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The variability of paving materials and the effects of such variations on the 
behavioral responses of pavement systems are evaluated. Methods for 
evaluatingthe effect of material variability on pavement system responses 
are presented and analyzed. Analyses are presented that evaluate the char
acteristic variations in components of pavement systems and methods of 
quantifying them. Factors such as the severity and location of variations 
are evaluated, and sensitivity analyses are performed to determine the rel
ative and real effects of specific types, locations, and severities of the var
iations onpavement system responses. The paper discusses the relation
ship between the variability observed when discrete specimens of a material 
are tested and the variability of a continuum constructed from the same 
material. The importance of eliminating testing error and similar sources 
of error when the continuum is evaluated is emphasized. Monte Carlo 
simulation and other techniques are applied to obtain a pattern for pave
ment system responses on pavements with specific types of variations 
and loading conditions. Results show that the variability of the paving mate
rials can have a profound effect on the responses of the pavement to load, 
especially to strain response, and that the location and extent of the varia
tion are critical with respect to the response. Also, the Monte Carlo sim
ulation technique for predicting the range of responses is limited unless a 
very large number of analyses are used in the simulation. 

•LITTLE is known -about the manner in which the nonuniformity of paving material prop
erties and subgrade support affect the behavior and response of pavement systems to 
loads. Pavement systems do exhibit significant variations in response to loads, but the 
extent to which this variability is influenced by variations in material properties in dif
ferent pavement components is not known (1, 2, 3, 4). 

Laboratory test results from prepared specimens of paving materials show substan
tial variability in material properties. There are, however, several problems asso
ciated with using the variability from tests on discrete specimens to predict the var
iability of materials in pavement systems. One problem is that most test specimens 
are made up outside the pavement system. Thus, the variability observed in these 
test results may not reflect the true variability of the material in the pavement system. 
This is especially critical in the case of c_ompaction because procedures for compacting 
materials in the pavement are completely different from those for compacting test 
specimens and most materials are highly sensitive to their compacted density. 

Another problem in correlating the variability of test results from control test spec
imens and the material in the pavement is that the results from test specimens are in
fluenced by the edge conditions of the specimen and by specimen size; the materials in 
the pavement are continuous. Because material in the pavement is continuous, there 
is probably a gradual transition in the material properties within the pavement system; 
the material in a test specimen is probably more uniform throughout the specimen but 
is affected by the specimen boundaries. Also, the variability of results from control 
specimens may be different from the corresponding variability of the material in the 
pavement because of the relative quantities of material involved. The response of the 
pavement system is influenced by properties of the material, but the pavement system 
includes a much greater volume of material than normally included in control speci-
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mens. Thus, the area of influence that affects the response of the pavement must be 
considered in any analysis of pavement val'iability . 

Laboratory testing is, of course, the only available method for evaluating material 
pl'operties. Thus, the variability in test results from laboratory specimens must 
ultimately be reconciled with the variability of in situ materials or, more importantly, 
with variability in the x·esponses of i1avement systems to external stimuli. One method 
of reconciling these two factors is by lilference, that is, l>y valuating the effect of Jna
terial variability on the response of pavement systems and by correlating calculated 
material variability from pavement .t•esµonses With measured variability of control 
specimens. This oI course, requires models that can be used to evaluate the effects 
of material variability on pavement responses. With such a model, the effects of 
val'iability in the various pavement components can be evaluated. By using models 
capable of handling nonuniform material characteristics in the various pavement com
ponents, it will be possible to perform sensitivity analyses to establish the relative 
effects of changing levels of material variability on pavement response. 

One problem with using mathematical models to evaluate these responses is that a 
data base must be developed for s tatistical analyses of the response of pavement sys
tems. The problem is one of specify ing the critical di tribuf ons of strong and weak 
areas through the pavement system so that the analyses will provide realistic indica
tions of tl1e worst and best possible conditions . If only static loads were applied, the 
probability of a load being applied at the most critical location with respect to pavement 
weaknesses could be remote. With moving loads, however, the likelihood of a load or 
loads being applied at the most sensitive locations becomes much greater. For example, 
if an area of weak subgrade support exists near the edge of a pavement, then it seems 
likely that the worst condition would be application of a load to the pavement directly 
over the location of the weak support, and there is a high probability that moving loads 
will pass over this critical location. Thus, not only must a statistical evaluation be 
made of the pavements, but the most likely worst .conditions must also be identified anc:t 
analyzed. 

The pu1·pose of this paper is to evaluate procedures for analyzing pavement systems 
with nonuniform paving material properties. Statistical procedures for assigning crit
ical properties to the paving materials at specific locations are evaluated, the pave
ments are analyzed with tl1e assigned properties, and the results are compared with 
what are considered to be the best and worst combinations of material properties for 
the pavement system. Analysis of the pavement system is done with a finite element 
model. Results of analyses of pavement systems with various levels of material var
iability are compared and evaluated. 

APPROACH 

In an earlier pa.per, Levey and Barenberg (E.) showed how numerical analysis models 
can be used to evaluate the effects of nonuniform paving materials on pavement re
sponses. They demoustrated that the stresses, strains, and deformations of the pave
ment system were clearly affected by variabilil'y of the paving material and by the size 
and distribution of the variations within the pavement system. Their results clearly 
showed that a normal distribution of responses could be expected with paving materials 
having a normal distribution of properties. 

They used a two-dimensional numerical model to evaluate a pavement system and 
concluded that the th1·ee-dimensional case could also be analyzed if sufficiently large 
high-speed computers were available or if models that represent the pavement system 
in three dimensions were more efficient (5). Inasmuch as computer capacity bas re
mained nearly constant since that paper was prepared, a direct analysis of the three
dimensional pavement system with nommif01•m material properties is still not practical. 

Seve1·al existing models were evaluated to find the model best suited for this analysis. 
Included in the evaluation were the finite element model for the analysis of pavement 
slabs developed by Hudson and Matlock (6, 7) and the basic finite element models devel
opeC. by Wilson (Q). The model chosen fOi· the study was a finite element model devel-



29 

oped by Eberhardt (9) for analysis of two-layered slabs on a Winkler type of support. 
The Eberhardt modcl was chosen for several reasons. Because of time and resources, 
only one type of pavement could be analyzed. Inasmuch as rigid pavements have fewer 
variables with more clearly defined material properties, they were chosen for the 
evaluation. Also, finite element models were available to consider rigid pavements as 
a three-dimensional problem whereas the models applicable with flexible pavements 
more nearly represent a two-dimensional analysis of these systems. Thus, it was de
cided to use a finite element model that represents a continuously supported slab rather 
than a more generalized finite element model such as the model developed by Wilson (8) 
and modified by others. The above decisions reduced the choice of models to essen- -
tially the Hudson and Matlock model (6, 7) and the Eberhardt model (9). The Eberhardt 
model was selected because, when we verified the models, it gave stresses closer to 
those obtained with the elastic slab theory and it was capable of evaluating two-layered 
as well as single-layered slabs. Although two-layered slab systems were not evaluated 
in this study, the model can analyze such systems, and this capability permits evalua
tion of variable thicknesses of a subbase under the concrete slab. 

The rectangular plate element shown in Figure 1 is used to represent the pavement 
slab. Each slab is made up of a number of such elements, and the loaded configuration 
of each element is defined in terms of the corner nodes of each element. Displacement 
of the nodal points is interpreted as actual displacement of corresponding points in the 
pavement system. The varying stress field in each element is defined by an equivalent 
set of discrete-element forces acting at the corner nodes. These fictitious element 
forces have no real physical counterpart but simply approximate the varying stress field 
in the real pavement system. The displacements of the corner nodes are described by 
three components: vertical displacement W (z-direction), rotation about the x-axis (0x), 
and rotation about the y-axis (0v). Figure 1 shows the positive displacement components. 
The procedure for developing the element stiffness matrix (9) was based on the classical 
theory of thin plates. 1 The final force-displacement equations for a plate element can 
be written as 

[ F}. = (k) (D J. 

where (k) is a 12*12 plate element stiffness matrix relating the nodal displacement 
vector [D}. to the nodal force vector [F} •. 

SUBGRADE STIFFNESS MATRIX 

(1) 

The subgrade support is defined by a grid identical in size, pattern, and location to the 
grid used to define the slab elements. The two grid systems are aligned so that they 
coincide at all nodal points. 

Energy principles were used to develop the force-deformation relationships for the 
subgrade support. The subgrade stiffness matrix was established by applying succes
sive virtual unit displacements at each of the four nodal points of the plate elements, 
and the force-displacement equations for the plate and the subgrade element were ob
tained by equating the sum of the internal and external work to zero; i.e., 

[F}. = [(k) + (k,)] [D}. (2) 

1 Information on development of a finite element model was submitted with this paper as an appendix and is 
available in Xerox form at the cost of reproduction and handling. When ordering, refer to XS-64, Transportation 
Research Record 575. 
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where (k.) is a 12*12 stiffness matrix for the subgrade support element. 
The global force-displacement equations for a finite element grid (Figure 2) can be 

written as 

(F} = (K)g (D} 
• g 

where 

(F } =vector con~ining all the global forces, 
[D }: =vector containing all global displac ement, and 
(K). =global stiffness matrix. 

(3) 

Equation 3 is solved for (DJ . and subsequently for strains (€ xx. Ev v , Exv) and stresses 
(am O'yy, O'x y). Eberhardt (9) verified the finite model by comparing the results ob
tained by using this model with theoretical results from equations developed by Wester
gaard. Good agreements were obtained for both deformation and stresses. 

In the model developed by Eberhardt, the stiffness of the pavement was assumed to 
be uniform, and stiffness values for all elements were assigned as a constant value. 
For this study, the computer program written by Eberhardt was modified so that spe
cific values of the flexural rigidity D are assigned to each element so that the rigidity 
of the slab is varied in a random manner. Similarly, specified values for the subgrade 
support k are assigned for each subgrade element so the subgrade support can also be 
varied in a random manner. 

INCORPORATION OF VARIABILITY 

For isotropic slab materials assuming a state of plane stress, the 3*3 matrix (D) rep
resents Hooke's law for two-dimensional stress problems as follows: 

1 0 = D(N) Et3 (1 
(D) = 12 (1 - 112 ) ~ 

II 0) 
0 !:£ 

2 

where 

E = elastic modulus, 
t = plate thickness, and 
v =Poisson's ratio. 

Thus, from equation 4, 

II 0) 1 0 
0 l:iv 

and 

Et3 
D = 12 (1 - v2) 

(4) 

(5) 
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The matrix (D) is used in formulating the plate element stiffness matrix (K). 
The material variability is incorporated into this model by multiplying the matrix 

(D) described in equation 4 for each element by a random number R from a set that has 
a mean value of unity and a specified coefficient of variation. Then 

(D') =RD (N) (6) 

where (D') is the modified (D) matrix. For the purpose of this paper R is assumed to 
reflect the variability in the modulus value E of the plate. However, as can be seen 
from equation 4, R can also be considered to reflect the variability in D, the flexural 
rigidity of the plate, which includes the variability in the plate thickness t as well as 
the variability in E. 

GENERATION AND ASSIGNMENT OF RANDOM VARIABLES 

A program that generates random numbers was described by Levey and Barenberg (5) 
and Levey (10). This program can produce sets of random numbers with normal dis-: 
tributions having specified means and standard deviations. This program was used to 
generate sets of R-values, which were assigned to the elements in a random pattern. 
Two methods were used to select the sets of random values used in the analysis. 

One method of assignment was basically a Monte Carlo simulation procedure in 
which the values in the sets were generated and assigned to the model elements in a 
random manner and the system was analyzed with the randomly assigned values. The 
difficulty with this procedure is that it is not known whether arrangement of the ran
domly assigned values produced a pavement response that was better or worse than a 
mean response and to what extent. Thus, with this approach, it is necessary to make 
enough separate assignments and separate analyses so that the results can be analyzed 
statistically. A large number of independent runs of this type are required to develop 
the necessary background data for a statistically based analysis of the response char
acteristics of the pavement system. In the earlier work by Levey and Barenberg (5), 
20 such independent analyses were made in the Monte Carlo simulation of the pavement 
response characteristics. Although this number appeared adequate, there is no sure 
way of determining the accuracy of the statistical parameter without developing larger 
data bases. Large data bases require substantial funds for computer costs and analyses. 

Because of the high computer costs and the uncertainty when the Monte Carlo tech
nique is used to establish the responses of pavement systems, an alternate method was 
used to determine the range of responses that could be expected from a pavement with 
a specified degree of nonuniformity of paving materials. The random number gener
ator was used to generate sets of values for the specific property under investigation, 
and the sets were assigned to specific numbered elements of the pavement slab. Ap
proximately 50 sets were generated, and the results were studied to determine which 
sets of values would likely produce the best and worst pavement responses. Figure 3 
shows the numbered pavement elements and the location of loads near the corner and 
edge of the pavement. Figure 4 shows the values for modulus of elasticity of the slab 
material to produce the anticipated best and worst pavement responses for the edge 
loading condition. Figure 5 shows information for the subgrade support k. Both sets 
of values have a coefficient of variation of 30 percent. Notice that, for both the mod
ulus of elasticity of the slab and the subgrade support, the values assigned to the four 
elements surrounding the loaded area are significantly higher or lower than the average 
values. Because all values were assigned to the elements in a random manner and the 
sets of values for the best and worst conditions were selected from a large number of 
randomly generated sets, results with these values should provide an excellent indica
tion of the range of responses that could be expected if a full Monte Carlo simulation 
were made. 

Because this latter approach required much less computer time than the full Monte 



Figure 1. Rectangular plate element. 
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Figure 3. Numbered pavement elements and location 
of edge and corner loads. 
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Figure 5. Pavement elements showing the subgrade support 
values in lb/in.3• 

Figure 2. Finite element grid 
for assembling global stiffness 
matrix. 

Figure 4. Pavement elements with the 
randomly assigned values for slab 
modulus. 
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Carlo simulation, it was used to study the effects of material variability and load po
sition on the pavement response. A limited Monte Carlo simulation was also made to 
show the similarity and differences that can be obtained with the two procedures. 

In these analyses only one parameter was varied at a time. Thus, when the effects 
of the slab modulus were evaluated, the subgrade was held uniform. Similarly, when 
the effects of variability of the subgrade were evaluated, the slab modulus was held 
uniform. The pavement system responses were evaluated for both edge and corner 
load conditions. All loads were 10,000-lb (4540-kg) wheel loads with a contact pressure 
of 50 psi (345 kPa) assumed to be uniformly distributed over the loaded area. 

RESULTS 

The computer program used in the analysis provided all typical pavement responses 
such as deflections, stresses, and strains at all locations specified. However, only a 
limited amount of these data are presented here. Strain in the pavement slab was 
chosen as the parameter for presentation and analysis here because it represents a 
critical response in the performance of concrete pavements (4) and appeared to be the 
most sensitive to changes in paving material variability. -

Figures 6 and 7 show the strains in the x- and y-directions for pavement systems 
with uniform paving materials under corner and edge loading conditions respectively. 
Note that for the corner loading condition the critical strains are not under the load. 
Similarly, for the edge loading condition the maximum strain in the x-direction (t"x) oc
curs under the load, but the maximum strain in they-direction (E"v) occurs away from 
the loaded area, indicating a cantilever effect in they-direction. Under the edge load, 
the strain in the x-direction E"x is significantly greater than the strain in the y-direction 
E"v· These results are consistent with results from closed form solutions such as the 
Westergaard model. 

Figures 8 and 9 show the difference in E"x and E"v for the best and worst conditions 
under edge loading as the coefficient of variation for the modulus of elasticity of the 
slab material increases from 10 to 30 percent. Reasons for change in the shape of the 
curves between the best and worst conditions can be seen by studying the patterns of 
the assigned moduli values in Figure 4. In particular, the area of weakest material 
does not generally coincide with the points of maximum strain. Thus, as expected, 
when the variability in the moduli values increased, as with the higher coefficients of 
variation, the point of maximum strain tended to move toward the area of low bending 
resistance. A similar set of curves for the corner load condition is shown in Figures 
10 and 11, and the same trends exist. 

A Monte Carlo simulation of the responses under edge and corner loads was made, 
and the statistical parameters were calculated. Figures 12 and 13 show the differences 
obtained for E"x and E"v under edge loading by using the Monte Carlo simulation with 10 
repetitions. The results from analyses with the designated best and worst conditions 
are also shown for comparison. There are significant differences in the range of 
values obtained by the two methods. Figure 14 shows a statistical summary of E"x ob
tained from the two approaches. 

Because of the significant differences obtained when the Monte Carlo simulation 
techniques were used compared with the designated best and worst conditions, it is 
well to review again the differences in these two approaches. 

In the Monte Carlo simulations, the appropriate moduli values were generated and 
assigned to numbered elements on a random basis. Then the system was solved and 
the responses of that system were recorded. A new set of random moduli values, with 
the appropriate mean and standard deviation, was then generated and assigned, and the 
system was again solved for responses. After a specified number of repetitions (in 
this case 10), pavement responses were analyzed to determine the statistical charac
teristics of these responses. Only 10 repetitions were made because of the computer 
costs involved for each solution and the limited funds available. 

The designated best and worst conditions for the pavement responses were deter
mined in the following manner. First, a number of sets of random values were gen-
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Figure 6. Location and magnitude of strains in the 
x- and y-directions for a pavement with a corner load 
and uniform support. 
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Figure 8. Effect of variability of slab 
modulus on the strains in x-direction due to 
edge loading. 
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Figure 7. Location and magnitude of 
strains in the x- and y-directions for a 
pavement with an edge load and uniform 
support. 
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Figure 9. Effect of variability of slab modulus 
on the strains in y-direction due to edge loading. 
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Figure 10. Effect of variability of slab modulus on 
strains in x-direction under corner loading. 

100001 in/In 

zo 40 60 80 

CORNER LOADING .. 
ECV •0,IO 
PAVEMENT VARIED (El 

WORST-

BEST 
:::,... 

ECV•0.20 

100 

Figure 12. Variations in x-direction strains due to 
variations in the pavement. 
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Figure 11. Effect of variability of slab 
modulus on strains in y-direction under 
corner loading. 
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Figure 13. Variations in y-direction strains 
due to variations in the pavement. 
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Figure 14. Comparison of ranges in maximum strains 
due to edge loading. 

Figure 16. Variations in strains in x-direction due to 
variations in the subgrade for pavements under corner 
loads. 
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Figure 15. Variations in strains in y-direction 
due to variations in the subgrade for 
pavements under edge loads. 
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Figure 17. Ranges in maximum strains due 
to edge loading caused by variations in the 
subgrade. 
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erated and listed sequentially. These sets were then studied to find the one that had 
four values in critical relative positions that were significantly less than average. The 
values in the desired set were then shifted as a unit such that all values remained in 
the same relative position sequentially but that the four smallest values grouped to
gether would be assigned to the four elements directly under or surrounding the loaded 
area. Similarly, the sets of generated values with the highest E-values grouped to
gether were assigned to fall under and around the loaded area to produce the best con
dition. 

It is believed that the above method of establishing the best and worst conditions is 
valid because all randomly generated values were allowed to remain in their same rel
ative position, but the entire set was shifted so that the weakest and strongest regions 
of the pavement coincided with the critical loaded area. For pavements in normal 
service, the location of the strong and weak areas would, of course, remain fixed, but 
the loads could move so that eventually the load would occur over the strong or weak 
areas of the slab. Thus, the method used for determining the best and worst condition 
appears reasonable, and this information can be obtained for significantly less computer 
expense than with the Monte Carlo simulation. 

The effects of varying the subgrade support while holding the modulus E of the pav
ing material constant were not so dramatic as the effects of varying the moduli of the 
paving materials. A summary of the results using both methods of analysis is shown 
in Figures 15, 16, and 17. The low sensitivity of the pavement responses to varying 
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subgrade properties is surprising to the authors, especially since the total pavement 
deflection also proved to have a low sensitivity to the variability in the subgrade support. 

Because time and money were limited, the effect of the size of the softer area of the 
subgrade on the pavement response was not evaluated. Variations in the subgrnde for 
this analysis were assigned element by element. Because each element covers only 
1 it2 (0.09 m 2

), a loss of support over an area of this size may not significantly affect 
the response of the pavement system. Then the worst condition was evaluated, the set 
of values with the lowest average k for the four elements around and under the loaded 
a1·ea was used. Again, the area of 4 ft 2 (0.37 m2

) may not have been sufficiently large 
to seriously affect the response of the pavement system al)alyzed. Based on the known 
effect of changing the average k of the subgrade, it is expected that, as the extent of a 
weak area of support is increased, it will have increasingly greater impact on th~e pave
ment responses. 

CONCLUSION 

This presentation and discussion show that nonuniform properties of paving materials 
have a significant effect on the behavioral response of the pavement systems analyzed. 
Further, the findings suggest that the Monte Carlo simulation may not be the most ef
ficient method for determining the range of pavement responses due to nonuniform ma
terial properties . The Monte Carlo simulation technique is valuable in that it permits 
the calculation of statistical parameters of the pavement response. However, when 
the Monte Carlo simulation procedure is used, the sample size must be large enough 
to provide an adequate data base for a reliable statistical analysis of the problem. Re
sults clearly show that a sample size of 10 is inadequate for such an analysis, but the 
sample size required to obtain a satisfactory simulation was not determined. Probably 
a combination of the two techniques used in this paper is the most reliable procedure. 

It was interesting to note in the findings how the locations of the ma.ximuin strains 
changed With the different sets of randomly assigned properties for the paving mate
rials. These results clearly show why cracks form at different locations in pavement 
systems even though theoretically the point of maximum stress or strain is at the same 
location for the different pavements. The phenomenon observed has long been assumed 
by paving engineers, but, to the authors' knowledge, this is the first time it has been 
demonstrated with analytical models. 

The results clearly show that finite element models can be used to evaluate the ef
fects of nonuniform paving materials on pavement behavior. Much work is still needed, 
however, to adequately characterize the specific levels of variability in the paving ma
terial and the level of nonuniform'ity that has a critical effect on pavement responses, 
and the relative severity of the nonuniformity on pavement performance. Such informa
tion is needed before models can be developed that will enable the engineer to make 
realistic trade-offs between better quality control and higher costs. 

Work is still needed on the application of these procedures to flexible pavement sys
tems. The problem involves selection of appropriate models and assigning the appro
priate values to each element in the model. Associated with assigning of values is the 
question of the size of an area to represent an appropriate specimen size in the con
tinuum, which will also reflect on the degree of variability in the system. 

The pxocedures presented here can be used to resolve some of these questions, but 
there is still much work to be done before valid models will be available to make com
prehensive risk analyses of pavement designs. 
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