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Current design procedures that assume a homogeneous material do not ac
count for the limited pavement distress that is experienced in the field; 
rather they are based on a catastrophic occurrence of distress. Variability 
of stress due to load variables and variability of pavement strength due to 
material characteristics are related in several recent developments, gen
erally by making gross transformations between a statistical confidence 
level and satisfactory performance. Reliability techniques are described, 
and special attention is given to the Markov process. Reliability can be 
viewed as a probability that none of the following events occurs: (a) the 
number of overlays exceeds the allowed number; (b) the total cost of main
tenance and overlays converted to net present value exceeds the allowed 
cost; and ( c) a user delay penalty cost exceeds an allowed value. 

•MATERIALS ENGINEERS recognize that the properties of the materials vary consid
erably from point to point in a specimen whether it is a steel bar or an asphalt surface. 
Figure 1, which is a continuous density profile for a crushed limestone base course, 
shows a typical dispersion of material properties in a pavement structure. Note that 
the density ranges in a random fashion from a low of 138 to a high of 147 lb/ ft3 (2210 to 
2355 kg/m3

). The dispersion would be present for other material properties such as 
strength and modulus of elasticity, as well as for dimensions. Although these varia
tions are recognized from a practical standpoint, current design procedures do not 
take this variation into account directly. Generally, design procedures assume a homo
geneous material. 

This type of approach assumes that distress is a catastrophic occurrence such that, 
when the stress exceeds a limiting value, a distress manifestation occurs. For ex
ample, the design premise for a static wheel load on a pavement is based on the as
sumption that if a limiting stress value is exceeded the entire pavement cracks. Ex
perience and data from test roads indicate that this concept is contrary to what is ob
served in the field (1, 2, 3). Generally, pavement distress is experienced only over 
some percentage of the pavement a rea, and seldom does pavement distress appear 
throughout its length. Even on roads considered as a failure by engineers, the area 
of failure relative to the total area is small. 

SIMPLE PROBABILITY TECHNIQUES 

In recent years, several investigators and agencies have pointed to the need or at
tempted to take into account the stochastic process. The final report for NCHRP Proj
ect 1-10 pointed to the need for considering stochastic failure ( 4). In an independent 
study, Moavenzadeh and colleagues recognized the need and included stochastic pro
cesses in the development of the VESYS programs (5). The Texas Highway Department 
used stochastic processes in the development of its early versions of the flexible pave
ment system and rigid pavement system computer programs (6, 7). 

The California Division of Highways (8) and the Asphalt InstitUte (9) in the develop
ment of their overlay design procedures considered variability of material properties 
by assigning a standard deviation to deflection values. McCullough in his overlay de
sign procedure used probability analysis techniques to simulate the prediction of pave-
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Figure 1. Continuous distribution of density of a crushed limestone base. 

150 

140 -:==-:-,...__.__..~=-~~==-~~~~~~~~~~~~~~~~~~~~~~~~-

~ 130 
.... 
~ 120 
,.. 
;;; 
c 
"' 0100 

0 '--~~--1~~~-+-~~~--+-~~~~-~~~+--~~--11~~~-+-~~~--+-~~~~ 

' 100 200 300 400 500 600 

Oista nee Along Roa dway (ft l 

Figure 2. Probability of distress as a function of the dispersion of stress and 
strength density functions. 
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In the references, except for the VESYS program probability techniques whether 
implied or stated were used in a design process to prevent the c1·ack:ing (rupture) mode 
of distress. If the stress and strength variations in the pavement are characterized by 
normal distributions, then Figure 2 shows in a general fashion t,lle fundamental hypoth
esis of these design methods. (A is the density functioi1 for stress and B the density 
function for strength in the specimen.) 

If the dispersions of the stress and strength are clearly separated as is the case il
lustrated by position 1 in Figure 2 for the stress density function, then the material 
will perform satisfactorily without distress. The probability of distress in position 1 
is zero. If the load temperature, or moisture conditions change, then a shift of the 
stress density function to position 2 might be experienced· thus the probability of a 
failure assumes a finite value between 0 and 100 percent. Although the mean stress 
would still be less than the mean strength, a safe condition from a purely deterministic 
standpoint, distress will occur. Conceptually, the probability of distress may be ex
pressed as the area beneath tbe inte1·section of curves A and B and is represented by 
the shaded area in the figure as follows : 

P(D) = AnB ( 1) 

where P(D) = probability of distress. In Figure 2, the intersection of the two density 
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functions may be designed as b on the psi axis. If the stress in a material is assumed 
to be independent of the strength, the probability of distress may be restated as follows : 

P(D) = P(stress > b) + P(strength < b) (2) 

Each of the previously mentioned design methods takes variability into account by 
either quantifying equation 2 or making gross transformation between a statistical con
fidence level and satisfactory performance. 

RELIABILITY TECHNIQUES 

According to Darter and Hudson (11), "Reliability [of a pavement section] is the prob
ability that the pavement system will perform its intended function over its design life 
and under the conditions (or environment) encountered during operation." They dis
cussed the reliability of pavement design for a single performance period and touched 
on reliability considerations for pavements designed to be overlaid one or more times 
( 11). The reliability and systems analysis of pavements of the second class are re
quired to realistically simulate the long-term performance of a pavement structure. 

Three approaches to simulation are reviewed on analytical grounds. Further em
pirical study may be needed to determine adequate approximating probability distribu
tions required for implementation. The experimental needs and the particular sensi
tivity of reliability analyses on errors in the ad hoc distributions are briefly discussed. 

SIMPLE RELIABILITY CALCULATION 

Suppose a pavement is designed fork performance periods; i.e., it is designed to last 
for some time T assuming k - 1 overlays may be necessary. We are interested, then, 
in the probability that the life of the pavement exceeds T. 

The following variables are used: 

N1 =number of 18-kip (80-kN) loads before the ith overlay is required, 
n =probability density function (pdf) of N1 , and 
fu = pdf of n. 

Then the reliability is 

P( .f N1 >n) 
l =l 

where P() denotes probability. 
k 

(3) 

The pdf of L; N1 is attainable by performing k - 1 convolution integrals (convolution 
i= 1 

via characteristic functions would probably be the most computationally efficient numer
ical approach) : 

f 1•2 (N) = J: f1(;) fz(N - ;) ct; (4) 
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where N = N1 + N2. 

for m = 3, ... , k - 1 where 

m 
M= E Nt 

i=l 

For convenience, fo = f1,2, ... ,k. 

k 
Now a final convolution is required to obtain the pdf fo of E N1 - n. 

i=l 
Note that the pdf Ln of -n is 

Ln ( -n) = f.(n) 

Thus, 

Then, the reliability is simply 

(5) 

(6) 

Note that we have allowed for the possibility that the pavement may perform differ
ently in different performance periods by treating f 1 as different. 

It is stated that n and Nl are "believed to be" approximately lognormally distributed 
(1, pp. 35-36), from which we would suspect that the other N1 are also lognormal. Evi
dence for the normality of logN is stated to be available from fatigue tests, but further 
study is needed to verify that log n is normal. 

The reliability analysis is particularly sensitive to errors in the distribution ( 12). 
Estimation of the probability of a rare event, abnormal failure, requires acceptable 



accuracy in the tails of the distributions; such accuracy generally requires larger 
samples than acceptable estimation of, say, the mean or variance. 
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The following example illustrates the problem. Suppose we have a sample size of 
100. The mean estimate, 

is based on the entire sample and is relatively insensitive to moderate variations in 
small subsets of the sample. If the population variance is a2

, then the variance of x 
i s o-7'100. 

The estimate of the upper 0.05 point, however, is the sixth largest point (since 95 
percent of the data are less than or equal to this value). Thus, sampling variations 
among the few largest data are not moderated by an averaging process that weights 
all data equally. 

Regarding the age at failure (13), "Available data suggest that the relative frequency 
histograms may be appr oximated by a normal distribution fun ction." Because the dis
tribution of the number of 18-kip (80-kN) loads actually applied in a given period is not 
definitely known, the statement is not inconsistent with the belief that the number of 
loads to failure is lognormal. 

If we approximate the time periods T 1 for i = 1, 2, . . . k of the k per formance pe 
riods by no1·mal distributions with r espective means and variances µi and ar for i = 1, 
2, . .. , k then the pr oblem becomes very simple (3) . The total lifetim e of the pave -
ment before the kth overlay is required is -

(7) 

T, then, is normally distributed with a mean of 

and variance of 

Then the probability that the life T exceeds the design life To is the reliability: 

(8) 

But (To - µ) / a involves only constants, and (T - µ)/a is normal with a mean of 0 and 
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variance of 1. Thus, the reliability can be read directly from a table of values of the 
standard normal distribution function. 

In the above, we have presupposed that the estimates to be used ofµ and a2 involve 
sampling errors that are small compared to the standard deviation of T. This should 
be true, since the estimates µ.and a are based on a sample, but T is a random vari
able whose variance is not reduced by averaging; e.g., T andµ. have respective vari
ances a2 and r//n whtu·e 11 is the sample size. Note that, if the sampling errors were 
not negligible, the problem would not simply involve computing the upper confidences 
of a t-statistic. The simplest solution in this case would be to replace µand a with P. 
and & in the above analysis to obtain an approximate reliability estimator. Alterna
tively, 

p(T > To) = p(T - µ. > % - P,) = p ( T - p. > _T_o_-__,P._) 

(j~l + ~ (j~l + ~ 
(9) 

The variable on the left is at-statistic, and the variable on the right does not have 
a known, simple distribution. Similarly, 

(10) 

and the statistic does not have at-distribution, because the numerator does not have 
mean 0, unless E(T) = To, in which case the reliability is 0.5. 

This is not cause for alarm, inasmuch as the approximate reliability obtained by re
placing µand a by fl. and a should be acceptable unless µ.and 6- have sampling errors that 
are not small compared to a (the standard deviation of T), :in which case the reliability 
calculation would be suspect anyway. 

MARKOV CHAIN MODEL 

McCullough .a.{ld Hudson ( 4) discussed a clever approach for performing reliability 
analyses of single-performance pavements by using a Markov chain model. The four 
states of the pavement are 

1. Normal aging, 
2. Accelerated aging, "a state caused, for example, by the initiation of cracking 

or surface polishing," 
3. Maintenance, and 
4. Failure. 

The transition matrix is the matrix of probabilities of one-step transition among 
states. Transition matrices are suggested for four cases: 

1. Standard operating procedures, 
2. High maintenance activity, standard quality, 
3. Standard maintenance activity, high quality, and 
4. High maintenance activity, high quality. 

The matrix for case 1 is 
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0.95 

Pr= g.60 
0.05 
0.40 
0.30 
0 

0 
0.20 
0 
0 
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~.40) 
0.10 
1 

Thus, a ccording to the first row the probability of r emaining in s tate 1 in time step 
i, given that the pavement i s in state 1 in step i - 1, is 0.95. The pr obability of passing 
from state 1 to s tates 2, 3, and 4 is 0.05 , 0, and 0 r espectively. In general , the one 
step probability of passing from state i to state j i s the (i j) element of the matr ix. 

Then, the reliability is the probability of not reaching state 4 in the design lifetime. 
If p is the vector of probabilities of initial s tates and P is the trans it ion matrix, it can 
be shown that ppn is the vector of state probabilities after n transitions. Then one 
minus the fourth element of pPn is the reliability if n/2 is the design life in years, since 
the time step is one -half year. 

The model can be generalized to handle the multiple-performance-period case by al
tering the state space, as follows : 

1. Normal aging, period 1, 
2. Accelerated aging, period 1, 
3. Minor maintenance, period 1, 
4. First overlay, 
5. Normal aging, period 2, 
6. Accelerated aging, period 2, 
7. Minor maintenance, period 2, 
8. Second overlay, etc. 

If the number of performance periods is k, then there are 4k states, the 4k th state 
being failure. If the design life is n/ 2 years, then the reliability is one minus the 4kth 
element of pPn. 

In this approach, we have obviated estimation of the tails of distributions. However, 
moderate errors in the transition probabilities could cause large errors in the P" 
matrix if n is large. Thus, accurate estimation of the transition probabilities is im
portant. The possibility of drift in the P matrix as traffic patterns change is a difficult 
problem that should be considered. 

High maintenance probabilities , especially over an extended period of time, are of 
practical interest because of their r elationship to direct costs and user inconvenience. 
Moreover, the likelihood of frequent maintenance during key periods, e.g., just before 
expected overlay times, might signify the need for a decision policy alteration. 

The desired probabilities are easily attama ble from the model ; the (4m - 1) th ele
ment of ppn is the probability of being in maintenance in the m th period at time step n. 

Extended periods of high probabilities of being in a state associated with low ser
viceability are similarly of interest. Note that, by altering the transition probabilities 
to the maintenance and overlay states, we can study the sensitivity of direct mainte
nance and user delay costs and serviceability to rehabilitat ion policies. The sensitivity 
of the system to maintenance quality can be studied by varying the t ransition probabili 
ties from the maintenance state. The sensitivity to overlay quality can be seen by vary
ing the transition probabilities after the first overlay. Effects of r andom error s in the 
transition probabilities should also be studied via sensitivity analysis. It is clear that 
the Markov chain model yields much more information than a simple reliability calcu
lation. 

The undesirability of the uniform step size and allowance for a single state for an 
entire section is apparent. The disadvantages can be reduced by using a finer step size 
and a more detailed state space. 
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MARKOV PROCESS MODEL 

We now consider a model in which time is continuous and the section is divided into 
several subsections of, say, 100 ft (30 m). For illustration, we consider the four 
states of the Markov chain model, but a state is associated with each subsection. 

The Markov process model is suggested because of the extensive information that 
can be obtained from it; the policy and sensitivity analyses mentioned in conjunction 
with the Markov chain model can be carried out in more detail with the Markov pro
cess model. 

The more sophisticated model, however, requires more extensive inputs, as is ap
parent from the discussion below; thus, the extra demands in experimentation to deter
mine the inputs should be weighed against the advantages. 

Because of the complexity of the model, digital simulation is suggested as a solu
tion technique. Development of a computer program would be greatly facilitated by 
the use of a simulation language such as GASP (5). The elements of the simulation 
model are described below. -

1. Randomly determine the initial state of each subsection as normai aging or ac -
celerated aging. 

2. For each section, randomly determine the time in the initial state and the state 
next to be occupied. 

3. Upon transition of a section, randomly determine the time to remain in the new 
state and the state next to be occupied. After each transition, test whether it is time 
for an overlay by examining the states of all subsections and applying predetermined 
decision criteria; e.g., compare the percentage of subsections in the accelerated aging 
state to a threshold percentage. 

4. If an overlay is indicated, randomly determine the time required for the overlay. 
After the overlay, repeat steps 1 through 3. Continue the entire process until the al
lowed number of overlays has been exceeded or the design life is completed. 

The interrelations among events must be considered. For example, the transition 
of a subsection after an overlay could be a function of 

1. The a priori probabilities of state transitions and distribution of the time in the 
state to be transferred from, 

2. The states of nearby subsections, or 
3. Convenient measures of the performance of the subsection before the overlay. 

The following hypothetical list of events illustrates the basic information that is 
available from the simulation for analysis. 

Time 
(months) 

0 
20 
23 
26 
26.05 

128. 7 

Event 

Begin simulation; all subsections aging normally 
Section 6 enters accelerated aging state 
Section 23 enters accelerated aging state 
Section 6 enters maintenance 
Section 6 enters normal aging state ( 1 % days required for main

tenance) 

Section 47 enters accelerated aging state; percentage of sections 
in accelerated aging state exceeds threshold value; begin overlay 
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Thus, detailed statistics could be collected on things such as maintenance costs, 
maintenance time, and percentage of sections in accelerated aging at any given time. 

As with the Markov chain model, sensitivity analyses should be performed to deter
mine (a) the effects of varying the overlay and maintenance policies and (b) the effects 
of random errors in the empirically determined inputs. 

A straightforwa rd measure of relia bility is the probability that the number of over
lays exceeds the allowed number in the design life. Alternatively, reliability can be 
viewed as the probability that none of the following events occurs: 

1. The number of overlays exceeds the allowed number , 
2. Total cost of maintenance and overlays converted to net present value exceeds 

the allowed cost , and 
3. A user-delay penalty cost exceeds an allowed value. 

SUMMARY 

The state of the art of predicting pavement probabilistic response may be summarized 
as follows: 

1. Most of the early work and the currently implemented methods considering vari
ability use simple probabilistic techniques to simulate performance; 

2. Recent studies have been oriented toward approximating the complex multivari
ate distributions of material properties and pavement dimensions to achieve a stochastic 
prediction of performance; and 

3. Future work should be directed along the thrust of item 2 considering that a pave
ment life will consist of the initial performance period plus numerous overlays. 
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