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The components of a pavement system, its loadings and responses, its con
stitutive materials, and conditions of weather vary in time and location in 
a random manner. Mathematical models of such systems are known as 
stochastic processes. This paper presents some fundamentals of proba
bility theory that form the building blocks of such processes. Specific 
topics treated are deterministic and stochastic systems, randomness and 
probability, tree diagrams, permutations and computations, conditional 
probabilities, independence, and Bayes' theorem. Examples are presented 
to demonstrate the use of the concepts relative to factors entering the 
analysis, design, construction, and proofing of pavement systems. The 
concept of chance as it applies to dice or cards is discussed. In this 
paper a collectfon of tools is described, and their use is demonstrated. 

•ACHIEVEMENTS in transportation technology during the last 2 decades have increased 
the need for pavement evaluation procedures with which to assess the future trends of 
pavement behavior. The rates and magnitudes of loadings imposed on today's pavement 
systems surpass those previously experienced, especially those due to air transport 
vehicles. The nature of these loadings places greater demands on pavements than they 
were designed and constructed for. The deterioration of today's pavements has become 
a major problem of civil engineering. 

The problem facing the profession today is not how to design and build new pavement 
systems for greater frequency and magnitude of loadings, but how to upgrade and pro
vide the remedial measures for existing pavement systems to meet current and future 
traffic demands. 

In pavement design and analysis, factors that are commonly swept under the carpet 
in other analytical problem areas cannot be assumed away. For example, a pavement 
consists of distinct layers with unknown contacts at their interface; the layers may or 
may not be in contact in space or in time. Imposed loadings (wheels) are relatively 
large in area compared with the thickness of the surface layer; consequently, Saint
Venant's principle cannot be invoked to change the system to an equivalent homogeneous 
and isotropic body. Ambient conditions greatly alter the properties of the layers, which 
range from thermal plastic, temperature-sensitive materials to granular soils whose 
actions depend greatly on their voids. Each layer is composed of complex conglomera -
tions of discrete particles of varying shapes, sizes, and orientations. In addition, 
loads are variable in both magnitude and time and are dynamic in nature. It is not 
surprising how poor predictions of the transmission of induced energy through such 
systems have been. Randomness alone dictates the probabilistic (casual) rather than 
deterministic (causal) treatment. 

DETERMINISTIC AND STOCHASTIC SYSTEMS 

Systems that can be described by unique explicit mathematical relationships are said 
to be deterministic. An example of a common deterministic system is shown in Figure 
la. The system is composed of the mass m, suspended from a linear spring (with 
spring constant k) , which is displaced an amount l:J,. from its equilibrium position. The 
mathematical relationship of the response y(t) is 
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y(t) =~cos~ t ( 1) 

for t ;;, 0. This expression provides the unique position of the mass y(t) at any instant 
of time; hence, the system is completely determined or deterministic. A pictorial rep
resentation of the model is shown in Figure lb. An example of the use of this model 
with respect to pavements was given by Harr (3). 

The concept of a stochastic system is shown in Figure 2, which illustrates a vertical 
cross section through a pavement subjected at its surface (the x-axis) to a unit force 
(say per unit length normal to the plane of the paper) acting at point x = x1 • Suppose 
that we wish to determine the magnitudes of the two forces FA and Fa, located as shown 
at equal distances a on either side of the unit force at a constant depth z = z 1 • In effect, 
we would seek the transmission of the unit force through the pavement. A pavement, in 
its general form, is composed of a complex conglomeration of discrete particles, in 
arrays of varying shapes, sizes, and orientations, and contains randomly distributed 
concentrations of cementing agents. Certainly, we cannot expect that, in general, the 
forces registered by FA and Fa will always be equal. (In the deterministic approach, 
it is customary to plead symmetry and hence the equality of the two forces, i.e., FA 
= Fa.) In fact, because of the variations in the characteristics of such media, we should 
expect that they will seldom be equal because the location x = x1 varies. For example, 
if one of the forces was not in contact with a solid particle, i.e., was in a void, no force 
would be noted. Evidently, as the unit force is moved in time, as for moving vehicles, 
through a series of points x = x1, the magnitudes of the forces would be expected to be 
random in character, i.e., casual rather than causal. Systems that display random re
sults with time are said to be stochastic. The thesis here is that, to be meaningful, ex
periments involving such systems should be formulated in terms of probabilistic state
ments rather than explicit expressions. 

RANDOMNESS AND PROBABILITY 

As noted, in the deterministic approach the outcomes of experiments (observations or 
phenomena) are treated as absolute quantities. For example, when given the total 
weight W, total volume V, and weights of solids W, for a water-saturated soil mass, 
the porosity can be obtained from the formula n = (W - W,)/Vy,.. In particular, given 
W = 100 g, w. = 55 g, V = 100 cm3

, the porosity is n = 45 percent. Implied in this re
sult is that, if we were to carry out the weighings and volumetric determinations on a 
large number of samples of the soil, under certain similar conditions, we would ex
pect on the average that the ratio of volume of voids to total volume would be 0.45. Ob
viously, the determi ned porosity would not be 45 percent in every experiment. Some
times it would be 40 or 41 percent, other times 43 or 46 percent. Occasionally, it may 
even be very much smaller or very much greater than 45 percent. 

This example illustrates what is meant by random experiments, experiments that 
can give varying outcomes (results) depending on chance circumstances that are either 
unknown or beyond control. The distributions of particle sizes in a number of soil 
samples from the same test pit will not be the same. The variation in measured pave
ment thickness for a given section will show considerable differences. Contrary to 
common belief, the inability to obtain concise descriptions of events or observations 
is not a declaration of ignorance; it is the way nature and the real world behave-fraught 
with uncertainty. Stated more succinctly, there is no absolute knowledge. What phys
icists considered exact and ordered prior to the development of quantum mP.r.hanir.s 
turned out to be merely the mean value of a much more impressive structure. 

The diversity of results of apparently similar circumstances is the consequence of 
randomness. A single data set represents only one of many possible results that may 
occur. Each of these may be considered as a single result of a random experiment (or 
phenomenon), the collection of which produces a random process. In other words, a 
data record for a particular sample of a random phenomenon is only one physical real-
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ization of a random process. 
Every test and measurement conducted on pavement systems introduces a magnitude 

whose numerical value depends on random factors that are beyond control. Further
more, each such magnitude can have a different value in successive trials. This type 
of magnitude is called a random variable; the separate magnitudes are called elemen
tary events. The outcomes of a random experiment are called elementary events if 
(a) only one outcome can occur at a time and (b) one outcome always does occur. Con
dition a specifies that the outcomes are mutually exclusive or are disjoint; that is, no 
two elementary events can occur simultaneously. Condition b states that an elementary 
event is possible. The classic example of an elementary event is the outcome of the 
toss of a fair die. (Historically, questions relative to dice, asked of Pascal, precipi
tated the mathematical theory of probability.) Condition a is satisfied because only one 
face can appear per toss of a die. Condition b is ensured because any one of the six 
faces is likely to appear. 

Implied in the die toss experiment is that the numbers 1, 2, 3, 4, 5, and 6 each have 
a possibility of occurring with equal likelihood. However, the number that will appear 
on any one toss is uncertain. Suppose now that the experiment is repeated many times. 
Even though the numbers shown on the faces may be different in successive tosses, it 
is reasonable to expect that, over the long run, any one number will occur one-sixth of 
the time. A gambler would say that the odds against tossing any specified number is 
five to one. The probabilist would define that probability to be one-sixth. 

The measure of the probability of an outcome is its relative frequency. That is, if 
an outcome E can occur n times in N equally likely trials, the probability of the occur
rence of outcome E (after a large, theoretically infinitely large, number of experi
ments) is 

P(E) n 
N (2) 

Also, implied in equation 2 is the concept of the ratio of favorable outcome to the num
ber of all possible cases. This definition was first formulated by Laplace in 1812. 
Stated another way, the probability of outcome A equals the number of outcomes favor
able to A divided by the total number of outcomes or 

P(A) _ favorable outcomes 
- total outcomes (3) 

As an example, find the probability of drawing a red card from an ordinary well
shuffled deck of 52 cards. Of the 52 mutually exclusive and equally likely outcomes 
(each card is a possible outcome and, hence, an elementary event), there are 26 favor
able outcomes (red cards); hence, 

P(d · d d) _ favorable outcomes 
rawmg a re car - total outcomes 

26 1 
52 2 

Knowledge of the distribution of a random variable and of the probabilities of the 
various possible values enables predictions to be made of the occurrence of an event 
or collection of events. The underlying question is, How does one find this distribu
tion? Considering the uses to which probability theory has been put and the length of 
time it has been around, it is not surprising that there are many avenues available. 
At this point in our development, it will suffice to list a few examples. 
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1. Some few experiments are performed, and frequencies are noted and then gen
eralized; e.g., a fair coin will show heads half of the time, or the porosity of the soil 
layer is 42 percent. 

2. Probabilities are assigned subjectively as a set of weights that express likeli
hoods of outcomes; e.g., each of the 10 questions in the examination is worth 10 points, 
and 70 is the minimum passing grade. 

3. Whole families of distribution laws stem from mathematical excursion derived 
from certain intuitive concepts. Detailed examples are available in texts dealing with 
probability (~. 

Whatever the basis for assigning probabilities to elementary events or outcomes, 
the following are axiomatic: The probability of an outcome A ranges between zero and 
unity 

0 ~ P(A) ~ 1 (4) 

and the certainty of an outcome C has a probability of unity 

P(C) = 1 (5) 

The probability of the occurrence of a number of elementary events or outcomes A1, 
A2, ... , A1 is the sum of component probabilities (addition rule) : 

n=i 
P(A1 + A2 + ••• + A1) = P(A1) + P(A2) + .•. + P(A1) = :E P(An) 

n=l 

This also implies that 

(6) 

(7) 

Equations 4, 5, 6, and 7 are the building blocks from which the elementary theory 
of probability is constructed. These axioms will next be used to derive some impor
tant properties of the probabilities of mutually exclusive outcomes. 

A collection of elementary outcomes, A1, ~ •... , An, is said to be collectively ex
haustive if it represents all outcomes that can occur for a given experiment. Symbol
ically, this is shown as 

(8) 

For the toss of a die the six outcomes-Ai= 1 appears, A2 = 2 appears, ... , A6 = 6 ap
pears-are both mutually exclusive and collectively exhaustive; therefore, 

(9) 

From equations 5 and 6 it follows that the probability of a collectively exhaustive set 
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of outcomes is unity: 

P(S) = P(A1) + P(A2) + ... + P(A.) = 1 (10) 

An event A0 is said to be the complement of outcome A if A0 +A= 1. Here S = (A, 
A0

}. From equation 10 it follows that 

P(A0
) = 1 - P(A) (11) 

It follows from equations 5 and 11 that, if C is the certain outcome, its complement 
is the uncertain outcome U whose probability is 

P(U) = 0 (12) 

As another example, let w represent the square opening of a particular sieve of 
wire diameter D, and find the probability that a spherical particle of diameter d will 
hit the wire if the particle falls perpendicular to the plane of the sieve (Figure 3). 

The possible outcomes can be related to the location of the center of the sphere rel
ative to the mesh. It will only be necessary to consider one square because all squares 
present similar situations. The probability of the sphere hitting the mesh can be mea
sured by the likelihood (favorable outcome) of the center of the sphere hitting beyond 
the dotted square ABCE in Figure 3. The total outcome is measured by the area of the 
square abce = (w + D) 2. Thus, the favorable outcome is the area between square ABCE 
and square abce = (w + D) 2 

- (w - D - d) 2
• Hence, the probabilities are 

(
w - D -d) 2 

P(hitting mesh) = 1 - w + D (12a) 

and 

(
w -D -d) 2 

P(passing through opening) = w + D (12b) 

This example provides some interesting excursions into what happens during the 
sieving process. If we assume that there is no interference between particles and that 
for a No. 200 sieve w = 0.074 mm and D = 0.0021 mm, a particle with a diameter 90 
percent of the opening d = 0.067 mm has a probability of 0.9959 of hitting the mesh un
der the stated conditions. Suppose now that the sieve is shaken through n cycles. If 
we assume each cycle is equivalent to repeating the sphere dropping process, the prob
ability of the particle hitting the mesh after n cycles is (0.9959)". To achieve a prob
ability of 90 percent that the particle will pass through the opening-a probability of 
0.10 that it will hit the mesh-will require (0.9959)" = 0.10 or n = 554 cycles, hardly a 
manual task! 

Now consider the cross section through a sample of a particulate medium at eleva
tion z (Figure 4). The shaded portion defines the intersection of the plane of the cross 
section with the solid particles; the unshaded portion represents the region of voids. If 
m(z) is the area porosity, the ratio of the area of voids Av(z) (shown unshaded) to the 
total area A of the section at any elevation z, then 
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( ) 
_ Av(z) 

m z - ---p;-

The average value of m(z) over the height of the sample h is 

1 fh m = h 
0 

m(z)dz 

Then 

1 fh 1 fh 
m = Ah Jo Am(z)dz = V Jo A,(z)dz 

where V is the total volume and the integral is the volume of voids. Hence, the aver
age value of mis the volume porosity n. Based on the geometric definition of proba
bility, it follows that the porosity of a particulate material n = V v/V is the probability 
of finding (hitting) a void in a unit volume. The complementary event to the porosity 
is the volume of solids per unit volume n. = 1 - n; therefore, the probability of locating 
a solid particle in a unit volume of material is 

P(locating a particle) = n. = 1 - n (13) 

In the limit, when there are no voids, equation 13 shows that the certainty of locating 
a solid is n. = 1. 

TREE DIAGRAMS 

The characterization of a sample of a highway pavement requires a choice of one of 
three identification tests (I1, h, !3), a choice of one of three strength tests (S1, S2, 83), 
and a choice of one of two compressibility tests (C1, C2). In how many possible ways 
may the characterization of tests be performed? The three -step process is shown in 
Figure 5. It should be evident why this representation is called a tree diagram. The 
total number of outcomes is the same as number of possible paths, which in this case 
is simply the sum of the twigs on the lowest branch, i.e., the number of C's, which is 
18. The ordering of the tests is arbitrary. 

As another example, consider that there are four classifications of soils (gravel, 
sand, silt, and clay), the soils may be saturated or unsaturated, and they may exhibit 
low, medium, and high degrees of density. If all sequences are equally likely, how 
probable is it that a randomly selected sample will be a dense, saturated clay? 

The tree diagram is shown in Figure 6. Tbere are 24 possibilities; hence the prob
ability of selecting a sample of dense, saturated clay (shown darker) is 1/ 24. 

It should be apparent that the tree diagram is in a sense a graphical multiplier. 
The same results could have been obtained by using a multiplication rule. Stated sim
ply, if the first step (or event) A1 has a1 outcomes and for each of these a1 outcomes a 
second independent step (or event) A2 has a2 outcomes, then there will be the product 
a 1a2 outcomes after the two steps. Obviously, this can be extended to any number of 
ii.dependent events. For the example in Figure 5, this would lead to 3 x 3 x 2 = 18 out
comes. For Figure 6, 4 x 2 x 3 = 24 outcomes. 
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PERMUTATIONS AND COMBINATIONS 

The listing of all the distinct arrangements of r objects within a collection of n objects 
is called the permutations of n objects taken rat a time. Symbolically, this is shown 
as 

n! 
P(n, r) = (n _ r) ! ( 14) 

where n ! = n(n - 1) (n - 2) .•• (2) ( 1). Other common designations are nP r, P~, and Pn,r· 
Arranging n objects in some order of r is the same as preparing a tree diagram 

with n ways shown in the first step, n - 1 ways in the second, until n - r + 1 ways oc
cupy the last (the rth) position. 

If there are 10 automobiles that at various times occupy the six available parking 
spaces reserved for employees at the rear of a store, how many different parking ar
rangements are possible assuming that no parking spaces remain unoccupied? 

The question asks, How many groups of six can be arranged from among 10 objects? 
Thus, n = 10, r = 6, and P(lO, 6) = 10 x 9 x 8 x 7 x 6 x 5 = 151,200. 

Another common situation is when one wishes to find the number of distinct permu
tations (remembering that all permutations must be different) when some of the objects 
in the collection are alike. Suppose that of the n objects ni are all of one kind, n2 are 
all of a second kind, etc., and there are k kinds. It can be shown that the number of 
distinct permutations is 

n! (15) 

In how many ways can 15 objects be divided into two groups such that one has twice 
as many as the other? Here n = 15, n1 = 10, and n2 = 5. Hence applying equation 15 
gives 15! / (10 ! · 5 !) = 3 ,003 ways. 

A combination of objects rather than a permutation occurs when order is of no im
portance. Generally, a combination can be thought of as a selection and a permutation 
as an arrangement. A combination of n objects taken r at a time is a selection of r ob
jects taken from among the n objects without specifying order or arrangement. For ex
ample, the combination of the four letters a, b, c, and d taken three at a time is abc, 
abd, acd, and bed. Because order is not important, the combinations abc, acb, cab, 
cba, bac, and bca are all equal. The number of combinations of r objects from among 
n objects is given as 

n! 
C(n, r) = 1 ( _ ) 1 r. n r . ( 16) 

This sequence follows from the observation that there are r ! permutations of every 
combination of P(n, r) = r ! C(n, r). It follows from equation 16 that C(n, r) = C(n, n - r). 
Other designations are nCr, Cn,r, C~. Another commonly used symbol for the r com
binations of n objects is 

C(n, r) = (~) ( 17) 
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An inspector on a highway project discovers that k of every n samples tested can be 
expected to be below standard. If n samples are chosen randomly, from a batch of n 
samples find the probability that t are below standard. 

There are a total of ( ::i) number of way.a to choose m items out of n. The number 

of favo1·able ways is ( ~) x ( ~ ~ \ ) ; that is , the favorable outcomes (for this example, 

not for the inspector) are those in which t substandard tests are found among k items, 

which can be done ( ~ ) ways, and the remaining m - .i tests are at or above standard 

from among the total number of n - k tests. Hence the required probability will be the 
number of favorable ways divided by the total number of ways or 

P= 
(~)x(::i~~) 

( ::i) 
CONDITIONAL PROBABILITIES 

(18) 

Concrete for a particular highway pavement is mixed in two plants P1 and P2 and 
trucked to the jobsite. Plant P1 produces 66 percent and plant P2 34 percent of the con
crete used. Tests on concrete cylinders judge the concrete to meet standards if the 
28-day unconfined compressive strength is no less than 4,500 psi {31 000 kPa). Pre
vious tests on the concrete from plant P1 show that an average of 91 percent of the con
crete meets standards. Results from plant P2 show that 83 percent of the samples 
meet the criterion. These results would indicate that the highway inspector can ex
pect, on the average, that approximately 88 tests per 100 will prove adequate [(0.66) x 
(91) + (0.34) x (83) ""'88]. Stated another way, the probability of a sample of concrete 
meeting the specification is approximately 0.88. If all the concrete was obtained from 
plant P1, the probability of getting standard concrete would be 91 percent; plant P 2 
would produce 83 percent. It is apparent that information on where the concrete was 
produced will affect the probability of the outcome. Such probabilities are said to be 
conditional; that is, the occurrence of one outcome (information on which plant pro
duced the concrete) will modify the chance of the occurrence of another outcome (the 
probability that a number of test samples of the concrete will test above standard). Be
fore the origin of the concrete was specified, the unconditional probability that the tests 
would pass the specification was 0.88. 

The conditional probability of an outcome A, given that an outcome B has occurred, 
denoted P(A I B), is defined as 

P(A I B) = P(AB) 
PlB) (19) 

where P(AB) denotes the probability that both (simultaneous occurrences) outcomes A 
and B will occur, called their intersection, and P(B) is the probability of the occur
rence of outcome B. (In set theory AB, designated AnB, is the intersection of A and 
B or the joint occurrence of A and B.) If P(B) = 0, the conditional probability is not 
defined. Other useful forms of this expression are 

P(AB) = P(A) P(B IA) 
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or 

P(AB) = P(B) P(A I B) (20) 

These forms yield the probability of the intersection (or simultaneous occurrences) of 
both outcomes A and B. In words, the simultaneous occurrence of two outcomes is 
equal to the product of the probability of one outcome and the conditional probability of 
the other, assuming the first occurred. 

For example, a pair of fair dice are thrown. What is the (conditional) probability 
that their sum is greater than 6 if a 2 appears on the first die? 

There are 6 2 = 36 possible outcomes. The number 2 appearing on the first die has 
a probability of occurrence of '/6. There are two (simultaneous) favorable outcomes: 
a five or six on the second die. This is the outcome AB. Hence, P(AB) = %6• Using 
equation 19 gives a conditional probability of 

P(A I B) ;: ~y: = % = % 

An example of the unconditional probability for this example would correspond to asking, 
What is the probability that a sum greater than 6 will appear on the throw of a pair of 
dice? Because there are 21 favorable outcomes, the unconditional probability would 
equal 2

'/36 = 0.58. 
For a number of problems a tree diagram is very useful in understanding the out

comes and their probabilities. 
A box contains 10 articles; six are painted red and four are white. If two articles 

are selected at random (without replacement), what are the probabilities of the various 
permutations? 

The results are shown on the tree diagram in Figure 7. The probability of any per
mutation (path) is the product of the branch probabilities. On the first draw, the prob
ability of drawing red is P(R) = 

6
/ 10• However, on the second draw, because there are 

only 5 reds available among the 9 articles, P(R IR) = %. Hence from P(RR) = P(R) x 
P(R IR) = '/3• Note that the probability of drawing one of each color at the end of the 
drawing is P(RW) + P(WR) = 'Y15 + i'1s = 8/15. 

Equation 20 gives the probability of the joint occurrence (intersection) of two out
comes A and B. These can be further generalized to any number of outcomes. For 
three outcomes, ABC, 

P(ABC) = P(A) x P(B IA) x P(C IAB) (21) 

where P(C !AB) is the probability that outcome C occurs given that the joint outcomes 
of A and B have already occurred. 

Find the probability of drawing hearts on three consecutive draws, without replace
ment, from a standard deck of cards. We define A, B, C as outcomes of a heart being 
drawn on the first, second, and third draws. Here as in the previous example P(A) = 

'/4, P(B IA) = 'Yn, and P(C IAB) = 'Yso. Hence, 

P(drawing three consecutive hearts) = % x 'Y11 x 1%0 = 0.013 

Equation 21 can be extended to any number of outcomes. For any outcomes Ai, A2 , ••• , 

An, 
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or 

(22) 

Equation 22 is called the multiplication rule of probability; the addition rule was given 
in equation 6. 

A sample of gravel from a gravel pit is to be examined to determine whether the pit 
can furnish adequate coarse aggregate for making concrete. Specifications require 
that the pit be rejected if at least one deleterious particle is discovered among five 
particles selected at random from the sample. What is the probability that the gravel 
pit will be acceptable if a sample of 100 particles contains 5 deleterious particles? 

Let A1 be finding a nondeleterious particle as the i th outcome. The probability of 
acceptance is the probability of the joint outcome P(A1A2A3A1As). The probability of 
not finding the first deleterious particle is P(A1) = 95/JOo because, of the 100 particles, 
95 are acceptable. After the occurrence of event Ai, there remain 99 particles of 
which 94 are not deleterious; hence, P(A2 \A1) = 0%9 • Continuing the reasoning, 
P(A3 IA1A2) = 9%a, P(A4 \A 1A2A3) = 92/91, and P(As I A1A:i,A3A~) = 9%a. Therefore from 
equation 22, 

The same result can be obtained another way. There are (~5 ) favorable ways that 5 

good particles can be selected from among 95 good ones. There are a total of (1~0 ) 
ways of selecting 5 particles from among 100. Hence 

. (95)/(100) P(acceptance) = 
5 5 = 0. 77 

A useful graphical representation of various operations involving outcomes is the 
Venn diagram. The outcomes are usually represented by simple geometrical shapes. 
Suppose now that the rectangular region S shown in Figure 8 represents the total prob
ability P(S) = 1. Then the probabilities associated with any outcomes are the sum of 
the elementary outcomes that are contained within their respective regions in the Venn 
diagram. For example, suppose the dots shown in the figure represent elementary out
comes; those belonging to A are within circle A and those for B within the circle. 
Where the two circles overlap (shown shaded), some elementary outcomes in A are 
also in B. This corresponds to the intersection of A and B, which is designated AB or 
AnB. The probability that A or B or P(A or B) (of the union of A and B, AUB) will oc
cur is the sum of the probabilities of their respective elementary outcomes with each 
elementary outcome accounted for only once. Because the regions overlap, the simple 
sum of their elementary outcomes P(A) + P(B) would add the elements in the common 
region twice; hence, in general, 

P(A or B) = P(A) + P(B) - P(AB) (23a) 
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or in set notation 

P(AUB) = P(A) + P(B) - P(AnB) (23b) 

For the example with the concrete plant mentioned previously, the following out
comes are defined: 

A= concrete meets standard, 
Ac = concrete does not meet standard, 
B = concrete produced at first plant, and 

Bc = concrete produced at second plant. 

It is immediately apparent that there are no outcomes simultaneously favorable to 
P(AA °) and P(BB0

). Such outcomes are mutually exclusive or incompatible; both can
not happen simultaneously. On the other hand, some concrete produced at both plants 
did not meet standards; hence, 

P(A) = P(AB) + P(ABc) (24a) 

P(B) = P(AB) + P(AcB) (24b) 

What is the probability of the outcomes A or B or both or P(A or B) = ? In other 
words, what is the probability that the concrete meets the standard or is produced at 
the first plant or that both conditions are satisfied? From equation 6, it follows that 

P(A or B) = P(AB) + P(AB°) + P(A 0 B) 

All other possibilities are incompatible. Combining equations 24a and 24b gives the 
same result as in equation 23. 

Of a sample of 100 particles inspected, 15 are deleterious, 8 are too large for the 
intended use, and 6 have both defects. If a particle is selected at random from the 
sample, what is the probability that it will not be suitable? 

P(not suitable) = P(deleterious) + P(too large) - P(both) 

= 1Y 100 + 8/100 - 11100 = 0.17 

Equation 23 demonstrates that, if P(AB) = O, the probability of the joint occurrence 
is zero and equation 6 applies. The outcomes are said to be independent. Stated an
other way, two outcomes are independent if the occurrence or nonoccurrence of one 
has no effect on the probability of the occurrence of the other. Independence implies 
unconditional probability or P(A I B) = P(A). Hence, for the case of the independence 
of outcomes, the addition rule is 

(25) 

and the multiplication rule is 



12 

(26) 

Find the probability of drawing a heart on three consecutive draws from a standard 
deck if the cards are replaced and the deck is reshuffled after each draw. As stated, 
each draw is independent of the other; hence, the probability of drawing a heart each 
time is Y4, and 

P(drawing three consecutive hearts) = Y4 x Y4 x Y4 = 0.016 

Without replacement, the probability is slightly less, 0.013. 
The scheme shown in Figure 9 represents the road system between two cities. RM 

and RN are city roads, and 81, 82, and 83 are state highways. After a major snowstorm 
the probabilities of the various highways being impassable are as shown in the figure. 
What is the probability of a driver being able to get from city M to city N under the 
stated conditions if his or her choice of state highway is random? 

The probability of the system being open is the complement of it being closed. If p 
is the probability of impassability, 

p = P(R or S) = P(R) + P(S) - P(RS) 

where R and 8 are the outcomes that a city highway or a state highway is impassable. 
Hence, P(R) = P(RM) + P(RN) - P(RM) P(RN) because outcomes RM and RN are independent. 
That is, P(RMRN) = P(RM) x P(RN IRM) = P(RM) x P(RN). Thus, P(R) = 0.6 + 0.5 - (0.6) x 
(0.5) = 0.8. P(S) = P(S1) P(82) P(S3) because each state highway is independent of the 
other. Thus P(S) = (0.4)(0. 7)(0.9) = 0.252. Furthermore, because Rand Sare inde
pendent, P(RS) = P(R) x P(S) = (0.8)(0.252) = 0.202. Therefore, p = 0.800 + 0.252 -
0.202 = 0.85 and P(driving between the cities) = 1 - 0.85 = 0.15. 

BAYES' THEOREM 

Suppose that n outcomes A1A~3, ... , An are mutually exclusive and collectively exhaus
n 

tive such that L P(A1) = 1. Suppose also that there is another outcome B whose oc-
i= 1 

currence was preceded by or caused by one of the n outcomes of A1; which of the out
comes in A1 is not known. Because an outcome in A1 precipitated B, it is said to be 
prior or an a priori outcome. The occurrence of outcome B (called an a posteriori 
outcome) requires the occurrence of one of the joint outcomes A1B, which, in general, 
can be written as 

n 
P(B) = L P(A1B) 

i=l 

Using the multiplication rule gives 



n 
= :E P(B IA1)P(A1) 

i=l 

Equation 2 7 is called the total probability theorem. 
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(27) 

A boring record at the site of a bridge abutment for an overpass indicates that 30 
percent of the soil profile of interest is sand, 25 percent silty-sand, 25 percent silty 
clay, and 20 percent clay. Samples are taken at the site in proportion to layer thick
ness; however, for various reasons, not all the samples are reliable. Indications are 
that only 27 percent of the sand samples are adequate, 10 percent of the silty-sand, 
30 percent of the silty clay, and 50 percent of the clay. If we wish to examine in detail 
the soil characteristics at a particular depth, what is the probability that one of the 
samples chosen at random will furnish reliable information? 

Designate the initial samples as A,, A.,, A. 0 , and A0 • The prior probabilities were 
P(A.) = 0.3, P(A.,) = 0.25, P(A.0 ) = 0.25, P(Ac) = 0.20. If B denotes that the sample at 
the desired depth is among the reliable samples, the probable occurrences are 
P(B\A.) =0.27, P(B\A.,) =0.10, P(B\A. 0 ) =0.30, P(B\Ao) =0.50. Hence, the re
quired probability is 

P(B) = (0.3)(0.27) + (0.25)(0.10) + (0.25)(0.30) + (0.20)(0.50) = 0.28 

Again assume that the prior outcomes A1 , A2 , ••• , An are mutually exclusive and 
collectively exhaustive. Also suppose that the outcome of B is preceded by or caused 
by one of the A1. Again, which one is not known. From equation 20, 

or 

P(A1B) = P(B) x P(B \A1) 

from which 

P(A I B) = P(A1) P(B Ai) 
I p B) 

Expressing P(B) by using the total probability equation (equation 27) produces 

P(A1 I B) = 
P(A1) )( P(B I A1) 
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L P(B IA1) x P(A1) 

i=l 

(28) 

(29) 

This result is called Bayes' theorem. It indicates how opinions held before an experi
ment should be modified by the evidence of the outcome. Historically, its statement 
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marked the beginning of the mathematical theory of inductive reasoning. 
When written in the following form, equation 29 demonstrates how the introduction 

of the a posteriori outcome B alters the a priori assessment of the probability of Ai: 

P(Ai \B) = P(Ai) (modification of Ai when Bis learned of} (30) 

where Ai are prior probabilities. 
Aggregates used for highway construction are produced at three plants with daily 

production volumes of 500, 1,000 , and 2,000 tons (450, 900, 1800 Mg). Past experi
ence indicates that the fractions of deleterious materials produced at the three plants 
are 0.005, 0.008, and 0.010 respectively. If a sample of aggregate is selected at ran
dom from a day's total production and found to be deleterious, which plant is it likely 
produced the sample? Designate the following outcomes: 

A1 =production from the first plant, 500 tons (450 Mg) per day. 
A2 =production from the second plant, 1,000 tons (900 Mg) per day. 
A3 =production from the third plant, 2,000 tons (1800 Mg) per day. 

The prior probabilities are 

500 
P(Ai) = 500 + 1,000 + 2,000 = y7 

P(A ) = 1,000 = 2/ 
2 3 500 17 

P(A) = 2,000 = Y, 
3 3 ,500 7 

The likelihoods are 

P(B \A1) = 0.005 

P(B \A2) = 0.008 

The joint occurrences are 
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0.061 
-7-

A posteriori probabilities are 

P(A1 I B) = ~:~~i5~ = %i = 0.08 (0.14 a priori) 

(A I , 0.016/ 7 1s; O 6 (O 9 ) P 2 B, = 0.06177 = /61 = .2 .2 a priori 

( I ) 0.040/ 7 40/ ( 
P A3 B = O.Oa l/7 = /61 = 0.66 0.57 a priori) 

Because P(A3 I B) = 0.66 presents by far the greatest a posteriori probability, it is most 
probable that the deleterious sample came from the third plant. Of course, the same 
conclusion would be valid from a priori probabilities in this case. Figure 10 shows the 
tree diagram for this example. The a posteriori probabilities are obtained as the ratio 
of the probability of the required path to that of the sum of all paths that lead to a par -
ticular deleterious sample. 
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DISCUSSION 

Richard L. Davis, Koppers Company, Pittsburgh 

Traditional engineering education has had most calculations starting with assumptions 
without very much guidance on how to make valid assumptions. In nearly all engineer
ing, these assumptions have grossly oversimplified the real conditions. This is partic
ularly true of highway engineering where there is a great need to deal with real-world 
phenomena. I believe that Harr's paper can make an important contribution to this 
process for engineers. This is no easy task for the average engineer who usually 
views a test result for asphalt content of a mix as its true value rather than as a prob
ability estimate of the true asphalt content. Familiarity with and use of probability 
methods will help to clarify and solve many baffling problems in highway engineering. 




