications for the way in which car 
ownership decisions should be modeled. Car ownership and mode to work are closely 
rela ted and, therefore, to model them as jointly determined is most appropriate. (For 
this study, only the mode of the primary worker was considered. The primary worker, 
also termed the breadwinner, was defined as the working member of the household with 
the highest socioeconom ic status on a scale developed during the study.) The overall 
model structure representing this choice hierarchy can be termed block conditional. 
This means that a block of lower-level choices is made conditionally on higher-level 
choices but that the choices within each block are determined jointly. 

Another hypothesis on which the study was based is that households have very dif­
ferent underlying behavior depending on both the stage of life that they are in and the 
occupation of the primary worker. For this reason, different models are estimated 
for different market segments. The empirical results indicate that such market seg­
mentation isolates groups of households that make car-ownership decisions by using 
very different sets of values and that previous modeling efforts that pooled all house­
holds may be biased substantially when used in forecasting. 

In the initial model development, 9 distinct market segments were considered. These 
consist of 4 life cycle groups: 

1. Households consisting of single persons without children, 
2. Households with a married couple both of whom were younger than 45 years 

without children, 
3. Households with children, and 
4. Households with a married couple 1 or more of whom were older than 45 years 

without children. 

Two occupational groups were defined as 

1. Occupation A, which was made up of the blue-collar primary workers; and 
2. Occupation B, which was made up of the white-collar primary workers. 
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These provided ;: market segments each labeled by life cycle and occupation. A 
ninth segment consisting of households with no full-time workers also was defined and 
labeled life cycle 5. In addition, a random sample of households in life cycles 1 
through 4 was used in model estimation for comparison with the separate market­
segment models. 

The models described in this paper use disaggregate data from the 1968 Washington, 
D. C., home-interview survey to estimate a series of multinomial logit models. Choice 
theory and the logit model are not reviewed in this paper. Excellent discussions of the 
theory and use of disaggregate choice models are available elsewhere (2, 3, 8, 9). 

The models developed in this study predict the probability with which a-household 
will select each of a number of available alternative car-ownership and travel-mode­
to-work combinations. Thus, by the multinomial logit form, the probability of a house­
hold's choosing to own a given number of cars a and traveling to work by mode mis 

exp (v.a) _. 
p (a, m) = I: r; exp (Von) 

am 

(1) 

where .Vu is the utility of a car-ownership and travel-mode-to-work combination. 
Given the joint model for the probability P(a, m), one can de rive any desired con­

ditional or marginal probabilities. For example, a simple car-ownership model with 
indeterminate modal choice will be 

P(a) = E P(a, m) 
m 

and a model of modal choice given a car-ownership level will be 

P(m I a) = P(a, m) 
p(a) 

The utility functions Vam are restricted to be linear in the coefficients . 

CHOICE OF VARIABLES 

(2) 

(3) 

There are 6 basic categories of variables that influence a household's car-ownership 
and travel-mode-to-work decision: 

1. Transportation level of service to work, 
2. Car-ownership costs, 
3. Locational attributes, 
4. Housing attributes, 
5. Spatial opportunity variables, and 
6. Socioeconomic variables. 

Each of these categories represents important factors that determine car ownership 
and travel mode to work. Therefore, none should be ignored completely. However, 
the level of detail with which each category can be treated can vary widely. For ex­
ample, housing can be treated as a 0-1 dummy variable to represent whether the house­
hold lives in a single-family dwelling, or it can be treated as a broad range of variables 
describing rent, type of tenure, years at residence, type of structure, age of structure, 
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and type of lot. The trade-off between level of detail and relative ease of use in fore­
casting was basic to the problem of variable selection, particularly when one of the ob­
jectives of the study was to capture as much of the behavioral process as pos sible. 

Note that not all the variables appear directly in the utility functions. Sor:ne vari­
ables are combined in ways that reflect a theory about how they interact. Others enter 
into the utility functions of some car-ownership and travel-mode-to-work pairs and not 
others. Thus this section is not intended to be a discussion of the actual independent 
variables used for estimation, but rather it is a list of those variables that in some 
form affect the probability of a household's selecting any alternative. What follows is 
a discussion of each category of variables and the actual measures used in the models 
to represent it. 

Tr ansportation Level of Service to Work 

The variables for transportation level of service to work influence directly the primary­
worker' s choice of travel mode to work, and therefore influence car ownership through 
the interdependency of car ownership and travel mode to work represented by the joint 
structure of the model. It was decided to use the traditional level-of-service measures 
commonly included in modal-choice models: in-vehicle time, out-of-vehicle time, and 
out-of-pocket cost. Empirical tests indicated that the time spent out of vehicle ap­
parently is perceived to be far more onerous for short trips than for longer ones. 
Hence the ratio of out-of-vehicle time to highway travel distance was used. The level­
of-service measures of both the car and the transit mode appear in the model in their 
respective utility functions. 

Even when these 3 types of level-of-service variables are used, certain effects that 
influence modal choice, such as the frustration of being in congested traffic and the 
high variance of peak-hour travel time in heavily used travel corridors, are not mea­
sured. It is these factors that typically cause modal choice for downtown-oriented 
trips to be different from non-central-business-district (non-CBD) trips (13). To cap­
ture this effect, we used a dummy variable for CBD-oriented work trips. 

Car-Ownership Costs 

Car-ownership costs are the primary deterrent to high car ownership for households 
with more than 1 driver. However, the cost of owning a car is highly dependent on the 
type of car owned. Small cars with their low purchase prices and good fuel economy 
are far cheaper to own on an annualized basis than are larger, less efficient cars . 
However, the focus of this study is on the to tal num ber of cars a household will own 
rather than on their type, age, or quality. Thus, some value representing the average 
cost of owning a specific number of cars must be used. 

An average figure of $1,000 ownership cost/ car/ year was used in the models to be 
described under socioeconomic variables. However, because this figure was selected 
somewhat arbitrarily, tests were made to determine the sensitivity of the results to 
large changes in that cost. These results indicate that large va riations in this assumed 
value do not substantially alter the parameter estimates. 

Locational Attributes 

The way in which locational attributes affect the car-ownership and travel-mode-to­
work decision is far more subtle than the effects of the first 2 types of variables dis­
cussed. At the simplest level, differences in personal property taxes and insurance 
will add to the monetary cost of owning cars; however, these variations in the Wash­
ington, D.C., area were deemed too small to be relevant . What is more significant is 
that implicit in a household's location decision are important restrictions on the way in 
which households may travel to work or to shop. For this reason, no specific var iables 
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were introduced into the utility functions to represent locational effects; instead, lo­
cation was reflected in the other variables , such as those for spatial opportunity a nd 
level of service to work, and in restrictions on the alternatives available to each house­
hold as described under spatial opportunities. 

Housing Attributes 

Housing attributes can be r epresented by a large number of possible variables. How­
ever, on careful consideration of the way in which a household selects the number of 
ca.rs it wishes to own, it was decided that only 1 major influence, whether the house­
hold resided in a single-family dwelling, merited consideration . Single-family houses 
tJpically have d1·iveways and generally are located in areas that have readily available 
on-street parking; multiple-family dwellings generally are characterized by the J'everse. 
Thus one would anticipate that, if all else is equal, the utility of multiple-car owner­
ship would pe substantially higher for those r es iding in single-family homes than for 
those residing in apa rtments. 

Spatial Opportunities 

Spatial opportunities make up perhaps the most difficult class of variables to represent 
and measure . These variables are a composite of the attributes of all nonwork t rips , 
and some way of combining the characteristics of various possible trips with the rela­
tive likelihood of tbe household's malting them must be found. The approach used in 
this study relies on a behavioral means of combining the level of service to different 
nonwork destinations. In the choice hierarchy shown in Figure 2, when a household 
selects its car ownership and mode to work, its actual pattern of nonwork travel is in­
determinate. However, given any choice of car ownership and travel mode to work, 
the household then would be able to determine the prnbability with which it would travel 
to each destination. These probabilities depend on the transportation level of service 
and the attractiveness of each destination, but they also depend on the characteristics 
of the household. Therefo re, it makes theoretical sense to use an estimate of the 
household-level probabilities to weight the level of service for nonwork travel. Ex­
pressed mathematically, this spatial opportunity measure is determined as follows [a 
more detailed discussion of this type of composite variable is available elsewhere (_g_, ~] : 

where 

Accessibility of a household in zone i by mode m = E t1 dm • P (i, d, m) 
d 

p(i, d, m) =probability of the household ' s t raveling from i to d by modem, and 
t

1
d• = some measur e of the level of service from i to d by mode m. 

(4) 

Actually measuring this type of accessibility gives rise to a number of practical 
issues such as what types of spatial opportunities s hould be us ed. It was decided that 
the most relevant nonwork travel purpose is shopping and that other spatial opportuni­
ties play a secondary role and reasonably can be igno1·ed. This greatly reduced the 
computational problems of creating the accessibility measures without substantially 
sacrificing important car-ownership effects. Another practical issue concerns what 
measure of level of service is most appropriate. Although each travel-time and cost 
measure can be used s eparately, this gives r ise to an unwieldy number of variables. 
Hence generalized prices that a re a weighted linear function of in-vehicle time, out­
of- vehicle time, and 011t-of-pocket cost were created. Furthermore, the value of time 
used in the weighting process was itself a function of income, reflecting the hypothesis 
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that high-income households would be willing to pay more to save time than low-income 
households would. Because all the level-of-serv:ice measures are for shopping trips, 
which typically are made in the off-peak hours, 'f:lley are substantially different from 
the work-trip level-of-service measures. 

The last practical issue that arises from the 1..1se of this type of accessibility mea­
sure is how the probabilities P (i, d, m) and the pa...rameters of the generalized prices 
can be estimated. Because the underlying motivation for using this type of variable is 
its behavioral, disaggregate interp1·etation, it seems logical that a previously estimated 
disaggregate choice model should be used. This is precisely what was done in this 
study. By using a model developed by Ben-Akiva. (~), we determined based on off-peak 
level-of-service data the probabilities of every household in tl1e sample to select each 
shopping destination. Ben-Akiva's model(~ is in itself a simultaneous-choice model; 
in this case, choice of mode and destination for shopping trips are considered. By 
using the joint probability of mode and destination, P{d,m), we derived the conditional 
probabilities P(d!ca.r) and P(d!transit). The weighting parameters of the generalized 
prices were taken from the utility function of this joint probability model. By using the 
forecasting probabilities, we determined the attributes for the expected shoppillg trip 
by both car and transit. These values are a function of both the home zone and the in­
come of ·tl1e household and hence are highly disaggregate measures of spatial oppor­
tunities. 

Socioeconomic Variables 

Socioeconomic variables are a special class of attributes in that they do not vary across 
car-ownership and travel-mode-to-work alternatives. For this reason, these variables 
must somehow be transformed in the utility fun.ction either by combining them with other 
variables or by making them alternative specific (including them in the utility function 
of some car-ownership and travel-mode-to-work combinations and not in others). These 
transformations of the actual measures will be considered in the next section of this 
paper. 

Household income clearly plays an important role in determining automobile owner­
ship. Simple tabulations of automobile ownership for different income groups indicate 
a strong and positive correlation. Higher income w0uld increase the relative utility of 
the more expensive alternatives such as owning more than 1 car and taking a car to 
work. 

Household size also should play a role in the car-ownership decision. Large house­
holds tYPically will require a greater portion of their available income for essentials 
such as food, housing, and clothing, thus leaving fewer family resources for expendi­
tures on automobiles. 

The number of licensed drivers represents the competition among household mem­
bers for the use of cars. Th.e greater the competition is, the more likely it should be 
that the household will own a greater number of automobiles and the more likely it 
should be for the primary worker to use transit to work. Furthermore, a household 
is extremely unlikely to own more cars than it has drivers in a household; this places 
an upper bound on car ownership. Table 1 gives a summary of the variable categories 
that are introduced into the joint car-ownership and modal-choice model. 

SPECIFICATION OF THE JOINT UTILITY FUNCTIONS 

The previous sections consider only the variables included in the model. This section 
will address the equally important qltestion of how these variables are represented in 
the utility functions of each car-ownership and travel-mode-to-work combination. AU 
of tl1e models discussed in this section assume that a maximum of 5 alternatives a.re 
available to any household: 

1. 0 cars owned and transit taken to work, 
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2. 1 car owned and car taken to work, 
3. 1 car owned and transit taken to work, 
4. 2 or more ca1·s owned and car taken to work, and 
5. 2 or more cars owned and transit taken to work. 

For convenience, the alternatives in items 4 and 5 will be referred to as having 2 cars 
even though they consist of 2 01> more cars. Thus 5 utility functions (1 for each possible 
alternative) are to be considered. However, not every household in the sample has 
every alternative available. 

Even when the restriction that the utility !unction must be linear in its parameters 
is imposed., the number of ways in which variables can be formulated is virtually limit­
less. Variables can be multiplied, added, or divided, or their logarithms can be used. 
some variables may appear in one utility function and not in others. Fu1·thermore, 
socioeconomic variables, because their values do not vary across alternatives, must 
be transformed somehow either by combining them with other variables or by making 
them alternative specific. 

The first group of variables selected represents a constant term added to each util­
ity function. A different constant term can be introduced into all but 1 of the utilities. 
These constants measure pure alternative effects, that is, the attributes of the alter­
native relative to the one without a constant term that are not measured in all the other 
variables. A constant term was introduced into each utility except for the case of cars 
owned and transit taken to work. This choice of which utility should not have a con­
stant term is completely arbitrary and has no effect on the probabilities of selecting 
each alte.ruative. 

The next variable used reflects the fact that the level of car availability a household 
would have if it chose any puticular alternative affects its perception of the desirability 
of the alternative modes to work. The number of cars per licensed driver pertaining 
to each alternative was used to measure this effect. Because this variable was selected 
to measure the modal-choice aspect of the decision process, it was defined as follows: 

Cars per 
licensed 
driver I 

number of cars in 
the alternative 

number of licensed drivers for car-to-work alternative 
in the household 

0 otherv:isc 

A variable of this type frequently appears in simple modal-choice models because 
of the presumed effect of car ownership on whether to take car or transit for a trip. 
As it is defined here, it plays precisely the same role, except that it now affects both 
modal choice (directly) and ear ownership (through the simultaneity in the model struc­
tw·e). In addition, in modal-choice models, this variable reflects the cl1osen car 
ow11ership rather than the various levels that might have been selected. Thus an in­
crease in the numbel' of Ucensed drivers will cause a decrease in the value of the vari­
able. One would expect that this should decrease the probability that the household will 
have its primary worker take the car mode to work; therefore, the coefficient of this 
variable should be positive. 

The next variable requires some explanation. It arises from the fact that a la~·ge 
number of monetary measures are in the model, including household income, car­
ownership costs, and out-of-pocket travel costs for the work trip. F\trthermore, it 
was hypothesized that the way household size affects cal' ownership is by altering the 
atnount of gross income available for nonessential expenditures. Clearly, one would 
like to avoid introducing a sepai·ate variable for each of these monetary factors . The 
question is how these attributes can be combined into a single variable repi·esenting the 
money that would be available to the household if it selected eacb alternative. This was 
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done by formulating a variable, termed for reference as the remaining income variable, 
as follows: 

Remaining income = household annual income - 800 (household size) 
- 1,000 (number of cars in the alternative) 
- 2 50 (out-of-pocket cost of the work trip of 
the alternative) 

Thus the value of this variable is an approximate measure of the amount of money a 
household has left over after expenditures on essent ial goods [assumed to be $ 800 / 
household member/ year based on work by Mudarri (11 ) and Hoxie ( 6)], car-ownership 
costs ($ 1,000/ car owned), and work-trip cost (2 50 round-trip wor k trips / year>. An 
alternative with 0-car ownership results in a high value of remaining income, repre­
senting the availability of income the household otherwise would have to allocate to the 
purchase, maintenance, and operation of a car if it had chosen to do so. The coeffi­
cient of this variable in the utility function always should be positive to reflect the fact 
that, if all else is equal, households would rather have more money than less money. 
The use of the remaining income variable is a classic case of the application of variable 
selection criteria based on deductive reasoning. Its justification is based on the theo­
retical considerations rather than empirical ones . However, the motivation for de­
veloping this variable in the first place was that reliable estimates of the coefficients 
of the separate cost components could not be obtained, and excellent estimates of the 
remaining income variable coefficient could. At first glance, this would seem to be 
contradictory. However, by collapsing all costs into a single variable, we have added 
an extra piece of information to the model formulation; the marginal utility of any cost 
component has been assumed to be the same, regardless of the type of expenditure con­
sidered. Stated more simply, the household has been assumed to view a dollar as hav­
ing the same value regardless of where it is spent. It is this assumption that improved 
the estimate of the cost-term coefficient. To do this, a piece of deductive information 
has been used. 

It was decided that this variable should not enter the utility functions linearly; the 
utility a poor family derives from an extra dollar is probably much greater than that 
which a wealthy family derives. Thus the marginal utility of money should decrease 
as the value of remaining income increases. This hypothesis was reflected by using 
the natural log of remaining income as an independent variable rather than by using 
simply the value itself. 

The next variable is the type-of-housing dummy variable. This was defined to be 
equal to 1 only in the 2-car alternatives for households residing in single-family dwell­
ings. Thus the coefficient of the single-family-housing dummy represents an added 
utility to the multiple-car options for a specific group of households and leaves the 
utility of the remaining options unaffected. Presumably, the coefficient of this dummy 
variable should be positive. 

The next variable is the in-vehicle travel time in minutes for the round-trip work 
trip. This variable reflects the disutility of travel time, and hence should have a nega­
tive coefficient. Note that this variable has the same value for all alternatives with the 
same mode to work for the pr imary worker and is independent of the car ownership as­
sociated with the alternative. 

The other time variable, out-of-vehicle time, is measured with respect to the dis­
tance of the work trip. This variable is defined as follows: 

out-of-vehicle time for round-trip 
work trip in minutes 

Excess time/ distance r atio = 1 -way travel distance in 
miles (kilometers) 
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This choice of an out-of-vehicle time measure was made largely on empirically based 
cr iteria. Other forms of the variable typically produced results that were les s satis­
factory, and no strong theoretical reason existed for selecting one over the other. 
Travel distance was measured along the highway network. As with in-vehicle time, 
the value of this variable is invariant among car-ownership levels. 

The next variable was designed to reflect another effect of the number of licensed 
drivers within a household. Although number of licensed drivers affects choice of 
mode to work through the cars-per-licensed-driver variable, it also should affect the 
level of car ownership directly. The more licensed drivers there are in a household, 
the more likely it should be to select a high car-ownership level independently of the 
travel mode to work taken by the primary worker. This effect was measured by intro­
ducing a variable that reflects the number of licensed drivers into each utility function 
with a different coefficient for each car-ownership level. These variables were de­
.fined for 1-car alternatives as follows: 

Inverse 
licensed = 
drivers1 

Inverse 
licensed = 
drivers2 

1 
number of licensed drivers 

in the household 

0 otherwise 

1 
number of licensed drivers 

in the household 

0 otherwise 

for 1-car alternatives 

for 2-car alternatives 

When these variables originally were introduced into tl1e model, it was hypothesized 
that the effect for the 2-car alternatives (as measured by the coefficient value) would 
be twice as great as the effect for the 1-car alternatives. Statistical tests indicated 
that this was indeed the case, and, for the models ultimately selected, the 2 licensed 
driver variables were combined into a single variable, defined as follows: 

Inverse I 0 for the 0-car and transit-to-work alternative 
licensed = inverse licensed drivers1 for the 1-car alternatives 
drivers 2 (inverse licensed drivers) for the 2-car alternatives 

The use of the inverse of the number of drivers rather than simply the number of 
drivers reflects the hypothesis that, as the number of drivers increases, the marginal 
effect of an additional driver on the need for automobiles decreases. Clearly, the co­
efficient of the inverse licensed drivers variable should be less than 0. 

The next 2 variables represent the spatial opportunities for nonwork travel. In the 
household's selection of car ownership, the absolute level of shopping accessibility is 
of little importance. What is actually relevant is whether the household will typically 
use car or transit for shopping trips; therefore, the cost of using a car relative to the 
cost of using transit influences car ownership. For this reason, the following variable 
was developed. 

Generalized 
price ratio 

expected generalized car cost for shopping travel 
expected generalized h·ansit cost for shopping t r avel 
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As defined, this variable does not change value for different alternatives and therefore 
must be introduced into the utility function as alternative specific. (This would not have 
been true had the shopping-trip model used car ownership as an explicit dependent var­
iable. However, it still might have been desirable to capture differences in the way 
accessibility is perceived for different car-ownership levels.> Thus the following 2 
variables appear in the model. 

Generalized 
price 
ratio1 

Generalized 
price 
ratio 2 

generalized price ratio for 1-car alternatives 

0 otherwise 

I 
generalized price ratio for 2-car alternatives 

0 otherwise 

Note that the cost of taking transit when transit is not available (as in many suburban 
zones) is for practical purposes infinite; in such cases, the value of the generalized 
price ratio is 0. As generalized shopping travel cost by car increases, the value of 
the generalized price ratib increases. One would anticipate that this increase in car 
cost would result in greater use of transit. Consequently, the likelihood of high car 
ownership should decrease. To reflect this hypothesis, the coefficient of both these 
variables should be negative because they both measure the effect of shopping acces­
sibility relative to the 0-car and transit-to-work alternative. FUrthermore, the effect 
should be greater for the 2-car alternatives than for the 1-car options. This should 
result in a larger coefficient for the 2-car alternative than for the 1-car alternative. 

The last variable used in the models is the work-trip-destination dummy variable, 
which is used to reflect the added disutility of traveling downtown by car not entirely 
captured by the level-of-service measures. This variable is defined as follows: 

CBD I 1 if work place is in CBD for car-to-work alternatives 
work-place = 
dummy I 0 otherwise 

Note that this variable is defined as specific to the car mode. Therefore, the coeffi­
cient reflects the difference in utility between car and transit for downtown work trips 
if all else is equal, and it should be negative. 

Table 2 gives a summary of the variables and their definitions. However, the precise 
structure of each utility function is not clear and can best be illustrated by writing out 
the utility functions with the variables that are always 0 eliminated. For example, if 
the coefficients of the 13 variables are denoted B1 , B2, and so on, the utility of variable 
2 is as follows: 

Va = f32 + f3s + f3s + f3g + f310 + f311 

The remaining 7 coefficients do not appear in the utility because the value of the vari­
able with which they are multiplied is by definition 0. A more complicated utility func­
tion is that of variable 3 and is given in the following equation: 

Va = f3a + f3s + f3s + {31 + f3s + {Jg + f310 + f312 + f31a 



Figure 1. Relationship of car-ownership model to conventional 
transportation forecasting cycle. 

Figure 2. Choice hierarchy. 
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TRIP 
GENERATION 

TRIP 
DISTRIBUTION 

HOUSING TYPE 

J, 

AUTOMOBILE OWNERSHIP 
MODE TO WORK 

-1' 

NON-WORK TRAVEL 
. (FREQUENCY, DESTINATION, 

MODE, TIME OF DAY, ROUTE) 
MODAL 
SPLIT 

Category 

Level o[ service to work 

Car-owners hip costs 
Locational attributes 

Housing attributes 

Spatial opportunities 

Socioeconomic variables 

No. Variable 

1 car and car taken to 
work (constant) 

Variables Used in Model 

In-vehicle time, out-of-vehicle time, and 
out-of-pocket cost by both car and transit 

Dummy variable representing downtown 
destination 

Cost o( $1,000/car assumed 
Not explicitly introduced into model (level 

of service, traveling distances, and 
spatial opportunities are [or residential 
and job locations) 

Dummy variable indicating single-family 
dwelling 

Expected generalized prices for shopping 
trips by both car and transit 

Income, household size, and number of 
licensed drivers (life cycle and occupa­
tion a re used for market segmentation) 

Definition 

1 for 1 car and car taken to work; 
otherwise 

1 car and transit taken 1 for 1 ca1· and transl! taken to work; 
otherwise lo work (constant) 

2 ca rs and car ta.ken 
to work (constant) 

2 cars and transit 
taken to work (con-
stantl 

Cars per licensed 
driver 

2--: (remaining income} 

Sing le -family dwelling 
dummy 

In-vehicle time 

Excess time/distance 
ratio 

10 Inverse licensed 
drivers 

11 Generalized price 
ratio1 

12 Generalized price 
ratlo2 

13 CBD workplace 
dummy 

1 for 2 cars and car taken to work; 0 
otherwise 

1 for 2 cars and transit taken to work; 
0 otherwise 

Number of cars per licensed driver for 
car taken to work; 0 otherwise 

Household annual income- (800 x num­
ber or persons in household) - (l,000 )<,. 

number or cars) - cost of 250 daily 
round trips 

1 if llousehold lives in single-family 
dwelling for 2 cars; 0 otherwise 

Daily round-trip in-vehicle commuting 
time in minutes 

Daily round-trip out-or-vehicle com­
muting time in minutes/1-way distance 
of work trip in miles (kilometers) 

Number o[ cars/number of licensed 
drivers 

Generalized t1·avel cost of shopping by 
car/generalized trave l cost of shop­
ping by transit ror 1 car; O otherwise 

Generali?.od travel COS« of shopping by 
car/gc.ncrnlized tc•a\'t:l cost of shop­
ping by transit tor 2 cars; O otherwise 

1 if work trip is CBD oriented for car 
taken to work; 0 otherwise 

LONG RUN CHOICES 

1 
MEDIUM RUN 

CHOICES 

1 
SHORT RUN CHOICES 
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Table 3 gives a summary of the structure of all the utility functions. Each type of 
variable is given, and the coefficient with which this measure is multiplied appears 
for each alternative. Zeros appear where the variable has no effect on the utility of 
the alternative. 

SET OF AVAILABLE ALTERNATIVES 

The underlying choice theory of the logit model requires that the choice set consist only 
of feasible alternatives. This implies that, to properly estimate a joint car-ownership 
and modal-choice model, one must know which of the possible set of 5 alternatives is 
actually available to every household. However, data on the available alternatives 
were not included in the survey, and even if data had been included, they would have 
limited usefulness because of various reporting biases (14). This does not mean that 
the issue of available alternatives can be ignored. Even without data on reported 
choice set, it is possible to state with fairly high reliability that some households will 
not consider some alternatives as being available. For example, households without 
drivers only have the 0-car-ownership and transit-to-work alternative. Thus, no 
model need be estimated for them at all because they will always select the 0-car op­
tion with probability 1. A more interesting possible restriction of available options is 
that households living in fringe suburban areas do not have a transit-to-work option. 
These households would have only 2 alternatives: 1 car and car to work and 2 or more 
cars and car to work. 

By using a series of rules such as these, one can approximate the set of feasible 
alternatives fairly well. This process has been termed screening the alternative set, 
and is an important part of the modeling process. Failure to do this will result in es­
timates that are biased and inconsistent, and, therefore, will result in unreliable fore­
casts of future conditions. 

ESTIMATION RESULTS 

By using the variables previously described, we estimated a number of joint car­
ownership and travel-mode-to-work models. The first models developed were for 
each of the market segments defined in the section on issues in model development. 
However, some of these segments were too small for reliable results to be obtained. 
For this reason, segments 2A and 2B, blue-collar and white-collar young married 
couples without children, and segments 4A and 4B, blue-collar and white-collar older 
married couples without children, were collapsed into 2 segments corresponding to 
life cycles 2 and 4. Furthermore, segment 3B, households with children, was so 
large that, to reduce computational requirements, only half of the available data were 
used. 

Some of the market-segment models are slightly different from the general form de­
scribed in the section on specification of the joint utility functions. For example, life 
cycle 1 consists of single-person households; therefore, the 2-car alternative is not 
relevant. In the model for this segment, the single-family housing variable was re­
defined to apply to 1-car alternatives rather than the multiple-car options. For the 
same reason, the generalized price ratio for the 2-car alternatives and the constant 
terms in the 2-car utilities were omitted in the models for this life cycle. Because 
the number of licensed drivers in these segments is always 1 (if the number of licensed 
drivers is O, only the 0-car and transit-to-work alternative is available and the ob­
servation is omitted from the data set), the cars per licensed driver and the inverse 
licensed drivers variable also were omitted. 

The model for the market segment consisting of life cycle 5, those households with 
no primary worker, is also quite different from the typical joint model. Because no 
work trip is made by members in this life cycle, only car ownership is considered. 
All the variables describing the attributes of the alternative models for the work trips 
(cars per licensed driver, in-vehicle time, excess time / distance ratio, and CBD-
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work-place dummy) are omitted entirely. The set of alternatives is reduced from the 
5 car-ownership and travel- mode- to-work alternatives to 3 options: O, 1, and more 
than 1 car. Therefore, the 4 constants measuring the pure alternative effects are re­
duced to 2 constants; as before, the 0-car alternative is taken as a base. The omission 
of all level-of-service-to-work variables does not mean that transit level of service is 
excluded entirely from the market-segment- 5 model. The generalized price ratio vari­
ables representing shopping accessibility still enter into the utility functions. 

The remaining models are almost identical with 1 exception: The cars-per-licensed­
driver variable was significant only for households with children. In the remaining life 
cycles, it is probable that the variation in the number of licensed drivers was insuffi­
cient to measure its effect on choice of travel mode to work. (The licensed-driver vari­
able still entered into the model through its effect on the inverse licensed-driver vari­
able, which only distinguishes among car-ownership levels but not travel modes to 
workJ Furthermore, experimentation with alternative measures leads to the formula­
tion of a similar variable defined as the number of cars per licensed worker in the 
household. 

Table 4 gives a summary of the final 7 models ultimately selected for the market 
segments. Each model is listed, the segment to which it applies is described, and the 
important characteristics of how the model specification differs from the general form 
described in the section on specification of the joint utility functions is given. 

In addition to these models, a 1-in-5 sample of households in life cycles 1 through 4 
was taken, and the model described in the section on specification of the joint utility 
functions was estimated. Because the behavioral process being modeled for this group 
is so different, members of life cycle 5 were not included in this pooled sample. 

Coefficient estimates and "t-statistics" for the variables or constants of each of the 
models are given in Table 5. (The statistic in this computation is not distributed the 
same as the t-statistic is in ordinary least squares regression. However, for large 
data sets, both the t-statistic and this statistic approach a normal distribution.) Where 
a variable was not used, the entry is left blank. Table 6 gives the log likelihood func­
tion if all values were 0, L*(O) , the log likelihood function for the actual estimates , 
L*(,8), the number of obs er vations , NOBS, and the total number of alternatives in ex­
cess of the number of observations for the entire data set, NCASES. (NCASES typically 
is given in reporting the results or choice model estimation because it reflects the num­
ber of degrees of freedom in the data set, that is, the number of alternatives in excess 
of 1 per observation .> 

All coefficients in all of the models have the anticipated sign, and virtually all are 
significantly different statistically from 0 at the 90 percent confidence interval. Only 
1 of the t-statistics is less than 1, and only 3 are less than 1. 5. In each of these cases, 
the strong theoretical justification for including the variable overrode statistical con­
siderations. 

In no case is the question of whether the estimates, taken collectively, are signifi­
cantly different from 0 in doubt. However, this is an extremely weak test because of 
the unreasonableness of the null hypothesis that all parameters are 0. Zero values 
imply that all the alternatives are equally likely. Nevertheless, failure to pass this 
test would indicate a serious problem with the models . 

In all models in which the 2- car alternatives were available, the coefficients for the 
generalized price ratio variables were both negative, and the magnitude of the coef­
ficient for the 2-car alternative was always greater than the corresponding value for 1 
car. For a given household, both of these variables have the same value but each ap­
plies to a different utility. This indicates that any increase in car-shopping generalized 
price will produce a shift toward 0- and 1-car ownership. That is, the utility of 2-car 
ownership will decrease more than that of 1-car ownership. The 0-car alternative is 
unaffected because it was selected arbitrarily as the base against which the effect of the 
generalized price ratio is measured. Conversely, an increase in transit-shopping 
generalized cost will produce a shift toward multiple-car ownership. 

In general, the coefficient of the natural logarithm of remaining income decreases 
sharply as one considers life cycles in the order in which a household might progress. 
Figure 3 shows this progression and a hand-fitted curve for the 8 models. This shift 



Table 3. Coefficients appearing in utility functions. 

Single- Excess 
Care/ Family- Time/ 
Licensed Remaining Dwelling In-Vehicle Distance 

Alternative Constant Driver Income Dummy Time Ratio 

O car and transit taken to work 0 0 p, 0 p, p, 
1 car and car taken to work p, p, p, 0 p, p, 
1 car and transit taken to work p, 0 p, 0 p, p, 
2 care and car taken to work /!, /!, p, p, p, p, 
2 care and transit taken to work p. 0 p, p, p, p, 

Table 4. Summary of market-segment models. 

Model Set-::ment Description 

lA 
lB 

No 2-car alte rnati ves considered; variables relating to these alternatives omitted 
Same as model 1 
Cars per licensed driver omitted 

Inverse 
Licensed 
Drive re 

0 
p,, 
p,, 
p,, 
Pio 

2A and 28 
3A 
313 

Same as described in section on specification a[ joint utility fun ct ions: on ly halr of data used 
Same as model 4 

4Aand 4B 
5 

Cars per licensed driver omitted 
No mode to work considered: 4 alternative dummy variables reduced "to 2: vari ables relatin~ lo 

mode attributes omit ted 

Table 5. Model coefficients and t-statistics. 

Generalized 
Price Ratio 

0 
Pu 
Pu 
p,, 
p,, 

Model 1, Model 2 Model 3, Seg- Model 4, Model 5 Model 6, Seg- Model 7, 

CBD-
Work-
Place 
Dummy 

0 
Pu 
0 
Pu 
0 

Segment lA Segment lB ments 2A and 2B Segment 3A Segment 3B ments 4A and 48 Segment 5 

Coeff. Coe ff. Coeff. Coeff. CoeH. CoeCf. Coe ff. 
Variable Est. t-stat. Est. I-stat. Eet. t-stat. Eet. t-stat. Est. t-stat. Est. I-Stat. Est. t-stat. 

Pi 5.98 7.39 7.39 6.64 7.11 6.67 8.63 9.49 11.3 6.65 12.3 7.54 
fl, 3.85 5.25 5.55 5.33 5.14 5.16 6.44 7.66 9.89 5.90 10.5 6.60 
J car 6.54 11.3 
p, 9.13 7.07 10.1 8.22 13.9 7.22 15.9 8.32 
p. 11.0 5.62 15.4 6.59 
2 care 7.08 8.75 
p, 1.92 3.80 
No. care/ 

licensed 
worker 0.249 1.19 

{i, 8. 74 5.47 8.33 4.55 3. 14 6.31 1.07 5.37 1.55 5.51 0.829 2.07 1.88 4.82 
p,• 0.578 1.71 0.232 0.440 
p,• 0.778 5.11 1.50 9.55 1.32 9.86 0.970 6.27 0.734 2.27 
p, -0.0117 -1.92 -0.131 -1.83 ·0.00789 -1.54 -0.00658 -1.35 -0.017 -3.19 -0.0146 -2.72 
fl, -0.0831 -2 .05 -0.169 4.54 -0.0951 -2.12 -0.0879 -2.03 -0.100 -1.81 -0.107 -2.51 
P10 -2.33 -3.39 -3.47 -5.56 -6.29 -6.33 5.17 -5.92 -2.04 -5.15 
Pu -5.65 -5.25 -6.59 -4.54 -3.38 -2 .39 -5. 14 -4.68 -5.11 -2 .07 -7.07 -3.15 -5.31 -6.50 
p,, -4.72 -3.27 -6.49 -5.70 -6.45 -2.60 -9.35 -4. 13 -6.11 -6.24 
Pu -0.821 -3.01 -0.982 -3.18 -1.33 -4.84 -1.40 -5.63 -2.15 -6.25 -1.58 -5.92 

'1 car. b2 can 

Table 6. Model log functions and other data. Model Segment L•(O) L'(~) NOBS NCASES 

t !A -535.0 -325.5 487 974 
2 18 -608.6 -281.3 554 1.108 
3 2A and 28 -1.454 - 893 1,092 3,317 
4 3A -2.053 -1.158 1,583 4.526 
5 3B -2,576 -1. 295 1,982 5,846 
G 4A and 4D ·l,973 -1. 080 t.47 5 4,500 
7 5 c110.2 -441 .0 853 1.116 
8 Pooled -2,465 -1. 392 1.899 5.514 

Model 81 Seg-
mente Pooled 

Coeff. 
Eet . t-stat. 

7.95 9.79 
7.20 9.28 

9. 58 9.89 
?.35 7.59 

1.92 5.29 

2.22 7.43 

1.26 9.49 
-0.0120 -1.78 
-0.0742 -2.19 
-3.59 -6.45 
-6.46 -6.04 
-8. 17 -7.42 
-1.40 -6.46 
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in coefficient value reflects a change in how households perceive the marginal utility of 
added income for households with equal value of remaining income. Mathematically, 

fJ rtim~luinn Income 
Marginal utility of income = r emaining i ncome 

where p, • .,.1 .. 111slncomo is the coefficient of the variable. At first glance, this result might 
seem incor r ect. One would thi nk that hous eholds in their childbearing stage of life 
would have a higher marginal value of money than households in the other life cycle 
groups. To properly interpret this, however, one must recall that 2 households with 
equal values of the remaining income variable do not necessarily have equal income. 
The variable includes a deduction of $ 800 / household member so that, given 2 house­
holds with equal remaining income, the larger household generally will have greater 
total income. Thus , if all else is equal, the households with children typically will 
have higher total incomes than those in other life cycles and therefore may not neces­
sarily place a higher value on additional income. This argument still leaves open the 
question of why the marginal utility of money for a given value of r emaining income 
should decrease so markedly. This effect can be attributed to an u nm ea sured s ocio­
economic attribute, wealth. Wealth is highly correlated with income and hence is 
highly correlated with remaining income. Furthermore, as hous eholds pass through 
life cycles 1 to 4, they typically accumulate wealth, in terms of both savings and prop­
erty. Thus their car-ownership behavior shifts subtly; for example, they may no longer 
pay financing charges to purchase automobiles and therefore would perceive lower costs. 
For this reason, the households trade off the benefits and costs of car ownership in dif­
ferent ways depending on which life cycle they are in, and the relative weight of money 
decreases as the household accumulates wealth. 

Another interesting effect is the value of the coefficient of the single-family-dwelling 
dummy vari<',ble. The way in which the coefficient varies across life cycles is shown 
in Figure 4. Note that this curve is unimodal; its peak is around life cycle 3. This is 
entirely consistent with the behavioral justification underlying this variable presented 
in the section on choice of variables. In that section, the effect of multi-family-dwelling 
ownership on car ownership was attributed to a number of factors one of which was the 
need to chauffeur children to a variety of activities. This behavioral factor, however, 
applies only to life cycle 3 because the households in the remaining life cycles have no 
children residing at home. Thus one would anticipate that the coefficient of the single­
family-dwelling dummy would be higher for households in life cycle 3 than for house­
holds in the other life cycles. 

FORECASTS FOR A TYPICAL HOUSEHOT~D 

To test how various types of transit service improvements might influence car owner­
s hip, we cr eated a "typical subur ban hous ehold" and applied the models to predict its 
expected automobile ownership in a variety of policy cases. (To measure aggregate 
impacts one needs to r epeat the application of the model fo1· a representative sample 
of households not just for a single typical hous ehold.) TJris household is not an average 
urban household; it is representative of a large group of suburban households residing 
in single-family dwellings outside the area now served by transit. It is this type of 
household toward which major transit extensions are most frequently directed. The 
typical household 

1. Has a $13, 500 income; 
2. Resides in single-family dwelling; 
3. Has a white-collar head of household who has a driver's license and works in 

downtown Washington, D.C.; 
4. Has 2 children; 
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5. Has a spouse who has a driver's license; and 
6. Lives in suburban location (Montgomery County) 5 miles (8.0 km) from workplace. 

The choice probabilities for this typical household were evaluated for a base case and 
3 other cases. Fare policy was held constant for all 4 cases. The level of service used 
was based on actual network travel times for a Washington, D.C., traffic zone in Mont­
gomery County, Maryland, lying just outside the "10-mile square" (16-km square). 
The model used to predict the choice probabilities was model 5, which applies to all 
households with a white-collar breadwinner and with children under the age of 18 years 
residing at home. Table 7 gives some of the most significant findings resulting from 
this policy testing. Because the model predicts the probability with which various car­
ownership levels will be selected, the expected or average car ownership is reported. 
Each of the successive levels of transit improvement influences car ownership. How­
ever, the greatest shift along the sequence occurs when transit of even relatively low 
quality is offered. Thus, the mere availability of transit service can have a substan­
tial impact on car ownership. Furthermore, the model results indicate that, even 
with futuristic transit service offering extremely fast service for both work and shop­
ping travel, approximately 65 percent of typical suburban families still will own 2 or 
more cars. 

CONCLUSIONS 

Car-ownership modeling typically has been paid little attention in the transportation 
planning process; however, the causal linkages between car ownership and the travel 
patterns in urban areas have long been recognized. The models described in this paper 
provide a behaviorally sound method of incorporating these linkages and provide a set 
of reliable, policy-sensitive forecasting tools by which car ownership and choice of 
travel mode to work can be predicted. In the course of study, 4 things have been dem­
onstrated. 

1. To deal with car-ownership and travel-mode-to-work decisions as jointly de­
termined at the household level is feasible. Furthermore, by using disaggregate choice 
models, one can make effective use of readily available transportation planning data. 

2. Car-ownership decisions are made on substantially different criteria by different 
households depending on their life cycles and occupations. The failure to adequately 
reflect these behavioral differences in a model will result in inaccurate and possibly 
misleading forecasts and will fail to adequately represent the distribution of changes 
in car ownership over various socioeconomic groups. 

3. Transportation policy can have a small but measurable impact on the level of 
car ownership in an urban area. Furthermore, the effects of various aspects of the 
transportation system such as in-vehicle time, out-of-vehicle time and cost for the 
work trip of the household's primary worker as well as shopping-trip level of service 
can be isolated. 

4. Introducing transit service to areas where it had been unavailable can have a 
marked effect on car ownership; the effect of improvements in existing transit is only 
marginal. 

Future research efforts should be directed toward extending the scope of household 
decisions considered in a joint, disaggregate behavioral model. Research is currently 
under way to explore how residential-location and housing decisions can be incorporated 
into a joint model and thereby span the long-term transportation-related decisions a 
household makes. An improved understanding of these decisions and the role car 
ownership plays in determining the pattern of urban location should aid in the formu­
lation of more behaviorally structured models for transportation planning. 
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Figure 3. Remaining income coefficients for 
various life cycles. 
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Figure 4. Type-of-dwelling dummy variable coefficients for various life cycles. 
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Table 7. Findings from policy testing of 
cases. 

Life Cycle 

Case 

Base · 
1 
~ 

3 

Description 

No transit available 
Low-level transit 
Good service (rail rapid transit) 

for work trips, case 1 transit 
service for shopping trips 

Extremely high quality transit 
service (dense area, wide 
personal rapid transit) 

5 

Model 

Expected Car 
Ownership 

1.825 
1.710 

1.660 

1.622 

Change in Car 
Ownerehlp From 
Base Case 
(j,ercent) 

6.3 

9.0 

II.I 
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DISCUSSION 

Fred A. Reid, University of California, Berkeley 

The paper presents a clear model structure for joint choice consistent with a behavorial 
theory of car ownership and travel mode to work. It also gives a convincing empirical 
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test of the model with a comprehensive set of explanatory variables. The model is 
sufficiently simple that its joint-choice behavior and the influence of individual variables 
may be seen clearly, yet it still includes many of the variables influencing the choice 
set and a simple theory for the functional form of their entry. It seems to be a good 
base for building a more precise model of transportation ownership and modal choice. 
The paper also presents a valuable contribution to the evidence that stratification of a 
sample by life cycle or occupation or both can add to the explanatory power of a traveler 
model. 

The brief theoretical arguments for the construction of the explanatory variables, 
though plausible and efficient because they include many important factors, are not 
supported sufficiently. The reader should expect some evidence or at least more com­
ment about the forms considered or tested and rejected. The definition and form of 
entry of the remaining income variable left questions such as the constancy of car costs 
per unit and the logarithmic entry of all costs, particularly trip costs. 

The stated assumption that ownership and choice of travel mode to work precede the 
non-work-trip decisions is partially inconsistent with the model structure and tests. 
Because travel mode to work neither enters the definition of the generalized non-work­
trip price ratios nor is distinguished by a separate coefficient estimate for each mode 
to work, the opposite choice hierarchy is implied by the model. The non-work-trip 
choice, reflected through the price ratio variable, though conditioned on the car­
ownership level, is established before the work-trip modal probability. Several other 
alternative choice hierarchies and corresponding model structures should be tested in 
any case because, for example, the originally intended precedence of ownership level 
over non-work-trip choice is not obviously true , especially for the second car. 

The variable for number of licensed drivers is potentially dependent on behavioral 
choice, especially in good transit areas, and this possibly biases the corresponding 
coefficient. 

The example of the effect of a policy change on a typical case by using the calibrated 
model is a helpful illustration of the application of and conclusions from this model. 

In conclusion, the paper presents valuable initial results and a good base for further 
revelation of this type of joint traveler choice. 

DISCUSSION 

Joseph Berechman, Department of Civil Engineering, 
State University of New York at Buffalo 

The purpose of these remarks is to examine critically the 2 major hypotheses that un­
derlie Lerma n and Ben-Akiva's paper. This discussion will argue that these hy­
potheses are weak and unsubstantiated and will question the analysis that follows the 
hypotheses. 

In brief, the hypotheses contend that the decision to purchase a car is a function of 
the individual's life cycle and is highly dependent on employment and residential de­
cisions. More generally, Lerman and Ben-Akiva argue that choices of employment 
and resident ial location precede car ownership and are viewed as medium-term choices. 
This hierarchical structure of decision making· strongly influences (albeit in a somewhat 
vague way) the selection and specification of variables for their model. However, when 
the major findings and conclusions are presented, they do not, in any meaningful way, 
reflect these assumptions. In particular, a change in the dis tribut ion of employment 
and residential locations is not shown to have significantly reduced (or increased) the 
expected level of car ownership. In general, I feel that these assumptions are ques­
tionable at best and most likely incorrect when applied to real-world data. For exam­
ple, in 1970, there were approxilnately 54 million cars in all standard metropolitan 
statistical areas (SMSAs) (1 5); the average nwnber of cars per household was 1.22 (and 
1.42 cars/household outs idethe city center). The cor respondi ng figures for 1960 were 
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34 million cars and 1.01 cars/household, which are changes of 56. 7 and 20. 5 percent 
respectively. As a first approximation, it can be argued that an average of more than 
1 car /household indicates a tendency to own at least 1 car regardless of changes in the 
so-called long-term decisions. Furthermore, in the same period (1960-1970), 18 per­
cent of the metropolitan labor force changed its employment location (54 percent out­
side city center) and about 45 percent of all households changed their residential lo­
cation. These gross figures, although they conceal some fundamental trends, essen­
tially reflect the suburbanization process in which households from cities and from 
outside the SMSAs (including other suburbs) migrated to suburbs. Given the state of 
public transportation systems, a precondition to such a movement is the availability of 
a private car purchased long before the actual relocation. For these reasons, the as­
sumption regarding the household's sequential decision process is not supported by the 
facts. 

It seems more plausible to argue that the decision to own an automobile (at least the 
first for households that own 2 or more) is mainly insensitive to locational decisions 
and rather should be ascribed to cultural, socioeconomic, and perhaps psychological 
factors. Indeed Lerman and Ben-Akiva's findings tend to support this contention. Table 
7 indicates that the introduction of extremely high quality transit service to a hypotheti­
cal area where public transit services were previously unavailable will reduce expected 
car ownership from an average of 1.82 to 1.62. In other words, the desire to own a car 
is largely unaffected by the state of the transit system. 

Another objection to Lerman and Ben-Akiva's hypotheses is based on the unavoidable 
feedback between short-term choices and long-term choices. For Figure 2, the block 
representing nonwork travel and employment and residential decisions should have been 
linked to reflect such interdependencies. In recent years, there bas been a growing 
literature to indicate relationship between (a) residential amenities, environmental 
qualities, and neighborJ1ood conditions (social and ethnic> and (b) employment and resi­
dential locational decisions. On a more general level, such relationships may be inter­
preted as implying a simultaneous decision process rather than a hierarchical one, and 
separation of choices into well-distinguished categories is, therefore, unjustifiable. 
[Interestingly enough, some authors (16) make the distinction between long- and short­
term choices (residential location, place of work, and mode of travel to work) to char­
acterize the behavior of low-income, unskilled laborers. Needless to say, the Lerner 
and Ben-Akiva study implicitly assumes middle-class white-collar households.] 

The major assumptions that underlie Lerman and Ben-Akiva's paper are not sup­
ported by any available statistics nor by any known theory of urban spatial structure. 
Consequently, the methodology used in their study to explain car ownership is, in my 
opinion, rather questionable. 
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AUTHORS' CLOSURE 

Both Reid and Berechman raise a number of interesting points in their discussions of 
our paper. Some of these comments provide useful directions for future research; 
others raise some significant problems that were considered in the course of model 
development but were not resolved because of insufficient data or resources. 

Reid notes the weakness of assuming a constant cost per automobile. In part, this 
simplification was required because the models focused only on the number of automo­
biles a household would own rather than on their age, make, power rating, or other 
aspects. Thus there is no way in the model to distinguish an old, dilapidated vehicle 
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from a new, luxury-class car. Ultimately, when appropriate disaggregate data about 
households' choice of type of car become available, developing more detailed car­
ownership models will be feasible. 

Reid points out the partial inconsistency in formulating the generalized price mea­
sures of shopping trips; travel mode to work does not enter into the choice model used 
to generate these measures, and trip frequency is ignored. When the work described 
in our paper was performed, no known shopping-choice model included such interactions, 
and a reestimation of Ben-Akiva's model to allow for such effects was infeasible because 
of project resources. However, recent models described by Adler and Ben-Akiva (17) 
have explicitly included the effect of car-ownership and travel-mode-to-work decisions 
on non-work-trip frequency, destination, and modal choice. This should be a useful 
base for later extensions of our methodology. 

Reid raises the question of the extent to which the number of licensed drivers is it­
self determined jointly with car ownership. In an attempt to explore the potential effect 
of this factor, some models that replaced the number of licensed drivers in the house­
hold with the number of household members old enough to drive were estimated. The 
results indicated that, at least within the groups tested, the coefficient estimates were 
not sensitive to the assumption that the number of licensed drivers is determined ex­
ogenously. This does not, however, exclude the possibility that, among specific house­
hold groups (most notably lower income and inner-city households), the effect that Reid 
hypothesized does not exist. Further work directed at understanding the car ownership 
of these particular groups should yield useful insights into such phenomena. 

Berechman argues that the decision to own a first car is relatively insensitive to 
household-location decisions and is more closely linked to cultural, socioeconomic, 
and psychological factors. No attempt was made to measure either cultural or psy­
chological factors, nor do we feel that the inclusion of variables measuring such fac­
tors is desirable in a model designed principally for forecasting the impact of alterna­
tive transportation policies. However, a wide range of important socioeconomic factors 
explicitly influence car ownership in our model, and the results given in Table 7 reflect 
their relative importance (compared with transit level of service) in determining first­
car ownership. 

Other criticisms raised in the discussions seem somewhat less well founded. 
Berechman suggests that the coefficients of the models are inconsistent because they 
represent car ownership and travel mode to work conditionally on location. He cites 
somewhat unconvincing aggregate statistics about the suburbanization process to argue 
the possibility that location decisions may be conditional on car ownership rather than 
the reverse. 

As Ben-Akiva (18) points out, conditional-choice models produce consistent esti­
mates of the utility:function parameters as long as the conditional structure is explic­
itly included in the utility specifications. Indeed, if this were not the case, the entire 
body of research into choice of travel mode to work would be invalidated. A conditional 
model, however, should be carefully applied because, in forecasting, some of the 
choices on which the forecasts are conditional may change. This is the reason that 
we term our model a medium-term model in the proposed-choice hierarchy. More 
comprehensive models that include jointly residential location, housing, car ownership, 
and travel mode to work have been developed recently by Lerman (19) and are more 
applicable to analyzing longer term policy impacts. -

Berechman incorrectly concludes that nonwork travel and employment and r esiden­
tial location decisions are not linked in our model. In reality, exactly the opposite is 
true. This is precisely why the shopping generalized prices in our model are denoted 
by r esidence zone . Different places of residence have different shopping-trip patterns 
associated with them, and these trip patterns are linked directly to car-ownership 
choices. 

The final significant area of concern raised in the discussions is the role of analytic 
theory in the development of behavioral models. we do not perceive our modeling ap­
proach and the more formal utility theory of Burns, Golob, and Nicolaidis as conflicting 
efforts. Explicit theories of how household members interact in making car-ownership 
and other decisions are important additions to understanding choice processes. We 
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believe that such theories are the first steps in what will prove to be a fruitful research 
area. 

However, strict theoretical approaches currently yield models that are not suffi­
ciently rich in behavioral content to describe observed behavior in a way that is directly 
useful for analyzing transportation policies. This is the principal motivation for our 
using the household as the decision-making unit and including factors such as the num­
ber of licensed drive1·s, the number of licensed workers, and household size (as part 
of the remaining-income variable) in the model. These variables represent in an ab­
stract way the outcome of the extremely complex bargaining process that takes place 
when a household makes a collective decision on car ownership. Including such vari­
ables is consistent with the basic goal of the study, the development of a useful analysis 
tool with which planners can assess the effect of transportation policy on car-ownership 
and travel-mode-to-work choice. 
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THEORY OF URBAN-HOUSEHOLD AUTOMOBILE-OWNERSHIP 
DECISIONS 
Lawrence D. Burns, Thomas F. Golob, and Gregory C. Nicolaidis, 

Transportation and Urban Analysis Department, 
General Motors Research Laboratories, Warren, Michigan 

Automobile-ownership behavior is modeled as a function of socioeconomic 
factors and the availability and levels of service of public transportation 
systems. Decision makers are assumed to maximize their individual and 
household utilities within budget and time constraints. The benefits of in­
creased mobility are weighed against the loss in other consumption attrib­
utable to ownership of 1 or more automobiles. Variables specific to 
residential and activity-center locations include the attractiveness of des­
tinations served by public transit, the attractiveness of those not served by 
public transit, and respective travel times by automobile and transit. Es­
timation equations are developed through the introduction of functional forms 
for utility components and random utility terms representing variances in 
perception and taste and omitted factors. Multinomial logit models are used 
to define the probability of homogeneous groups of households choosing to 
own a specific number of automobiles. Calibrations are performed by using 
data from home-interview surveys and network simulations in the Detroit 
metropolitan area. Results are encouraging. All coefficients representing 
partial equilibrium market parameters are signed correctly and are signif­
icantly different from 0 where expected, and goodness-of-fit measures in­
dicate acceptable model descriptive power. 

•THAT an association exists among the number of automobiles available to an urban 
household , the total number of trips made by individual household members by various 
modes of transportation, the time of day of these trips, and their destinations ( 14, 28) 
is strongly supported by empirical evidence. That these empirical relationshipsare 
indicative of processes of the supply and demand of transportation services is axiom­
atic in well-known economic theories. 

The research reported in this paper concerns the supply and demand relationships 
involved in household automobile-ownership decisions. These decisions are modeled 
in light of the accessibility of travel destinations by automobile and by alternative public 
transit modes, the service characteristics of these modes, and the income and demo­
graphic characteristics of the households themselves. 

An earlier paper covering this research project proposed a theory for explaining 
automobile ownership in terms of generalized concepts of urban spatial-location factors 
( 1). In this paper a model is developed from this theory for use as a tool in urban 
transportation planning procedures. First, theoretical considerations are addressed 
with· the objective of accounting for the decisions of individual travelers within a frame­
work of household-level automobile-ownership decisions. Second, the simplifying as­
sumptions necessary before the theoretical model can be made operational with data 
from traditional transportation planning home-interview surveys and land use surveys 
are detailed. Third, estimation equations are formulated by postulating functional 
forms of model components and introducing stochastic terms. 

Results are given from empirical calibrations of the model and initial tests of its 
hypotheses by using data from the transportation and land use study conducted in the 
Detroit metropolitan area (35). A multinomial logit model is employed to estimate the 
values of the coefficients forthe postulated utility functions. The results are encour-
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aging in that the estimated coefficient values of the model variables are in all cases 
correctly signed and have sufficiently small standard errors to reject the null hypoth­
eses within traditional confidence limits. Traditional goodness-of-fit measures are at 
values that are quite acceptable for nonlinear estimation equations of the multinomial 
logit type. A new technique is introduced for assessing the goodness of fit of such non­
linear probabilistic choice models. The current model also looks good in terms of the 
various measures generated through use of this technique. 

BACKGROUND 

Forecasts of changes in automobile ownership resulting from changes in transportation 
systems or spatial activity patterns have been recognized as being important to the 
evaluation of costs and benefits for roadway or public transit investment levels. 
Most previous models developed for use in transportation planning have involved de -
scribing automobile ownership for spatially defined aggr egations of households in the 
following terms: as a function of measures of r esidential density (!Q, ~ 30); as a fun c­
tion of family income ( 16, 29); and as a funcl:ion of household socioeconomic and demo­
graphic char acteristics(3 ~2 , 26, 31). The research efforts by Shindler and Ferreri (33) 
and by Dunphy (15) wer e U1e1irst known to us to explicitly incorporate transpor tation -
system characteristics into automobile-ownership forecasts. As discussed by Beck­
mann, Gustafson, and Golob ( 1), the current model differs significantly from these and 
other related efforts. The difference is primarily in terms of the use herein of an eco­
nomic theory of decision-making behavior instead of the correlative relationships that 
characterize most other studies. Empirically, the definitions of accessibility and mo­
bility also are different. 

The current model, after it was further tested and refined, was judged to be an ap­
propriate complement to traditional travel demand models. These traditional models 
usually are focused on the short-term demand and supply aspects of transportation such 
as choice of mode for a fixed destination trip, or, perhaps, choice of destination and 
time of trip given fixed residential l ocation and automobile ownership. 

Because this model is based on the use of individual households and individual trav­
elers as the units of observation, the model is consistent with the class of short-term 
demand models referred to as disaggregate travel demand models (!!,, 34) . Also, be -
cause the model is based on utility theory from micr oeconomics and welfare economics , 
it is intimately related to a series of models for mula ted by us and by others to explain 
various travel phenomena in terms of that theory(~,~ 17, 18, ~ ~. 27). 

BASIC THEORY 

In Beckmann, Gustafson, and Golob (1), the decision-making behavior of households is 
postulated to be a result of individuals making trade-offs between the costs and benefits 
perceived to be associated with transportation-related alternatives. The idea that, if 
such household preferences are transitive and continuous, they can be represented by 
a numerical function called a utility function is well developed in economic theory ( 13). 

The total utility to a household is defined here to be dependent on consumption ofall 
goods, available leisure time, and travel to all destinations visited within a certain time 
period. The household increases its mobility with the purchase of an automobile but 
sacrifices other consumption; the decision to purchase is made when the utility to the 
household of the increased mobility exceeds the loss of utility of consuming other goods. 
A car is assumed to be a homogeneous good having a given fixed price. The extent to 
which an alternative to the car mode is available to satisfy the travel needs of the house­
hold is represented by the sets of destinations accessible by the alternative mode and by 
the travel times required to reach each destination. Assume that this alternative mode 
is the "best" public transit mode perceived to be available to a decision maker. Spe­
cifi cally, the utility to a household not owning an automobile is a function of income 
(representing all consumption) , nontravel time, and trips to the set of destinations 
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accessible by the modes of transportation that are alternatives to travel by personal 
automobile: 

where 

U~ = U (y, T - I: r1kX1k, X1k) 
kEDo 

U~ = utility to a household without a car at location i, 
y =total disposable income of the household, 
T = available household leisure time, 

r 1k = travel time from the household at location i to destination k by alternative 
mode, 

X1k = number of trips the household makes to destination k by using alternative 
mode, and 

Do= set of all destinations accessible to the household by alternative mode. 

(1) 

Assume that when an automobile is available household members will make an in­
significant number of trips by the alternative mode of transportation. Total utility for 
automobile-owning households then is specified as a function of the number of trips to 
destinations accessible by automobile: 

where 

u~ = u(y -p , T - I: S1kZik• Z1k) 
kED1 

U~ = utility to a household with a car, 

(2) 

p = annual cost of owning and operating an automobile (assumed to be independent 
of the number of trips) , 

s 1k = travel time for the household at location i to destination k by automobile, 
Z1k = number of trips for the household to destination k by automobile , and 
D1 = set of destinations accessible to the household by automobile. 

The ownership of a single automobile is advantageous to the household whenever 

l'vfaX U~ > l'.IJ:ax U~ 
zk xk (3) 

The household thus assesses the maximum utilities that can be derived from making the 
most out of travel by automobile or travel by alternative mode. It compares these 
utilities and then makes its decisions regarding automobile purchase. Changes in in­
come, automobile or alternative mode costs, automobile 01· alternative mode travel 
times, or accessibilities call for reassessments. Note that travel times, costs, and 
accessibilities to all destinations, visited or not visited, are taken into account here be -
1!ause these factors cause readjustments in utility-maximizing travel patterns. Also 
note that residential location is a very important factor in this model because change 
in residential location dictates changes in each of the explanatory variables. 

This theory makes explicit a proposed relationship between automobile -ownership 
decisions and transportation system characteristics. Specification of functional forms 
for the utilities and the introduction of proxy variables are ne cessary before the theory 
can be implemented on currently available household home-interview and transportation 
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system data. Also, to assess total automobile ownership, one must extend the theory 
to include decisions about additional automobiles. And, in both the single-car and 
multiple-car cases, one must consider the interactions of individual household mem­
bers with respect to their travel needs and desires and their roles in automobile­
ownership decisions. 

MULTIPLE TRAVELERS AND MULTIPLE AUTOMOBILES 

In looking at the increased household mobility due to the purchase of an automobile, the 
previously formulated theory considers the change in utility to the entire household as 
the result of the purchase. To properly assess the utility the household obtains from 
an automobile, one must consider the travel utilities of each individual trip maker in 
the household. Thus one must develop postulates about the way individual trip makers 
in the household interact in their usages of 1 or more family automobiles. Briefly, 
there are 3 postulates. 

1. Each trip maker in the household maximizes his or her individual travel utility 
independently of the other trip makers in the household. 

2. When a household purchases an automobile, 1 trip maker in the household is con­
sidered to have the exclusive use of this automobile. Thus the utility of 1 automobile to 
a household is reflected in the utility of the automobile to 1 trip maker in the household. 

3. Trip makers who do not have the use of an automobile are indifferent about 
whether to use public transit (with greater travel times and limited accessibility) or 
postpone trips until the automobile becomes available. (For purposes of simplifying 
terminology, refer to travel by automobile when it becomes available as travel by al­
ternative mode.) 

Based on the 3 simplifying assumptions, the total utility of a household can be viewed 
as the aggregation of the travel utilities of individual trip makers within the household 
and the household-level residual-consumption term. The travel utility of each trip 
maker within the household is a function of his or her available leisure time and travel 
to all destinations visited within a specified time period. 

In general, the set of destinations accessible by automobile differs from the set of 
destinations accessible by alternative mode of transportation. Also automobile travel 
times usually differ from the travel times of the alternative mode; walking and waiting 
times for public transit service are reflected in additional, perhaps more heavily 
weighted, time penalties for the alternative mode. Travel utilities of individual trip 
makers thus are dependent on whether the trip maker has the use of an automobile or 
whether he or she must rely on the alternative mode of transportation. 

Specifically, the net travel utility to an individual j from travel by the alternative 
mode of transportation is considered to be separable into 2 components: net leisure 
time and satisfaction of travel purposes (the household location subscripts i are dropped 
here for simplification) : 

where 

TU~= u(T 3 - L: rkxkj, xkj) 
kE"Do 

(4) 

TU~ = net utility to an individual j from travel by alternative mode of transportation, 
T 3 = total leisure time of individual j, and 

XkJ = number of trips individual j makes to destination k when relying on alternative 
mode. 

Similarly, the net utility to an individual j from travel by an automobile is: 
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TU~ = u (T 3 - L skzkJ, zkJ) 
kED1 

where 

TU~= net utility to an individual j from travel by exclusive use of an automobile, 
and 

(5) 

ZkJ = number of trips individual j makes to destination k when using an automobile. 

If next t he a.ssumption is made that the total ut ility to a household at location i is ad ­
ditive with respect to the utility from income available for other consumption and total 
household travel utility, then 

( 
n ) n m 

u~. = ¢ y - L P.e, + L TUh + L TU~J 
l=l j=l j=n+l 

(6) 

where 

¢ = functional form of the residual consumption contribution to utility, and 
u~. =total utility of an m-trip-maker household at location i owning n automobiles. 

Thus by substituting equations 4 and 5 in equation 6, 

u~. = ¢(y - £ p 2 ) + £ u(T 3 - L r1kX1kJ, X1kJ) 
l=l j=l kEDo 

+ i: u ( Tj - L s1kZ1kJ, Z1kj) 
j=n+l kED1 

(7) 

This is the foundation for the model specifying the conditions under which automobile­
ownership decisions are undertaken. To test the model hypotheses however, one must 
specify mathematical forms for the ¢ and U functions and develop estimation equations. 

FUNCTIONAL FORMS 

A utility function that is logarithmic in terms of both time and trips was selected on the 
basis of its theoretical properties (such as its property of "diminishing marginal util­
ity") and on the basis of its success in describing spatial interactions ( 19). This func­
tional form also is related intimately to entropy formulations of trip distributions ( 41) 
and other transportation phenomena ( 42). Equations 4 and 5 then can be written respec -
tively as follows (for simplicity the household location subscript has been dropped): 

TU~= atlog(l + TJ - L rkXkJ) + L aklog(l + XkJ) 
kE"Do kE"Do 

(8) 



TU1 = atlog(l +Tl - :E skZki) + :E a"log(l + Zd 
kED1 kED1 

where 

ak = the value or attraction of destination k, and 
at= the value of leisure time. 
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(9) 

Each trip maker in the household maximizes his or her individual utility by adjusting 
number and distribution of trips. This maximization is performed independently of 
other members of the household in all matters not related to the availability of the 
household automobile or automobiles. In this process, the maximum household utility 
is not necessarily achieved. 

Finding the maximizing solution for TU~ is facilitated through the introduction of a 
new set of variables: 

l'.:ki = 1 + x"i 

R~ = 1 +Tl+ :E rk 
kEDo 

Ao= at+ :E a" 
kEDo 

Maximizing equation 8 with respect to Xkl then implies 

ak atrk 
1 + X"l = 1 + Ti - :E rkXkl 

kEDo 

This equation may be solved for l'.:kJ: 

l'.:•i = a1:R~ 
Aor l< 

Similarly, let 

Tiki = 1 + z.i 

R1 = 1 + T J + :E s. 
kED1 

A1 =at+ :E a" 
kED1 

( 10) 

(11) 

(12) 

(13) 
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Maximizing equation 5 with respect to Zki and solving for 7/kJ yield 

akR~ 
7/kj = A1Sk 

Substituting l;kJ and 1hci into the utility equations 8 and 9 and simplifying yield 

a R 0 a R0 

Max (TU~ = at log ~At + L ak log Ak J 
Xki o krDo ork 

a R1 ~ a R 1 

Max (TU~) = at log~ + LJ ak log Ak J 
zkJ Ai kE"D1 isk 

(14) 

( 15) 

(16) 

Distinguishing among the individual trip makers within a household is not within the 
scope of this theory. Thus 

Max (TU~ = Max (Tug, = ... = Max (TU~ 

Max (TU}) = Max (TU~) = ... = Max (TU1) 

The travel-utility-maximizing form of the utility function given in equation 7 for a 
household at location i then becomes 

U~,. = ¢ (y - £: p 2 ) + n Max (TUD + (m - n) Max (TU~ 
l=l 

( 17) 

(18) 

( 19) 

where Max (TU1
) and Max (TU~ are given by equations 15 and 16 and P.i., =annual cost 

to a household of owning and operating the t th automobile. 
Hypothesizing that the utility of all other consumption has a similar logarithmic 

"diminishing marginal utility" functional form, one can write equation 19 without any 
general terms as 

where 

U~. = bo log (y - £: p 2 ) + bt [n Max (TU~) + (m - n) Max (TU~] 
l=l 

(20) 

b0 = additive parameter adjusting the scale of the utility of residual consumption to 
that of overall utility, and 

bt = additive parameter adjusting the scale of the utility of travel to that of overall 
utility. 
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CONDITIONAL AUTOMOBILE-OWNERSHIP DECISION 

Assume that the maximum number of automobiles the household will own does not ex­
ceed the number of driver-aged trip makers in that household m. Now whenever 

U~m > U~. for 0 -f T/, 0 = O, 1, ... , m (21) 

the household will purchase T/ automobiles. Specifying this condition in terms of the 
indirect utility function (equation 20) means 

O < U~m - u:m = b{log(y - t~l P ~ ) - log(y - t~l PQ)] 

+ bt [T/ Max (TU~) + (m - T/) Max (TU~ - 0 Max (TU~) 

- (m - 0) Max (TU~] (22) 

for 0 -f T/, 9 = 0, 1, ... , m. Simplifying means 

T/ . e 
0 < ui. - u:m = bo [1og(y - I:; PQ) - log(y - I:; PQ)] 

l=l t=l 

+ bt(ri - 0) [Max (Tut) - Max (TU~ J (23) 

for e -f ri, e = o, 1, ... , m. 
Substituting the indirect maximum travel utilities of equations 15 and 16 into this 

condition for ownership of T/ automobiles yields 

0 < ui. - u:m = bo[log(y - .;: pQ)- log(y - f p ~)1l 
t=l l=l ~ 

( 
a R1 a R0 

+ bt ( T/ - 9) atlog ~1 - a dog ~0 

a RJ a R
0

) + 2: ak log Ak 
5 

- I:; ak log A..L-
ke:D 1 1 k ke:Do or k 

(24) 

for e -f T/, e = o, 1, ... ' m. 
However, by using the definitions of Ai, Ao, R1, and R0 specified earlier, one can 

simplify equation 24: 
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0 < Uim - u:m = bo [log(y - t~/£) - log(y - f 1 P£)] 

+ bt ( 77 - 0 Ao log 0 - dog~ ) 
( 

Ao A Ai 
R R 

+ :E ak log rk + :E ak log ak ) 
kEDo sk ke:Di -Do sk 

(25) 

for 0 I- ri, 0 = O, 1, ... , m. The set Di - Do is the set of destinations accessible by 
automobile but not accessible by transit; it is a simplified notation for the set repre­
sented by the intersection of Di with the complement of Do. 

Strictly speaking, Ai, Ao, R1, and R0 depend on household location i. However, 
these terms are rather insensitive to exact location; they will be treated as constants 
in the initial tests of the model hypotheses given herein. Thus, 

0 < U{m - u:m =a+ bo[log(y - i: p£) - log(y - ~ P£)~ 
t=l l=l ~ 

+ bt(ri - 0) ( :E ak log rk) 
kEDo sk 

+ bt(77 - 0)( :E aklogak) 
kED1-Do sk 

(26) 

for 0 I- 11, 0 = 0, 1, ... , m where a= (77 - 0) (Ao log~~ - Ailog~~). 
The second term on the right side of equation 26 indicates the difference in utility 

to the household from consumption of all other goods when the household owns 0 auto­
mobiles compared to 77 automobiles. The third term on the right indicates the utility 
(77 - 0) that trip makers in the household receive from travel time savings when travel­
ing by automobile to destinations that can be reached by transit (destinations in set Do), 
and the fourth term on the right indicates the utility (77 - 0) that trip makers receive 
from potential travel to destinations not accessible by public transit but accessible by 
automobile. The third and fourth terms together comprise the travel component. 

ESTIMATION EQUATIONS 

The model of automobile ownership developed in this paper is, of course, a simplifica­
tion of reality. It does not take into account all of the differences in the tastes and per­
ceptions of individual decision makers. Also data are not available to measure all of 
the stimuli that decision makers might consider important. Thus the values of the 
utility differences given in equation 26 are random variables across samples of house­
holds. 

By letting E~ represent an unobserved random variable containing excluded decision 
factors and individual differences, one can specify the probabilistic utility function for 
an m -trip-maker household owning 77 automobiles as 
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RU~= f(U~, €~) (27) 

This function generally can be scaled so that it can be written as the sum of the deter -
ministic component and the random component E~: 

RU,;1 = U~ + €~ (28) 

The probability that a sampled household finds ownership of T/ automobiles more ad­
vantageous than ownership of any other number of automobiles 0 can then be denoted by 

Pi= Prob [(U~ + €~) > (U~ + €~)] (29) 

for 0 -IT/, 0 = O, 1, ... , m where P~ =probability that the household will desire to own 
T/ automobiles. Equation 29 can then be rewritten as 

P~ =Prob [(Eg - €~) < (U~ - U~)J (30) 

for 0 -IT/, 0 = o, 1, ... ' m. 
The problem of developing estimation equations for the current automobile-ownership 

model is now one of specifying a distribution for the probabilistic components in equa­
tion 30. The one chosen here is the reciprocal exponential distribution; random vari­
ables are assumed to be distributed independently as 

Prob (E: ~ w) = exp(-e-i 

Probability equation 29 then takes the form 

p~ = 
exp(m) 

m 
~ exp(m) 

0=0 

1 = ~~~~~~~~~-
m 
:E exp(ug - U~) 
0=0 

(31) 

(32) 

This function is termed the conditional or multinomial logit function. It was first de -
veloped systematically by Gurland, Lee, and Dolan (20). A more general formulation 
in. terms of choice behavior is provided by McFaddenT~ 25). Other general develop­
ments are provided by Bloch and Watson (~, Bock (~, and Theil (~ 38). Applications 
of the functional form to transportation mode, destination, and trip-time choice were 
made by Rassam, Ellis, a.nd Bennett (32) and Charles River Associates (9). 

The probability that an m-trip-maker household decides to own T/ automobiles thus 
is specified by equation 32; the u~ - u g utility differences for the alternative choices of 
0 = 0, 1, ... , m, 0 f '17 are given by equation 26. By observing the actual choices made 
by households when they are faced with various values of the independent variables, one 
can make estimates of the constant ~ and the b0 and bt coefficients in equation 26 through 
the application of a maximum-likelihood procedure proposed by McFadden (24) and im­
plemented by Manski (23). Statistics ·generated in this first empirical test Ofthe model 
hypotheses are the subject of the i·emainder of this paper. 
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DATA 

The data employed in the empirical test were obtained from individual household obser­
vations and network simulation results from the 1965 Detroit Transportation and Land 
Use Study {TALUS) (35) . The variables to be used in the folloWing analysis are defined 
as follows: -

y = disposable income of the household (calculated by subtracting estimated taxes 
from respondents' reported gross i.ncome) ; 

P1~ = annual cost to a household at location i of owning and operating the l th auto­
mobile (assumed to be independent of the number of trips); 

r1k = travel time from household at location i to destination k by public transit [gen­
erated from the 1965 Detroit transit network by using the Urban Transportation 
Planning System (UTPS) (40) including walking, waiting, transfer, and running 
times]; -

sik = travel time from household at location i to destination k by automobile (taken 
directly from network simulati011 results generated in the TALUS study); 

D~ = set of destinations accessible to an individual trip maker at location i by public 
transit (a destination k was consicJered accessible by ti·ansit if it could be 
reached within a specified period of time by transit); 

Dt = set of destinations accessible to an individual trip maker at location i when this 
trip maker has the exclusive use of an automobile (a destination k was consid­
ered accessible by automobile if it could be reached within a specified period 
of time by automobile) ; 

f =number of automobiles a household owned in 1965; and 
a1k = attraction of destination k to a household at location i. 

Individual household observations were taken from the 4 percent survey of all house­
holds within the Detroit urbanized area, and the origin and destination subscripts (i and 
k) correspond to traffic analysis zones. The limit of the study spatial a.Tea is defined 
by the inclusion of all traffic analysis zones in TALUS that are located within the De­
troit urbanized area as defined by the 1960 Census (34). 

For the purposes of this initial test of the theory ,households with the same number 
of driver-aged trip makers m were assumed to be homogeneous with respect to their 
automobile-buying behavior. The data were sor ted into 3 sets: 

1. Households with 1 driver-aged trip maker, 
2. Households with 2 driver-aged trip makers, and 
3. Households with 3 or more driver-aged trip makers. 

Certain assumptions were made in preparing the data. These assumptions are the 
subjects of model-sensitivity analyses. 

1. Automobile ownership cost p 12 is constant for all automobiles and is independent 
(= P2) of location i; an average figure of $1,000 (1965 prices) was selected on the basis 
of automobile cost data provided by Botzow ( 7). 

2. A destination is a member of the set D1 if it can be reached from i in 60 min by 
tJ.·ansit; a destination is a member of the set Di if it can be reached from i in 60 min by 
automobile; D~ c Di. 

3. The attraction of a destination k is independent of the location of the household 
(= ak) and is given by 

E""' P1t 
ak = >'tF~ ' p . 

.K. 

(33) 



where 

Ek = total employment at destination k, and 
Pk = total population residing at destination k. 
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The summation in the denominator is over all traffic analysis zones in the Detroit ur -
banized area. 

EMPIRICAL RESULTS 

The multinomial logit estimation equation 32 for the utility differences of equation 26 
was calibrated for each of the 3 population segments ( 1 trip maker, 2 trip makers, 
and 3 or more trip makers). Random samples of between 500 and 1,000 households in 
each segment were selected from the set of all households responding to TALUS (35). 
These samples were structured to obtain an approximately equal number of observed 
households that chose each of the alternatives; this structuring resulted in a higher 
sampling rate for 0-car households. Samples that were held out were employed for 
assessing goodness of fit of the models. 

Two different forms of the model were calibrated for each of the 3 segments. In 
the simplest (choice-abstract) form, the utility scale weights be and bt are assumed to 
be independent of the choice alternatives. This is the usual assumption underlying use 
of multinomial logit functions in modeling travel-mode choice. It is the only form of 
the model applicable to the binomial 1-trip-maker case in which only the 2 choices of 
0 car and 1 car are theorized to be relevant. 

The second and more complicated form of the model for the 2-trip-maker and 3-or­
more-trip-maker segments is developed by assuming that the be and bt coefficients are 
specific to each sequential choice alternative. That is, it is proposed that the weights 
people place on consumption and travel components of utility may be different when they 
are evaluating the 0-car and 1-car choice alternatives than when they are evaluating the 
1-car and 2 -car alternatives and so forth. In the calibration of this form of the model, 
freedom thus is incorporated to estimate as many be and bt coefficients as there are 
choice alternatives minus 1. Referring to these coefficients as bi and b~, where i de­
notes the choice between i and 0 automobiles, is convenient. 

For purposes of clarifying the previous arguments, the following estimation equa­
tions can be written for the most general case of 3 or more trip makers in which 4 
choices (O car, 1 car, 2 cars, and 3 cars) are relevant (P., probability that a house­
hold made up of m driver-aged trip makers will decide to own 'YI automobiles, takes the 
form of equation 32 for 'YI = O) : 

U~ -U~=ao+b.}[log(y-p) -logy] +b~(~ aklogrk+ :E aklogak) 
ke-Do sk kED1 -Do sk 

u::i - u~ = ao + b; [log (y - 2p) - logy J + b~ [2 ( :E ak log rk 
kEDo sk 

+ :E ak log ak )] 
kED1-Do sk 

(34) 

U~ -U~=ao+b~[log(y-3p) -logy] +b~[3( :E aklogrk 
kEDo sk 

+ :E ak log :: )] 
kED1-Do 
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Estimation equations for the other 2 population segments merely eliminate 1 or 2 of the 
utility differences in equation 34. The choice-abstract form of the model will have 
b; = b~ = b~ = b0 and b~ = b~ = b~ = bt. The constant ao includes the constant a: of equa­
tion 26 and the mean of the unobserved additive random term. 

The results of the logit estimations for the 3 population segments for the choice­
abstract form of the model are given in Table 1. The ratios are asymptotically dis -
tributed as t-statistics in a linear model by Theil (3 8) and thus can be used with large 
samples (as in the current case) to evaluate the probability that the coefficient esti­
mates are in actuality 0. In the -2 log A statistics for each model, A. is the ratio of the 
initial likelihood for the model with all coefficients as 0 and the final (maximum) likeli­
hood with the coefficients as listed. This statistic, the so-called likelihood ratio sta­
tistic, has an approximate x2 distribution. Therefore, it can be used to test the joint 
hypothesis that the data are a result of processes inconsistent with the proposed theory 
(that is, the joint hypothesis: bo = bt = 0). 

The -2 log A. statistics in Table 1 indicate firm rejections of the joint hypothesis 
b0 = bt = O for all population segments. Moreover, the estimated coefficient values of 
the variables of the models derived from the theory are in all cases correctly signed, 
and the t-statistics indicate firm rejections of the hypothesis bo = 0 or bt = 0 for all 
population segments. These are encouraging initial results for internal tests of the 
current automobile-ownership theory, but further goodness-of-fit assessments are 
called for. 

The results of the logit calibrations for the choice -dependent form of the model were 
judged to be inferior to the r esults of the choi ce-abstract for m . The cr iteria for this 
judgment were the x2 statis tics for the over all models and the t-statistics for the indi­
vidual model coefficients . The x2 s tatistics did not significantly increase in spite of 
the increase in the degrees of freedom in the choice-dependent form. The hypothesis 
that individual b~ and b~ values were insignificantly different from 0 was accepted for 
some coefficients at as high as the 10 percent confidence limit. 

Sensitivity analyses were performed by using 3 different values of the annual auto­
mobile cost parameter p; the values were $750 , $1 ,000 , and $1 ,500. The model based 
on the original $1,000 estimate was judged to be best on the basis of having the greatest 
t-statistic absolute values for the coefficients. The model based on the $750 estimate 
was only slightly different from the chosen model, and the model based on the $1,500 
price was definitely inferior. Sensitivity analyses on other direct and definitional model 
parameters are within the realm of further research. 

EVALUATION OF EMPIRICAL RESULTS 

The statistics discussed in the preceding section provide insufficient information for 
assessing the goodness of fit of probabilistic or quanta! choice models such as multi­
nomial logit. The single overall measure of fit, the likelihood ratio test, is a rather 
insensitive test because of the questionable validity of the null hypothesis bo = bt = 0. 
Also model significance generally becomes easier to obtain with this test as sample 
size increases. 

Table 1. Results of logit estimations. 

Clo b. bt -
Ratio of Estimated Ratio of Estimated Ratio of Estimated 

Population Seg- Coeffi ci ent Value Coefficient Value Coefficient Value 
ment (number to Estimated Stan- utility to Estimated Stan- Utility to Estimated Stan-
of trip makers) Constant dar d Error Weight dard Error Weight dard Error -2 log I." 

-3 .17 -6.84 1.34 13 .2 1. 28 9.05 323 
-0. 71 -3 .78 8.77 12.0 0. 48 12.3 354 

3 or more -0.33 -1.80 6.81 9.70 0.34 10.2 144 

•3 degrees of freedom. 
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Other measures of goodness of fit have been developed that are comparable to the 
coefficient of determination r 2 in linear models. Use of the r 2 formu1a directly to 
measure proportion of variance explained is inappropriate because the dependent ob­
servations by definition lie on the asymptotes of the logit function. It can be shown that 
the maximum value of r 2 for continuous independent variables cannot be equal to 1.0 as 
it is in the continuous dependent variable case, and this maximum value cannot be de­
termined deductively. More important, r 2 is a measure of linearity, and this is not a 
correct criterion for the logit model. 

Two statistics have been developed that are attempted analogies to r 2
• Both are re­

ferred to as "pseudo r 2
" and usually a re denoted by p2

• The first, p1, applied by Cragg 
(11), makes assumptions about the error term distribution resulting in the following 
mathematical expression: 

p~ = 1 - exp {-2[L*(S) - L*(O)J/N} 

where 

L*(§) =value of log likelihood function for vector of estimated coefficients (S), 
L*(O) = value of log likelihood function with all coefficients equal to 0, and 

N = number of observations. 

(35) 

A second pseudo r 2 statistic, p~, applied by McFadden (24) and discussed by Ben-Akiva 
( 4) , is equal to the ratio of explained log likelihood ove1~otal log likelihood and is ex­
pressed as follows [L*(9) and L*{O) are defined as they are in equation 35] : 

L*(S) 
p~ = 1 - L*(O) (36) 

Values of these pseudo r 2 statistics for the automobile-ownership models of Table 1 are 
tabulated as follows: 

Population Seg­
ment (number 
of trip makers) 

1 
2 
3 

p~ 

0.259 
0.428 
0.348 

p~ 

0.216 
0.255 
0.155 

Four problems are associated with using either pseudo r 2 statistic (p~ or p~ as a 
measure of goodness of fit. 

1. No well-developed distribution theory or associated statistic exists (such as an 
F-statistic) for either measure to permit an assessment of the statistical significance 
of the measure. 

2. Neither statistic is comparable between models with different functional forms. 
3. Maximum value for each statistic is not defined clearly. 
4. Neither statistic provides an intuitive interpretation (comparable to percentage 

of variance explained) of goodness of fit. 

In an effort to improve the understanding of the goodness of fit of probabilistic choice 
models, we propose a new technique. To describe this technique in detail and discuss 



.. 

70 

its purported strengths and weaknesses are not within the scope of this paper. A brief 
explanation is advanced, instead, and 1 example application is presented with the ob­
jective of providing insight into the performance of the models derived from the current 
automobile-ownership theory. Research publications directed to the specific subject of 
the goodness-of-fit evaluation technique are anticipated. 

The proposed technique entails the formation of homogeneous groups of individual 
observations belonging to cells (classes) defined jointly by ranges of the independent 
(explanatory) variables of the model. fudividuals in every cell, to an extent, we as­
sumed to be faced with identical stimuli when evaluating their choice alternatives. Thus 
a hypothetical observation described by the mean values of the independent variables for 
all observations in a particular cell can be considered a representative observation for 
all the observations in this cell. The predicted probabilities for this particular repre­
sentative observation then can be computed by using the estimated choice models. These 
predicted probabilities for each choice alternative finally can be compared to the prob­
abilities given by the proportion of individuals in a particular cell that choose that alter­
native. 

Figure 1 shows a typical scatter plot of predicted versus actual proportions of house­
holds owning no automobiles for a hold-out sample from the 1-trip-maker population 
segment. Each point represents a unique cell; the number corresponding to each point 
reflects the number of households in that cell. Ideally, all of these points should lie 
along the 45-deg line. 

To compare actual and predicted proportions, r 2 (weighted by the number of house­
holds in each cell) is calculated for the best linear fit between these measures. Also 
the slope and intercept of this best linear fit are calculated to reveal any systematic 
biases in the :;:~::~"S ~, :::::~ :~_:::~: :..; ::.:. ::~ =-~:-..~:~::0 : : :~~ = = :.::=: :.- ~ :-..: : ~o:,:::~-.-.-~~'t~:!?::~! ~- !i-:.. 
and the 45-deg line can be estimated through use of an F-statistic. 

To determine the sensitivity of this approach to different ways of defining cells, 
actual versus predicted comparisons were made for various cell formation criteria. 

Figure 1. Predicted probability versus actual probability for 1-trip-maker case. 
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Specifically, for the 1-trip-maker model, 10 completely different sets of cells were 
for mulated by specifying different sets of ranges for the independent variables. The 
average value for the best fit r 2's was r~est = 0.81, and the va riance was cr,2 = 0.016. 
The relatively small variance in this statistic is an initial indication that the technique 
is rather insensitive to the manner in which the independent variables are divided in 
order to assign observations to cells as long as a degree of homogeneity is maintained 
within each cell and care is taken to create cells that have a similar number of obser­
vations. 

The average slope and intercept of the best fit lines for the 10 sets of cells used are 
"ff= 0.84 and~= 0.076 respectively; variances are ~ = 0.016 and cr~ = 0.007 respectively. 
These average slope and intercept values suggest that the model predicts too high for 
small actual probabilities and too low for large actual probabilities. Thus there ap­
pears to be a systematic conservative prediction bias in the 1-trip-maker model. The 
relatively small variance for both of these statistics is further evidence that the pro­
posed technique is rather insensitive to empirical issues such as the range of the vari­
ables defining the cells. 

For the 1-trip-maker case overall, the technique reveals a relatively good corre­
spondence between actual and predicted proportions. However, further work is re­
quired to determine exactly how good this correspondence is in a statistical sense. As­
sessing the goodness of fit in the manner presented here begins to give one insights into 
how well the logit model predicts disaggregate behavior. That the proposed technique 
is applicable only where large samples are available should be emphasized. Develop­
ing this procedure for choice settings with more than 2 alternatives and in a more sta­
tistically rigorous sense is within the realm of important further research. 

CONCLUSIONS AND DIRECTIONS FOR FURTHER RESEARCH 

Results from the initial tests of some hypotheses of the automobile-ownership theory 
are encouraging. The estimated coefficient values of the variables of the models de­
rived from the theory are in all cases correctly signed and are significantly different 
from 0. Also traditional goodness-of-fit measures are at values that are acceptable for 
nonlinear estimation equations of the multinomial logit type. And a relatively good cor­
respondence exists between predicted and actual probabilities for groups of hold-out ob­
servations in the 1-trip-maker segment model. 

The current models developed from a specific theory of automobile-ownership deci­
sions help to begin to identify causal mechanisms in urban-household travel behavior. 
However, much remains to be done before these models can be effectively applied in 
predicting automobile-ownership changes as results of transportation system changes. 
Sensitivity analyses are required for a number of variable definitions and assumptions 
of the models. In particular, the models need to be tested for different measures of 
destination attraction ak, different accessibility cutoffs (used to define sets Do and D1) 
and different urbanized area definitions. Improved understanding of how individual 
trip makers in the household interact in their uses of 1 or more family automobiles 
also must be sought. Finally, better understanding of the goodness of fit of probabi­
listic choice models, such as the multinomial logit model, must be obtained on both 
aggregate and individual observation levels before any of these types of models can be 
employed confidently in prediction. We hope that the goodness-of-fit technique proposed 
herein and the criticisms it encourages will lead toward a better understanding of the 
complex goodness-of-fit phenomena. 
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DISCUSSION 

Fred A. Reid, University of California, Berkeley 

The paper by Burns, Golob, and Nicolaidis is a contribution to behavioral modeling and 
a utility theory of automobile ownership. Noteworthy points of the theory are expres­
sing household choice in terms of the travel utilities of the individuals and maximizing 
budget and overall utility at the household level. Trip-frequency and destination-choice 
factors are included, although modal choice is considered only for adults in excess of 
the household automobile count. The theoretical development is valuable for identifying 
the construction of the utility function and the interplay of individuals in a household. 
However, if one is trying to develop accurate, manageable models in terms of available 
data, the theory seems too complex in relation to the number of parameters estimated 
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(only 3 per population segment) and the restrictive assumptions necessary for calibra­
tion. The relation between trip level of service and attraction variables for all types 
of trips is completely specified by the theory rather than by allowing separate param­
eters to be estimated or different functional forms for alternate theories to be tested. 
For example, service variables have been found to best describe travel behavior enter­
ing as linear rather than logarithmic differentials in other studies. 

The failure to characterize the individual attributes of the household work trip is a 
weakness when one considers the role these major trips play in ownership and because 
of the generality of the destination-attraction variable used. As only the percentage of 
total population and employment at a destination, this variable also does not distinguish 
non-work-trip ends as being unique to a household. 

The assumption that owned automobiles are always used.if they are available seems 
particularly restrictive. It leaves modal-choice alternatives to only a portion of the 
household members, weakening the advantage of the individual utility maximization. 

The paper has shown some useful theoretical development, but I believe it has raised 
more questions than it has answered. 

AUTHORS' CLOSURE 

We are pleased that Reid viewed this paper as a contribution to behavioral travel­
demand modeling in general and to the understanding of automobile demand specifically. 
We thank him for his comments. Comments on his discussion are warranted. 

We are aware of the limitations of a rigid theoretical approach. However, we judge 
that attempting to assess causal mechanisms in urban household automobile-ownership 
decisions by merely studying ad hoc empirical correlations is a much less satisfactory 
alternative. Consequently, the development of an economic theory of decision-making 
behavior placed significant restrictions on the empirical study performed to test the 
hypotheses of the theory. The objective of establishing a valid causal model with sound 
theoretical underpinnings justified acceptance of these restrictions. Given that a pre­
defined theory was r igidly followed , greater value can be placed on the significance of 
the empirical results because probabilities of uncovering random phenomena are mini­
mized. 

Admittedly, the existing theory assumes independence among household members in 
their trip-making behavior. As a result, the utility of additional automobiles to a 
household is not accurately modeled. Attempts to account for the interdependence of 
household members' trip -making behavior significantly complicates the model. These 
complications are not warranted in an initial study of automobile-ownership decisions. 
As noted in the original paper, however, such concerns, which were uncovered by fol­
lowing the theoretical approach, indicate important directions for further research. 

The theoretical model can be adapted to include 

1. Purpose-specific attraction measures ; 
2. Variances in the cost of automobile ownership due to residential location, house­

hold income, and type of automobile (first, second, or third household automobile) ; and 
3. Travel times broken down into walking, waiting , and in-vehicle time components. 

Including these features in the initial empirical study was prohibited by data availability. 
Also the final model allows assessment of impacts of improvements in public transpor­
tation or changes in automobile travel characteristics on automobile ownership. Im­
provements in public transportation are reflected in reduced travel times and increased 
service areas. Such changes can be incorporated directly into the model transit utility 
term, making assessment of the effects of public transportation improvements a rela­
tively straightforward procedure. In a similar manner, the effects of increased or de ­
creased automobile travel times can easily be reflected in the automobile travel utility 
terms. 
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We would like to emphasize again, as we did in our conclusion, that the objective of 
our research was to identify the structure of causal mechanisms in urban-household 
travel behavior. We are aware that, before the models resulting from this research 
can be effectively applied in predicting changes in automobile-ownership levels as re­
sults of transportation system changes, sensitivity analyses will be required to test 
further variable definitions and assumptions of the model. Specific areas of future re -
search were covered in the paper. 



TIME-STABILITY ANALYSIS OF TRIP-GENERATION AND 
PREDISTRIBUTION MODAL-CHOICE MODELS 
Robert L. Smith, Jr.,* University of Wisconsin-Madison; and 
Donald E. Cleveland, University of Michigan 

Data from home-interview surveys in Detroit for 1953 and 1965 were used 
to test the time stability of disaggregate trip-generation and predistribution 
modal-choice models. Initial cross-classification analysis showed 4 to 18 
percent increases in household trip-generation rates for households with 
cars available. A statistical test of the overall time stability of multiple 
linear regression trip-generation equations indicated that the equations 
were not stable unless non-trip-making households were removed. The in­
dividual regression coefficients also were tested for time stability, and, de­
spite the lack of overall statistical time stability, disaggregate work- and 
home-based trip-generation equations for 1953 produced reasonable esti­
mates of 1965 zone-level trips. Disaggregate regression equations for the 
automobile-driver and bus modes also were found to exhibit only limited 
time stability. Interaction between cars available and number of persons 
employed was particularly important in explaining bus trips. Tests of the 
time-stability assumption at the zone level were limited by the lack of zone­
level interaction variables. 

•THE CONVENTIONAL sequential models of urban travel demand (UTD models) re­
quire 3 basic assumptions for use in forecasting: (a) independent variables can be ac­
curately forecast; (b) models provide an accurate, behaviorally correct simulation of 
base-year travel demand; and (c) model variables, structure, and parameters are 
stable over time ( 1). Early researchers in transportation planning were well aware 
of the need for accurate forecasts of independent variables. During the 1960s, con­
siderable effort was devoted to developing sophisticated urban land use activity models 
to provide the required forecasts. Although the problem of producing accurate fore­
casts has proved more intractable than initially thought, the models can generate alter­
native land use patterns ranging from trend to normative statements of future develop­
ment patterns such as centralization, radial corridors, or satellite development (2). 
The last 2 assumptions required for forecasting travel demand are closely related. 
Behavioral models that accurately predict base-year travel also should be valid in some 
future year. Deutschman (1), however, has argued that trip-generation models that 
produce a good fit for the base year nevertheless may fail completely when used for 
forecasting. Clearly, the goodness of fit of base-year data should not be the only cri­
terion for model selection. Behavioral models are needed to provide not only time 
stability but also meaningful responses to changes in transportation systems, land use 
activity patterns, and socioeconomic conditions. 

Considerable research has been devoted to developing better behavioral UTD models. 
Emphasis has focused on modal-choice models and, to a lesser extent, trip-generation 
models. Reported research, however, largely has ignored the other possible sources 
of error in forecasting travel demand. The attitude toward the accuracy of forecasts 
of independent variables appears to be that, if an independent variable is behaviorally 

*Mr. Smith was with the Southeast Michigan Council of Governments when this research was performed. 
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significant, then some attempt should be made to forecast it. Roberts (3), however, 
has argued that, in view of the current difficulties in making accurate lolig-range fore­
casts of independent variables, the current UTD models are valid only for the short 
range. Such a view could also make time-stability errors relatively less important. 
If, however, the short range includes time periods of 5 to 10 years (which are not un­
reasonable periods for implementation of major transportation projects), time stability 
still may be an important criterion. Time-stability analyses have been limited by the 
lack of adequate time-series data. Even where data have been available for 2 or more 
time periods, operational pressures to produce travel demand forecasts as quickly and 
cheaply as possible generally have resulted in the use of only the latest data for model 
calibration and forecasting. 

PURPOSE 

The primary purpose of this research was to reevaluate the Detroit trip-generation 
model so that any new data requirements could be incorporated in the development of 
a new regional activity allocation model ( 4). The new data requirements also would 
provide a framework for an updating of the1965 home-interview survey data by using 
1970 census data. 

In reevaluating the Detroit trip-generation model, emphasis was placed on develop­
ing a behavioral trip-generation model that would exhibit time stability. Because rel­
atively consistent home-interview survey data were available for both 1953 and 1965, 
disaggregate trip-generation models were developed for both years and then were com­
pared graphically and statistically for stability. Predistribution modal-choice models 
for both years also were developed to aid in understanding how changes in modal choice 
affect trip generation. 

The substantial changes in population, residential density, and job location and in 
automobile ownership, household income, and level of service of the transportation 
system between 1953 and 1965 provided a significant test of trip-generation-model time 
stability. The sharp decline in transit use from 1953 to 1965 (16.2 percent of person 
trips by bus in 1953 versus 4.8 percent by bus in 1965) subjected the predistribution 
modal-choice model to an even more severe test of time stability. 

RESEARCH METHODOLOGY 

Household files with merged trip-record data for 1953 and 1965 were developed to be 
as nearly compatible as possible. The major limitation of the 1953 file was the lack 
of individual household income data. The 1953 variable, cars owned, was assumed to 
be equivalent to the 1965 variable, cars available; a compatible stage of life cycle vari­
able was developed as a function of family size, age of youngest trip maker, and age of 
the head of the household. An additional limitation of the 1953 household file was the 
lack of complete data for variables obtained from the trip files. If no trips were made, 
then no data were available for these variables. Thus use of the trip file variables was 
limited to models for trip-making households. 

A summary of the major independent and dependent variables that were compatible 
for 1953 and 1965 is given in Table 1. All but 1 of the variables that generally have 
been considered to be most significant in household-level trip-generation analysis are 
included (5, p. 96). The variable omitted is number of persons 16 years old or older 
who drive:- One variable, AREA, requires some explanation. The AREA variable 
stratifies the region into 4 roughly concentric rings centered on the central business 
district ( CBD) : inner city, city center, suburbs, anq rural area. The rural area is 
outside the 1953 study-area boundary; thus, no data are presented for this location. 
The AREA variable is a substitute for such variables as density, distance from CBD, 
and, to some extent, accessibility. 

Recently, there has been considerable discussion of the desirability of including 
measures of the level of service provided by the transportation system at each stage 
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of the urban transportation planning modeling process (6, 7). However, little empirical 
evidence exists to support the notion that transportation accessibility as currently mea­
sured is significant in explaining trip generation. For a household-level model Kannel 
(8, p. 116) concluded that "the effect of accessibility [to employment] on trip production 
rates would appear to be an indirect effect due to its influence on auto ownership." For 
zone-level models, both Nakkash (9) and Gur (10) found that accessibility variables con­
tributed little to the explanatory power of the models. Nakkash (9) found that a simple 
stratification of zones into central and noncentral areas was more significant than in­
clusion of acce ssibility variables. The number of work trips is r elatively inelastic 
with respect to accessibility or transportation cost. The level of non-work-trip making 
appears to be primarily a function of the number of automobiles available although the 
level of automobile ownership may be affected by transportation system accessibility, 
as shown by Kannel (8). Dunphy (11) has shown that automobile ownership also may be 
affected by transit accessibility toemployment, thus holding 2 variables, income and 
family size, constant. 

Multiple linear regression analysis was selected to develop trip-generation relation­
ships for 1953 and 1965 because of the ease with which statistical measures of both 
goodness of fit and time stability can be obtained. Cross-classification techniques were 
used to examine the extent to which the data met the standard assumptions required for 
regression analysis. In addition, the automatic interaction detection program (AID) was 
used to identify potential interaction terms ( 12). 

Four different approaches to trip-generation time-stability evaluation were used: 

1. Graphical comparison, 
2. Test of overall equality of regression-equation coefficients, 
3. Test of equality of individual regression coefficients, and 
4. Prediction of 1965 zone and district trips by using the 1953 equations. 

The second approach used Chow's test for the equality of 2 sets of linear regression 
coefficients ( 13). In Chow's test of the equality of 2 sets of regression coefficients, the 
null hypothesis of equality of the regression coefficients for the 2 years (Ha: f3i = {32) is 
rejected at a (1 - Cl!) percent level of confidence if the test statistic Fis greater than 
F,.., with k and (m + n - 2k) degrees of freedom. F is computed 

where 

F "' (Q.1 - ~/k 
QJ(m + n - 2k) 

Qi = sum of squared errors from pooling the observations, 
Q 2 = sum of squared errors from separate regressions for the 2 years, 
m = number of observations in year 1, 
n = number of observations in year 2, and 
k = number of independent variables plus 1. 

( 1) 

The practical application of the technique requires both a separate regression for each 
year and a regression on the pooled observations for both years. The difference be­
tween Qi and Q2 provides a measure of the closeness of the 2 sets of regression coeffi­
cients. If the regression equations are identical, the difference between Qi and Q2 will 
be 0. 

The third approach used the time interval as a dummy variable to test each regres­
sion coefficient for change over tiine. The time-period dummy variable T is included 
as an interaction term with every independent variable, including the constant term. 
For example, the regression equation 
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HB = ao + a1CARA + a2NRES (2) 

becomes 

HB = ao + boT + (a1 + b1T)CARA + (a2 + b2T)NRES (3) 

where each interaction term has been combined with its respective independent variable. 
The coefficient of each independent variable is tested for time stability under the null 
hypothesis that the interaction term regression coefficient b1 equals 0 (Ho: b1 = O). 

Identical analyses were used to develop predistribution modal-choice models and 
evaluate their time stability. Considerable attention was given to the development of 
appropriate interaction terms. 

TRIP-GENERATION MODEL DEVELOPMENT 

Primary emphasis was placed on developing trip-generation equations for TTF, HB, 
and WK. Equations also were developed for PB, SR, and SHOP trip purposes. 

The 2 types of independent variables found to be most important in explaining total 
trip generation were (a) some measure of household size and (b} some measure of 
household economic status. The available household-size variables for the Detroit 
area were LC, NRES, and FIVE. CARA was the only economic variable available for 
both years. The impact of INC, however, could be analyzed at the household level for 
1965. EMP was important for explaining work trips. The other available variables 
given in Table 1 also were evaluated for significance in explaining the various trip pur -
poses. 

An initial cross-classification analysis provided an indication of the extent to which 
the standard assumptions required for regression analysis were met as well as a 
graphical measure of the degree of time stability. The cross-classification of TTF 
by CARA and NRES for both 1953 and 1965 (Figure 1) showed relatively consistent 
change over time. The mean daily trip rates for household-size classes with 1 or 
more cars available were approximately 10 percent greater in 1965 than in 1953. (The 
actual range was 4 to 18 percent; the increase for the individual car-available classes 
ranged from 1 to 9 percent.) The relatively uniform upward shift suggests an additional 
income effect or a uniform regional increase in accessibility. A shift from neighbor­
hood walk trips (no data available) to vehicle trips for shopping, social-recreational, 
and similar purposes also might have contributed to the increase. 

In contrast, households in each household-size class with no cars available made 
approximately 20 percent fewer trips in 1965 than in 1953. The no-car-available class 
in 1965 was composed primarily of poor and elderly people , many of whom reported not 
making any trips. Underreporting of trips also might be more of a problem here. 

When non-trip-making households were removed, the difference in trip making be­
tween 1953 and 1965 for the household-size classes with no cars available was reduced 
from a 20 percent decline to a range of -3.9 to +8.7 percent change. Almost all house­
holds with 1 or more cars available made trips. Thus little change in the trip rates of 
the 1- and 2-cars-available classes as a fuaction of NRES occurred when non-trip­
making households were removed. Further stratification by AREA of the CARA versus 
NRES curves for trip-making households showed a generally higher level of suburban 
(AREA = 3) trip making and a lower level of inner city (AREA = 1) trip making in 1965. 
Trip making by city center residents (AREA= 2) remained relatively constant. Fig­
ure 2 shows the relationships for a family of 4 (NRE S = 4). 

Cross tabulation of home-based WK for both years by EMP and CARA showed the 
expected essentially constant rate of WK/ person employed. To expect WK generation 
to be independent of INC and CARA is reasonable. There should also be little change 
over time unless, for example, the 4-day work week were to be adopted widely. 
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Table 1. Household variables. Variables 

Independent 
Cars available, 1965 
Cars owned, 1953" 
Incomeb 
stage in the family life cycle 
Number of household residents• 
Number of persons 5 years old and older• 
Number of persons employed 
Race of house]\old head 
Type of structure (single or multiple)• 
Occupation of household head 
Sex of household head 
Labor force status of household head 
Age of youngest trip maker 
Location in the region• 
Small area location• 

Dependent 
Total factored person trips 
Total home-based person trips 
Work trips 
Personal business trips 
Social and recreational trips 
Shopping trips 

•Available for all households in 1953. 
bAvailable only at the census tract level for 1953. 

Designation 

CARA 
CARA 
INC 
LC 
NRES 
FIVE 
EMP 
RACE 
STR 
occ 
SEX 
LF 
y 
Al, A2, A3, A4 
ZONE 

TTF 
HB 
WK 
PB 
SR 
SHOP 

Figure 1. Household trip rates. Figure 2. Trip rates for trip-making households 
with 4 residents. 
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The linearity assumption required by regression analysis (unless dummy variables 
are used) appears to be generally satisfied for the TTF trip relationships so that little 
advantage would be obtained from using dummy variables for CARA or NRES. The 
main restriction on the regression analysis appeared to be the lack of normal error 
terms with constant variance. The distributions of the dependent variables were 
skewed, which indicates that the distributions of the error terms probably were not 
normal. Also the variance of the dependent variables tended to increase with the in­
dependent variables, which indicates heteroscedastic error terms. Similar results 
have been reported by Oi and Shuldiner ( 14) and Kannel ( 8). Thus the statistical reli­
ability of the significance tests on the regression coeffic1ents is likely to be overstated. 

The graphical cross-classification analysis indicated that the additivity assumption 
required for regression analysis generally was satisfied. There was little evidence of 
interaction among the independent variables. More detailed analysis of interaction by 
using the AID program confirmed the assumption of negligible interaction. 

Household-level trip-generation regression equations were developed for both years 
by using a systematic 1-in-8 sample of the more than 40,000 households in both the 
1953 and 1965 household files to reduce computing costs (Table 2). The analysis was 
concentrated on the home-based-trip purpose because home-based trips provided the 
control total for the individual home-based-trip purposes in the 1965 Detroit trip­
generation model. Selecting a household-size variable for the RB-FIVE equation 
resulted in a slightly higher coefficient of determination r 2 than for the HB-NRES 
equation. However, for forecasting purposes NRES probably would be better because 
it is available in the 1970 census transportation planning package. LC provided 
greater explanatory power than did either NRES or FIVE. However, even if LC were 
available for all households, the potential error in forecasting it probably would out­
weigh the improvement in base-year accuracy. The AREA variable was significant for 
the home-based equation but not for the work or personal-business equations. 

The trip-generation equations for trip-making households only were developed by 
using the same independent variables as were used in the all-households equations. The 
coefficients of NRES were essentially the same as for the comparable all-households 
equation; however, the constant terms and the coefficients of CARA changed substan­
tially. The trip-making-only equations exhibited consistently lower coefficients of de­
termination than did the all-households equations. 

TIME-STABILITY EVALUATION 

Test of Overall stability 

The results of the test of the null hypothesis of no difference in the trip-generation 
equation regression coefficients (Ho: 8s3 = ~s) are given in Table 3. Only 2 equations 
were concluded to be stable at the 1 percent level of significance-the HB equation for 
trip-making households only with CARA and NRES as independent variables and the SR 
equation for all households with CARA, NRES, and AREA as independent variables. 
Even these 2 equations were not stable at the 5 percent level of significance. Thus the 
statistical analysis indicates that, in general, the overall differences in trip-generation 
rates that were observed both in the graphical analyses and in the comparison of the in­
dividual regression equations for the 2 years are statistically significant. 

Test of Regression Coefficient stability 

The test of the time stability of the individual regression coefficients confirmed the re­
sults of the overall time-stability analysis for the home-based purpose (Table 4). The 
constant term was found to change over time (at the 1 percent level) for all of the HB 
equations except the trip-making-households-only equation with CARA and NRES as in­
dependent variables. The results for the individual home-based-trip purposes (WK, 
PB, SR, and SHOP), however, showed that stability of each of the coefficients in an 
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trips are available from government or private data sources. 
2. A trip-distribution model for small- and medium-sized urban areas can be cali­

brated by using available trip-end information. 
3. The necessary information for traffic planning, the average daily traffic and the 

peak-hour volumes, can be deduced from the home-based work trips. 

GRAVITY-DISTRIBUTION MODEL FOR SMALL- AND 
MEDIUM-SIZED URBAN AREAS 

Following Evans (~ and Sasaki (~, one can write a 2-way, constrained gravity model 
as 

T1J = r1sJF(Cu) ( 1) 

where 

Tq = number of trips originated from zone i and destined to zone j as predicted 
by a 2-way gravity model; 

F(C1J) =distribution (impedance) function, which is a function of the travel cost 
C13 ; traditionally, travel cost is expressed in minutes of travel time; and 

r 1 and SJ = normalization factors established so that trip productions and trip attrac­
tions predicted by the gravity model become equal to the original trip 
productions and attractions (definition of a 2 -way, constrained gravity 
model). 

Therefore, r 1 and s 3 are solutions of the following equations: 

Er1siF(C1J = P1 
j 

Er1sJF(C1J = AJ 
i 

which also satisfy 

where 

EE r 1s 3F(C1J) = T 
i j 

P 1 = trip production of zone i, 
A3 = trip attraction of zone j, and 
T = total trip exchange within the system. 

(2) 

(3) 

(4) 

This notation of the gravity model is basically the same as the conventional use of the 
2-way, constrained gravity model (3). In the conventional use, trip attractions are 
iteratively changed for meeting the trip end constraints; in this notation, the normaliza­
tion factors r1 and s 3 are iteratively set to meet these constraints. This notation is 
being used in this paper only for clarification. The distribution function quantified for 
equation 1 can be used for the conventional use of the gravity model without any change. 
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Table 2. Trip-generation equations. 

Households Year Regression Equation' 

An• 1965 HB = -0.65 + 2.43CARA + 0.93NRES 
1953 HB = 0.11 + 2.02CARA + 0.81NRES 

1965 HB = -0.84 + 2.30CARA + 1.14FIVE 
1953 HB = -0.29 + 1.82CARA + 1.13FIVE 

1965 HB = -1.41 + 2.20CARA + 0.93NRES + O. 76A2 + 1.48A3 
1953 HB = -0.31 + 1.87CARA + 0.80NRES + 0.67A2 + 0.89A3 

1965 WK = +0.08 + 1.63EMP 
1953 WK = -0.06 + 1.65EMP 

1965 PB = -0.18 + 0.62CARA + 0.18NRES 
1953 PB= -0.07 + 0.46CARA + O.l!NRES 

Trip making only' 1965 HB = +0.17 + 2. lOCARA + 0. 92NRES 
1953 HB = +O. 90 + I. 84CARA + 0. 76NRES 

1965 HB = -0.81 + 1.87CARA + 0.92NRES + l.01A2 + 1.68A3 
1953 HB = +0.47 + 1.69CARA + 0. 75NRES + 0.63A2 + 0.91A3 

1965 WK= +0.20 + 1.59EMP 
1953 WK = -0.04 + 1.66EMP 

3 Al l coefficients are significant at the 1 percent level. 
bSample size: 2,586 for 1965 and 2,529 for 1953. 
'Sample size: 2.265 for 1965 and 2,216 for 1953. 

Table 3. Summary of overall time-stability test, Ho : {3 1 = {32• 

r' 
Dependent Degrees of 
Variable Independent Variables 1965 1953 Freedom 

HB CARA, NRES 0.355 0.276 3 
HB CARA, NRES, A2, A3 0.364 0.282 5 
HB CARA, FIVE, A2, A3 0.388 0.322 5 
HB" CARA,NRES 0.272 0.233 3 
HB" CARA, NRES, A2 , A3 0.283 0.240 6 
WK" EMP 0.534 0.501 2 
WK EMP 0.582 0.582 2 
PB CARA, NR1':ti, A2, A~ u.108 0.070 5 
SR CARA, NRES, A2 , A3 0.115 0.085 5 
SHOP CARA, NRES, A2, A3 0.110 0.082 5 

•tncludes trip·making households only. 
bStable at 1 percen t level. 

Table 4. Summary of regression slope and intercept stability. 

Households Regression Equation 

F (ratio of 
mean stan-
dard error) 

5.22 
4.68 
4.20 
3.65' 
3.51 

11.9 
8.36 

10.46 
2.83' 
5.99 

All HB = 0.11 - 0. 76T + (2.03 + 0.41 T)CARA + (0,81 + 0.12T)NRES 
t values = 3.03' 17.3 2.67" 16.2 1.80 

Standard 
r' Error Mean 

0.355 3.93 5.61 
0 .276 3.42 4.72 

0.377 3.86 5.61 
0.314 3.33 4.72 

0.364 3.90 5,61 
0.282 3.41 4.72 

0.582 1.01 1.82 
0.582 1.05 2.01 

0.102 1.97 1.21 
0.069 1.43 o. 72 

0.272 4.02 6.40 
0.233 3.38 5.39 

0.283 3.99 6.40 
0.240 3.36 5.39 

0.534 1.03 2.08 
0.501 1.09 2.30 

All HB = -0.30 - 1.llT + (1.87 + 0.33T)CARA + (0.80 + 0.!3T)NRES + (0.67 + 0.09T)A2 + (0.89 + 0.59T)A3 

All 

Trip making 
only 

Trip making 
only 

All 

All 

All 

All 

t values= 3.45' 15.4 2.06 16.0 1.96 3.35 0.27 4.36 1.84 

HB = -0.75 - 0.92T = (1.64 + 0.39T)CARA + (1.12 + 0.02T)FIVE + (0.69 + 0.11T)A2 + (0.98 + 0.61T)A3 
t values= 2,93' 13.6 2.52 19.8 0.27 3.51 0.34 4.94 1:97 

HB = 0.92 - 0.75T + (1.84 + 0. 26T)CARA + (0.75 + 0.16T)NRES 
t values= 2.52 15.4 1.56 14.1 2.30 

HB = 0.50 - l.31T + (1.69 + 0.18T)CARA + (0.74 + 0.17T)NRES + (0.62 + 0.39T)A2 + (0,91 + 0 . 78T)A3 
t values = 3.46' 12.8 1.04 13.9 2.46 2.80 1.06 4.0 2 2.18 

WK= -0.06 + 0.14T + (1.65 - 0.02T)EMP 
t values= 2.67' 60.6 0.56 

PB= -0.07 - O.llT + (0.46 + 0 .16T)CARA + (0.11 + 0.07T)NRES 
t values = 0.97 8.33 2.27 4.54 2.38 

SR= -0,35 - 0.24T + (0.44 - 0.lOT)CARA + (0.18 + 0.llT)NRES + (0,36 - 0.15T)A2 + (0.45 + 0.06T)A3 
t values= - 1.47 7. 01 1.22 6. 96 3, 19' 3.42 0,90 4.29 0.35 

SHOP= -0.24 - 0.17T + (0.28 + 0.07T)CARA + (0.12 + 0.04T)NRES + (0.21+0.12T)A2 + (0.46 + 0.21 T)A3 
t values= 1.33 5.67 1.05 5.94 1.57 2.58 0.92 5.61 1.67 

asignificant at the , percent level and therefore unstable, 
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equation does not guarantee the overall time stability of the equation. Neither the PB 
nor the SHOP equation had any unstable coefficients, yet neither equation exhibited over­
all time stability. In contrast, the SR equation exhibited overall time stability, but the 
coefficient of the independent variable NRES changed over time. The results of this 
test should not be overemphasized because the assumptions required for multiple linear 
regression analysis were not analyzed for the individual home-based-trip purposes. 

Application of the Zone Level 

The final test of the time stability of the regression equations was to forecast 1965 zone 
trips by using the equations developed for 1953. The 1953 HB trip-generation equation 
with CARA, NRES, and AREA as independent variables was applied to 1965 zone-level 
data. The resulting estima~es of 1965 zone HB trips were reasonable (r2 for actual 
versus estimate was 0.950). The 1965 zone estimates produced by the comparable 1965 
HB equation were only slightly more accurate than those produced by the 1953 HB equa­
tion (Figure 3). When stratified by AREA, the 1953 HB equation (and probably the 1965 
HB equation as well) was more accurate for estimating the city center and suburban 
areas than it was for the inner city and rural areas, which indicates that additional 
study of the latter 2 areas is needed. 

Comparison With Other Urban Areas 

Ideally, household-level trip-generation regression equations developed in one urban 
area also should be valid for other urban areas. Comparison of home-based trip­
generation equations for urban areas ranging in size from 250,000 (Madison, Wisconsin) 
to more than 14,000,000 (New York City) shows substantial variations in the regression 
coefficients although the same independent variables are significant for all of the U.S. 
cities (Table 5). Part of the variation may be attributed to differences in data collection 
and definitions of the variables. The wide variation in the CARA coefficients also may 
be the result of differences in transit service and household income. There is rela­
tively little variation in the FIVE coefficient. Madison, Wisconsin, may be a special 
case because of the large college-student population. 

A comparison of household-level regression equation slope and intercept stability 
between Pittsburgh and Detroit shows generally similar results although the magnitude 
of individual regression coefficients differs substantially (Table 6). The slopes for the 
SHOP equation are stable (at the 1 percent level), and slopes for the TTF equation are 
generally unstable. The independent variables for other purposes in the Pittsburgh 
study were not compatible with the Detroit variables. 

PREDISTRIBUTION MODAL-CHOICE ANALYSIS 

The 2 most important trip purposes, home based and work, were analyzed for both the 
automobile-driver and bus modes. In contrast to the person-trip-generation relation­
ships, the AID analysis indicated significant interactions between the 2 primary inde­
pendent variables for the bus mode-CARA and EMP. The subsequent cross­
classification analysis of the bus purposes indicated that the interaction variable, EC, 
which is defined as the nonnegative difference between the number of employees in the 
home and the number of cars available, that is, 

EC = 1 (EMP - CARA) ;;, 0 
1 0 otherwise 

should be a good predictor of bus-work and bus-home-based trips. A graphical analysis 
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of the stability of the bus-work trip relationships is shown in Figure 4. As expected, 
a generally lower level of transit use is observed in 1965. 

statistical analysis of the bus-work and bus-home-based regression equations for 
trip-making households indicated that none of several sets of independent variables pro­
vided overall time stability. When only households with convenient access to transit 
were considered (households in the bus service area) , however, stable relationships 
for both the work and the home -based bus purposes were found with EC and AREA as 
dummy variables. The individual regression coefficients also were found to be stable 
for both equations. Additional research is needed to evaluate the feasibility for fore­
casting EC. EC is likely to be a complex function of the income level and the level of 
transit service. 

As for the bus purposes, the AID analysis for the automobile-driver purposes in­
dicated interaction between CARA and EMP. Subsequent cross-classification analysis 
indicated that the interaction variable, CE, defined as the nonnegative difference be­
tween CARA and EMP 

CE _ ~ (CARA - EMP) :<: 0 
- I 0 otherwise 

should be a good predictor of automobile-driver trips. CE was significant as an ex­
planatory variable for both automobile-driver-WK and automobile-driver-RB regres­
sion equations; however, neither equation exhibited overall stability for the entire re -
gion. Within the bus service area the automobile-driver-RB equation with CARA, FIVE, 
and AREA as independent variables exhibited overall stability. The individual regres­
sion coefficients also were stable. 

Application of the bus-purpose equations to estimate zone bus trips was limited by 
the lack of interaction variables at the zone level. Reasonable estimates of zone trips 
for the 2 automobile-driver purposes, however, were obtained. The error curves 
(cumulative percent of zones versus percentage of error in the zone estimate) were 
virtually identical to the error curves for person-trip purposes, which is reasonable 
when one considers the lo\v level of transit use in Detroit. 

CONCLUSIONS 

Cross-classification analysis of 1953 and 1965 total person-trip generation as a function 
of cars available and number of persons in the household showed unexplained differences 
in the trip-generation rates of 10 to 20 percent. The largest differences were observed 
in the no-car-available class. Thus, when non-trip-making households (which were 
concentrated in the no-car-available class) were removed, the resulting regression 
equation was concluded to be stable. 

The relatively uniform increase in trip rates for all automobile-owning household­
size classes probably is due to changes in income, regional accessibility, and the level 
of walking trips. Additional time-series data are needed to evaluate the impact of these 
variables. In the absence of such time-series data, the disaggregate trip-generation 
relationships for 1965 and 1953, as shown by the zone -level estimates, can provide an 
upper and a lower bound for reasonable estimates of future trip generation in Detroit. 

The high degree of explanatory power of the work-trip -generation equation suggests 
that peak-hour UTD models based on Vlork trips should be developed for Detroit. The 
lack of time stability probably was due primarily to differences in defining the employ­
ment variable between 1953 and 1965 rather than any inherent change in the level of 
work-trip making. Peak-hour models would be particularly useful because data are 
available from the 1970 census transportation planning package on work-trip and em­
ployment patterns. Thus the updating of the 1965 travel survey data is provided for. 

The predistribution modal-choice analysis indicates the importance of the joint con­
sideration of the number of persons employed and the number of cars available at the 
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Figure 3. Zone test of time stability. \ oo 
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Table 5. Comparison of household-level home-based trip-generation equations for several urban 
areas. 

standard 
Urban Area Year Regression Equation r' Error Mean 

Madi.son, Wisconsin ( 5) 1962 HB = 0.69 + l.94CARA + l.39FIVE 0.36 3.89 5.20 
Glamorgan , Wales (15) HB = 0.91 + l.07CARA + l.07EMP 0.384 2.33 
New York City (16) - HB = 0.24 + 3.17CARA + l.06FIVE 0.309 5.03 5.87 
Indianapolis (!D - 1964 HB = -0.19 + 3.17CARA + l.15FIVE 
Detroit 1965 HB = -0.84 + 2.30CARA + l.14FIVE 0.377 3.86 5.61 
Detroit 1953 HB = -0.29 + 1.82CARA + l.13FIVE 0.314 3.33 4. 72 

Table 6. Comparison of trip-generation slope and intercept time stability for Pittsburgh and Detroit. 

Urban Area" 

Pittsburgh ( !'.!) 

Regression Equation r' 

SHOP= 0.18 + 0.51T + (0.33 - 0.27T)CARA + (0.08 - O.OlT)NRES 0.030 
t values= 2.63' 2.11 0.11 

standard 
Error 

Detroit SHOP = -0.07 + O.OT + (0.36 + O. lOT)CARA + (0.13 + 0.04T)NRES 0.097 1.50 
t values= 7.51 1.60 6.26 1.37 

Pittsburgh (!'.!) TTF = 1.66 + l.82T + (2.00 - 0.38T)CARA + (0.57 - 0.69T)NRES 0.208 
t values= 3.44' 1.10 2.81' 

Detroit TTF = 0.16 - l.26T + (3.13 + 80T)CARA + (0.98 + 0.29T)NRES 0.289 6.05 
t values= 3.06' 16.3 3.20' 12.0 2.69' 

•Pittsburgh data are for 1958 and 1967. Detroit data are for 1953 and 1965a 
bSignificant at the 1 percent level. 
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household level in explaining transit use, particularly for work trips. In Detroit, sig­
nificant transit use generally occurs only for households in which the number employed 
exceeds the number of cars available. Thus short-term transit service improvements 
are not likely to attract workers who have a car available. Over a longer time period, 
however, the introduction of competitive transit service may result in a decision not to 
replace the second car or not to buy a car when a family member joins the labor force. 
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A SYNTHESIZED TRIP-FORECASTING MODEL FOR SMALL­
AND MEDIUM-SIZED URBAN AREAS 
M. R. Zaryouni, Civil Engineering Division, Rensselaer Polytechnic Institute; and 
E. J. Kannel, Department of Civil Engineering, 

University of Illinois at Urbana-Champaign 

Because of the high monetary and time costs associated with home-interview 
surveys for urban transportation studies, planning analysts have sought to 
model travel demand byusing other data sources such as 1970 census work­
trip data. The purpose of the research reported in this paper is to examine 
trip distribution functions that may be appropriate for estimating zone trip 
interchange in small- to medium-sized urban areas. Several functional 
forms of travel impedance were investigated. For the city sizes studied, 
model accuracy is shown to be relatively insensitive to the form of the travel 
impedance function. Analytical deductions are used to develop a calibration 
technique for a 2-way, constrained gravity model using the simple nega­
tive exponential function. Calibration of the model can be accomplished 
withoutusing extensive origin-destination survey data. The model is tested 
by using data from actual studies, and an outline is suggested for calibrat­
ing the distribution model by using the 1970 census data. 

•ORIGIN-DESTINATION (O-D) data collection is the most time consuming and costly 
part of any transportation study. Furthermore, the level of accuracy of 0-D surveys 
is frequently so low that the interzone trip forecasts based on them are unreliable. 
This occurs because the number of dwelling units in a traffic zone is small and the 
number of traffic zones within the system is large; therefore, the trip exchange be­
tween 2 given zones is a rare attribute of the zone population, and a very high sampling 
rate is required to provide acceptably accurate 0-D data. Long (6) has shown that, 
when a city with a population of 100,000 is divided into 200 traffic zones, the error of 
non-home-based interzone trip exchanges based on a 5 percent home-interview sam­
pling rate could be as high as ±270 percent. The problem is compounded further if 
financial constraints force a sampling rate as low as 2 percent for small- or medium­
sized urban areas (2). 

The cost, time consumption, and inaccuracy of 0-D surveys demonstrate the merit 
of exploring synthesized models that can be calibrated by using available information 
and, therefore, do not call for conducting a particular 0-D survey. Given that 0-D data 
have inherent inaccuracies and that given the inaccuracy inherent in 0-D data and that 
synthesizing models are structured on the state of the art, it is not clear that the pre­
dictions based on an appropriate synthesizing model would be less reliable than those 
based on costly and time-consuming travel surveys. In fact, the ultimate goal of trans­
portation science may be perceived as the reaching of a mature stage where models and 
not particular surveys are capable of providing sufficiently accurate predictions for de­
cision making. 

This paper presents a gravity-distribution model for small- and medium-sized ur­
banized areas that can be calibrated by using trip-end information. The suggested 
calibration method eliminates the need of having extensive home-interview 0-D data 
for the distribution stage of the trip forecasting procedure. Furthermore, the paper 
outlines how use of this distribution model eliminates the need for conducting an 0-D 
study for trip forecasting in small- and medium-sized cities. The elimination of 0-D 
surveys from transportation studies is based on 3 premises. 

1. Estimates of trip productions and trip attractions of home-based work person 

87 



89 

Selection of Distribution Function 

The principal problem in developing a distribution model is the selection of the form of 
F(C1 J) and the quantification of the parameters of this function. The appropriate func­
tional form of the distribution function has been the subject of many research efforts 
(1, 7, 13, 14). Both simple and complex functions have been suggested. However, ex­
amfnationof the nature of the small- and medium-sized cities reveals that using a com­
plex distribution function for such areas is not necessary. 

Because of the limited destination opportunities available to travelers in a small- or 
medium-sized urban area, travelers usually do not face a real choice among equivalent 
but locationally different opportunities. Therefore, the cost of reaching an opportunity 
cannot be a major factor in selecting a given opportunity by a class of travelers. Fur­
thermore, because of the insignificance of the travel cost in such areas, travelers may 
not differentiate meaningfully among the cost of reaching different opportunities. A 
study by Zaryouni ( 15) shows that the consideration of travel cost provided a model 
only 7 to 10 percentmore predictive than a gravity model with no consideration of 
travel cost [F(C1J) = 1] for Billings, Montana (population 60,000), and Decatur, Illinois 
(population 110,000). It may be concluded that the consideration of travel cost has a 
marginal effect on the predictivity of a gravity model compared to trip-end information 
for small- and medium-sized urban areas; therefore, the predictivity of a gravity model 
cannot be very sensitive with respect to the functional form of the distribution function. 
This logical conclusion has been supported empirically by the Zaryouni study ( 15). The 
study (15) demonstrated that the inverse power and the negative exponential distribution 
functions provide practically the same goodness of fit for the gravity model as the more 
complex gamma function does. In this study, the distribution model results were com­
pared with actual trip tables developed from traditional transportation surveys. The 
principal measure used as the criterion for the predictivity of a gravity model wa:s the 
relative deviation d defined here as 

d ;; I: I: (Tu - S1 1)
2/S1J 

i j 
(5) 

where S11 = interzonal trip volume from actual survey. The lower the dis, the better 
the goodness of fit and the more predictive the model will be. The parameter or 
parameters of each distribution function are determined by using an iterative procedure 
to minimize d. 

The minimum deviation d obtained for 3 different distribution functions is given in 
Table 1. The table shows that the minimum deviation is practically the same for the 
3 functions tested. Therefore, the negative exponential function that is a more appro­
priate function for calibration purposes is suggested for use in small- and medium­
sized urban areas. Equation 1, then, becomes 

T1J = r1SJ exp(-8C1J) (6) 

Model Calibration 

The calibration problem is to estimate parameter {3. One way to find f3 is to equate 
average travel cost predicted by the model c. to actual travel cost measured from 
actual 0-D data (4, 11). However, to do so, one would need actual average travel cost, 
which, in turn, would require a more extensive 0-D survey. Instead, here, the value 
of {3 will be estimated by deriving a relationship between f3 and c. that can be solved 
iteratively for {3. 

The average travel cost predicted by a 2-way, constrained gravity model can be 
written as: 
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!:: !:: T13C13 !:: !:: r1s3C1 3 exp(-f3CtJ} 
c - ij _ ij 

• - r: r: T 13 - ---=r::-:r:,...r_1_s_3 e- xp-r(--13=-c'"1'j) (7) 

i j i j 

The product r1si is a function of the average travel cost of all trips that originated 
at i and the average t r avel cost of all trips that ended at j. Being a function of an over­
all average, the r 1sl dependency on a particular value of C13 is not significant when the 
number of zones is relatively large ( 5). Therefore, r 1si can be replaced by its expected 
value and can be taken outside the summation sign and cancelled from the numerator 
and the denominator. Equation 7 may then be written and reduced to 

c. = J: C exp(-f3C)dC 1 J: exp( -,BC)dc = ~ 
(8) 

Equation 8 suggests a procedure for estimation of fj. The value of B should be 
selected so that c. equals 1/ fj. This value of f3 can be obtained by using an iterative 
procedure. For each selected /3, a trip table is computed by a 2-way, constrained 
gravity model. Then, the c. associated with the selected f3 is computed from 

- 1 
C.= T ~~CuT1J 

l J 
(9) 

By using this proceclure for a range of values of f3, one can plot c. against fj. The 
intersection of the c. curve and 1/ f3 curve gives the optimum value of f3. Figures 1 and 
2 show the calibration method for the cases of Billings, Montana, and Decatur, Illinois. 
In these figures, the d associated with each value of 8 also is shown. The figures 
demonstrate that the value of f3 determined by the suggested method provides practi­
cally the minimum d for the gravity model. 

A SYNTHESIZED MODEL FOR TRIP FORECASTING 

This section, by using the result of the previous section, will demonstrate the possi­
bility of trip forecasting without conducting an extensive 0-D study. The aim is to sug­
gest not a detailed procedure but a general outline. Published census tract data of 1970 
provide many useful data other than those that will be mentioned. Indeed, other studies 
are being conducted to analyze the potential of census data for urban transportation 
planning ( 12). These research efforts are more detailed and often require significantly 
more manipulation and adjustment of the data. When this experience in estimating trip­
generation rates from census studies is available this information should be exploited 
and, where appropriate, the more detailed procedures should be used. 

The proposed synthesized model may be thought of in 4 parts: 

1. Production of and attractions for home-based work (HBW) trips, 
2. Interzone trip exchanges for HBW trips, 
3. Assignment of HBW trips, and 
4. Computation of peak-hour volume (PHV) and average daily traffic (ADT) for each 

major link. 



Table 1. Minimum deviation and 
corresponding parameters for 
selected distribution functions. 

Figure 1. Model calibration 
relationships for Billings, Montana. 

Figure 2. Model calibration 
relationships for Decatur, Illinois. 

Distribution 
Function 

F(CJJ) = C~,(){ 

F(Cu) = exp(-/lC.,) 

F(C 1,) = C~exp(-,BC,,) 

Billings, Montana 

ct (){ 

37,026 

36,504 

36,474 

-1.10 

-0. 2 

f3 

0.11 

0.09 

Decatur, Illinois 

d (){ 

34,489 -1.0 

34,305 

34,233 -0 .4 
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Production of and Attractions for Home-Based Work Trips 

An HBW trip is defined as 1 tr1l;>/employee/day that originates from the place of resi­
dence and is destined for the place of work of each employee. Clearly, the total num­
ber of HBW trips for the whole study area is the same as the total number of employed 
people who live and work within the area. 

Publis hed census tract data provide the number of employed people who live in each 
census tract. This number is assumed to be the same as the number of trip productions 
for the HBW trips. Furthermore, census tract data of 1970 distinguish between those 
employees who work outside and those who work inside the s tandard metropolitan sta­
tistical area (SMSA). This distinction makes it possible to obtain the internal trip pro ­
duction for the HBW trips more accurately if the SMSA is selected as the study area. 
Also, in the census , the number of people employed in their residences is given for 15 
industries. Therefore, stratification of the trip productions is possible. 

If 1 HBW trip/employee is assumed, then the number of trip attractions for the work 
zones would be the number of employees in the work zone. Although the 1970 census 
recorded employee work address, the level of detail and accuracy is questionable. Em­
ployment location data may be supplemented, however, from other data sources such 
as state employment security records and the major employers. These government 
and private data sources provide an opportunity to stratify the attraction component of 
the HBW trips and to obtain information regarding work trips produced by employees 
outside the SMSA. 

Because the production and attraction components of the HBW trips usually are not 
provided by the same source, the data components may not be consistent with each 
other. Some modification may be needed to make these components consistent. Rather 
than use the zone productions and attractions directly from these sources, one might be 
better advised to estimate the total number of HBW trips in the entire area first and 
then to compute the distribution of trip ends from the available data sources. Hence 
T equals the total number of people who live and work within the area and could be ob­
tained now from existing data sources and later from lane use and economic forecasting. 
Then, if (ER) 1 is the total number of employed people who live at zone i and (EW) J is the 
total number of employed people who work at zone j, let 

ER)1 
U1 = ~·(ER)1 

i 

((W)J 
VJ = J 

j 

Then the production and attraction components of HBW trips become, respectively, 

P1 = Tu1 

AJ = TvJ 

(10) 

(11) 

(12) 

(13) 

If the trip-end data base has been stratified according to industry, this procedure 
may be carried out for each industry separately. 



93 

Interzone Trip Exchanges for Home-Based Work Trips 

Based on knowledge of the trip productions and attractions from the previous step, a 
2-way, constrained gravity model with the negative exponential distribution function 
provides an interzone-trip-exchange model for the HBW trips: 

F( C1J) = exp( -,BCiJ) 

8 is computed according to the previous section of this paper. 
When the data have been stratified according to industries, a separate distribution 

choice for each industry should be followed. The results then must be added into a 
single interzone trip matrix for the next step. 

Assignment of Home-Based Work Trips 

Based on knowledge of interzone HBW trips from the previous step, one can determine 
the routes that travelers use when going from one zone to another and assign HBW trips 
to the street network on the basis of route choice. This step could be done by any ex­
isting assignment model, including the simple method of judgment. 

Computing Peak-Hour Volumes and Average Daily Traffic 
for Each Major Link 

Other researchers have examined the work trip to evaluate peak-hour and daily travel 
patterns (7, 10). Shunk, Grecco, and Anderson (10) have shown that a strong linear re­
lationship -exists between the HBW trips passing through a major street and the PHV 
and ADT of that major street. For link l it may be written 

(PHV)Q = K1 x (HBW)Q ( 14) 

(ADT)Q = K2 x (HBW)Q (15) 

or more accurately, 

(PHV)Q =a+ b(HBW)Q (16) 

(ADT)Q = a' + b '(HBW)Q (17) 

Some actual vehicle counts in major streets should be made (existing traffic maps 
may provide ADT information as well) , and the PHV and ADT should be computed. 
Next, with the corresponding HBW from the previous step, K1 and K 2 can be computed: 

1 N(PHV) 
K1 = N ~ HBW Q (18) 
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l N (ADT) 
K2 = N ~ HBW ~ (19) 

If the second more complex model is used, a, b, a', and b' can be derived by using an 
appropriate regression analysis. It should be noted that for each type of major street 
(freeway, arterials, and collectors) a different set of indexes preferably should be de­
veloped. Also the values of K1 and K2 or a, b, a', and b' derived for the present must 
be assumed to prevail in the future unless data forecasting a change are available. 

SUMMARY AND CONCLUSION 

The principal objective of this research was to evaluate trip-distribution models that 
can be calibrated with minimal travel-survey data and can be used to estimate travel 
patterns in small- and medium-sized urban areas. The 2-way, constrained gravity 
model was found to be relatively insensitive to the functional form of the distribution 
function for the cities studied. Therefore there is no need for oversophistication in 
the form of the distribution function. The negative exponential function is simple but 
not meaningfully less predictive than other complex functions. The calibration method 
for the model is based on analytical deductions. The primary advantage is that the in­
terzone travel patterns can be estimated with limited travel-survey data. 

The model is proposed to be used where trip-generation and trip-attraction esti­
mates can be obtained primarily from census data. Although the validity of the dis­
tribution model has been tested, the total synthetic modeling approach still must be 
examined in an initial study. 
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DEVELOPMENT OF A SIMULATION MODEL FOR 
REGIONAL RECREATIONAL TRAVEL 
W. D. Berg and P.A. Koushki, University of Wisconsin-Madison; 
C. L. Krueger, Chicago Department of Public Works; and 
W. L. Bittner, City of Antigo, Wisconsin 

A simulation model for recreational travel was developed for use in ana­
lyzing the impact of outdoor recreational travel by residents of a 9-state 
Upper Midwest region to Michigan, Minnesota, and Wisconsin. Travel data 
were collected for 6,441 randomly selected households by using a telephone 
home-interview survey procedure. After the trips were stratified into 
summer-vacation and summer-weekend categories, cross-classification 
analysis was used to relate household trip-making frequencies to the 
socioeconomic characteristics of the household and its accessibility to 
recreational attractions within the study area. Gravity models then were 
calibrated to distribute recreational trips within a county-level system of 
demand and supply zones. Zone trip productions were estimated by apply­
ing the cross-classification model to those households within each de­
mand zone; zone trip attractions were established synthetically on the 
basis of the reported trip ends from the telephone home-interview survey 
and the distribution of seasonal homes across the region. The gravity­
model trip tables then were assigned to a regional highway corridor net­
work for comparison with automatic-traffic-recorder data. 

•TOURISM and outdoor recreation are key elements in the economy of the sparsely 
developed Upper Great Lakes region, which consists of the upper half of the states of 
Michigan, Minnesota, and Wisconsin. To help meet the growing leisure-time demand 
of the heavily populated Upper Midwest states, the water-based recreational potential 
of the area is being furthered by the development and expansion of private, state, and 
U.S. parks and recreational facilities. Of. concern to planners, public officials, and 
environmentalists is the resulting increased population pressure that will be exerted 
on environmentally sensitive locations. 

If critical land and water use problems are to be anticipated and overcome, officials 
at the federal, state, and local levels must have information on future levels of recrea­
tional demand. This becomes a complex, long-range planning problem because of the 
many factors that influence recreational travel and participation. Among these are 
transportation network improvement plans; state and federal recreational development 
plans; energy conservation policies such as reduced highway speed limits and fuel 
allocation programs; and the growth and spatial distribution of the regional population. 

To address these problems, a multidisciplinary, recreational planning study was 
undertaken for the Upper Great Lakes Regional Commission (8). The research re­
ported in this paper concerns the simulation model for regionil recreational travel 
that was developed in the transportation phase of the study. 

DATA COLLECTION 

Several early constraints were placed on the development of the recreational travel 
simulation model because of earlier work that had been completed on the phase 
of the project concerning the recreational demand survey and forecasts. Most of 
the demand for outdoor recreation to the Upper Great Lakes region was assumed to 
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originate in the 9-state Upper Midwest region (UMR) consisting of North Dakota, South 
Dakota, Minnesota, Iowa, Wisconsin, Illinois, Michigan, Indiana, and Ohio. Travel 
originating beyond these states would not be measured in the study. In addition, the 
University of Wisconsin Survey Research Laboratory had been hired to develop an in­
terview procedure by which residents of the UMR could be questioned about their partic­
ipation in outdoor recreational activities. A telephone· home-interview survey was 
being pretested when authorization was received to proceed with the transportation phase 
of the project. Several final modifications to the questionnaire then were made so that 
it might provide certain origin-destination (0-D) information considered essential for 
the development of the travel simulation model. One of these was a request by the 3 
state transportation agencies to consider travel to any point within the entire states of 
Michigan, Minnesota, and Wisconsin, the Great Lakes region (GLR). 

Recreational Travel Patterns 

The survey questionnaire then was applied to a sample of 6,441 households from the 
UMR during the late summer and fall of 1972. Households were selected from a 
computer-generated frame of all possible telephone numbers in the 9 states. Each 
respondent was to provide information about 2 types of outdoor recreational trips: 
those that involved at least 5 days away from home and those that involved at least 2, 
but not more than 4, days away from home. This essentially defined vacation trips and 
weekend trips respectively. Although all respondents were to submit information about 
each outdoor recreational trip taken by a member of the household during the 12 months 
preceding the interview, detailed data pertaining to their travel and activity participa­
tion were collected only for trips that occurred during the five "summer" months of 
May through September and that were destined to or passed through the GLR. 

It was found subsequently that trips made by children under 18 years of age by 
themselves could not be included in the model because of a lack of sufficiently complete 
0-D data. Although the survey revealed a large number of person trips by children, 
most of these likely involved some type of group excursion such as travel to a summer 
camp or a weekend scouting camp-out. Trips of this nature generally would be made 
by bus and therefore would play a minor role in the simulation of vehicle travel. 

Because each reported trip was a round trip, the return portion of each trip was 
assumed to follow the same path as the outbound portion and the majority of travelers 
were assumed to follow a somewhat direct, or minimum-path, route to and from their 
main destination. These assumptions were not considered overly restrictive because 
the objective of the study was to simulate travel over major corridors of a 3-state 
region, and any minimum-path routing over this network generally would encompass a 
relatively wide band of potential, intermediate recreational stops. 

Transportation Network 

Before establishing the corridor network, we defined a system of county-level traffic 
analysis zones. Within the 3-state GLR, each of the 243 counties represented 1 traffic 
analysis zone. For the remaining 6 states, 41 multicounty zones were defined on the 
basis of population distribution and distance from the GLR. Zone centroids were 
selected by considering the location of population centers, major highways, and prom­
inent recreational facilities. 

The Interstate Highway System and the major state arterial highways within the 3-
state GLR were used to define the recreational travel corridors for the region. This 
network was more generalized than a complete statewide highway traffic assignment 
network would be, and yet it provided a more realistic identification of major corridor 
travel flows than a spiderweb network linking adjacent county centroids would provide. 
Although the study was concerned only with corridors in the GLR, the network was ex­
tended in a similar fashion throughout the remaining 6 states of the UMR study area. 
Corridor links in these states were defined for the most part by the Interstate Highway 
System. 
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Link lengths were determined from state highway maps for the various states. The 
average travel speed for each link was based on the location and functional classifica­
tion of the corridor. If a particular link represented 2 or more parallel highways or if 
it was characterized by 2 or more distinct subsections having different average travel 
speeds, the multiple sections were weighted by their length or travel speed or both to 
yield a single average link. Each zone centroid then was connected to the network by 
1 or more dummy links depending on the nature of the local transportation system. 

Recreational Supply 

Because the study was concerned with travel to the 3-state GLR, an inventory was made 
of the availability of recreational supply data on a county-level basis for the region. 
Although detailed data were maintained by each state, there was a lack of uniformity 
in the type of information that was recorded and the units of measurement that were 
used. As an alternative, the Public Outdoor Recreation Areas and Facilities Inventory 
(9) undertaken in 1972 was used. Although this survey could provide detailed data on 
state- and U.S.-administered recreational facilities in each county, no comparable data 
set was available for the extensive supply of privately operated recreational facilities 
throughout the GLR. 

As a result, the problem of measuring the recreational attractiveness of a county 
was approached on a generalized basis by assuming that privately owned and privately 
operated recreational facilities were likely to predominate in those counties that also 
possessed certain natural recreational resources. If the total attractiveness of a 
county could be estimated by simply measuring natural recreation resources, such as 
lakes and major public recreational areas, then detailed recreational supply data would 
be unnecessary. Therefore, the total area of state- and U.S.-administered parks plus 
the total area of lakes was established as thE: county-level recreational supply variable. 
Water area for those counties bordering one of the Great Lakes included an area of 
that lake equivalent to the length of its shoreline times 0.5 mile (0.8 km). 

TRIP GENERATION 

The recreational trip making frequencies of the sample dwelling units are given in 
Table 1. It is important to note that, for all categories of vacation and weekend recrea­
tional trips, most respondents made either 1 trip or no trips. Looking specifically at 
summer trips to the GLR, one finds that only 1.5 percent of the households made more 
than 1 vacation trip and that only 4.1 percent made more than 1 weekend trip. This 
had the 8ffect of making recreational trip production a dichotomous variable. 

Although subsequent phases of the recreational travel simulation model would re­
quire zone trip productions as input data, the small 0-D survey sampling rate (approxi­
mately 0.05 percent) precluded the development of a zone trip production model. In­
stead, effort was directed toward the formulation and testing of a household trip 
production model based on the 6,441 dwelling units that had been surveyed. The fre­
quency of summer recreational trips per dwelling unit to the GLR was assumed to be 
a function of the socioeconomic characteristics of the household, the relative supply of 
outdoor recreational facilities available to the household, and the relative travel cost 
associated with taking a trip to a recreational attraction in the GLR. 

The recreational supply and travel cost parameters for the trip-generation model 
were formulated as an accessibility index: 

m [ SJ J AI1 = E t-n 
j=l IJ 

(1) 
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where 

AI1 = accessibility of a dwelling unit in production zone i to the recreational supply 
of the GLR, 

m = total number of attraction zones in the GLR, 
SJ = total area of lakes plus state and U.S. parks in attraction zone j, and 
t!J = minimum-path travel time from the centroid of zone i to the centroid of zone j. 

Because the small sample size used in the telephone home-interview survey did not 
permit the building of a base-year 0-D trip table, computing a set of gravity-model 
friction factors for the travel time function could not be done. The value of 1.5 for the 
travel-time exponent was selected on the basis of a correlation analysis between the 
trip-rate variables and alternative formulations of the accessibility index. 

Cross-classification analysis then was selected as the technique by which summer 
recreational trip productions to the GLR would be related to household socioeconomic 
characteristics and recreational-attraction accessibilities. Because the accessibility 
index represented a zone characteristic, all dwelling units in a given zone were as­
sumed to have the same accessibility to recreational attractions in the GLR. To com­
pare and evaluate the several models that were to be tested, an analysis of variance 
was performed on the trip-rate variable for each model. Consideration also was given 
to the ease with which the distributional characteristics of the independent variables 
could be measured and forecast on a county-level basis. 

Of the several cross-classification trip-production models that were formulated, the 
2 selected for use in the travel-simulation model expressed summer-vacation trips and 
summer-weekend trips as a function of family income, occupation of head of household, 
and accessibility to the recreational attractions of the GLR. The complete sets of tables 
for both models are available from the authors. Each model has the same structure: 5 
classes of family income, 10 classes of occupation of head of household, and 5 classes 
of accessibility index. 

Figure 1 shows the relationship between family income and recreational trip rate. 
As income increases to $25,000/ year, both vacation and weekend outdoor recreational 
trip rates increase. This supports the frequently observed tendency for higher income 
families to make more trips of all types. The decline in both trip rates for families 
with annual incomes of more than $25,000 probably is due to their ability to take a more 
expensive type of trip than one involving outdoor recreation in the GLR. 

Figure 2 shows the relationships between occupation of head of household and recrea­
tional trip rate. The figure shows that those occupations that traditionally provide 
higher incomes are associated with higher trip rates. However, the fact that occupation 
also reflects the nature of the leisure time available to the head of the household pos­
sibly is of greater importance. People in occupations associated with high trip rates 
(especially those who are professionals or are in business) ordinarily can set their own 
working hours. This would not be the case for people who are employees. Although 
the farmer ordinarily is self-employed, his or her free time is confined generally to 
the winter months, which results in the fact that summer trip rates for farm families 
are the lowest for all occupation categories. 

Figure 3 shows the relationship between accessibility to recreational attractions and 
trip rate. As accessibility to the recreational areas of the GLR increases, the likelihood 
of a family's making a recreational trip to the area also increases, particularly for 
weekend trips in which a high premium is placed on minimizing travel time. This rela­
tionship underlines the importance of an efficient transportation system to those regions 
whose economies are tied closely to tourism and outdoor recreation. 

The coefficients of determination (r2 's) for the vacation-trip and weekend-trip models 
are O .11 and 0 .17 tespecti.vely. Although zone -level trip-production models have 
yielded r 2 values above 0.90, they have been sl10wn to be equivalent to household-level 
trip-production models with r 2 val ues near 0.25 because of the natm·e of the variance 
that is being explained (10). As a demonstration of the effect of level of aggregation on 
the variance explanationof recreational trip rates, a set of zone-level trip-production 
models were formulated. Multiple linear regression analysis then was used to relate 



Table 1. Percentage of sample dwelling Number of Trips 
units that took summer recreational trips 
in 1972. Type of Trip 0 I 2 3 4 5 6 

Vacation 
All trips 64.3 28.4 6.0 1.0 0.2 0.1 
Trips to GLR 87.2 11.2 1.2 0.3 

Weekend 
All trips 72.B 18.9 5.7 1. 7 0.9 0.3 0.3 
Trips to GLR 85.3 10. 7 2.5 0.6 0.5 0.2 0.1 

Figure 1. Family income versus trip rate. Figure 2. Occupation of head of household versus trip 
rate. 
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the 1970 estimated zone trip productions to the total population of zone i (POP1), average 
family income of zone i (INC1 ), and AI1 of the zones. Models for vacation and weekend 
trips weretested in log form, and a summary of them is given in Table 2. The regres­
sion statistics reveal that, when the within-zone trip-production variance is removed, 78 
to 92 percent of the remaining between-zone variance can be explained by the selected 
zone characteristics. 

The basically unstable nature of outdoor recreational trips is another explanation of 
the low variance of the cross-classification models. Work trips are predictable on an 
hourly and daily basis, but a household's recreational travel can exhibit a large variation 
in destination from year to year even though it may begin on a certain day of the week 
or month with some consistency. This characteristic creates a built-in variance within 
a recreational travel model that has been estimated to be as much as 20 percent (!). 

TRIP DISTRIBUTION 

The gravity model was selected for allocating zone recreational trip productions to the 
243 county-level recreational supply zones in the GLR. 

Trip Productions and Attractions 

Because only 0.05 percent of the dwelling units in the UMR had been interviewed (the 
number of summer recreation trips to the GLR totaled 961 vacation trips and 1,386 
weekend trips), many zones were found to have no reported trip ends whatsoever. As 
a result, base-year trip productions and attractions had to be developed synthetically. 
Summer-vacation and weekend trip productions for each of the 284 UMR zones were 
estimated by applying the cross-classification model to 1970 household data. The re­
sulting 1970 zone trip productions for the 9-state UMR totaled 1.59 million vacation 
trips and 2.34 million weekend trips over the 5-month period of May through September. 
Base-year trip attractions for the 243 zones in the GLR then were established by using 
a 2-stage procedure. First, total base-year trip productions were allocated to each of 
36 districts proportional to the trips reported by the survey respondents: 

Ak = (rP1) [ f~] (2) 

where 

Ak = number of summer-vacation or weekend recreational trips attracted to dis­
trict k, 

P 1 = number of summer-vacation or weekend recreational trips produced in zone i, 
and 

Dk = mean number of reported summer-vacation or weekend recreational trips to 
district k. 

Second, the trip-attraction total of each district was allocated to the individual zones 
comprising each district on the basis of the number of seasonal homes in the zones 
within a given district: 

[ 

SJk J AJ = Ak fS Jx (3) 
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where 

AJ = estimated zone trip attractions, and 
SJk = number of seasonal homes in zone j within district k. 

Although the availability of seasonal home data was not discovered until late in the 
study, it proved to be a conceptually sound and statistically significant indicator of the 
recreational attractiveness of an area. 

The relationship between AJ and selected zone characteristics then was tested in log 
form by using multiple linear regression analysis. Independent variables included 
number of seasonal homes SHJ, total area of lakes plus state and U.S. parks RECJ, and 
accessibility of the zone to the population of the UMR Ali. The accessibility variable 
was computed as 

AIJ n [POP1] 
!; t 1. 5 

i=l !J 

(4) 

where n =total number of zones in UMR. The resulting regression models for vacation 
and weekend zone trip attractions are tabulated as follows (level of significance is 5 
percent): 

Type of 
Trip 

Vacation 
Weekend 

·Model 

Log AJ = 0.78 log SHJ + 0.35 log RECJ 
Log AJ = 0.78 log SHJ + 0.42 log AIJ 

Number of 
Observations 

243 
243 

r2 

0.99 
0.99 

The regression statistics indicate that the models explain 99 percent of the variance 
in the estimated trip attractions for the 243 zones in the GLR. In comparing the 2 
models, one finds that the number of seasonal homes in a zone has a significant in­
fluence on both vacation and weekend recreational trip attractions. Also vacation trips 
tend to be attracted to those zones with extensive natural recreation resources, and 
weekend trips tend to be attracted to those zones that are most accessible to regional 
population concentrations. These relationships demonstrate a trade -off between the 
drawing power of major recreation areas and the impedance of travel time. For ex­
tended recreational trips, people are willing to spend more time traveling to reach 
prominent outdoor recreational attractions. For weekend recreational trips, however, 
travel time becomes more important than the character of the recreational supply at 
the point of destination. 

Gravity-Model Calibration 

After the estimated number of base-year (1970) zone trip productions and zone trip 
attractions for both vacation and weekend recreational trips were established, 2 sets 
of gravity-model friction factors were calibrated by using 30-min travel-time intervals 
(5). The calibrated friction factors fo r both vacation and weekend recreational trips 
are shown in Figure 4. A comparison of the associated t r ip-length frequency distribu­
tions shown in Figures 5 and 6 again reveals the previously noted influence of travel 
time on recreational-travel patterns. The mean trip length for summer-vacation trips 
is 261 min. For summer weekend trips, it is 170 min. This is a difference of 1.5 
hours or approximately 90 miles (144 km) of additional 1-way travel. 

Because of the structure of the gravity-model trip-interchange equation, large devia-



Table 2. Zone trip-production models for summer recreational trips to the Great Lakes region. 

Type of Number of 
Trip Population Model Observations r ' 

Vacation <500,000 Log P 1 = -6.61 + 1.52 log INC1 + 0.82 log POP1 259 0.78 
>500,000 Log P 1 = -10.5 + 1.37 log INC1 + 1.02 log POP, + 1.08 log AI, 24 0.92 

Weekend <500,000 Log P 1 = -8.11+1.12 log INC1 + 0.84 log POP, + 1.02 log AI, 259 0.90 
>500,000 Log P 1 = -12.4 + 1. 72 log INC1 + 0.96 log POP1 + 1.39 log AI1 24 0.89 

Note: Level of significance is 10 percent. 

Figure 4. Calibrated gravity-model 
friction factors. 

Figure 5. Gravity model versus 
origin-destination trip-length 
distributions for vacation trips. 
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Figure 6. Gravity model versus origin­
destination trip-length distributions for 
weekend trips. 

Figure 7. Simulated 1970 peak­
weekend-day recreational traffic flow for 
Wisconsin. 
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tions existed between the synthesized trip attractions and the distributed trips when 
they were compared on a district level. The zone trip attractions therefore were ad­
justed and another iteration of the gravity model was performed (10). The results of 
the second iteration revealed that a reasonably good balance had been achieved, although 
a slight increase in trip length did occur. Because those districts that received too 
few trip ends generally were in the more remote parts of the region and those that 
received too many trip ends were located close to major metropolitan centers such as 
Chicago and Detroit, it was judged that further iterations of the model would yield only 
an improved trip-end balance at the expense of an imbalance in trip-length distribution. 
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Therefore, the simulated trip interchanges from the second iteration were accepted as 
a reasonable and sufficient estimate of base-year recreational travel to the GLR. 

TRAFFIC ASSIGNMENT 

In the final stage of the simulation model, the combined trip table for the estimated 
1970 summer recreational trips to the GLR was assigned to the corridor network by 
using an all-or-nothing assignment (10). The trip table represented 1-way summer 
recreational trips from zone of residence to zone of main destination. On the basis of 
the peaking and modal characteristics of the trips reported in the telephone home­
interview survey, the assigned trips were factored to represent the peak nondirectional 
vehicle-travel flow on an average weekend day in July or August. Figure 7 shows the 
resulting estimated 1970 recreational traffic flow pattern for Wisconsin. 

An important aspect of the entire recreational travel simulation process was the 
testing of the link assignments. The usual statistical accuracy criteria could not be 
applied directly because of a lack of traffic count data for recreational travel. As an 
alternative, a series of comparisons were made between the assigned link volumes and 
the total traffic counts at cut lines defined by selected automatic-traffic-recorder sta­
tions in each of the 3 states. 

A total of 87 stations located on the Interstate Highway System and the state highway 
systems were identified as being compatible with a particular link of the corridor as­
signment network. The average Saturday and Sunday volumes for July and August then 
were averaged for each station and compared with the corresponding link volumes for 
an average weekend day in July and August. The results of the cut-line analysis re­
vealed that the assigned link volumes generally varied from 5 to 60 percent of the total 
traffic count at the automatic-traffic-recorder stations. Those links representing 
routes with a high functional classification tended to have a higher percentage of recrea­
tional traffic than did other corridors offering a lower level of mobility, which supports 
the assumption that recreationists want to minimize the travel costs incurred in reach­
ing their final destination. 

Some of the assigned link volumes in the extreme northern part of the region were 
relatively low because travel to Canada was not incorporated in the model. Inspection 
of traffic-flow maps for the region revealed sizable volumes of traffic on routes that 
lead directly into Canadian provinces. Subsequent modeling and assignment of these 
trips would increase the percentage of recreational traffic along these corridors to the 
expected higher levels. 

APPLICATION OF THE SIMULATION MODEL 

Although the cut-line analysis was quite subjective, the recreational travel simulation 
model was considered to offer a reasonable level of accuracy for system-level corridor 
planning purposes in the GLR. Furthermore, because the cross-classification trip­
production models and the multiple regression zone trip-attraction models are sensi­
tive to the level of service provided by the regional transportation system, analyses can 
be made of the impact of alternative transportation investment and pricing policies on 
levels of recreational travel demand. When analyzing specific highways within a cor­
ridor, one can make the corridor flow proportional to parallel highways through the use 
of travel-time diversion curves. However, these flows will reflect only overnight 
recreational travel from place of residence to point of main destination and return. 

An additional use of the corridor flow data is in the analysis of the direction and 
magnitude of external traffic entering and leaving a given local study area. This can 
be of aid in the planning and development of major thoroughfares that provide access 
to prominent recreational attractions. However, the trip-attraction models were de­
veloped by using synthesized trip-end estimates for the established zones. This ap­
proach was followed because the telephone home-interview survey procedure could not 
provide a sufficient sample of trips for direct expansion to total trip attractions. 
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Although measures of privately operated recreational attractions, quality of recreational 
facilities, or degree of crowding within the county-level zones could not be included, 
trip-attraction forecasts nevertheless can be adjusted subjectively to account for such 
factors. 

CONCLUSION 

The experience gained during the course of this study indicates that the application of 
traditional urban transportation planning methods can offer a workable approach to the 
analysis of statewide recreational travel. However, additional research is needed in a 
number of areas. For example, the most efficient methods of collecting recreational 
travel data need to be established. This problem is related closely to the need to achieve 
a better understanding of recreational travel behavior, especially trip frequency and 
choice of destination. Little is known about the role played by promotional campaigns, 
degree of crowding, and quality of recreation in attracting travelers to various locations. 
And how recreational and nonrecreational travel models can be integrated to provide a 
composite view of total statewide travel patterns needs to be established. 
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DISAGGREGATE MULTIMODAL MODEL FOR 
WORK TRIPS IN THE NETHERLANDS 
Moshe Ben-Akiva, 

Massachusetts Institute of Technology and Cambridge Systematics, Inc.; and 
Martin G. Richards, Buro Goudappel en Coffeng, b.v., Netherlands 

This paper describes a disaggregate modal-choice model with 6 travel 
modes (walking, bicycle, moped, car, bus, and train) for work trips. The 
data used in the study were from 2 communities adjacent to Eindhoven, 
Netherlands. A number of alternative model specifications were tested, 
and the results of these tests were analyzed. The model specification that 
was considered to be the most satisfactory overall is based on treating in­
vehicle travel time as a generic variable and out-of-vehicle travel time as 
a series of modal-specific variables. Out-of-pocket travel costs were 
found to have no significant influence on modal choice. Although a number 
of socioeconomic variables were tried, the only ones included in the most 
satisfactory model were 3 vehicle -availability variables (car, moped, and 
bicycle) . Analyses of the coefficients estimated in a number of different 
subsamples of the main sample showed that the marginal decreases in the 
standard errors of the coefficients were very small for samples containing 
more than 250 observations. A simple test of the most satisfactory model 
estimated as an aggregate predictive model indicated that effects of the 
theoretical problems of using a disaggregate model with aggregate data 
can be minimized by use of suitable market stratification. 

• THIS PAPER presents some of the results of a study to develop disaggregate, be­
havioral travel demand models in the Netherlands. The general disaggregate modeling 
methodology and the multinomial logit model used in this study are described in detail 
elsewhere (1, 3, 4) and will not be repeated here. The purpose of this paper is to de­
scribe the mode.IS that were developed for work trips. 

The models predict the short-term modal-choice behavior of a worker; residential 
location, work place, and automobile ownership are considered as predetermined. The 
models, therefore, predict the choice of travel mode fol' a given work trip . Other 
choices that received some attention in this study were between (a) a single trip to work 
and a double work chain that is taken by wo1·kers who go home for lunch and (b) the 
choice of both destination and mode for shopping trips (3, 4, 13). 

The urban transportation scene in the Netherlands is- characterized by the number of 
modes available and in common use; bus, car, bicycle, moped, and walking all play a 
significant part. In the larger urban areas, the train also is used for intraurban trips. 
In Amsterdam, The Hague, Rotterdam, and Delft, there is an extensive streetcar net­
work; the streetcar network in Rotterdam is supplemented by a metro. In 1966, 9.4 
percent of all weekday trips in the west of the country were made by public transport. 
Buses and streetcars accounted for 7.6 percent, and trains accounted for 1.8 peTcent 
(7). Although 10. 7 percent of all trips made within the 4 major urban areas were by 
bu s or streetcar, only 1.6 percent of all weekday trips made in the other urban areas 
were by public transport. In these other urban areas, bicycle and moped predominated 
and accounted for 55.6 percent of all weekday trips. Even within the 4 major urban 
areas, bicycle and moped were used for 35. 7 percent of all trips. 

The bicycle is a well-established and well-known Dutch phenomenon. The moped is 
more recent, and the number in use has doubled between 1960 and 1971. The moped is 
a motorized bicycle with an engine of not more than 50-cm3 capacity; it ca11 be r idden 
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by anyone 16 year s old or older . Officially, mopeds are limited to 30 km/ h within 
built -up areas and 40 km/h elsewhere . In practice, these speed limits are not enforced. 
Under congested urban conditions, because mopeds have a high degree of maneuver­
ability, journey times of mopeds are considerably shorter than those of bus and equal 
to those of car. Passengers are allowed to be carried, and the Dutch Central Bureau 
of Statistics estimated that, in 1971, mopeds were used for 9. 77 million passenger-km; 
private cars were used for 78.4 million passenger-km (5). Thus a conventional binary 
modal-split model for car and public transport clearly has only limited usefulness, and 
the bicycle, moped, and walking modes also must be modeled explicitly. 

THEORETICAL MODEL 

The choice-of-mode-to-work model explains the conditional probabilities of choosing a 
mode of travel for the work trip given residential and employment locations and given 
that a trip is made. Thus the dependent variable can be denoted as follows: 

P(m:Mt) (1) 

or 

Pt (m) (2) 

where 

m = an alternative mode, and 
Mt = set of available modes for traveler t. 

The logit model predicting this probability is written as 

eVn11 

P(m :Mt) = :E ev .. ·, (3) 

m'€M1 

where v.1 is the utility of mode m to traveler t for the work trip and can be expressed 
in the general form 

V.1 = V. (z., St) (4) 

where 

z. =a vector of characteristics of mode m, and 
S1 = a vector of socioeconomic characteristics of traveler t. 

v. 1 is assumed to be a linear function in the parameters. 
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V.t=X:,t9 

K 
= I: x.tk ek 

k=l 

109 

(5) 

x.t = a K x 1 vector of finite functions constructed from the varioos z. and St vari­
ables and different from one alternative to another = (X,,u, x.t2, ... , XmtK), and 

e =a K x 1 vector of coefficients to be estimated for each model= (01, 92, ... , eK). 

If a variable appears only in the utility function of mode m, then it is a mode-m­
specific variable that takes a value of 0 in all other modal utilities. If a variable ap­
pears in the utility function of all modes, then it is a generic variable. The value of a 
generic variable must not be equal for each alternative (that is, each mode) for all ob­
servations, or, mathematically, this variable is canceled out. 

DATA 

The data for the estimation of the models were taken from a 1970 home-interview travel 
survey conducted in Eindhoven, the fifth largest city in the Netherlands (1970 population: 
190,000), and 4 adjacent municipalities : Best, Veldhoven, Geldrop, and Son and Breugel 
(2, 12). One particularly relevant cbaracteristic of these data was that the origin­
c1estri1ation (O-D) data had been coded to a 10-m rectangular coordinate system. This 
made identifying the precise locations of the 0-D addresses possible. For this study 
only, the data for residents of Best and Son and Bruegel were used. Son and Breugel 
(1970 popult'l.tion: 10,800) is a medium- and high-income area with bus but no train ser­
vice to Eindhoven; Best (1970 population: 16,500) is a low-income area with both rail 
and bus links to Eindhoven. 

The trip and socioeconomic data available from the survey were supplemented by 
transportation level-of-service data collected for this study. Level-of-service data 
were derived by manually locating each pair of home and work addresses on large-scale 
plans and by using a variety of information sources including original measurements. 

The sample used for estimation was limited to home-work-home chains as opposed 
to simple home-work trips. This was done to minimize the influence of other choice 
considerations such as use of car for business purposes during the day. The sample 
included 390 observations of a single home-work-home chain during the day. 

For model evaluation and practical considerations, the sample was divided into 2 
different sets of subsamples. One was a random division into 2 equal groups based on 
whether the reference number of the household was an odd or an even number; these 2 
groups were coded SBBl and SBB2. The other was a geographic division into Son and 
Breugel (SB) and Best (B). The total set of data was coded SBB. This division was 
intended to allow evaluation of model stability, by comparing the 2 random subsamples, 
and geographic stability. 

The household and personal socioeconomic data were examined to determine whether, 
on the basis of household vehicle ownership and possession of a driver's license, car, 
moped, or bicycle could be r egarded as alternative modes. If no vehicles were owned 
in any of the 3 classes (car, moped, bicycle) then that mode was assumed not to be a 
valid alternative. Similarly, if the individual was not in possession of a valid driver's 
license for cars, even if a car was available within the household, then car was not 
considered to be a valid alternative. (Only car driver was considered as an alternative; 
car passengers were excluded.) If a destination was more than 2 km away, walk was 
not considered a relevant alternative mode. Train was considered relevant only from 
Best to Eindhoven. Bus was not considered a relevant alternative for work trips within 
Son and Breugel because no such trips by bus were observed. 
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Table 1 gives the distribution of the chosen mode for work trips in the SBB sample. 
This is compared with the moda l split of weekday trips fo r all purposes in t he west of 
the Netbel'lands ( 7) . 

VARIABLES USED IN THE MODELS 

The explanatory variables used in the work modal-choice models are of 2 types: level­
of-service and socioeconomic variables . We have denoted the variables by abbrevia­
tions. Table 2 gives a list of the variable codes and their descriptions. The following 
are the code prefixes and what they represent: 

Prefix Meaning 

B Bus 
BF Moped 
c Car 
F Bicycle 

Level-of-Service Variables 

Prefix 

PT 
T 
TW 
w 

Meaning 

Public transit 
Train 
Two-wheel vehicle 
Walking 

Three level-of-service variables were used in the models. 

1. IVTT represents in-vehicle travel time (in minutes). For walking trips, IVTT 
is always O; for all mechanical modes it is the time spent in or on the vehicle. 

2. OVTT represents out-of-vehicle travel time (in minutes). For walking trips, 
OVTT is the total walking time of the trip. For car, bicycle, and moped, it is denoted 
as POVTT, which is defined as the time taken to walk to and f:rom the parked vehicle, 
bicycle, or moped as well as to park and unpark. Bus and train OVTT consists of 2 
parts: WSOVTT and SOVTT. WSOVTT is defined as the time spent walking to and from 
the bus stop or station. SOVTT is the time spent at a bus stop or station as well as in 
transferring from a bus to a train or vice versa. 

3. OPTC represents out-of-pocket travel cost (in Dutch cents). For walking and 
bicycle trips, OPTC has a value of 0. For car and moped trips, it has a value equal 
to fuel costs in keeping with the traditional expectations of perceived motoring costs; 
no parking charges were included. For bus and train, OPTC equals the costs of the 
fares. 

Socioeconomic Variables 

Seven socioeconomic variables were used in the models. 

1. HHINC represents annual household income. Annual income data were cod!=!d ac­
cording to the following 6 classes (in guilders): (a) less than 5,000, (b) 5,001 to 25,000, 
(c) 10,001to15,000, (d) 15,001 to 20,000, (e) 20,001 to 25,000, and (f) more than 25,000 . 

2. PER represents number of persons in the household 5 years old or older. 
3. AOD represents number of private cars and noncommercial vans reported as 

owned by the household divided by number of licensed drivers in the household. AOD 
was not permitted to have a value of more than 1.0. 

4. BOP represents number of bicycles reported as owned by the household divided 
by number of persons 5 years old or older in the household. 

5. MOA represents number of mopeds reported as owned by a household divided by 
number of persons 15 years old or older in the household. 

6. HHPOS represents position in household. This variable equals 1 for head of 
household and 0 for others. Because the purpose of this variable in the modal-choice 
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model was to represent car availability, it also was assigned a value of 1 for adults 
with drivers' licenses who were not heads of households if there was perfect car avail­
ability, that is, if AOD for that household was equal to 1.0. 

7. OCC represents occupation of traveler. This was used as a simple dummy vari­
able taking a value of 1 for professionals, managers, and executives and 0 for others. 

A number of other variables available from the original data files, such as age and 
sex, were considered as was a more detailed description of the variable OCC, but these 
were excluded during the course of the work because of deductive considerations or 
simply because of the limited number of different specifications that could be estimated. 

Socioeconomic variables do not vary across alternatives. Because of the form of the 
model, these variables somehow must be transformed either by combining them with 
other variables or by making them alternative-specific (that means including them in 
the utility function of some modes and not in others or allowing their coefficients to 
vary across modes). 

Modal Constants 

Modal constants have a totally different function than the other variables have. If the 
variables included in the modal utility functions fully explain modal-choice behavior, 
then the modal constants, or more generally, the pure alternative effects, should equal 
0. Thus, with a perfect model specification and with perfect data, it can be argued that 
no constants are necessary. However, estimating a model without constants is not 
recommended in practice because the estimated values of the coefficients of the vari­
ables included could be seriously affected if those variables do not explain fully the ob­
served behavior. The constants therefore represent the effect of those variables that 
influence modal choice but are not included explicitly in the model. The formulation of 
the logit model is such that constants have to be alternative-specific, or, in this case, 
modal-specific. 

If we have reason to believe that those variables that should have been included in 
the model to make it complete were excluded and have different values for different 
situations, then the values of the constants also will differ. Under such circumstances, 
the use of a model estimated on data for one area to predict behavior in another area, 
at a different time, or for a different socioeconomic group may be questionable. In a 
modal-choice model, the modal constants partially represent travelers' evaluations of 
level-of-service variables, such as reliability, comfort, privacy, and convenience, 
which are either difficult or impossible to measure, and unobserved preferences of 
travelers. An attempt was made in this study to account for the pure alternative ef­
fects through the introduction of various modal-specific socioeconomic and vehicle­
availability variables that usually could be expected to be highly correlated with the un­
observed variables. The exclusion of constants then was considered acceptable if the 
coefficients of the various level-of-service variables were not affected significantly. 

In a model with a maximum of 6 alternatives, only 5 (alternative-specific) constants, 
or coefficients of a given socioeconomic variable, can be identified. The walking mode 
therefore was used as the base alternative and the coefficients of modal-specific vari­
ables, such as income, should be interpreted relative to the walking mode. The con­
stants and the coefficients of socioeconomic variables introduced for the public transit 
modes were combined for bus and train primarily because of the small number of trips 
by both of these modes. 

ALTERNATIVE SPECIFICATIONS 

The initial estimation runs were deliberately restricted to rather simple specifications 
and were initially done with only half of the total sample (SBBl) because level-of-service 
data for the full SBB sample were not available until later in the study. 

The results of these initial runs indicated that OPTC (whether or not it was divided 
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Table 1. Chosen modes. 

Table 2. Summary of 
variable codes. 

Table 3. ·coefficients 
and standard errors of 
in-vehicle travel time 
estimated for SBB 1 
sample. 

Work Trips in Son and Weekday Tripe 
Breugel and Best Sample in West of the 

Netherlands 
Mode Percent Observations (percent) 

Car 
Bicycle 
Moped 
Bus (and 

streetcar) 
Train 
Walk 
Other 

Code 

BFCON 
BFHHINC 
BPHlllNC/PER 
BFMOA 

BFOCC 
BFOVTT 
CAOD 

CHHINC 
cocc 
COVTT 
FBOP 

FCON 
FHHINC 
FHHINC/PER . 
FOCC 
FOVTT 
HHINC 
HHINC/PER 

IVTT 
OPTC 
OVTT 
POVTT 
PT CON 
PTHHINC 
PTHlllNC/PER 
PTOCC 
SOVTT 
TWOCC 
WOVTT 
WSOVTT 

40 
28 
20 

5 
3 
4 
-

156 
108 

79 

21 
11 
15 
-

Description 

Constant 
Household income 

23 
30 
11 

8 
2 

22 
4 

Houru!hold 1ncanu1 divided by number of persons 
Mo1)~ owno.r:tiMp (number of mopeds divided by 

number of persons 15 years old or older) 
Occupation 
Total out-of-vehicle travel time 
Car availability (number of cars divided by number 

of licensed drivers) 
Household income 
Occupation 
Total.siut-of-vehicle travel time 
Bicycle ownership (number of bicycles divided by 

number of persons 5 years old or older) 
Constant 
Household income 
Household income divided by number or persons 
Occupation 
Total out-of-vehicle travel time 
Household income 
Household income divided by number of persons in 

household 
Jn-vehicle travel time 
Out-al-pocket travel costs 
Total out-of-vehicle travel time 
Parking out-of-vehicle travel time 
Constant 
Household income 
Household income divided by number of persons 
Occupation 
Waiting and transfer time 
Occupation 
Walking time 
Walking time to and from bus stop or station 

standard 
Mode Coefficient Error Mode Coefficient 

Car -0.0997 0.0584 Bus -0.759 
Bicycle -0.0995 0.0258 Train -0.0881 
Moped -0.1273 0.0516 

Alternative to Which Applicable 

Moped 
Moped 
Moped 

Moped 
Moped 
Moped 

Car 
Car 
Car 
Car 

Bicycle 
Bicycle 
Bicycle 
Bicycle 
Bicycle 
Bicycle 

All except walking 
Car, moped, hue, and train 

Car, bicycle, and moped 
Bus and train 
Bus and train 
Bus and train 
Bus and train 
Bus and train 
Bicycle and moped 
Walking 
Bus and tram 

standard 
Error 

0.0297 
0.0580 

by income) had a small positive coefficient, which was not significantly different from 
0. This means that OPTC does not significantly influence modal choice, at least in this 
case. This result corresponds with a deductive assumption made in a modal-choice 
study with data from Amsterdam and Rotterdam (8) in which OPTC was assumed to 
have no influence on the choice of whether to drive a car to work in existing Dutch 
urban transportation conditions. The results obtained from this study could, however, 
be explained by the small differences between the costs of the different modes because 
of the generally low level of transport costs and the relatively short length of the trips 
in the sample. 

Previous modal-choice models have tended to introduce level-of-service character­
istics as generic variables (1, 6, 10). In this study, this practice was not necessarily 
justified for the various components of OVTT. This is one of the few studies ever con­
ducted with totally disaggregate data (data in which the home and work addresses could 
be located precisely), and thus the walking time to and from bus stops or stations could 
be appraised accurately. Parking time, however, could only be estimated because no 
information was available on the location of the parking place; waiting and transfer 
times also could only be estimated. Thus the different components of OVTT were es-
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timated with varying degrees of reliability; aggregation to give total OVTT therefore was 
avoided in most of the specifications tried. The work by Stopher, Spear, and Sucher 
(14) on the measurement of inconvenience in urban travel suggests, however, that a 
division of OVTT into its various components would be preferable to aggregation into a 
single variable. 

An exploratory run on the SBBl sample in which IVTT was used as a modal-specific 
variable indicated that IVTT reasonably could be applied as a generic variable because 
little difference was found between the modal-specific coefficients as shown by the data 
given in Table 3. 

From the results of some of the early models estimated, HHPOS and OCC were ob­
served to have no significant influence on modal choice for the sample of data used for 
this study. 

In general, the variables were introduced into the modal utility functions in a linear 
form. Only in a few cases was an attempt made to explore nonlinear finite functions of 
the variables; this was done with the time variables and AOD, which was only used as 
a car-specific variable CAOD. For the time variables, a natural log transformation 
was tried. For the CAOD variable, 2 finite .functions were tried; one was a product of 
CAOD and HHINC, and the other was the product of CAOD and the natural log of IVTT 
by car. 

The estimation results for the alternative specifications tried with the full SBB 
sample (390 trips) are given in Table 4; models 5 to 14 are based on the same specifi­
cation for the level-of-service variables. The differences among models 5 to 14 are in 
the specifications of the various alternative-specific constants and the socioeconomic 
and vehicle availability variables. Table 5 gives for the model data in Table 4 the en 
likelihood function of e = 0 (which corresponds to all alternatives being equally likely), 
L *(O), and the en likelihood function of e = e, L *(~)* where ~~is the vector of estimated 
coefficients. Table 5 also gives the statistic - 2 [L (O) - L*(a)J, which is asymptotically 
distributed as x2 with degrees of freedom equal to the number of coefficients . p2 is a 

measure of goodness of fit; it is equal to 1 - L**(o ) , or the ratio of the explained en 
L (~ ) , 

likelihood to the total en likelihood, and it lies b~hveen 0 and 1. p2 is p2 adjusted for 
degrees of freedom. 

DISCUSSION OF ESTIMATED COEFFICIENTS 

Values of Estimated Coefficients 

The strongest deductive knowledge that we have about the estimated values of the coef­
ficients is on their signs. We expect that, with everything else held equal, a deterio­
ration in the level of service offered by any mode will reduce the probability of that 
mode's being chosen. Thus an essential requirement is that the utility of any one mode 
should decrease as the value of most level-of-service variables increases. (This is 
not the case, of course, with a level-of-service variable such as comfort if comfort 
was measured on a scale that increased with increasing comfort.) If a given level-of­
service variable enters a utility function only once, then, with the exception of some 
specific transformations, the coefficient of that variable can be expected to be negative. 
If, however, the variable is entered in more than 1 form, such as a simple variable and 
in a logarithmic t r ansformation, then it is possible t hat only 1 of the coefficients need 
be negative. Thus in model 3 (Table 4), for instance, the s um of a (-0.14 OVTT + 0.52 
enOVTT) decreases with increasing values of OVTT, if OVTT is greater than 3.5 min 
(OVTT was always greater than 3.5 in the data set used fo1· estimation); in fact, in this 
particular case, the coefficient of enOVTT was not significantly different from 0. This 
general requirement is satisfied in all the models estimated except for OPTC in every 
model in which it was included. Because the coefficient of OPTC was never found to be 
significantly different from O, OPTC was assumed not to have any significant influence 
on modal choice in this particular sample; therefore, OPTC was ultimately excluded. 

There are also some deductive expectations with respect to the relationships between 



Table 4. Estimation results of alternative specifications for SBB sample. 

Variable or Constant 

IVTT 
e.t JVTT 
OVTT 
"OVTT 
WOVTT 
POVTT 
COVTT 
FOVTT 
BFOVTT 
WSOVTT 
SOVTT 
OPTC/HH!NC 
CHH!NC 
CAOD 
CAODxHHlNC 
CAOD ' HHINC/ PER 
CAOn x 1111. IV'T'T 
co cc 
FCON 
FHH!NC 
FHH!NC/PER 
FBOP 
FOCC 
BFCON 
BFHHINC 
13 FHHINC/P ER 
BFMOA 
BFOCC 
TWOCC 
PT CON 
PTHHINC 
PTHHINC/ PER 
PTO CC 

IVTT 
b:IVTT 
OVTT 
2, QVTT 
WOVTT 
POVTT 
COVTT 
FOVTT 
BFOVTT 
WSOVTT 
SOVTT 
OPTC/ HHINC 
CHHINC 
CAOD 
CAQDxHHlNC 
CAOD < HHlNC / PER 
CAOD K 1-. JVTT 
cocc 
FCON 
FHH!NC 
FHH!NC/PER 
FBOP 
FOCC 
BFCON 
BFHHINC 
BFHHINC/ PER 
BFMOA 
BFOCC 
TWOCC 
PT CON 
PTHHINC 
PTHHINC/ PER 
PTO CC 

Model 1 

Stan-
Coeffi- dard 
cient 

· 0.0673 

- 0. 1193 

0.0066 

0, 5077 

Error 

0,0091 

0 .0172 

0 .0101 

0.4396 

0.3254 0.3514 

-0.7645 0. 3517 

1.66! 5 0,5976 

Mode l 8" 

Stan-
Coe rn- dard 
cient Error 

- 0 .0649 

-0,2527 
-0.2255 

-0, 1113 
-0.0834 

0 ,0071 
-0 .5764 

0 ,7721 

-0.1213 

-0 .5332 

0.8209 

0.0197 
0.0497 

-0.4594 

0.1066 

0.0105 

0.0535 
0. 1013 

0. 0220 
0.0341 
0.0113 
0.2616 
0.5034 

0.4928 

0 2421 

0 .2409 

0 .4537 
0.4537 

0.2696 

0.5097 

Model 2 

Stan-
Cue({i- dan.J 
cient 

-0.0757 

-0. 1676 

-0.3290 
-0,2501 
-0, 5141 
-0. 1206 
-0.0674 

l.1363 

Model 9 

Error 

0,0106 

0.0291 

0.0003 
0.1015 
0.1040 
0, 0210 
0, 0236 

0.0520 

Stan-
Coern - dard 
clent Erro r 

-0,0643 

-0.2511 
-0.2145 

- 0.1101 
- 0.0820 

0 0071 
- 0.5099 

0,7636 

-0. 5393 

- 0.0236 

-0.4553 

0.0102 

0.0530 
0.0907 

0.0213 
0.0340 
0.0113 
0.2559 
0.5024 

0.2408 

0.2406 

0.2690 

Model 3 

Stan-
Coetli- dard 
cient 

-0.0672 
-0.0343 
-0, 1419 

0. 5106 

0,0006 

0,2400 

Error 

0.0116 
0,5016 
0.0346 
0. 7366 

0.0115 

0. 1110 

0 74R6 0. 6009 

-0.3064 0.4712 

1.6904 0, 8316 

Model 10 

Stan­
Coem- dard 
cient Error 

-0.0644 

-0.2201 
-0. 2539 

-0, 1041 
-0.0936 

0.0210 
-0 5066 

1.5314 

-0. 6860 

1. 5790 

-0. 0091 

1.0492 

0.0103 

0.0527 
0_0920 

0.0214 
0.0345 
0.0119 
0.2567 
0.5444 

0.2440 

0,3841 

0. 2530 

0,7457 

Model 4 

l..'oetl1 
cient 

-1 ,5639 
-0. 1610 

0.0304 

0.4966 

Stan­
dard 
Error 

0.3971 
0,0234 

0, 0100 

0. 1162 

1.4463 0. 5795 

0 ,3563 0-3673 

3.1672 0.7681 

Mode l 11 

Stan-
Coeffi- dard 
cient Error 

-0.0665 

- 0.12 57 
- 0.3559 

-0.0907 
-0,0853 

0,0109 

2. 1651 

1.4690 

2.2659 

0.0094 

0.0266 
0.0706 

0.0193 
0 0306 
0.0113 

0. 4753 

0.3399 

0. 5556 

Model 5 

Stan-
coern- tl:inl 
clent 

-0.0644 

· 0,1661 
-0 .2933 

-0.1195 
-0.0962 

0.0081 

0.2435 

Error 

0.0101 

0.0321 
o.0794 

0.0218 
U.Ua44 
0 0107 

0_1416 

0.0286 0. 1136 

-0.2562 0, 1081 

0. 1099 0 1823 

Model 12 

Stan-
Coeffi- dard 
c ient Erro r 

-0.0715 

· 0.1333 
· 0.3590 

-0_1034 
-0,0511 

2.2928 

1.3272 

-0.0132 

0.0090 

0.0266 
0.0795 

0.0193 
0.0216 

0.4709 

0. 3263 

0. 5375 

Model 6 

Stan-
Cueffi- Uard 
cient 

-0. 0732 

-0. 1545 
-0.2372 

-0,1149 
-0.0887 

0.0119 

0.2963 

Error 

0.0101 

0.0293 
0.0727 

0.0209 
0.0329 
0 0105 

0.4163 

0.2400 o.3527 

-1.1043 0. 3626 

0, 1670 0.4505 

Model 13 

stan-
Coerti- dard 
cient Error 

-0.0721 

- 0. 1095 
- o 2675 

-0. 1269 
-0.0824 

2.2025 

1.4936 

0.2201 

1. 7404 

0. 0092 

0 0201 
0 0919 

0.0230 
0.0209 

0. 4690 

0.3410 

0. 5527 

0.9155 

Model 7 

Stan-
coeffi- dard 
cient 

-0,0664 

-0.2535 
-0.2314 

-0. 1131 
-0.003 6 

0.0067 
-0. 5690 

0 7647 

Error 

0.0107 

0.0535 
0. 1010 

0.0222 
0,0341 
0.0113 
0.2616 
0. 5046 

-0. 5294 0.2422 

0 3037 0. 5665 

-0.0109 0.2411 

-0.1390 0.6262 

-0 4557 0.2707 

0.1654 0,6759 

Mode l 14 

Slan-
Coe ffi- dard 
cient Error 

-0.0600 0.0093 

-0.1192 0.0295 
-0. 3260 0,0946 

- 0.1136 0,0234 
-0.0856 0.0288 

l.0056 O. IBOO 

J.4340 0.3211 

0.6609 o. 5536 

1.5057 0.9252 

•3 different 11ersions of model 8 were estimated, each of which incorporated only 1 of the 3 11ariables COCC, TWOCC. and PTOCC; atl ot lhe coefficients, except lor those of TWOCC and PTOCC, and standard 
errors are those for the model in which COCC wasjncluded. 

Table 5. Likelihood functions and other data 
for models in Table 4. 

Model 

l 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

L•(O) 

-435.13 
-435.13 
-435.13 
-435.13 
-435.13 
-435.13 
-435.13 
-435.13 
-435.13 
-435. 13 
-435.13 
-435.13 
-435.13 
-435.13 

L•(S) 

-272.81 
-271.69 
-271.17 
-292.60 
-269.14 
-272.00 
-266.55 
-266.03 
·266.06 
-257.59 
-260.69 
-270.10 
-266.29 
-260.54 

x' 

324.63 
326.06 
327.92 
285.05 
331.97 
326. 10 
337. 16 
336.59 
366.53 
355.07 
332.60 
330.04 
333.60 
349.17 

p' 

0.37 
0.38 
0.30 
0.33 
0.30 
0.37 
0.39 
0.39 
0.39 
0.41 
0.38 
0.30 
0.30 
0.40 

p' 

OH 
OH 
OH 
on 
0.37 
OH 
on 
0.30 
on 
ow 
on 
OH 
0.30 
ow 
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certain coefficients of level-of-service attributes. For example, one would expect the 
coefficient for an OVTT var iable to be greater than the coefficient for IVTT. In all the 
specifications tried, IVTT was, indeed, found to have a lower coefficient than any of the 
OVTT variables; the coefficients of walk as a mode WOVTT and WSOVTT are almost 
equal and have approximately twice the value of the coefficient for IVTT. Thus walking 
appears to be twice as inconvenient as riding in or on a vehicle. This relationship cor­
responds to the usual assumption used to create generalized costs in Wilson-type models 
in the United Kingdom, where the coeffi cient fo r excess time is us uall y taken to be twice 
that for IVTT (9). Wait time at a bus s top or station appears to be more inconvenient 
than IVTT but not so bu1·densome as walki ng. This is a departure from t he us ual as­
sumption previously mentioned as well as from U.S. studies in which the coefficient for 
wait time usually is taken to be 2.5 times that of in-vehicle time (11). However, the 
relatively low coefficient of wait time in this sample might be attributable to a highly 
reliable transport service and therefore to an overestimate of the value of wait time. 
It also could reflect other errors in estimating the wait times used in this study. It 
also should be noted that, compared with the coefficients of other level-of-service var­
iables, the coefficient for SOVTT has a relatively large variance. This probably is due 
to the low variability of headways in the public t ransit services available to the indi­
viduals in the sample (that is, low variability in SOVTT values). 

Expectations with respect to the values of both the constants and the coefficients of 
the socioeconomic variables are more complicated and rely on very limited or non­
existent past experience. One particular problem encountered in the design of the study 
was the limited availability of results from previous studies using similar models es­
pecially for European circumstances. 

If everything is equal, one would expect that as car ownership increases the proba­
bility of choosing car as the mode of transport would increase and thus that the proba­
bility of choosing other modes would decrease. One would therefore expect that the 
coefficient for CAOD would be positive and, for similar reasons, that the coefficients 
of both bicycle and moped availability also would be positive. 

Household income and modal constants appear in the utility function of more than 1 
mode , and, therefore, interpretation must r ela te to their r elative values and not their 
absolute values. In model 5 (Table 4), for example, the relative values of the coeffi­
cients of household income indicate that, as household income increases and everything 
else is held constant, the increase in the probability of using car is relatively greater 
than that of using other modes, and the probability of choosing a moped will decrease 
relative to all other modes . Between these extremes are (a) public transit, which cle­
c1·eases in relation to car but increases in relation to the other modes; (b) bicycle, 
which decreases relative to car and public transit a nd increases r elative to walking 
and moped; and (c) walking, which is a base mode. Thus the probability of walki ng in­
creases relative to moped but decreases relative to all other modes; this could reflect 
the socioeconomic status of a moped as a transit mode. 

The modal constants and socioeconomic variables could be interpreted as represent­
ing the pure preferences for the alternative modes if the utility derived from the level­
of-service characteristics was equal across all modes. A direct interpretation of this 
kind i s easier when all the level-of-s ervice cha ract er istics are i ntroduced as generic 
variables . For example these variables in model 1 (Table 4) imply that, if IVTT and 
OVTT are equal across modes, t hen an individual with perfect car availability (AOD = 1) 
will rank the modes in the following order: public transit, car, bicycle, walking, and 
moped. The place of public transit in this pure ranking appears to be too high. However, 
the pure ranking for a person with all modes perfectly available, which is given by 
model 13 (Table 4) (which represents an improved specification), is: car, public tran­
sit, bicycle, moped, and walking. This preference ordering agrees more closely with 
deductive expectations; this ranking also is implied by model 14 (Table 4), which was 
the last specification estimated with this sample and which we considered to have the 
most satisfactory specification of the models estimated. 
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Stability and Statistical Reliability of Estimated Coefficients 

The reliability and stability of the estimated coefficients can be observed in several 
ways including the relative magnitudes of the standard errors and the variability of the 
estimates across both different specifications and different subsamples. 

The magnitude of the standard errors of the estimated coefficients is relatively 
small (compared with the magnitude of the estimated coefficients) for the travel-time 
variables but is relatively higher for some modal constants and socioeconomic variables, 
particularly the moped-specific variables (Table 4). This also could be observed from 
the variability of the estimated coefficients of the same variables across different spec­
ifications. 

From Table 4, the coefficients of the travel-time variables are quite stable, in par­
ticular the coefficient of IVTT. On the other hand, some of the coefficients of the socio­
economic variables and the constants appear to be less stable. This pattern also was 
observed in the comparison of different subsamples. 

As recorded in the section on data, 2 types of subsamples were created from the SBB 
sample. One was a random division into SBBl and SBB2, a division that proved of value 
in the evaluation of the statistical stability of the estimated coefficients compared with 
the estimated values of the standard errors. The second was a division into 2 selected 
geographic subsamples, SB and B. This allowed a comparison of coefficients between 
2 different areas; differences between coefficients from the 2 areas were used to trace 
possible specification errors. We assumed that travel behavior in both areas is similar 
and, therefore, that a specification that has similar coefficients for both areas is supe­
rior to a specification with divergent estimates. 

Table 6 gives the estimation results for models 5, 13, and 14 for the different sub­
samples. From this table, one can see that the coefficients estimated for model 14 are 
quite stable between the SBB and B samples. The variability between the estimates of 
the coefficients for SBBl and SBB2 is considerably higher, but this can probably be at­
tributed to the fact that the standard errors are larger because of smaller sample sizes. 
This pattern of decreasing standard errors with increasing sample size for the 3 models 
and the subsamples as shown by the data given in Table 6 is shown in Figures 1, 2, 
and 3. These figures indicate that an increase in sample size beyond 300 observations 
does not reduce significantly the standard errors of the coefficients of most of the var­
iables. This pattern suggests that, for these models, a desirable sample size would 
be between 300 and 400 observations. 

To compare the stability of the estimated coefficients between 2 independent random 
samples, one would need at least 600 observations rather than the 400 observations 
available. Samples larger than 300 to 400 observations, however, might be necessary 
if more or other socioeconomic variables were to be included. With the existing sample, 
these have been found to have very large standard errors in contrast to coefficients of 
level-of-service variables for which reasonable levels of reliability at smaller sample 
sizes were achieved. 

Geographical comparison of the estimated coefficients between B and SB is not 
conclusive because of the small number of observations in the SB sample. However, 
the stability between SBB and B seems satisfactory in view of the fact that, although B 
is included in SBB, there are still significant differences between both the means and 
distributions of several of the explanatory variables. 

Table 7 gives likelihood functions and other data for the information in Table 6. 

ANALYSIS OF ALTERNATIVE SPECIFICATIONS 

The specification for model 14 appears to be the most satisfactory of all those tried. 
The reasoning leading up to this conclusion, as well as aspects of some of the other 
models estimated, is discussed in this section. 

As discussed in the section on alternative specifications, the formulation of the level­
of-service variables in models 5 to 14 seems to be superior to that used in models 1 to 
4. The coefficients of all the level-of-service variables in models 5 to 14 have the ex-



Table6. Estimation results for data sets for models 5, 13, and 14. 

SBB SBBl SBB2 

Variable or standard standard 
Model Constant Coefficient Error Coefficient Error 

PTHHINC 0.1099 0.1823 0.3866 0.3205 
FHHINC 0.0286 0.1138 0.3703 0.1777 
BFHHINC -0.2562 0.1081 0.0265 0.1711 
CAOD,HHINC 0.2435 0.1418 0.5316 0.2341 
lVTT -0.0644 0.0101 -0.0739 0.0155 
WOVTT -0.1661 0.0321 -0.1365 0.0526 
POV TT -0.2933 0.0794 -0.2356 0.1225 
WSOVTT -0.1195 0.0218 -0.0887 0.0306 
SOVTT -0.0962 0.0344 -0.1803 0.0650 
OPTC/HHINC 0.0081 0.0107 0.0278 0.0175 

13 IVTT -0.0721 0.0092 -0.0636 0.0146 
WOVTT -0.1095 0.0281 -0.1074 0.0494 
POVTT -0.2675 0.0919 -0.3036 0.1459 
WSOVTT -0.1269 0.0238 -0.0649 0.0331 
SOVTT -0.0624 0.0269 -0.1121 0.0516 
CAOD 2.2025 0.4690 3.4796 0.6296 
FBOP 1.4936 0.3410 2.3249 0.5569 
BFMOA 0.2261 0.5527 1.3823 0.8503 
PT CON 1.7404 0.9155 1.2698 1.5645 

14 IVTT -0.0600 0.0093 -0.0679 0.0148 
WOVTT -0.1192 0.0295 -0.1210 0.0532 
POVTT -0.3260 0.0946 -0.3753 0.1580 
WSOVTT -0.1136 0.0234 -0.0701 0.0317 
SOVTT -0.0856 0.0288 -0.1167 0.0511 
CAODx 01lIVTT 1.0056 0.1800 1.5746 0.3570 
FBOP 1.4348 0.3211 2.2351 0.5483 
BFMOA 0.6689 0.5536 1.8694 0.8818 
PT CON 1.5057 0.9252 1.0927 1.5822 

Figure 1. Standard error of estimated 
coefficients and sample size for model 5. ~ 
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Figure 2. Standard error of estimated 
coefficients and sample size for model 13. 
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Table 7. Likelihood functions and Number or 
other data for models in Table 6. Model Data Set Observations L'(O) L'(B) x' p' p' 

SBB 390 -432.13 -269. 14 331.97' 0.38 0.37 
SBBI 182 -201.98 -109.53 184.89' 0. 46 0. 44 
$882 208 -233.15 - 149.72 166.86' 0.36 0.34 
B 241 -282.25 -186.92 190.65' 0.34 0.33 
SB 149 -152.88 -73,09 159.57' 0. 52 0. 50 

13 SBB 390 -435.13 -268.29 333 , 68b 0.38 0.38 
SBBI 182 -201.98 -106.2 6 191.4-5b 0.47 0.46 
$882 208 -233. 15 - 153. 41 159.47b 0.34 0.33 
B 241 -282.25 -188.96 1B6.58b 0.33 0.32 

14 SBB 390 -435.13 -260.54 349.17° 0 . 40 0.40 
SBBl 182 -201 ,98 -101 .43 201.11° 0. 50 0. 49 
SBB2 208 -233.15 -149.92 166.44° 0. 36 0.34 
B 241 -282. 25 -186.02 192.47° 0.34 0.33 
SB 149 -152.87 - 68.29 169 .18° 0.5 5 0. 54 

"Degrees of freedom = 10. bDegrees of freedom = 9 coegrees of freedom= 9. 

Table 8. Disaggregate prediction results. 

Pe rcentage or Shares 
Sample Type of 

Sample Size Data Walking Car Bicycle Moped Bus Train 

SBB 390 Predicted 2.75 40.01 27.60 21.43 5.66 2.54 
Observed 3,85 40.00 27 .69 20.26 5.38 2.82 

SBBI 182 Predicted 2.88 40.50 29. 13 19.10 5.55 2.85 
Observed 2.75 42.86 29 .67 18. 13 3.30 3.30 

SBB2 208 P redicted 2.65 39.57 26. 27 23.48 5.76 2.27 
Observed 4.81 37. 50 25.96 22.12 7.21 2 .40 

B 241 Predicted 3.03 31.93 31.29 22 .89 6.43 4 .11 
Observed 5.39 29.46 31.12 22.82 6.64 4.56 

SB 149 Predicted 1.95 53. 07 21. 64 18.92 4.42 
Observed 1.34 57.05 22.15 16.11 3.36 

Zones 100, 103, and 110 to 37 Predicted 0 44.92 6.96 14.09 15.03 18.99 
Eindhoven center Observed 0 48.65 2 .70 13.51 16. 22 18,92 

Zones 100, 103, and 110 to 74 Predicted 0 45.26 15. 50 24.92 ID. BO 3.52 
Eindhoven e lsewhere Observed 0 37.64 17.57 28.38 10.81 5,41 

Zones 200 and 210 to 19 Predicted 0 61.30 12.35 14.25 12.11 0 
Eindhoven center Observed 0 68.48 5.26 15.79 10.53 0 

Zones 200 and 210 to 52 Predicted 0 59.47 14.81 19.26 6.45 0 
Eindhoven elsehwere Observed 0 63.46 19,23 13. 41 3.65 0 

Zone 100 total 86 Predicted 2. 61 53.78 22.1 6 15.17 6. 28 0 
Observed 2.33 59.30 22.09 11.63 4.65 0 

Zone 210 total 23 Predicted 1. 61 49.43 26.15 21.72 1.09 0 
Observed 0 56.52 17 .39 26.09 0 0 

Table 9. Aggregate prediction Percentage ol Shares 
results. Sample Type or 

Sample Size Data Car Bicycle Moped Bue Train 

Best to Eindhoven, 46 Predicted 66. 85 8.43 20.37 2. 78 1.59 
zone 2 Observed 41.30 26.09 30.43 0 2.17 

Best to Elndhoven, 40 Predicted 60.35 4.48 17.83 6.98 8.45 
zone 3 Observed 45.00• 2.50 15.00 17.50 20.00 

Son and Breugel to 27 Predicted 64.03 8.95 25.22 1.78 
Eindhoven, zone 2 Obse rved 62. 16 18.92 13 . 51 5.41 

Son and Breugel to 25 Predicted 70.96 6.72 20.16 2 . 16 0 
Eindhoven, zone 3 Observed 64.00 8.00 20.00 8.00 0 
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pected signs (except for OPTC, which is not significant) as well as the expected relative 
values. Therefore, any preference among specifications 5 to 14 must be based on the 
behavior of the socioeconomic variables and the model constants. 

Models 5 and 6 have identical specifications except for household income, which was 
included in model 5 but replaced in model 6 by income per person. It would seem rea­
sonable that the pure modal preferences would be more closely related to the total 
household income rather than the average income per person after income pooling. Al­
though model 5 has a slightly better goodness of fit than model 6 has, the estimation 
results are by no means conclusive evidence that model 5 is, indeed, any better than 
model 6. However, this, together with the previous statement, caused us to consider 
model 5 superior to model 6. 

In models 7, 8, and 9, the car-specific variable CAOD x HHINC was split into 2 
separate variables CAOD and CHHINC. In addition, an attempt was made in models 7 
and 8 to introduce OCC as a variable (in the form of a modal-specific variable), but in 
neither model were any of its coefficients significantly different from 0. Model 9 was 
considered to be less satisfactory than model 5 because of the relatively larger variance 
of the coefficient of CAOD; this is probably attributable to a high level of collinearity 
between car availability and household income. 

The specification of model 10 includes the same variables as model 9 with the ad­
ditional variables bicycle BFOP and moped availability BFMOA. In model 10, however, 
the variances of the coefficients of the socioeconomic variables were large, and thus it 
appeared desirable to select only a subset of these variables for the following models. 
This was done in models 11, 12, and 13 in which only the vehicle-availability variables 
were included. These variables were selected because it seemed reasonable to assume 
that they have a greater direct bearing on modal choice than household income has. 
Furthermore, the coefficients of these variables in earlier models were more signifi­
cant than those of the income variables. 

Models 11 and 12 are identical except for OPTC, which was excluded from model 12. 
In model 13, a public transit constant PTCON was reintroduced. Because it is highly 
probable that the specification of model 12 was not perfect, and that, therefore, the 
absence of a public transit constant could considerably affect the values of the coef­
ficients of other variables, model 13 was considered the best of the series of models 
7 to 13. 

Thus far, therefore, model:;; 1 to 13 have been evaluated and models 5 and 13 have 
been selected as 2 of the best models. These 2 models represent 2 essentially alterna­
tive specifications of the socioeconomic variables. Model 5 is based on modal-specific 
income variables, and model 13 is based on modal-specific vehicle-availability variables. 
These 2 models also were estimated for the various subsamples and the results of these 
estimations are given in Table 6. A comparison of these 2 sections of Table 6 and a 
comparison of Figures 1 and 2 show that it is evident that model 13 is more stable 
than model 5. From a consideration of both goodness of fit and the significance of the 
coefficients, one can conclude that model 13 is superior to model 5. 

Examination of the variability of the estimated coefficients for the different sub­
samples of model 13 in Table 6, however, shows the coefficient of CAOD to be p~rticu­
larly unsatisfactory. Examination of the characteristics of the various subsamples 
showed that the coefficient of CAOD had a smaller value in those subsamples having a 
shorter average trip length and that it had a larger value in subsamples with a longer 
average trip length. It therefore seems reasonable to assume that, when a car is 
perfectly available to an individual, the longer the trip the more likely he or she 
is to choose the car. When a car is not perfectly available, and there is some degree 
of competition among different users of a car within a household, it would seem reason­
able to expect that those individuals making longer trips will tend to have priority in 
use of the car over those making shorter trips. Thus it seems reasonable to specify 
the coefficient of car availability as a function of trip length. If this is so, then it 
could be expected that this function will show a diminishing marginal effect with in­
creasing trip length and therefore the CAOD variable was multiplied by the natural log 
of IVTT by car. This change was implemented in model 14. 

A comparison of model 13 with model 14 (Table 6 and Figures 2 and 3) shows that 
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model 14 is superior to model 13 in terms of stability of the coefficients, significance 
of the coefficients, and goodness of fit. Thus, model 14 appears to have the most 
satisfactory specification of those models estimated and given in Table 4. 

PREDICTION TES TS 

'l\vo types of prediction tests were applied. The first was a disaggregate test designed 
primarily to determine how well the model fit the observed data. The second test was 
with aggregate data and was designed to test the applicability of the model for aggregate 
predictions. 

Disaggregate Predictions 

In disaggregate predictions, explanatory variables are used to predict individual modal­
choice probabilities. These individual probabilities are summed across a group of 
travelers and compared with the observed modal shares for the same set of individuals. 
When the group of travelers consists of the complete set of individuals used in the es­
timation of the model, this test can be viewed as a test of goodness of fit. However, 
the estimation procedure used in this study guarantees that, if a model specification 
includes a constant, the modal shares calculated in such a test will be perfect for the 
alternative to which that constant relates. For model 14, this implies that a disaggre­
gate prediction test with the complete data set used in model estimation will reproduce 
perfectly the total public transit share because PTCON was included. However, be­
cause no constant was used for any of the remaining 4 modes, this test is still meaning­
ful for the split between the 2 public transit modes and the 4 other modes. The results 
of this test are given in the first row of Table 8, and as has been stated, one can see 
that the split between public transit and the other 4 modes is reproduced perfectly. The 
results among the individual modes within these two sets, however, also are extremely 
satisfactory. 

To provide a thorough test of the model, one would ideally apply it to a second set of 
data not used in the model estimation. Unfortunately, because of budget and time con­
straints pertaining to this study, a second set of data was not available. Instead, the 
test was applied to several subsets of the data set used for model estimation; the re­
sults of these also are given in Table 8. The subsets used include the subsamples 
SBBl, SBB2, SB, and Band 2 other types of subsamples that were created. The first 
of these consisted of groups of individuals with a home address in a specific zone and 
the second was formed of groups of individuals with a home address in a specific zone 
and a work address either in the center of Eindhoven or elsewhere in Eindhoven. 

All the modal shares of these various subsets were predicted satisfactorily. The 
differences between the observed shares and the predicted shares are minimal for the 
larger subsets (more than 100 observations). For the smaller subsets, the relative 
differences between the observed and predicted shares are especially large for bicycle 
and moped. There is, however, a tendency for some mutual compensation here in that, 
when one share is overestimated, the other is usually underestimated. This means that 
the total share of bicycle and moped is more satisfactorily reproduced than the individ­
ual shares are. 

Aggregate Predictions 

In normal predictive work, disaggregate data are not usually available, and thus the 
model must be applied by using aggregate data. Simple substitution of group averages 
for the explanatory variables will result in a biased forecast of the average probability 
or share; this bias will disappear only if all individuals in the group for which predic­
tions are being prepared are identical in terms of the values of all the explanatory var­
iables. Between the 2 extremes of disaggregate predictions and use of averages for the 
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entire group in aggregate predictions, identifying a stratification scheme or system of 
market segmentation so that the aggregation bias can be assumed to be small and, within 
the context of the application, negligible is possible. 

Table 9 gives the results of aggregate predictions prepared with model 14 for 4 0-D 
pairs by using a very coarse zoning system. For this application of the model, all the 
travelers making a trip between any pair of zones were grouped together, and the av­
erage value of each variable for the members of that group was used. Furthermore, 
no account was taken of different sets of available modes for individuals in the group. 
The calculated shares are clearly not satisfactory in comparison with the observed 
shares. In particular, the share of car trips is significantly overestimated for the 
first 2 groups, which consist of people residing in Best. Although the car-share fore­
casts for the Son and Breugel groups are better, they are not satisfactory. The di­
vergence between the observed and predicted shares serves as a good illustration of 
the errors that can occur from simply taking averages for each individual variable and 
directly applying them in the model. 

In Son and Breugel, the majority of the residents are car owners; in Best, many 
families are without cars. Therefore, the model evidently performed better when there 
were high levels of car ownership than when there were lower levels of car ownership. 
Through the use of one set of average values of all variables, including CAOD, applied 
to all travelers, cars have effectively been made available to people for whom they were 
not available. 

The forecasting error can be reduced by a stratification of the travelers between 
any pair of zones. Of course, the ultimate stratification is that of complete disaggre­
gation, but this would also produce some prediction errors, the magnitude of which 
would depend on the validity of the model itself. The errors in the predictions given in 
Table 9 are therefore a combination of both disaggregate prediction errors and an ag­
gregation bias. Given a specific model, reducing the aggregate prediction error by 
attempting to reduce the aggregation bias is possible. 

In Table 10, the results of aggregate predictions are given for travelers between the 
same sets of specific zone pairs as were used for the work summarized in Table 9, but 
now it is stratified into those who are car owners and those who are not car owners. 
This sort of stratification is quite common in travel demand forecasting (15), and it is 
evident from the analysis of the differences in the errors of the predicted shares of car 
between Son and Breugel and Best that such a stratification scheme would improve the 
aggregate predictions. The improvement in the aggregate predictions that is due to 
stratification by car availability is shown by the data given in Table 11. Further strat­
ification by choice set (such as by moped availability) could be expected to lead to im­
proved aggregate predictions. The results given in Tables 10 and 11 can be considered 
acceptable in view of the coarse zoning system adopted and the consequential effects of 
this on the values of the level-of-service variables applied. Furthermore, for each in­
dividual group, there is also an error in the observed share, relative to the total popu­
lation, that is due to sampling. Because this error increases with decreasing sample 
size, the greater the number of the observed travelers is that is used to compute the 
observed aggregate share, the more meaningful the aggregate prediction tests are. 
Thus an adequate evaluation of the aggregate prediction errors can be undertaken only 
for those zone pairs with a high trip density, that is, those where the error in the ob­
served share could be assumed to be negligible. 

The disaggregate prediction tests have demonstrated that model 14 reproduces the 
average choice of individuals satisfactorily. The aggregate predictions have much 
more important implications with respect to the usefulness of the models because the 
model is tested in the same way as the way in which it will be applied generally. The 
aggregate modal-choice predictions based on a stratification of travelers into those 
with a car available and those without a car available can be considered satisfactory 
given the limitations of the data used for this test. This implies that the model can be 
applied usefully to aggregate predictions in transportation planning studies. 
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Table 10. Aggregate prediction results with market stratification by car 
availability. 

Per centage of Shares 
Car Sample Type of 
Available Sample Size Data Car Bicycle Moped Bus Train 

Yes Best to Eindhoven, 30 Predicted 81. 67 4.47 11.10 1. 73 1.03 
zone 2 Observed 63.33 13.33 23.33 0 0 

Best to Eindhoven, 29 Predicted 70.93 3.07 15. 59 5. B3 4.59 
zone 3 Observed 62.07 3.45 6.90 17.24 10.34 

Son and Breugel to 30 Predicted 74.10 6.00 18. 50 1.07 
Eindhoven, zone 2 Observed 76.67 20.00 3.33 0 

Son and Bruegel t o 21 Predicted 77.24 4.71 16. 71 1.29 
Eindhoven, zone 3 Observed 76. 19 4 .76 14.29 4. 76 

No Best to Eindhoven, 16 Predicted 0 22.69 68.81 5.56 2. 88 
zone 2 Obser ved 0 50.00 43. 75 0 6.25 

Best to Ei ndhoven, 11 Predict ed 0 12.00 35.36 21.09 31.54 
zone 3 Observed 0 0 36.36 18.18 45. 45 

Table 11. Aggregate prediction results with and without market stratification. 

Percentage of Shares 
Sample 

Sample Size Type or Data Car Bicycle Moped Bus Train 

Best to Eindhoven, 46 P r ediction without stratification 66.85 8. 43 20.37 2.7 8 1. 59 
zone 2 Prediction with stratHi cation 53 .26 10.81 31.17 3.06 1.67 

Observed 41. 30 26.09 30.43 0 2.17 

Best to Eindhoven, 40 Prediction wit hout s trat iri cation 60. 35 4.4 8 17.83 8.98 8.45 
zone 3 P red iction with st r atification 51.42 5. 53 21.03 10.03 12.00 

Observed 45,00 2.50 15.00 17.50 20.00 

CONCLUSIONS 

The modal-choice model for work trips described in this paper was probably the first 
attempt to consider the full variety of travel modes available in medium- and small­
sized Dutch communities where the conventional binary choice model for car and public 
transit that commonly is used is clearly not suitable. Although the models developed 
require further work before they could be considered standard operational production 
techniques, existing models could serve usefully in various transportation planning 
s tudies . 

A number of conclusions can be drawn from the models estimated. One is that the 
probability that anyone will choose a given mode is determined largely by factors other 
than the level of service offered by that mode. If a car is perfectly available to a 
traveler, then there is a very high probability that he or she will choose it regardless 
of the characteristics of the alternative modes. The policy implications of this as 
proposals for traffic restraint in urban areas increase, at least in Europe, are con­
siderable. The estimation results tend to confirm the general assumptions about the 
relative weights of IVTT and OVTT, although it would appear that there could be sig­
nificant differences in the evaluation of different types of out-of-vehicle travel time. 
IVTT would, on the contrary, seem to be viewed similarly for all modes. Travel costs 
do not significantly influence modal choice for the particular data set, nor do socio­
economic characteristics other than vehicle availability. 

It has been suggested previously that the estimation of disaggregate models requires 
fewer observations than does the calibration of aggregate models. Estimating the same 
model with different data sets tends to confirm this belief in that the marginal value of 
increasing the sample size above some 300 observations was found to be small. 

The transformation of disaggregate models to aggregate models for use as predictive 
models presents a number of theoretical problems. It would seem possible, however, 
that, for all practical purposes, the effects of the problems can be minimized by use 
of market stratification. 
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STRUCTURAL TRAVEL DEMAND MODELS: 
AN INTERCITY APPLICATION 
John B. Peers and Michael Bevilacqua, Alan M. Voorhees and Associates, Inc. 

Conventional sequential transportation models clearly have limitations as 
estimators of intercity travel demand. Despite their theoretical advan­
tage, little work has been carried out in the full application of behavioral 
or "structural" models. Structural-model development is focused pri­
marily on disaggregate models, particularly for modal split. This paper 
discusses the development of an alternative approach, that of developing a 
set of direct-demand models for estimating intercity transit travel for a 
Sacramento-Stockton-San Francisco Bay Area corridor study. A series of 
judgments are described that identify why structural models rather than 
sequential models were chosen and why direct-demand models rather than 
probabalistic-choice models were used. The methodology of calibration, 
including variable selection and equation development, validation, and 
forecasting, is outlined. Emphasis is placed on the trade-offs to be made 
among policy responsiveness, accuracy, and the practical problems of de­
veloping and using such forecasting tools. The material has been oriented 
toward the planner-engineer faced with the practical issues of selecting 
and using intercity travel demand forecasting procedures. 

•ENGINEERS and planners in transportation-forecasting have become more aware 
recently of the changing and searching questions that they are required to answer. 
They also are aware that existing modeling techniques, particularly the best known 
models forming the sequential decision-making process, have severe shortcomings in 
their abilities to answer these questions (1). In the planning of the 1950s and 1960s, 
the emphasis was on building new transportation facilities, which were nearly always 
highways, to maintain or improve existing levels of service and to match a long-term 
demand forecast. The major restraint on such plans was the budget. Large quantities 
of money, particularly the Highway Trust Fund, were set aside for rural and urban 
freeway facilities. The physical structure had been anticipated, and concern was on 
the size of structures in terms of the number of freeway lanes and capacities at 
intersections. 

For a transportation corridor study between Sacramento, Stockton, and the San 
Francisco Bay Area, concerns were with the development of a staged plan for trans­
portation (specifically transit) improvement. Putting all the findings in a format that 
could be understood by many people rather than precisely understood by a few also was 
necessary. The clients for the study, the California Department of Transportation, the 
California State Senate, and the U.S. Department of Transportation, reinforced the need 
for general understanding. In addition, the clients wanted to know what kind of assump­
tions were included when patronage estimates were made, whether the assumptions 
(such as parking or fare costs or frequency of service) were open to public policy 
change, and what effect such changes would have on transit programs in terms of mar­
ket response of riders and consequent financial costs and revenues. 

In such an environment, to combine the benefits of the structural models with the 
advantages of logical behavioral relationships, responsiveness to differing assumptions 
of policy issues, and speed of turnaround when questions arose that required additional 
analysis clearly was mandated. 

124 
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PROBLEM OF CHOICE-MODELING DECISION 

The history of travel forecasting has been one of successively more comprehensive at­
tempts to move from models that simply project demand to those that provide a coherent 
representation and organization of the complex of consumer attitudes, behavior, and 
perceptions of service attributes that produce travel demand. The structure of such 
models should, in theory, permit them to respond to significant changes in the 
transportation service variables specified for the model regardless of whether the 
level of service associated with a specific model has been experienced previously. 

A primary objective of the Sacramento-Stockton-San Francisco Bay Area corridor 
study was the assessment of the feasibility of alternative forms of transit systems and 
the evaluation of their impacts across a wide range of issues. In conjunction with this, 
the necessity to effectively forecast the possible demand for intercity travel became 
apparent. For most of the systems proposed for the corridor, no previous operational 
experience existed within this region from which data on travel characteristics could be 
monitored and collected. Therefore, if a model that could effectively estimate travel 
on these "new" systems was to be employed, the model had to be responsive to service 
as well as to user attributes. The underlying strategy associated with the estimation 
of the demand for intercity travel was to develop a series of models that established 
predictable relationships among physical systems, demographic characteristics, ac­
tivity distributions, and travel behavior. Several specific criteria were defined in the 
effort to develop a demand-estimation tool that would have 

1. The ability to incorporate a broadened range of such service characteristics of 
the transportation system; 

2. The capability of incorporating responsiveness to nontransit events, such as 
gasoline price increases and speed limits, into its structure; 

3. Transferability to other corridors; and 
4. Both long-range and short-range usefulness not only as a planning tool but also 

as a link-specific design tool for new system improvements. 

Conventional urban transportation models for estimating travel demand have a num­
ber of deficiencies that limit their validity and utility in estimating both travel behavior 
and patterns and the impact assessment of new transportation facilities and modes. 

1. The estimated number of trips produced by a household is typically not sensitive 
to the quality of service provided by the transportation system. Accordingly, conven­
tional models show travel demand as being insensitive to service whether there are 1, 
2, or 3 transportation modes available and whether the transport facilities available 
are continually overloaded or are continually free-flowing. As a consequence, no 
direct mechanism exists in the demand-estimation process to deal with latent or in­
duced travel demand or to reflect transportation system quality or transportation 
pricing effects. 

2. Most conventional models are sequential and involve 4 step functions in estimating 
demand: trip generation, trip distribution, modal choice, and route assignment. The 
sequence in which these functions are carried out predetermines the underlying be­
havioral rationale and presupposes a travel-decision process that is not substantiated 
with factual behavioral research. 

3. Too many conventional models are derived from empirical data-fitting without 
taking account of any underlying theoretical foundations or behavioral hypotheses. 
Consequently, their behavioral properties are suspect and their utility for travel­
demand forecasting or policy analysis under differing conditions and constraints is 
highly unsatisfactory. 

4. Many conventional models lack any direct expression of public policy variables 
in their formulation. As a result, their use and value in planning analysis are re­
stricted substantially. 

5. The lack of fundamental theory and behavioral properties underlying most con­
ventional models, as well as their failure to incorporate policy sensitivity, makes the 
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transferability of most models highly dubious. This means that the model relationships 
developed for that area can seldom be translated for use in other urban areas; it also 
means that the issue of "new mode" or facilities introduced into an urban- or intercity­
corridor setting poses a serious problem for conventional models because of their be­
havioral deficiencies and questionable forecasting reliability. The record to date in 
widely varying patronage projections for the new system is ample evidence of this 
problem. 

The first 4 of these limitations could not be readily accepted for the intercity-corridor 
study. Such features as the identification of causal relationships between trip making 
and user and system attributes and the ability to express the decision to travel as a 
simultaneous function of mode, destination, and route made it clear that structural 
models should be selected as the most effective technique for satisfying intercity­
travel requirements. 

The terms behavioral and structural are commonly interchanged freely in modeling. 
Structural models that can be specified so that they relate the decision to travel to the 
characteristics of the trip maker can be considered behavioral (~). 

STRUCTURAL MODEL ALTERNATIVES 

Structural models can be separated into 2 distinct classes: direct demand and prob­
abilistic choice. Direct-demand models estimate travel demand by origin, destination, 
and mode with a single equation (3). Probabilistic-choice models estimate the prob­
ability of choosing 1 alternative from a set of available alternatives (4). More spe­
cifically, the probabilistic-choice model potentially estimates the prObability or like­
lihood of a traveler's making a trip conditional on 6 decisions - frequency of trip, des ­
tination, mode, time of day, choice of route, and purpose-or on a subset of these 6 
decisions. These probabilities are evaluated on a per-person or per-household level. 
To determine the absolute number of trips within each category, one must multiply this 
function by the total number of households or persons at the origin zone. 

The decision to choose the aggregate direct-demand model to estimate future travel 
demand in the Sacramento-Stockton-San Francisco Bay Area corridor was based on 
several issues including the availability and requirements for data, experience of model 
use, special features of each model, and subsequent costs in time and money. 

Data requirements perhaps constitute the foremost constraint to the development of 
a probabilistic-choice model. Both direct-demand and probabilistic-choice models can 
be calibrated with either aggregate or disaggregate data. It is accepted that modal 
split, or market share, is a function of socioeconomic indicators such as income. It 
follows that probabilistic-choice models, which define market share, respond best to 
market-segmented, or disaggregate, data. This presents several problems. Existing 
travel information as compiled by the origin-destination surveys conducted in the 1960s 
generally is not in a format that is compatible with the calibration of disaggregate 
models. Therefore, expending significant efforts to reformat the data becomes neces­
sary. In most cases, and in this study, the time required for the compilation of base­
year household data to obtain information on choice of mode, frequency of travel, choice 
of destination, time of day, choice of route, and purpose precluded pursuing this course. 
In the corridor study, the option of using market segmentation that stratified the data by 
income class, household-ownership category, and household size was considered to 
minimize base-year data reformatting; however, it would have been necessary to cali­
brate 90 models for the transit mode alone (5 purposes x 3 household sizes x 3 income 
classes x 2 household-ownership categories). In contrast to this, it was estimated that 
only 5 direct-demand models for transit need be calibrated. 

In addition to base-year data format needs and the number of models requiring cali­
bration, there is the issue of aggregate or disaggregate modeling in the future year. 
Estimating future-year population and employment to produce reasonable and reliable 
results is difficult. Reliable techniques have not been devised by which reasonable es­
timates can be expected for substratifications of population and employment. To obtain 
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such figures would require the application of extrapolated "factors" that, in turn, are 
highly wlnerable to error. The suggestion is that, the higher the level of disaggre­
gation is, the less reliable the data become. 

Experience and competition by destination and mode also were important issues. 
With regard to experience, an additional disadvantage associated with the development 
of probabilistic-choice models is that there is practically no production experience in 
their development and application as predictive models. Although a maximum-likelihood 
technique for the calibration of probabilistic-choice models has been developed, there 
have been limited opportunities to apply and test the results of this procedure. Until 
recently, most probabilistic-choice models, developed as operational rather than re­
search tools, have been used as modal-split or explanatory models (5). 

An advantage of the probabilistic-choice model is its sensitivity to competing activi­
ties and competing systems. The problem of competing activities has been partially 
overcome by the proper specification of the direct-demand model, that is, by the ex­
pression of the attraction variables in a form that represents the market share as op­
posed to the magnitude. The ability of direct-demand models to respond to alternative­
mode system changes depends to a large extent on the ability to include a comprehensive 
set of alternative-mode system variables in the model. This could be achieved for tran­
sit models in the corridor study. 

Having considered the problems associated with assembling base-year disaggregate 
data, the significantly increased effort implied by calibrating and estimating 90 models, 
the forecasting of market-segmented data, and the inadequate production-oriented ex­
perience of probabalistic-choice models, we decided that an aggregate direct-demand 
modeling procedure would be the most feasible approach to pursue. We decided to cal­
ibrate less precise models with good forecast data rather than to define highly refined 
models with forecast data of questionable reliability. 

DIRECT-DEMAND MODELS 

Direct-demand models can be specified as either modal-abstract models or modal­
specific models. The primary advantage of a modal-abstract model is that only 1 equa­
tion is necessary to estimate travel demand (6). This is particularly advantageous 
when one is estimating demands for new modes that are not in operation or for which 
there are no existing prototypes. The primary disadvantage associated with developing 
a modal-abstract model, however, is that it requires that each alternative mode be de­
scribed by a single set of variables. The selection of a set of attributes that can ef­
fectively represent the wide range of system features characterizing different modes 
can present a major problem because homogenizing attributes means the loss of model 
responsiveness to policy changes. Further, the ability to identify cross elasticities be­
comes impaired. An attempt was made, however, to calibrate a set of modal-abstract 
models; it was unsuccessful because of data inadequacies. 

Modal-specific models require separate formulation of generically different modal 
forms. Although it may be possible to develop separate models for automobile, bus, 
rail, and airplane modes, the distinction generally is limited to automobile and transit. 
The separate formulation of models by mode provides the opportunity to achieve the 
maximum flexibility in model specification. Furthermore, by modal-specific modeling, 
those intrinsic qualities associated with the automobile, such as privacy and convenience, 
as well as those associated with transit, will be reflected in the model calibration. 
Given the provision for greater system and user sensitivity that is afforded by modal­
specific models, we decided to adopt these functional forms (that is, automobile and 
transit) in the development of the direct-demand models. 

It was necessary to determine which model form would be best suited for the intercity 
application. Various mathematical. forms have been suggested and applied in the de­
velopment of p1·evious demand models. Basically, there are 3 forms (with respect to 
the variables} that the model function can assume: linear, nonlinear, and mixed. The 
nonlinear form includes product forms of powers and exponentials. The decision to 
choose one form over the other is more pragmatic than theoretical. Relatively little 
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research has been conducted to assess the influences of model form on the performance 
of the model. However, several observations can be made with respect to the most 
reasonable form for a model. From an examination of the function one can see that the 
dependent variable in nonlinear models is much more responsive to a given change in 
an independent variable than it is in linear models. In addition, travel data do not sup­
port the idea that trip makers behave in a manner that is responsive to changes in in­
dividual causal variables that have been arranged in a linear function. Finally, non­
linear functions have been shown to be more effective in describing observed trip­
making behavior. Although the issue cannot be definitively resolved, we found that a 
mixed-form model provided the necessary versatility and fitted the survey data best. 

MODEL CALIBRATION 

Before calibration could begin, the data fo r caU.bration had to be developed. The prime 
source of trip data was the Bay Area Transportation Study (BATS) files, developed from 
home-interview surveys taken in 1965. The data required reformatting into zone data 
a 123-zone system covering the San Francisco Bay Area, Sacramento, and Stockton. 
Ninety zones were included in the Bay Area. For the base year, the highway network 
was derived from California Department of Transportation data. Four transit networks 
were coded for the base transit system, 1 pair for off-peak travel and 1 pair for peak 
travel. Each pair had 1 network for public transit access and walk connectors to the 
transit facilities. The second network had only private automobile access to the transit 
facilities. Production-zone socioeconomic data related to households were developed 
by using expanded home-interview data in the Bay Area from BA TS and in the Sacra­
m0nto and Stockton areas from the equivalent home-interview data collected in 1967 and 
1968. The attraction-zone socioeconomic data related to employment categories were 
developed from surveys that were conducted in conjunction with the home-interview 
surveys. 

The data available for use in calibration included 14 household statistics; 3 
automobile-service statistics (walk time, in-vehicle time, total cost per car trip); 
8 transit-mode statistics for automobile access by submode; 7 transit-mode statistics 
for nonautomobile access by submode; 10 destination-zone statistics (mainly subsets of 
employment data); and 4 subsets of trip data for the classes of purpose (home:..based 
work, shop, other, and non-home-based trips). 

The first step of the calibration process was that of attempting to find and identify 
causal variables. Sample statistics of zone means were listed, and a correlation matrix 
of variables, including the log and exponential forms of the variables, was developed 
for identifying correlations between independent variables and trips, the dependent 
variable. Each variable also was plotted against trips. The matrix and plots were 
reviewed to produce the best set of variables in their best forms for explaining the 
variance of trip making. In addition, it was necessary to check for levels of indepen­
dence or low correlation between independent variables. Constraints were applied to 
some variables, for example, to a relationship between in-vehicle transit time and 
out-of-vehicle transit time. This was required because the path-builder algorithm re­
quires weighted values of out-of-vehicle travel time to calculate the minimum time paths . 
The constraint applied to the model variables, therefore, maintained this minimum-
path practice by replacing the 2 variables in-vehicle and out-of-vehicle time by 1 
variable: 

QLT + 2.5 QXT 

where 

QLT =transit line time, and 
QXT =transit out-of-vehicle time. 

(1) 



129 

INITIAL MODEL SELECTION 

Because an array of variables was known that satisfied the 2 criteria of (a) being 
strongly correlated with the dependent variable, trip making or demand, and (b) main­
taining orthogonality among the exogenous variables, a series of models was produced 
by using these variables and a nonlinear regression program specifically adopted for 
this study. The primary virtue of using a nonlinear regression program for estimat­
ing the models was that it obviated the need to transform the dependent variables into a 
linear form. This process of using linear transformations, which is a requirement 
when applying standard linear regression programs, introduces bias in parameter es­
timation. The application of a nonlinear regression means that techniques such as re­
straining variables with reasonable limits need no longer be applied. As a result, the 
use of nonlinear regression was a significant improvement over standard estimation 
procedures. 

The final set of variables used in specifying the transit models was divided into 3 
groups: extensive variables, intensive variables, and system variables. The extensive 
variables are as follows: 

1. Residential population; 
2. Employment, by type; 
3. Workers; and 
4. Locations, magnitude, and net density according to "alternative futures" of 

moderate northern re gional growth with environmental constraints versus slow, 
southern, dispersed regional growth (current trends). 

The intensive variables are as follows: 

1. Persons per household, 
2. Income per household and income per worker, 
3. Cars per household and cars per worker, and 
4. Employment per acre (hectometer2

). 

The system variables are as follows: 

1. Automobile speeds (travel time), 
2. Automobile out-of-pocket costs, 
3. Transit speed (travel time for feeder and line-haul), 
4. Transit costs (for .feeder and line-haul), 
5. Walking and waiting time, 
6. Parking costs, 
7. Service frequency (peak and off-peak), 
8. Terminals per station locations, and 
9. Mode and service path. 

For each set of models, 4 major statistics were developed that compared the synthe­
sized trips with surveyed data: 

1. Error mean, 
2. Absolute error mean, 
3. Error mean squared, and 
4. Coefficient of determination r 2

• 

It was important to ensure that all the variables open to policy action and variation, 
such as parking pricing or fare structure, were included wherever possible in the 
models. In some cases this meant accepting one model form over a better fitting 
model because the better fitting model did not include these important variables. Many 
techniques were used to analyze and compare the different models produced by this 
process. However, the most important single criterion was judgment. Because the 
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models selected had to make sense, relationships implied by their structure and pa­
rameters had to be reasonable. 

An initial set of models was calibrated by using a sample set of data taken from half 
of the surveyed information. A second set of models was subsequently calibrated for 
the entire surveyed data. Both sets of models were nearly identical. The 5 transit 
models developed covered the following: 

1. Home-to-work trips by transit, 
2. Home-to-work trips by automobile, 
3. Home-to-shop trips, 
4. Other home-based trips, and 
5. Non-home-based trips. 

The generic form of all the models was : 

(ir1P1 + ir2P2) (~1A1 + ~2A2) Z~' Z~' X~' X~' e.P, x,e.P, x, 

where 

P1, P2, A1, and A2 = extensive production and attraction variables describing zone 
size (such as zone populations, employment, and workers); 

Z1 and Z2 = intensive production and attraction variables such as cars per 
worker and retail jobs per area; 

X1 and X2 = interchange service variables by mode such as in-vehicle time, 
out-of-vehicle time, and out-of-pocket costs; and 

1T, ~, ~' e, and¢ =model parameters. 

MODEL VALIDATION 

The models had been calibrated entirely on base-year data (1965) for the Bay Area only. 
Even though the Bay Area includes most of the zones and socioeconomic activity, there 
was a requirement to validate the synthesized trips against corridor travel. At the be­
ginning of the study, some effort had gone into surveying intercity travel for both high­
ways and transit (bus) modes . No corridor travel data for transit travelers were avail­
able from the BA TS files because transit travelers traveling outside the Bay Area had 
been recorded only to the transit terminals-airport, bus terminals, and railroad stations. 

Interchange pairs along the corridor, particularly those with one end outside the 
BATS area, were compared for synthesized trips from 1965 socioeconomic data and 
the 1973 surveys plus some data from the Greyhound Bus Company files and the Cali­
fornia Division of Highways annual vehicle counts. Trip-length distributions for survey 
and synthesized trips also were compared. When we amended the constant for each 
model for each 5-min interval of weighted trip length, the synthesized trips and surveyed 
trips maintained close relationships for both trip-length-frequency curves and specific 
corridor interchanges. Finally a stepwise approach was taken to forecast trips by 
using future socioeconomic data and future transit and highway networks. Initially, the 
1995 networks were used together with 1965 socioeconomic data to produce trip tables. 
Total trips plus major interchanges along the corridors were inspected to see the effect 
of the presence of an upgraded set of transit networks. Then the 1965 networks were 
used together with 199 5 socioeconomic data to produce trip tables. Again the total trips 
and the corridor movements were inspected. Two problems became clear from these 
analyses. One related to maintaining as linear the extensive variables in the models; 
the other related to large increases in trips due to increased income. The extensive 
variables defining zone population, employment, and subsets of population and employ­
ment always were kept linear; that is, they were kept in a power-product form without 
exponents other than unity. The maintenance of this linearity was an important con-
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dition because the models were independent of zone size and potentially were more 
transferable to different zone sizes within t he study area or elsewhere. The result of 
this decision, together with the inclusion of both production (population) and attraction 
(employment) variables in the model, was that, where, for example, both population and 
employment doubled, the total number of trips increased 4-fold. To overcome this 
problem, the attraction variables had to be normalized in each model. This was ac­
complished by replacing the extensive attraction variable by a new variable that re­
flected the relative increase in the attraction activity. As a result, the models also 
became sensitive to the notion of market share; that is, if a large number of attractions 
were to be added to one zone, then the market share of attractions would increase for 
that zone and the interchanges between the origin zone and that zone would increase 
relative to the unchanged zones. 

The income issue was a problem mainly because the future income was forecast to 
increase substantially. Average incomes per household at zone levels in 1965 ranged 
from $ 4, 700 to $13,800. For 199 5, estimated average incomes measured in real terms 
ranged from $11,700 to $35,000. A number of the models were highly elastic with re­
spect to increases in income. Work trips for automobile access and shopping trips, for 
example, had exponents 2.0 and 1.9. That the models become steadily more unstable as 
the data stray farther from the base-year ranges is accepted. For future data, con­
straining income values to reduce the effect of this potentially explosive variable was 
necessary. 

In summary, the calibration, validation, and forecasting of the models were de­
veloped in 4 steps: 

1. Development of calibration data for trips, socioeconomic data, and networks; 
2. Development of equations; 
3. Validation against corridor movement; and 
4. Cautious manipulation of the models to produce future forecast trip tables. 

Each step took considerable levels of both time and effort, but for the transit models 
each step was carried out successfully. 

MODEL APPLICATION 

On completion of the calibration and validation stages, we produced a final set of transit 
models. The specifications of these models are given in Tables 1 through 5. The de­
pendent variable in all of these models is 1-way transit trips. The coefficients of de­
termination and forms of the models are given in Table 6. K is the constant in all of 
the forms. All of the models yielded reasonable r 2 values. The work-purpose models 
were the best correlated models with r 2 values of 0.65 and 0. 72 for the public­
transportation-access and automobile-access models respectively. The remaining 
purposes had lower correlations. However, in terms of total transit trip making, the 
effective r 2 value is better than these values might imply because of the dominance of 
work trips. A weighted average of the r 2 by purpose and percentage of intercity transit 
trips by purpose will yield an effective r 2 value of 0.64 for the total trip demand. 

The transit and highway networks that would be employed in estimating future-year 
travel demand were developed at the same time as the transit models were developed. 
Seven distinct transit system alternatives were chosen to be analyzed. System tech­
nologies included express bus and conventional and high-speed rail options. For each 
of these systems, networks representing each of 3 access modes and 2 time periods 
were constructed. In all, 42 future-year transit networks were built. In addition, 1 
future-year highway network was built. 

With regard to the application of the transit models, approximately 84 distinct pro­
gram packages were defined. These program packages were derived from combinations 
of the system line-haul alternative, the access mode, the line-haul fare, the access 
fare, and the demographic growth alternative. Additional program packages were 
derived from combinations of these independent corridor-specific program packages 
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Table 1. Model for home-based 
work trips, public transportation 
access. 

Table 2. Model for home-based 
work trips, park-and-ride. 

Table 3. Model for home-based 
shopping trips. 

Table 4. Model for home-based 
other trips. 

Table 5. Model for non-home­
based trips. 

Variable 

x, 
x, 
x, 
x, 
Xs 
x. 
x, 
x, 

Variable 

x, 
x, 
x, 
x, 
Xs 
x, 
x, 
x. 
x. 

Variable 

x, 
x, 
x, 
x, 
Xs 
x, 
x, 
x, 
x, 

Description Coefficient a7 

Automobile out"of-pocket cost/transit fare 
Income/worker at zone of origin 
Vehicles/worker at zone of origin 
Transit line time/ (2. 5 + transit wait time) 
Transit line time - automobile line time 
Automobile out-of-vehicle time 
Workers at zone of origin 
Jobs at zone of destination 

0.188 
0.564 

-1.494 
-1.355 
-0.028 
0.275 

Description Coefficient a, 

Transit fare 
Automobile out-of-pocket cost 
Income/household at zone of origin 
Vehicles/household at zone of origin 
Transit wait time+ (transit line time/2.5) 
Automobile line time 
Automobile out-of-vehicle time 
Workers at zone of origin 
Jobs at zone of destination 

Description 

-1.13 7 
0.838 
2.073 
3.864 

-1.161 
0.401 
1.806 

Transit fare - automobile out-of-pocket cost 
Transit wait time - automobile out-of-vehicle time 
Income/ household at zone of origin 
Persons/ household at zone of origin 
Retail jobs/ acre at zone of origin 
Vehicles/household at zone of origin 
Transit line time + (2.5 x transit wait time) 
Adults at zone of origin 
Retail job at zone of destination 

Coefficient a, 

-0.0075 
0.0316 
1.868 
3.839 
0.233 

-2.479 
-1.619 

Note: 1 job/acre = 2.50 jobs/hm2• 

Variable 

x, 
x, 
x, 
x, 
Xs 
x, 
x, 
Xe 
x, 
X10 
Xu 
X12 

Variable 

x, 
x, 
x, 
x, 
Xs 
x, 
x, 
x, 
x, 

Description 

Transit fare 
Income/ household at zone of origin 
Automobile out-of-pocket cost - transit fare 
Automobile line time 
Automobile out-of-vehicle time 
Transit line time + (2. 5 x transit wait time) 
Persons/ household at zone of or igin 
Vebicles/ housebold at zone of orig.in 
Transit line time/(2. 5 + transit wait time) 
Population at zone of destination 
Service jobs at zone of destination 
Population at zone of origin 

Description 

Transit fare 
Automobile out-of-pocket cost 
Transit line time/ (2 .5 +transit wait time) 
Automobile line time 
Automobile out-of-vehicle time 
Population at zone of origin 
Jobs at zone of origin 
Population at zone of destination 
Jobs at zone of destination 

Coefficient a, 

-0.231 
-0.045 
0.0046 
0.0439 
0.0189 

-0.0238 
3.214 

-1. 53 7 
-2.27 
0.00015 
0.00024 

Coefficient a, 

-1.352 
1.403 

-4.00 
0.951 
0.184 
0.00044 
0.0002 
0.00044 
0.0002 
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(such as a rail system between the Bay Area and Sacramento combined with a bus sys ­
tem between the Bay Area and Stockton). Together , more than 100 program packages 
were described. Trip tables subsequently were estimated for approximately 40 s elected 
program packages. The analyzed program packages were selected so that intercity 
travel demand for the remaining alternatives could be estimated by interpolation if 
desired. 

As a final evaluation of the transit models, the 1995 rates for interzone transit­
demand generation were compared to the rates observed in 1965. In both cases, the 
total number of interzone transit trips was compared to the area population. In 1965, 
the transit trip generation rate was 0.09 trip/person; in 1995, for the high-growth 
alter native, the rate increased to 0.12 to 0.16 trip/person depending on the program 
pack~e analyzed. Because the interzone t r a nsit-trip totals are biased toward longer 
trips (s horter, i ntrazone t rips are excluded) , to expect generation rate to increase with 
the improvement of intercity transit is not unreasonable. The stability of these gener­
ation rates further substantiated the validity of the models and their demand estimates. 

RESPONSE TO ALTERNATIVE POLICIES 

Sensitivity analysis is an important result of model development. The capability of the 
direct-demand models to respond accurately and quickly to alternative assumptions re­
garding the system and the user, and, therefore, to enable policymakers to see the ef­
fect of the policy alternatives they suggest, is a powerful feature. The response of the 
model to changes can be assessed by the analysis of the elasticities of the transit travel 
demand with respect to the components of the model. Elasticity can be defined as a 
dimensionless number that represents the percentage of change in the travel demand 
for a 1 percent change in any of the independent variables. In defining the elasticity, 
only 1 variable is changed and the others remain constant. By applying the concept of 
elasticities, we could analyze the sensitivity of the demand to ranges of the values of 
the system and user inputs. This technique is useful in analyzing the impact of various 
policy changes, such as increased fuel prices, decreased automobile speed, and in­
creased transit service frequency on demand for transit travel. 

Table 7 gives the elasticities derived for the household variables. Values for the 
system elasticities have not been shown because they are not always constant. In many 
cases, they are complex functions and have a meaning only within the context of a spe­
cific interchange movement. 

As a result of the sensitivity analysis, several interesting relationships can be iden­
tified and generalized for the total intercity travel demand in the region. 

1. The 30-year increase in corridor population between 19 65 and 199 5 represented 
by the low-growth alternative is equivalent to a 60 percent population increase causing 
a 60 percent increase in total regional transit demand. The moderate-growth alterna­
tive is equivalent to an 80 percent population increase causing an 80 percent increase 
in demand. 

2. A 25 percent increase in income per household causes a 26 percent increase in 
transit demand for intercity travel. 

3. A 25 percent increase in car ownership per household causes a 20 percent de­
crease in total transit trips with transit access, but a doubling of those transit trips 
with automobile access (mostly long trips). 

4. A 100 percent increase in the current price of gas representing a 50 percent in­
crease in out-of-pocket operating costs for automobile travel causes a 60 percent in­
crease in total transit demand for long trips. A 200 percent change in the current 
downtown parking charge will have the same effect for downtown-oriented trips. 

5. For long trips with a 40-min wait and transfer time (assuming that the 40 min 
is made up of 20 min of walk time and 20 min of wait time), a 50 percent reduction in 
headway will cause a 60 percent increase in demand. A 10-min reduction in wait time 
for long trips would produce a similar increase in demand. For shorter trips, this ef­
fect would be halved. 
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Table 6. Coefficients of determination and forms of models in Tables 1 through 5. 

Model 

Home-based work, public access 

Home-based work, park-and-ride 

Home-based shop 

Home-based other 

Non-home-based 

Table r ' 

4 

5 

0.65 

0.72 

0.43 

0.47 

0.54 

Table 7. Elasticities for household variables. 

Form 

Trips1 3 = KX13 1X 232X333X434 easxsX6
36X1X8 

Trips1 J = KX/ 1X/ 2 X 3a 3X 434 Xs15X5
1
6X131 XiJ{g 

Trips1J = Ke<:1 ,X,·a2X2)XJ31X434 Xs35 Xe36 X131XsX9 

Trips1J = KX1
31 X 2

32 eaJx3 e 34x4 e 1sxse 9
6X6 X7

17X8
18 X939

(a10X10 + a11Xu)X12 

Trips1J = KX1a1X 2•2x 3
33 X.t4Xs85 (a.eXs + a1X1)(aeXe + as]{g) 

Trip Purpose 
Persons/ 
Household 

Work, public a ccess N.A. 
Work, park-and-ride N.A. 
Shop 3.84 
Other 3.21 

Note: N.A. = not applicable. 

•1ncome/worker4 nvehic les/wo rker. 

In come/ 
Household 

0.56" 
2.07 
1.87 

-0.05 

Vehicles/ 
Household 

-1.49b 
3. 86 

-2 .48 
-1.54 

6. For long trips (more than 1 hour), an automobile speed limit decrease from 65 
to 55 mph (104 to 88 km/ h) will cause a 45 percent increase in total transit demand. 
For short trips, the same change in automobile travel time will result in a 14 percent 
increase in transit demand. 

7. A 50 percent decrease in transit block time, such as the difference between 
track-levitated vehicle and turbotrain between Oakland and Sacramento, will cause a 
200 percent increase in transit demand. 

8. An increase in total fares (access and line-haul) for a long trip, such as from 
San Francisco to Sacramento, from $ 5.00 to $10 .00 will cause a 40 percent decrease 
in transit demand. 

SUMMARY 

In the past few years , awareness of the limitations associated with the application of 
conventional sequential models (generation, distribution, and modal-split models) has 
been increasing. The structural models that have been recommended as replacements 
have covered a wide variety of model forms and calibration processes. Yet, despite 
the large number of alternative modeling choices made available, few studies attempted 
to use other than sequential models. 

We feel that, at least in part, the lack of acceptance of structural models stems 
from a lack of a basic understanding of the features and applications of these models. 
For the intercity-corridor study in Northern California, we have found that a power­
product, aggregate direct-demand model most successfully satisfied the objectives 
that were developed early in the study. These objectives included policy sensitivity 
and demand response to alternative transportation systems. 

In the calibration of the direct-demand model, we found that the use of a nonlinear 
regression technique overcame many of the problems of variable transformations and 
constraints that have been encountered in previous studies. In addition, however, ap­
plication of the model equations in the future still will require the careful, judgmental 
processes used in the sequential models. Particular attention needs to be paid when 
one attempts to estimate future demand by using future socioeconomic and system data 
that are outside the range of the base-year data. 

Finally, the results of the modeling work provided an opportunity for a clear and 
useful dialogue between the technicians and the policymakers. As a result, the policy­
makers were afforded a technique by which they could test and assess the effects of a 
variety of alternate policy assumptions. 
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JOINT-CHOICE MODEL FOR FREQUENCY, DESTINATION, 
AND TRAVEL MODE FOR SHOPPING TRIPS 
Thomas J. Adler and Moshe Ben-Akiva, Department of Civil Engineering, 

Massachusetts Institute of Technology 

This paper describes the estimation of a disaggregate joint-choice model 
for frequency, destination, and travel mode for shopping trips. The model 
builds on earlier research by Ben-Akiva in Transportation Research 
Record 526 that argued for the replacement of aggregate conditional (or 
sequential) model systems with disaggregate joint (or simultaneous) models 
and presented a model for the joint choice of destination and mode for 
shopping trips. The extension of this general model by use of the same 
multinomial logit form and a similar specification to include travel­
frequency choice is an attempt to provide a more complete version of the 
joint-model structure. Estimation of the expanded joint-choice model 
proved to be feasible and resulted in behaviorally and statistically acceptable 
parameter values. All variables produced coefficients of the expected 
signs and magnitudes consistent with the behavioral notions on which the 
model specification was based. In general, the estimation of joint-choice 
models for travel demand was shown to be a computationally tractable 
alternative to the less acceptable conditional approaches that have been used 
in the past. An example of the application of the shopping model (combined 
with a previously estimated modal-choice model for work trips) to the 
evaluation of transportation policy options is used to highlight some of the 
features of both the particular models used and the general modeling ap­
proach that they represent. 

• THIS PAPER describes a disaggregate travel demand model based on a joint-choice 
structure. The development of disaggregate travel demand models has led from initial 
work on binary modal-choice models to continual expansion of the context of choice in 
an effort to produce a complete set of models for predicting urban travel patterns. 
Two recent research projects have set the stage for the results reported in this paper. 
The first project estimated a disaggregate travel demand model for the choices of 
frequency, destination, mode, and time of day for shopping trips (4). This model was 
based on the assumption of a conditional-choice (or sequential-choice) structure. Then 
Ben-Akiva (; ~), using theoretical arguments, proposed the joint-choice structure 
as a more realistic approach for travel demand models. His empirical study centered 
around the choices of destination and mode for shopping trips. Models were estimated 
for modal choice followed by destination choice, destination choice followed by modal 
choice, and the joint (or "simultaneous") choice of destination and mode from the set of 
alternative combinations of mode and destination. As anticipated, empirical evidence 
has shown that the coefficient estimates are sensitive to the choice structure on which 
estimation is performed. This finding, along with theoretical arguments, forms a 
convincing case for the use of a joint-choice structure for all hierarchical equivalent 
and interdependent choice dimensions such as frequency, mode, destination, and time 
of day for shopping trips. 

The model described in this paper extends the joint-choice model for destination and 
travel mode estimated by Ben-Akivatotheinclusionofthethirdchoicedimension that is 
commonly of interest in travel demand forecasting-frequency choice. Consistent with 
the previous model, the unit of travel demand that is modeled is a round trip (home­
shopping-home). The behavioral unit is the household, which is recognized as the 
relevant decision-making unit for shopping travel choices. As in most of the previous 

136 



137 

disaggregate choice models with multiple alternatives, the multinomial logit model was 
used because of its many desirable theoretical and computational advantages over other 
techniques. 

The first part of the paper is devoted to the description of the joint-choice shopping 
travel demand model, its specification, and the estimation results. [A more complete 
description of the accompanying research and findings is given elsewhere (!).J Follow­
ing the sections that describe this model, an example of the application of the shopping 
model (combined with a previously estimated modal-choice model for work trips) is 
described. This demonstration highlights some of the important features of both the 
particular models used and the general modeling philosophy that they represent. 

MODEL 

This model forecasts the short-term travel choices of a household given predetermined 
residence location, automobile ownership, and choice of mode to work. By using the 
multinomial logit form, one can express the joint-choice travel demand model for a 
given trip purpose as follows: 

P(f, d, m) 

where 

exp (Vrd.) 

L exp CVt'd'a') 

f'd'm' E FDM 

(1) 

P(f, d, m) probability of choice of a given frequency, destination, and modal com­
bination; 

vtdm utility of an alternative fdm combination; and 
FDM set of available alternatives where an f, d, m combination represents an 

alternative trip. 

V rd. is a function of the independent variables as follows: 

Vrd• = x;dmefd• + x;e' + X:ed + x:e· + x:derd + x;.erm + x.:,,ed• (2) 

The es in equation 2 are vectors of coefficients to be estimated, and the Xs are vectors 
of variables defined as follows: 

Xr<lAI = variables that differ among all alternatives, 
Xr = variables that differ only among frequencies, 
Xd = variables that differ only among destinations, 
X. = variables that differ only among modes, 

Xu = variables that differ only among frequencies and destinations, 
X,. = variables that differ only among frequencies and modes, and 
Xdm = variables that differ only among destinations and modes. 

The most important variables that can be strongly justified on deductive grounds, for 
the shopping joint-choice model, fall into 4 of these classes: 

Xrdm = travel cost (such as time, money, and convenience); 
X, = socioeconomic characteristics of the household (such as household size, life 

cycles, occupational status, income, and automobile ownership); 
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Xrd = attractiveness of destination to the given trip purpose (such as retail employ­
ment and floor area); and 

X,,, = modal-specific variables (such as availability of the automobile for shopping 
travel and transit convenience). 

This decomposition of the joint utility function is useful for the interpretation of con­
ditional probabilities. For example, the conditional probability of modal choice for 
given frequency and destination derived from the joint-choice model is: 

P(m If, d) exp CV.1u) 

L exp (V,w) 

(3) 

m' E m,d 

The choice set M,d includes all alternative modes available for the given frequency and 
destination, and the conditional modal-choice utility is 

vmlfd = x:d.etd• + x:e· + x:.etm + x;.ed• (4) 

The variables x,, Xd, and X,d have no effect on the conditional modal-choice probability. 
Similarly, Xd, x., and xd. have no effect on the conditional frequency choice, and Xr, x., 
and x,. have no effect on the conditional destination choice. It should be noted, however, 
that all the variables in the joint utility function affect the marginal choice probabilities 
for all the 3 dimensions of choice. For example, the marginal probability of frequency 
choice could be expressed as: 

P(f) 

where 

exp_(~~a' ;.. 0n P~) 

L exp (X(a' + en Pn 

iEF 

P~ = .E exp (Xfed + x:3efd + enP~J), and 
jE"D1 

Pr3 = L exp (x:3k9fdm + X~e· + X/ke'• + Xfked•) 
kE"M3f 

Thus a change in the value of any variable in the joint-choice model will affect all of 
the marginal choice probabilities. 

(5) 

The logit formulation not only allows specifications of models, including all of these 
types of variables, but also permits considerable freedom in the composition of alterna­
tive sets (FDM) so that the definition and number of alternatives made available to each 
individual observation in the sample can be varied. The specification of the model con­
sists of the formulation of the utility functions and the definition of the alternatives in 
the choice set. 



139 

DATA 

The data used for model estimation were derived from the Metropolitan Washington (D.C.) 
Council of Governments (WCOG) 1968 home-interview survey and from additional informa­
tion compiled by WCOG and R. H. Pratt and Associates. The travel information in the 
home-interview survey consists of household questionnaire responses detailing the 
travel activity for a 24-hour period of all household members 5 years old or older. 
For this modeling effort, the surveyed households first were reduced to 25 percent of 
the original sample, and then the remaining observations were screened for missing or 
poorly coded information. This left 4,097 households in the working sample. However, 
of the households in which some shopping travel was reported over the survey period, 
not all exhibited the simple home-shop-home behavior that was to be modeled. Of the 
1,259 households that reported 1 or more shopping sojourns, 501 had traveled in the 
simple pattern to be modeled, and 403 of these had used either automobile or bus (the 
2 modes to be modeled). Because of the systematic reduction of the sample of house­
holds that had made shopping trips, the sample of households reporting no shopping 
travel also had to be reduced to maintain correct proportions of the 2 types of household. 
(Sensitivity runs were performed to determine the bias in alternative-specific variables 
due to incorrect proportions in the estimation sample. Although the bias was significant 
for extremely nonrandom proportions, it became negligible within 10 to 20 percent of 
the true proportions.) Thus these were reduced to 910 leaving a total estimation sample 
size of 1,313 households. [The sample of households making shopping trips was reduced 
to 32 percent of the original (from 1,259 to 403); therefore, the sample of households 
not making shopping trips was similarly reduced to 32 percent (2,838 to 910).] The 
relation of this final estimation sample to the original survey sample of households is 
shown in Figure 1. 

In addition to the travel observations, a major data item to be prepared was level­
of-service information not only for the observed travel but also for all alternative 
shopping trips. These data for highway and transit networks had been compiled pre­
viously for the Washington, D.C., area. 

ALTERNATIVES AND VARIABLES 

The frequency alternatives, as represented in the model, were a choice between a simple 
home-to-shopping-to-home round trip and the no-travel option. However, one aspect 
of the no-travel alternative deserves specific note. The original home-interview survey 
from which the estimation samples were derived included travel information for ve­
hicular trips only (except for the first journey to work for which walk trips were 
recorded). Thus, the no-travel alternative for the shopping model implicitly includes 
a walk-to-shopping option. This was a factor that had to be accounted for directly in 
the derivation of the utility functions for the frequency alternatives. 

In modeling frequency choice, it was assumed that 3 sets of effects influenced a 
household's probability of making a shopping trip. The first set is called here the 
generating effects, which are those characteristics of the household that would make 
that household more likely to reach the threshold of need for a shopping sojourn on a 
given day. One such effect is household size, which would account for the rate of 
growth of a need for shopping activity as well as for the availability of household mem­
bers to devote time to the activity. Additional variables to measure the structure of 
the household, such as the ratio of workers to nonworkers and the life cycle of the 
household, also were considered to be household generating effects. Similarly, income 
was hypothesized to represent the ability of a household to stock large quantities of 
goods and thus avoid the general disutility of travel. 

A second group of attributes that is seen to affect frequency of shopping travel is the 
set of variables that measure the impedances of travel to shopping destinations and the 
attractiveness, for shopping purposes, of these destinations. The notion that the threshold 
level of need for shopping travel varies with the costs of travel and with the probability 
of finding the desired goods ('.£) corresponds behaviorally with the inclusion of this set of 
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effects. Measurement of the levels of service to the various destinations is relatively 
straightforward, but determination of attractiveness to the household is less apparent. 

T he third factor included in frequency choice is a measure to account for the ac­
cessibility of shopping destinations by walking trips. This is necessary compensation 
for the fact that the no-travel alternative includes possible walking trips (these were 
not recorded in the survey). However, because most travel-forecasting applications 
deal with vehicle-transportation options, the ability to separate walking trips (which, 
in the home - interview survey, were defined to include bicycle, motorcycle, and other 
"miscellaneous" modes) from no travel was not considered important for this model. 

The modal-choice alternatives were limited, for this model, to automobile (driver 
and passengers from the same household) and transit. Other modes and modal com­
binations accounted for 71 of the original 501 observations of simple shopping trips. 
Although automobile passengers (with drivers not from the same household) accounted 
for the largest number of these (42), these were not explicitly modeled because they 
were interhousehold shared rides for which no information was collected on the number 
of persons in the automobile or sharing of costs. (All intrahousehold shared rides 
were explicitly identified and modeled as single shopping trips; transit fares were 
multiplied by the number of persons making the trip together.) The next largest cate­
gory was taxicab passenger; however, there were only 7 observations for this category. 

The automobile alternative was given only to those households that owned at least 1 
automobile; automobile ownership was assumed here to be a predetermined choice for 
shopping travel choices. The bus transit alternative was given only to those households 
for which a station was accessible within 0.5 mile (0.8 km) of the residence location 
(the household's location also was assumed as a predetermined choice). For those 
households that did have transit accessible, the alternative was allowed only to those 
destinations that also were served by transit. 

The types of variables used to model the modal choice include, of course, generic 
level-of-service variables and additional variables to account for modal-specific effects. 
The level-of-service variables in this model are in-vehicle travel time (IVTT), out-of­
vehicle travel time (OVTT), and out-of-pocket cost (OPTC). IVTTs for both auto­
mobile and bus were taken from networks and computer over the shortest path. OVTTs, 
however , were measur ed differ ently for the 2 modes. For bus, the measured OVTT 
includes an average walk time to the station, wait time for the bus (a varying percentage 
of the headway), and additional wait times if transfers are necessary. For automobile, 
OVTTs were taken from zone vectors supplied by WCOG, which set origin terminal 
times at an average of 2 min (to allow start-up time and the like) and computed destina­
tion terminal times depending on the expected difficulty of finding a parking place near 
the actual destination. 

OPTCs for bus trips were the designated fares (multiplied by the number of persons 
in the same household making the trip). For automobile trips, costs were in 2 portions. 
The first was expected parking costs (taken from zone vectors); the second was cal­
culated based on origin-destination (0-D) highway distances and travel times. The 
travel times were used to compute a cost per mile (kilometer) (which varied according 
to the computed average speed) for fuel and maintenance costs. This was then multiplied 
by the travel distances to provide an 0-D travel cost. 

The only other useful piece of modal information available was the number of bus 
t ransfers required, but, because transfer time was included in the computation of 
OVTTs for the bus, the number-of-transfers variable proved to be insignificant for 
explanation in models that also included OVTTs. 

The selection of an alternative set for destination choice was much less straightfor­
ward than for frequency and modal choices. To begin with, all of the available infor­
mation that was to be used for model estimation was based on the WCOG Transportation 
Planning Board zone and district boundaries. These data included levels of service to 
zone destinations as well as figures on zone-based retail employment. Although an 
attempt might have been made to identify specific activity sites, as has been done else­
where (6), the time and money required for this task were not available. Therefore, an 
alternative scheme was developed to use the zone-based data. 

The selection of a candidate set of destination alternatives for each household was 
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based on district-level trip matrices for the shopping purpose (134 districts in the 
metropolitan area). All districts for which at least 1 shopping trip was recorded from 
the household's residence district were allowed as destination alternatives to that 
household. The idea for using the trip matrix for this initial assignment of alternatives 
was to ensure that all destinations with positive probabilities (at least in the estimation 
sample) were given as alternatives. The district level was chosen both because it was 
convenient to use with the available level-of-service and attraction data and because it 
seemed to correspond most closely with a perceptual breakdown of the urban area into 
shopping opportunities. For example, almost all districts (each of which is composed 
of several zones) were found to have a single zone (or small cluster of adjacent zones) 
that had a large retail employment relative to the others. This concentration of retail 
activity (which was easily distinguished from corner stores or other predominantly 
local retail outlets) could be seen as the general attractor that forms the basis of com­
parison for the destination alternatives. Thus the level of service for each destination 
alternative was computed to this "shopping zone." 

Beyond the allocation of destination alternatives by the trip matrix, however, addi­
tional alternatives were given to all households, based on deductive notions of the per­
ception of alternatives. Specifically, "local" alternatives (intrazone and intradistrict) 
and the central business district (CBD) were allowed as destination alternatives to all 
households. Because of the household's almost certain familiarity with these alterna­
tives, they were singled out to be included as part of the perceived set of alternatives 
for all households. In fact, as would be expected by their more favorable levels of 
service, intrazone and intradistrict travel were observed quite frequently in the sample 
(almost 40 percent of all shopping trips). The CBD alternative was defined by an aggre­
gate of 6 downtown districts that are all small in area but represent a dense retail area 
that would be perceived as a single alternative. For households without an automobile, 
the set of destinations was reduced to those for which bus access was possible. 

The final representations of destination alternatives thus were based primarily on a 
zone system but were adjue:ted to a more appropriate set corresponding to the more 
perceptual notion of activity sites by adding specific alternatives that were assumed to 
be highly attractive alternatives for all households. The inclusion of intrazone and 
intradistrict alternatives is justified further by the expanding web of perception notion 
that describes an individual's spatial perceptions as being most detailed in the region 
immediately surrounding his or her residence and progressively less complete and 
more aggregate as distance from the home increases. 

SPECIFICATION OF UTILITY FUNCTIONS 

Table 1 gives the variables and their codes and definitions that were used in the utility 
functions to describe the 3 choice dimensions. [Annual household income data were 
coded according to the following classes (in 1968 dollars): (a) 0 to 2,999, (b) 3,000 to 
3,999, (c) 4,000 to 5,999, (d) 6,000 to 7,999, (e) 8,000 to 9,999, (f) 10,000 to 11,999, (g) 
12,000 to 14,999, (h) 15,000 to 19,999, (i) 20,000 to 24, 999, and (j) more than 25,000. ] 
This specification of the joint-choice model for frequency, destination, and mode ini­
tially was based in its destination-modal components on a specification developed by Ben­
Akiva (2). Several changes were made from that specification, however, to arrive at a 
form that seemed to better fit the expanded set of choice dimensions being modeled. 
As a first step, 2 of the level-of-service variables, those representing excess and in­
vehicle times, were restructured. The disutility perceived from excess time was seen 
to be affected by the length of the trip being made. For example, a waiting time of 20 
min would seem more onerous on a 1-mile (l.6-km) trip than on a 10-mile (16-km) trip. 
This was represented by a variable that is formulated as excess time divided by distance 
for the trip. The other level-of-service variable that was changed for this specification 
was IVTT, which had been included directly as a measure of disutility. This was re­
structured, however, as a total travel time (excess plus in-vehicle time) to be included 
in a logarithmic form in the utility function. Behaviorally, this corresponds to the 
hypothesis that the sensitivity to absolute changes in total travel time decreases for 
longer trips. 



Figure 1. Creating the estimation sample. 

ALL HOUSEHOLDS IN 1968 
WCOG HOME INTERVIEW SAMPLE 

25% RANDOM SAMPLE 
AND SCREEN ING 

WORKING SAMPLE 
(4097) 

HOUSEHOLDS WITH 
NO SHOP SOJOURNS 

2838) 

32% 
RANDOM 
SAMPLE 

HOUSEHOLDS \fl TH NO 
SHOP SOJOURNS 

(910) 

HOUSEHOLDS 
WITH MULTIPLE 

SHOP CHAINS 
(425) 

HOUSEHOLDS 
WITH SINGLE 
SHOP CHAIN 

(173) 

Table 1. Definitions of variables and constants. 

Number Code Definition 

1 for car, 0 otherwise 

COMPLEX 
CHAIN 
(160) 

SIMPLE 
CHAIN 
(501) 

SIMPLE CHAINS 
BY AUTO OR 
BUS ( 403) 

HOUSEHOLDS 
WITH SINGLE 
SIMPLE 
SHOPPING TRIP 

( 403) 

DC 
OVTT/ D!ST 
IVTT + OVTT 
OPTC/INC 
AAC 

Round-trip out-oi- vehic le lrnve.l timC! Jn ml.nu•cs/ L-wny dlstnnce in miles (kilometers) 
Round-trip in-vehicle trave l time in mhrnles .. rcund-trlp out-or-vehicle travel time in minute s 
Round-trip out-of-pocket t r·nvcl cost ln <1onl:i; f nnnutll. household income 

6 
7 
8 
9 

10 
11 

12 

I / DIST 
REMP 
DCBD 
DF 
HHSF 
DENF 

INCF 

Number of automobiles QVA.it:.bto to household - number of automobiles used for work trips by 
wotkor11 In household for CJ:u. 0 otherwise 

l/1-wny dl~lnncc In miles (kllom•ters) 
Retail employmunt of shOJ)plng destination in number of employees 
1 for CBD shopping destl_r:u1Llou, O otherwise 
1 for 0 frequency, 0 otherwise 
Number or persons ln household for 0 Crequency, U otherwise 
Retai l employment density in residence zone in employees per acre (hectometer2

) [or 0 fre­
quency, 0 otherwise 

Annual household income foJ.' 0 frequency, 0 otherwise 

Note: Alternatives are no trip = 0 frequencv; items I through 8 • 0; trip to shopping destination d and bv modem is for all relevant shopping deslinations includ­
ing the CBD and for car and transit modes. 

Table 2. Utility functions for choice alternatives. 

Alternative 8, a, a, a, a, a. a, a, ~. 

f = 0 0 0 0 0 0 0 0 0 I 
f = 1, m = auto, d = CBD I OVTT/ DIST I< (OVTT + IVTT) OPTC/ INC ACC I / DIST 1<(REMP) I 0 
f = 1, m = auto, d = nonCBD 1 OVTT/ DIST I< (OVTT I IVTT) OPTC/ INC ACC I / DIST 1<(REMP) 0 0 
f = 11 m = bus, d = CBD 0 OVTT/ DIST I< (OVTT • lVTT) OPTC/ INC ACC I / DIST l<(REMP) I 0 
f = 1, m = bus, d = nonCBD 0 OVTT/ DIST l<(OVTT + IVTT) OPTC/ INC ACC I / DIST 1<(REMP) 0 0 

a,. a., 8., 

HHSF DENF INCF 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
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The second major modification to the model form used by Ben-Akiva (2) was the 
inclusion of a variable representing automobile availability for daytime shopping trips 
(AAC). This variable is used to explain both frequency and modal choice (more cars 
available should mean increased likelihood of going shopping and of using a car). This 
represents one of the areas of complementarity in household decisions that is important 
to their travel choices: the allocation of automobiles in a household among the variety 
of household activities. The behavioral hypothesis that leads to inclusion of this form 
of the variable in the shopping model is that the allocation of automobiles among ac­
tivities begins with work trips (which are more regular and more important to the 
household than discretionary purposes) and that the number of automobiles available 
for daytime shopping is conditional on this choice of mode to work. 

A third change from the initial specification was a reformulation of the destination­
attraction variables. A logarithmic form of the attraction variable represented by 
retail employment was chosen because of the large relative value of CBD employment, 
which caused a high negative value on the CBD dummy variable. Also, instead of using 
only the retail employment of alternative sites to indicate preferences for larger and 
more diverse shopping areas over smaller areas, a second destination-specific factor 
was added to explain destination choice. This was in the form of a variable that is the 
inverse of 1-way distance from the home zone to the shopping area. The attraction of 
alternative shopping destinations now is expressed (by the destination-specific factors) 
as arising from both its relative size and its proximity to the household. This is justified 
by the hypothesis that a household's knowledge of alternative shopping areas depends on 
how close it is to them; closer shopping opportunities are more attractive (even beyond 
the fact that levels of service to them are better) because the household more likely will 
have better information about the nature of shopping opportunities available and gen­
erally will be more likely to actively consider them in its choice set. 

One final detail of the specification was that 4 frequency-specific variables were in­
cluded (along with the level-of-service and attraction variables) to explain frequency 
choice. These correspond closely to the general classes of variables recommended 
earlier. They represent household size, ability to stock larger quantities of goods 
(income), and walking accessibility to shopping alternatives. 

The utility functions for the choice alternatives given this specification are given in 
Table 2. As can be seen, the 3 level-of-service variables enter at positive levels for 
all alternatives except for 0 frequency when they are also 0. The alternative-specific 
variables such as automobile availability enter only for the given alternative (in this 
case, automobile). The dummy variables are 0 or 1 for the specified alternatives. 

ESTIMATION RESULTS 

Coefficients and other information for this specification of the model are given in 
Table 3. All of the important policy variables are significant at the 99 percent confi­
dence level. The coefficients of the level-of-service variables (time and cost) have the 
expected negative signs and result in reasonable values of time. For a typical shopping 
trip of 2.5 miles (4 km) and a total round-trip travel time of 40 min, OVTT has a dis­
utility that is about twice that of IVTT. Of the attraction factors, 1/ DIST has the ex­
pected positive sign, indicating that closer destinations are, overall, preferred to those 
that are more remote. The AAC variable has a relatively large positive parameter, 
showing that the greater the number of automobiles available is the more likely the 
household is to make a shopping trip and use the automobile for it. 

Of the frequency variables, HHSF has a negative sign, indicating (as expected) that, 
for a larger household, the probability of not making a shopping trip on a given day be­
comes less. The variable formulated as DENF is an attempt to account for walk trips 
to shop, which are not recorded in the home-interview survey. This variable is a proxy 
for the availability of suitable shopping destinations within walking distance of the home. 
The expected positive sign of the coefficient of this variable means that a household 
living in a zone with dense retail employment is more likely not to embark on a 
vehicle-shopping trip (but is likely to choose a walk-shopping trip instead). The 
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positive sign on the INCF variable, consistent with results obtained elsewhere (4), 
indicates that higher income households are able to maintain larger stocks of goods 
and thus will shop with lower frequency. 

By using this model specification, we estimated 2 of the important conditional-choice 
models. Table 5 gives for the conditions in Table 4 the number of observations, number 
of alternatives, log likelihood for coefficients of 0 L* (0), log likelihood fOl' estimated 
coefficients L* (e), and explained log likelihood/total log likelihood p2

• In Table 4, pa­
rameter estimates for the conditionals of mode given frequency and destination, destina­
tion given mode and frequency, and the joint choice of frequency, destination, and mode 
are compared. As expected and as previously demonstrated by Ben-Akiva (2), the esti­
mated coefficients show great variability depending on the structure used for estimation. 
The 2 conditionals use less information than the joint estimation uses, and they can be 
expected to be generally less reliable, theoretically as well as statistically, than the 
parameters from the joint estimation. 

EMPIRICAL APPLICATION OF SHOPPING JOINT-CHOICE 
MODEL TO EVALUATION OF TRANSPORTATION 
POLICY OPTIONS 

The purpose of this section is to demonstrate how the disaggregate choice models de­
veloped in this research can be used to illustrate the behavioral effects of various 
transportation options on the demand for travel. The emphasis in this analysis was on 
highlighting the varying effects that several transportation alternatives would have on 3 
different types of households. The types of households were represented by 3 of the 
samples taken in the 1968 Washington, D.C., home-interview survey. A similar analysis 
could be performed by using a random sampling of all households in the area or by con­
structing segments on which the effects could be compared. A larger scale case study, 
which also is being conducted in this research project, is using a set of disaggregate 
models, including this one, in a full network equilibration framework. The use of 3 
typical households (for which frequency, mode, and destination, but not route choice, 
were forecast) was chosen for this study primarily for reasons of simplicity of presenta­
tion and ease of computation. 

Policy Alternatives 

Five policy alternatives were chosen to be compared to the base case. These alterna­
tives a!·e representative of the range of options currently being considered in response 
to, among other issues, air -quality and energy-conservation programs. The alterna­
tives can be summarized as follows: 

1. Base case-conditions existing in Washington, D.C., in 1968; 
2. Case 1-gasoline prices 3 times greater than those of 1968; 
3. Case 2-parking costs 3 times greater than those of 1968; 
4. Case 3-employer-based car-pool incentives and special car-pool lanes to de­

crease travel time to work to 70 percent of 1968 base times; 
5. Case 4-transit available for all trips [IVTT as good as forautomobileand OVTT = 

20 min+ (10 min x number of transfers) but no more than existing conditions]; and 
6. Case 5-combination of cases 1 through 4. 

Typical Households 

Three households were chosen from the Washington, D.C., area to represent a range of 
characteristics, from low - income, captive-transit inner-city residents to high-income, 
automobile-captive suburban residents. The specific characteristics of these house ­
holds that are relevant as inputs to th~ model are given in Table 6. Not given (but used 



Table 3. Model coefficient values. 

Variable Coefficient t-Statistic Variable Coefficient t-Statistic 

DC -0.555 -2.13 "1(REMP) 0.161 3.29 
OVTT/DIST -0.100 -3.38 DCBD 0.562 2.07 
"'(IVTT + OVTT) -2.24 -11.85 DF -3.78 -4.51 
OPTC/INC -0.0242 -4.20 HHSF, 0 rrequency on1y -0. 186 -4.57 
AAC, car only 0.557 5.61 DENF, O frequency only 0.383 1.38 
I / DIST 0.0686 l.66 INCF, 0 frequency only 0.0414 1.18 

Note: Number of observations = 1,313; number of alternatives= 44, 718; log likelihood for coefficients of 0"' -3,BJO; log likelihood for estimated 
coeflicients = 2,511; and explained log likelih ood/total log likelihood "' 0_36~ 

Table 4. Comparison of (mlr,d) (dif,m) 
conditionals and joint estimation. 

Variable or Standard Standard 
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(f,d, m) 
---

Standard 
Constant Estimate Error Estimate Error Estimate Error 

DC - 1.35 0.732 -0.555 0. 260 
OVTT/DIST · 0.116 0.623 -0.0399 0. 0277 -0.100 0.0296 
"'(OVTT + fVTT) · 2 ,21 0.367 -2.60 0.240 -2.24 0. 189 
OPTC/INC · 0.0243 0.0151 -0.0237 0. 00726 -0. 024 0.00576 
AAC 1.63 0.667 0. 557 0. 0992 
I / DIST 0.0341 0.0634 0.0686 0.0414 
"'(REMP) 0.370 0.0533 0.161 0.0489 
DCBD 0. 354 0.284 0.562 0.271 
DF -3.78 0.839 
HHSF -0. 186 0.0404 
DENF 0.383 0.276 
INCF 0.0414 0.0350 

Table 5. Log functions and Number of Number or 
other data for conditionals and Condition Observations Alte rnatives L*(O) L'(B) p' 

joint estimation of Table 4. (mll,d ) 225 450 -15 6 -62 0.60 
(dlr, m ) 403 8, 732 -1,210 -988 0.19 
(f,d,m ) 1, 313 44, 718 -3, 830 ·2,511 0.36 

Table 6. Typical households. Household Household Household 
Characteristic 'l 2 3 

Income per year, dollars 5, 000 13, 500 22, 500 
Number of automobiles owned 0 1 2 
Household size 4 4 5 
Distance to CBD, miles 3 6 9.5 
Retail employment density at 

residential zone High Medium Low 
Transit availability Good Medium None 
Distance to worki miles 2.5 4 6.5 

Nuh'.1• 1 m1l1111 • 1,6 'fl;m. 

Table 7. Model forecasts for Mode lo Work 
households 1, 2, and 3. (percentage of indi\'iduals) Mode to Shop 

(household trips/day) 
Drive Car 

Household Alternative Alone Pool Transit Cai• Transit Total 

Base case 0 13.8 86.2 0 0.010 0. 010 
Case 1 0 12.0 88. 0 0 0.010 0.010 
Case 2 0 13.8 86.2 0 0.010 0.010 
Case 3 0 42.2 57.8 0 0.010 0. 010 
Case 4 0 7.6 92.4 0 0.072 0.072 
Case 5 0 37.6 62 .4 0 0. 072 0.072 

Base case 89 .4 2.9 7 ,7 0.482 0.012 0.494 
Case 1 89.1 1.4 9.5 0.420 0.013 0.433 
Case 2 89.4 2.9 7. 7 0.454 0.013 0.467 
Case 3 81.2 11.9 6.9 0.494 0. 012 0.506 
Case 4 76. 7 2.6 20. 7 0.463 0.083 0.546 
Case 5 65.8 11 .9 22.3 0. 389 0.094 0.483 

Base case 96.2 3. 8 0 0.499 0 0. 499 
Case 1 95.7 4.3 0 0.441 0 0.441 
Case 2 95.4 4.6 0 0.478 0 0.478 
Case 3 83.2 16.8 0 0.517 0 0. 517 
Case 4 82.4 3.3 14.7 0.468 0.096 0.564 
Case 5 63. 7 17. 7 18.6 0.418 0. 105 0.523 
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in the model calculations) are the residence locations of the households, which affect 
the set of relevant shopping destination and modal alternatives. Also not given are the 
work locations, which, however, are notable only in that household 3 alone has a worker 
who commutes to a downtown location that requires a parking fee. 

Use of Models to Forecast Effects of Transportation Options 

The 2 models that are used for this application are the joint model of choice of mode to 
shop previously described and model of choice of mode to work (also multinomial logit) 
developed in related research that forecasts the probability of choice among the 
automobile-driven-alone, car-pool, and bus modes (5). The choice-of-mode-to-work 
model takes as inputs level-of-service and modal-specific variables similar to those 
used in the shopping model. To distinguish the effects of car-pool incentives on the use 
of car-pools, we included a variable indicating the presence of employer-based car-pool 
incentives (as they existed in 1968 for government workers) in the model. 

The forecasting procedurethat was used for eachpolicy alternative is as follows: First, 
the independent variables were introduced in the choice-of-mode-to-work model to 
produce forecasts of modal-choice probabilities; then, the shopping model was applied 
with the independent variables including the residual automobile-availability variable 
that resulted from the forecast probabilities of choice of mode to work. This procedure 
was repeated for each household. 

The forecasts of the models for all the policy alternatives for each household are 
given in Table 7. The 3 modal probabilities for mode to work reflect the availability 
as well as the characteristics of the alternatives: Car pool was allowed for everyone, 
drive alone was allowed only for those owning automobiles, and transit was allowed only 
where it was available. The number of household shopping trips per day is given 
directly by the model, and this is multiplied by the modal probabilities (also taken 
directly from the model output) to give trips per day by automobile and bus (car pool is 
not a relevant mode for shopping). 

Results of Comparisons 

Tables 8, 9, and 10 give a summary of the important results of the analysis. The data 
given in Table 8 show how the number of shopping trips made by each household varies 
for the 6 alternatives (trip frequency for the work trip, of course, remains constant). 
The first household, which is captive to transit, makes more shopping trips only when 
transit improvements are implemented (increases more than 6 times over base levels). 
For the second household, decreases are observed, as expected with price disincentives 
on automobile use. However, the introduction of car-pool incentives shifts use of the 
household's automobile away from the work trip and leaves it available for daytime 
shopping by other household members. Thus, car-pool incentives increase the amount 
of shopping travel by automobile. Transit improvements increase shopping travel by 
transit, as expected, for all households. The data given in Table 9 translate the shopping 
and work travel into daily vehicle miles of travel (VMT) (vehicle kilometers of travel) 
for each household (based on forecast probabilities and known distances to alternative 
destinations). As expected, the 2 price increases on automobile travel reduce VMT 
(vehicle kilometers of travel) for all households for both work and shopping travel. 
Car-pool incentives, however, increase VMT (vehicle kilometers of travel) for shopping 
in those households that own automobiles and increase work-trip VMT (vehicle kilometers 
of travel) for households that previously had no direct access to an automobile fortravel 
to work, but now are encouraged to use car pools. The total VMT (vehicle kilometers 
of travel) over all 3 households and across the 2 trip purposes of work and shopping is 
less than for the base case; however, inclusion of other travel purposes, such as recrea­
tion and personal business , which also are affected by automobile availability, easily 
could make the total VMT (vehicle kilometers of travel) for the car-pool-incentives 
option greater than that for the base case. 



Tables. Effect of policy alternatives on household shopping trips. 

Household 1 Household 2 Household 3 

Household Change Household Change Household Change 
Shopping From Base Shopping From Base Shopping From Base 

Alternative Trips/Day (percent) Trips/Day (percent) T rips/Day (percent) 

Base case 0.010 0 0.494 0 0.499 0 
Case 1 0.010 0 0.433 -12 0.441 -12 
Case 2 0.010 0 0.467 -5 0.478 -4 
Case 3 0. 010 0 0.506 +3 0.517 +4 
Case 4 0.072 +620 0.546 +10 0.564 +13 
Case 5 0.072 +620 0.483 -2 0.523 +5 

Table 9. Effect of policy alternatives on vehicle miles (kilometers) of travel. 

Work Shop Total 
----
Change Change Change 
From Base From Base From Base 

Household Alternative VMT (percent ) VMT (percent) VMT (percent) 

Base case 0.276 0 0 0 0.276 0 
Case 1 0.240 -13 0 0 0.240 0 
Case 2 0.276 0 0 0 0.276 0 
Case 3 0,844 +206 0 0 0.844 +206 
Case 4 0.152 -45 0 0 0.152 -45 
Case 5 0. 752 +172 0 0 0.752 +172 

Base case 7.245 0 4.020 0 11.265 0 
Case 1 7.173 -1 3.327 -17 10.500 -7 
Case 2 7.245 0 3. 844 -4 11.009 -2 
Case 3 6.877 -5 4.127 +3 11.004 -2 
Case 4 6.2 19 -14 3.870 -4 10.089 -10 
Case 5 5.645 -22 3.127 -22 8. 772 -22 

Base case 12 .70 0 4.48 0 17.18 0 
Case 1 12. 66 -0 .3 3.62 -19 16.28 -5 
Case 2 12.64 -0.5 4.26 -5 16.90 -2 
Case 3 11.69 -8 4.64 +4 16. 33 -5 
Case 4 10.88 - 14 4. 21 -6 15.09 -12 
Case 5 9.20 - 28 3.41 -24 12.61 -27 

l, 2, and 3 Base case 20.22 0 8.50 0 28. 72 0 
Case 1 20.07 - 1 6.95 -10 27.02 - 6 
Case 2 20.16 0 8.10 -5 28.26 -2 
Case 3 19.41 -4 8. 77 +3 28.18 -2 
Case 4 17 ,25 - 15 8.08 -5 25.33 -12 
Case 5 15.60 - 23 6.54 -23 22.14 -23 

Note: 1 vehicle mile o f travel= 1.6 vehicle km or tra11el , 

Table 10. Bias from assuming no effect of level-of-service changes on frequency of household 
shopping trips. 

Household 1 Household 2 Household 3 

VMT Given VMT Given VMT Given 
Actual Base-Trip Bias Actual Base-Trip Bias Actual Base-Trip 

Alternative VMT Generation (percent ) VMT Generation (percent ) VMT Generation 

Base case 0 4. 020 4.480 
Case 1 0 0 0 3, 327 3.729 +12 3.623 4.095 
Case 2 0 0 0 3, 844 4.065 +6 4.263 4.445 
Case 3 0 0 0 4. 127 4.025 -2 4.642 4.480 
Case 4 0 0 0 3. 870 3. 500 -10 4.205 3.716 
Case 5 0 0 0 3,127 3.197 +2 3.407 3.249 

Note : 1 vehicle mile of travel = 1.6 vehicle km of travel 
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Bias 
(percent} 

+13 
+4 
-3 

-1 2 
- 5 

The data given in Table 10 show the bias that results from assuming that level-of­
service changes have no effect on the frequency with which households make shopping 
trips. Actual VMT (vehicle kilometers of travel) given base-trip data are as predicted 
by the full joint-choice model; the VMT (vehicle kilometers of travel) given base-trip 
data are as computed by the conditional model P(d, m / fb ... ), which assumes frequency 
to be unaffected by the transportation options. The bias percentages are those that re­
sult in this application of the model. Although the biases from not including price effects 
on travel frequency are not overwhelming in magnitude, they are consistent in under-
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estimating the effectiveness of disincentives to decrease automobile use and of transit 
improvements to increase public transit patronage. Thus, to accurately model these 
policy alternatives, which often have impacts on demand only on the order of magnitude 
of the observed biases, it would seem extremely important to consider, in the model 
structure, the effects of level-of-service changes on frequency of travel. 

CONCLUSIONS AND IMPLICATIONS OF RESULTS 

The estimation of this joint-choice model provides what is an encouraging, though not 
final, step in the development of a full set of disaggregate choice models of travel 
demand. The relative ease of estimating the single joint-choice model compared to 
calibrating 3 separate models by using arbitrary sequence assumptions is a clear 
advantage (even beyond the general acceptability of joint over conditional models). 
All the estimated coefficients have reasonable signs and magnitudes and relatively 
small standard errors that primarily are due to the full use of the data by joint estima­
tion. The joint model was estimated by using a maximum likelihood procedure that 
consumed less than 1 min of central processing unit time in 80,000 bytes of core on an 
IBM 370/165. 

Several important properties of the disaggregate choice model set were demonstrated 
in the example application of the models. It was shown how the models can be used 
directly to compute the quantitative effects of transportation policy options on the travel 
demand of either specific types of households or of more generally constructed market 
segments. The inclusion of a large set of policy- relevant variables in the model speci­
fication allows for the testing of a wide range of options, and the model forecasts can 
be computed directly for many types of impacts-from the effect on CBD shopping fre­
quency of parking cost increases to the effect of car-pool incentives on areawide VMT 
(vehicle kilometers of travel). 

Another set of properties that were demonstrated in the case study were some of 
the effects of model structure on the resulting forecasts. One feature of the model set 
used here is the explicit linking of household decisions in choosing among travel alter­
natives. The choice situation that is represented in these models is the automobile­
allocation decision: whether the automobile will be used for the work trip and how this 
affects household choices for other types of trips. That an automobile left at home will 
stimulate automobile travel for discretionary purposes (shopping) is an extremely im­
portant effect in evaluating car-pool incentive programs. Other household travel 
choices that involve complementarity among trip purposes (such as the consolidation 
of travel through trip chai11ing) can and should be similarly represented to present a 
more complete behavioral picture of travel demand. 

Another structural property of the shopping joint-choice model that has been shown 
to be important is the representation of level-of-service effects on travel frequency. 
The bias from not including this effect is significant in that it is consistent in under­
estimating the effectiveness of some of the currently relevant transportation options. 
Thus use of a model structure that represents effects of levels of service on all choices 
(in this case, a joint-choice structure) is necessary to realistically appraise policy 
options. 

Two areas of further work are logical continuations of the effort documented here. 
The first is in the development of improved specifications to increase the sensitivity 
of the model toward a larger variety of policy options. This might include extension 
of the model to treatment of additional modes or simply inclusion of additional variables 
to either strengthen the behavioral representation or allow an expanded set of policy 
variables. A group of alternative specifications for which estimation already has been 
performed is documented by Adler (1). 

A more fundamental gap between current travel demand models and existing theories 
of travel behavior still exists. All modeling efforts to date have stratified trips by trip 
purpose and used a single link as the unit of travel demand. The most recent choice 
models such as the one reported in this paper have assumed simple round trips as the 
relevant unit. It is becoming inc1·easingly obvious, however, that estimation of these 
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models is not adequate to describe the large numbers of more complex trip patterns 
that are observed in urban travel. In the 1968 Washington, D.C., home-interview sur­
vey, patterns of travel that integrated shopping trips with other trip purposes (shopping 
on the way home from work) are observed in greater numbers than the simple patterns 
in which a household makes a single 2-link round trip for shopping. The recent trend, 
which largely is due to rising fuel prices, has been toward increased traveler tendencies 
to consolidate their needs for transportation by linking several purposes in a single, 
expanded round trip from home. There are several trade-offs involved in the house­
holds' comparisons among travel patterns. One is the desire to satisfy needs for travel 
as they accumulate to a threshold level against the attempt to unite them temporally to 
allow for a single, more efficient round trip. Clearly, there are behavioral issues here 
that have potentially great impact on energy-conservation programs as well as on other 
modally oriented incentives (relative advantages of the various modes in servicing these 
more complex patterns of travel) but remain unaddressed in any current travel demand 
models. 

The problem with the most recent efforts in addressing the issues posed by complex 
patterns of travel seems to be their orientation around single trip purposes as a means 
of stratification of behavioral responses. A more integrated approach would be in the 
use, as a unit of demand, of complete patterns of household travel and in the identifica­
tion of the general classes of travel that can be decomposed from those patterns. For 
example, a useful classi:{ication might distinguish among fixed patterns of travel (such 
as travel to work or school where the destination is generally static in the short term), 
discretionary travel (where mode, destination, and frequency are active choices), and 
patterns where fixed and discretionary travel purposes are combined (as in a shopping 
trip on the way home from work). Such a scheme would allow for behavioral compar­
is""!S among all patterns of household travel rather than exclude the more complex 
patterns that are of increasingly greater interest to transportation planners as the more 
restrictive travel-purpose-based stratifications do. 

This expansion of the scope of disaggregate behavioral models will, of course, benefit 
from the research of the past few years. In particular, the general format of the joint­
choice model is seen as being a key to the modeling of dimensions of choice (for ex­
ample, among morphologically different multipurpose round trips) that are even less 
subject to the imposition of a sequence assumption than the frequency, mode, and des­
tination choices now being modeled. 
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