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In this paper is solved the following multicommodity, mixed fleet trans
portation problem: Given origin-destination matrices for two commodities, 
the first of which can be moved in both open hopper and covered hopper 
barges and the second of which must be moved in covered hoppers, find 
minimum cost origin-destination flows for loaded and empty hopper 
barges such that all commodities are moved and flow conservation condi
tions at each port are satisifed. A linear programming model of this 
problem is developed, and an efficient solution technique is presented. The 
model is then used to derive optimal barge flows for an inland waterway 
system. The effect of this flow optimization on system operations is then 
investigated, with the aid of an inland waterway simulation model. 

• A PHENOMENON common to freight transport systems is that the prevailing commodity 
flow patterns often dictate the movement of empty cargo units. This, in turn, has im
portant implications regarding the demands placed on the transportation system. 

Consider, for example, an inland waterway system. The demand for freight trans
poxtation that the waterway must serve is most readily expressed as a matrix (X1Jx ), 
the elements of which specify the tons (megagrams) of commodity k that will be shipped 
from port i to port j during some designated time period. To analyze the operation of 
this waterway requires that the port-to-port movements of barges, both loaded and 
empty, that must occur in order to provide for the indicated commodity tonnage flows 
be determined. 

The realities of equipment movement impose an important constraint on the solution 
of this problem, which may be termed the balance principle: The numbers of barges 
of each type that depart from and arrive at each port must be equal. That is, a steady
state system cannot have equipment sources or sinks. Some common equipment usage 
phenomena readily visible on the waterways, such as the ingenuity of the carriers in 
their attempts to garner backhauls to avoid moving empty barges, pose further dif
ficulties. As a case in point, consider covered hopper barges and open hopper barges. 
Grain must be protected from the elements and thus must be shipped in covered barges. 
Many other bulk commodities, such as coal or sand and gravel, are transported in open 
hoppers. However, these latter commodities can also be moved in covered hoppers if 
it is convenient to do so. A prime example of this double-duty use of covered hoppers 
occurs on the Mississippi River, where barges that move grain downstream are used to 
haul coal northward. The major difficulty involved in incorporating these considera
tions into the predicted vehicle flow pattern is in determining when such double-duty 
barge use is possible and convenient (i.e., economically attractive). 

STATEMENT OF THE PROBLEM 

The specific problem investigated in this paper may be defined as follows: Given 
origin-destination (O-D) matrices for two commodities, the first of which can be moved 
in both open hopper and covered hopper barges and the second of which must be moved 
in covered hoppers, find minimum cost 0-D flows of loaded and empty hopper barges 
such that all commodities are moved and flow conservation conditions are satisfied at 
each port. 
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Similar transportation flow problems, usually in the context of fleet scheduling, 
have been investigated, and a fairly comprehensive literature review is available else
where (!). The linear programming (LP) model makes use of some of the ideas pre
sented by Schwartz (~), Laderman et al. ~), Rao and Zionts (!), and Gould (~). 

LINEAR PROGRAMMING MODEL 

The following variables are used in the formulation of the LP problem: 

N number of ports in the system, 
Fm number of type k barge loads available for shipment from port i to port j, 

rounded to the nearest integer, 
Xuk number of loaded type k barges that will move from i to j, 
Y1 Jk number of empty type k barges that will move from i to j, 
c1Jk cost per barge o.f moving loaded type k barges from i to j, 
d1Jk cost per barge of moving empty type k barges from i to j, and 

k 1 for open hopper barges and 2 for covered hopper barges 

where subscripts i and j have the range 1, ... , N, i f. j. 
Then the linear programming problem may be stated as follows: Find nonnegative 

values of X1 Jk• Y IJk such that 

N N 2 
Min z = L LL c1Jk X1 Jk + di Jk Y1 Jk 

i f. j k 

subject to 

N 
L (X!Jk + y!Jk) - (XJ!k + YJ!k) = 0 
jf.i 

(1) 

(2) 

(3) 

(4) 

~Jk and Y1Jk are, of course, the decision variables, i.e., the loaded and empty 0-D 
barge flows to be found. The condition that all covered hopper loads must move in 
covered hopper barges is expressed by equation 2, and equation 3 states that all 0-D 
commodity flows must be satisfied. Note that, if X1J1 < F: w the latter constraint re
quires that X1J2 exceed its lower bound. That is, some open hopper loads would then 
move in covered hopper barges. Equation 4 ensures that the number of barges of each 
t ype or1gmat mg a eacn po1'f is mate e y an eqillil. num er o ermina ions. T le ob
jective, equation 1, is to minimize total transport costs. 

At this point, the reader well versed in mathematical programming techniques might 
ask why the decision variables are not constrained to have integer values. Indeed, this 
would be a desirable outcome, for the existence of noninteger X- and Y -values might 
make the LP solution somewhat difficult to interpret. Further, the flow constraints, 
F1Jk• have been defined to be integers. 

The major reason for not requiring that the variables have integral values is that, 
for most practical problems, the X- and Y-values will be so large that rounding of the 



LP solution will be an acceptable procedure. In addition, it is advantageous to avoid 
the usually troublesome complexities of integer programming at this stage of model 
development. 

SOLUTION TECHNIQUE 

The LP problem presented in equations 1 to 4 can readily be solved by the simplex 
method. The special structure of the model, however, leads directly to an easily ob
tainable feasible solution and thus greatly reduces the number of simplex iterations 
required to achieve optimality. 
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The most obvious and intuitive starting point is to set X1Jk = F 1w That is, all type k 
barge loads should initially be assigned to barge type k. This immediately guarantees 
that equations 2 and 3 will be satisfied. Initial Y 1 Jk values can then be found by solving 
two linear programming transportation problems (LPTPs). 

Define the demand for empty type k barges at port i as 

N 
L (Xrn - XJtk) 
jfi 

for i = 1, .. ., N and k = 1, 2. The following demand and supply vectors can then be 
derived: 

D1k = Btk• B1k > 0 

= O, B1k ,,;; 0 

S1k = -Btk• Btk < 0 

= 0, B1k :<: 0 

Hence, vectors Dk and Sk and matrices Yk and dk collectively define an LPTP, which 
can be stated as follows: Find Y tJk subject to 

N N 
Min LL d13k Y 1 Jk 

i ;t j 

for i, j = 1, ••. , N, i ;t j and k = 1, 2. 
After the two LPTPs stated above are solved by using any standard transportation 
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algorithm, the initial basic feasible solution to the overall LP problem is complete. A 
relatively small number of simplex iterations, again based on any conveniently acces
sible LP package, will then produce the optimal solution. 

APPLICATION: THE ILLINOIS-MISSISSIPPI WATERWAY 
SYSTEM 

In this section, the LP model is applied to the problem of deriving optimal hopper barge 
flows for an inland waterway system. The results obtained with the model are ex
amined in two stages. First, the optimality characteristics of the LP solution itself 
are explored. Second, an inland waterway simulation model is used to study the impact 
of barge flow optimization on the operation of the system. Before these topics are dis
cussed, a brief description of the system characteristics is supplied. 

Description of the System 

The waterway system chosen for this application is a 10-lock subsystem composed of 
the Illinois Waterway and an adjacent portion of the Upper Mississippi River. This 
system has been the subject of several previous studies (~ 2, !!, ~ .!Q, .!.!, 12). Con
sequently, the data needed for the study were readily available. 

The Illinois Waterway extends for approximately 326 miles (524 km) from Chicago 
to its confluence with the Upper Mississippi River near Alton, Illinois. Seven locks 
and dams (L&D) are located along the river at Lockport, Brandon Road, Dresden Island, 
Marseilles, Starved Rock, Peoria, and LaGrange, each of which is a single-chamber 
facility 600 ft (183 m) long and 110 ft (34 m) wide. 

Also included in the system is a 56-mile (90-km) segment of the Upper Mississippi 
River, beginning just above L&D 25 and ending below L&D 27 near St. Louis. The 
former lock consists of a single 600- by 110-ft (183- by 34-m) chamber; L&D 27 has a 
1,200- by 110-ft (366- by 34-m) main chamber and a 600- by 110-ft (183- by 34-m) 
auxiliary chamber. L&D 26, which is just below the mouth of the Illinois River, has 
one 600- by 110-ft (183- by 34-m) chamber and a second chamber that is 360 ft 
(110 m) long and 110 ft (34 m) wide. This lock is currently processing traffic at the 
rate of about 3,000,000 tons (2700 Gg) per month, making it one of the busiest facilities 
on the inland waterways. Long delays and queues are commonplace at L&D 26, and 
plans are under way to replace it with a larger facility (12). 

Figure 1 shows a diagram of the system. As can be seen, 15 ports were included in 
the system: 12 internal ports and three end ports at the system boundaries. Commodity 
flows among these ports for the year 1968 were analyzed in this study. This was the 
base year used in the previous studies referenced above. 

The commodity movements that were considered are summarized as follows (1 ton = 
0.9 Mg): 

Commodity 

Grain 
Coal 

e ro eum 
Cement, stone, sand, and gravel 
Sulfur 
Iron and steel 
Industrial chemicals 
Agricultural chemicals 
Other selected 
Miscellaneous 

Total 

Total Tonnage 

14,818,000 
12 146,000 
2,085,000 
5,863,000 

381,000 
2,382,000 
2,380,000 
1,989,000 
1,832,000 
2,201,000 

56,077,000 
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Grain, which must move in covered hopper barges, is the principal southbound com
modity; it originates at points along the Illinois and Upper Mississippi Rivers and is 
shipped to Lower Mississippi River ports. Coal and petroleum are the most significant 
northbound flows. Coal generally moves in open hopper barges, although it can be (and 
sometimes is) moved in covered hoppers. Petroleum is shipped in several types of 
tank barges. 

Grain, coal, and petroleum collectively account for about 70 percent of the commodity 
movements in the system. Lesser amounts of sulfur, construction materials, iron and 
steel, industrial chemicals, and agricultural chemicals are also shipped, primarily in 
open hopper barges and tank barges. 

Table 1 gives some characteristics of the barge and towboat fleet in use on the sys -
tern. It was assumed throughout this study that all hopper barge commodities move in 
jumbo barges 195 ft (59.4 m) long by 35 ft (10.7 m) wide, at an average loading of 1,300 
tons (1180 Mg). 

Application of the LP Model 

A period of analysis of 44,000 min (approximately 1 month) was selected for this study. 
The requisite barge flow inputs were obtained by dividing annual tonnage flows for 1968 
by 12 and then by 1,300 (the assumed average barge load). The resulting flow matrices 
contained about 1, 700 loaded open hopper barge movements and 1,000 covered hopper 
barge loads. (Tank barge flows were not included in this part of the study because 
they were assumed to be noninterchangeable.) 

It was assumed in this study that barge movement costs are a linear function of in
terport distance. If mq is the mileage between ports i and j, the corresponding cost 
functions are as follows: 

Cu 1 = 20 + 3.6 mij {5a) 

cu2 = 25 + 4.0 m1 J (5b) 

d!jl = 4 + 0.9 m1J (5c) 

du2 = 5 + 1.0 m1 J (5d) 

This means that the cost of shipping commodities in covered hopper barges is assumed 
to be on the order of 3 to 31/2 mils per ton-mile (0.2 cent per g-km), which is reason
ably accurate. 

It must be noted at this point that ports 14 and 15 were located approximately half
way between end points of the system (Figure 1) and New Orleans and Minneapolis re
spectively to reflect the fact that actual commodity origins and destinations are dis
tributed along the Mississippi River and its tributaries. This approximation must be 
kept in mind when the study results are reviewed, and the transportation costs for 
various barge flow patterns must be interpreted in accordance with the limitations 
imposed by this assumption. 

Based on the input data given ab0ve, the initial basic feasible solution contained 
about 1,000 empty barge movements for each barge type. The corresponding total cost 
was as follows: 
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Barges 

Loaded 
Empty 

Total 

Cost (dollars) 

11,312, 100 
2,294,479 

13,606, 579 

This initial solution provides a convenient standard against which to measure the LP 
results. This is so because the actual system operates somewhat less efficiently than 
this (i.e., empty barge flows actually exceed those included in this solution), but this 
standard of efficiency could feasibly be approximated by the operators, given certain 
economic inducements. 

The LP problem remaining after the initial basic feasible solution contained 558 
variables and 99 constraints . The optimal solution was achieved after 42 simplex it
e r ations . The resulting total cost was $12, 134, 594, which corresponds to a cost savings 
of $1,471, 985. 

A dramatic reduction in the flow of open hopper barges and empty covered hopper 
barges was achieved by applying the LP model. This is demonstrated in Table 2, which 
gives total hopper barge flows for the initial basic feasible solution and the optimal 
solution. It must be noted that this solution is likely to be sensitive to the end port 
location assumption mentioned above. That is, it is assumed here that covered hopper 
destinations match open hopper origins beyond the system boundaries closely enough 
to allow the optimal solution to be implemented. 

Cost savings were achieved in the LP solution by allocating open hopper loads to 
covered hopper barges that would otherwise move empty. As a result of this process, 
more than 1,000 hopper barge movements, which is about one-quarter of the initial 
total flow, were eliminated. This should produce a decrease in traffic congestion in 
the system. The significance of this effect is studied below. 

EFFECTS OF FLOW OPTIMIZATION ON SYSTEM OPERATIONS 

To determine whether the reduced barge traffic predicted by the LP model would 
effect a corresponding decrease in towboat delays, we observed the simulated 
operation of the system under the load patterns produced by the initial and optimal LP 
solutions respectively. The main reason for simulating the initial flows was to establish 
a datum against which the performance of the system in processing the LP flows could 
be measured. The waterway systems simulation model (WATSIM) developed at the 
Pennsylvania State University (Q) was used for this experiment. 

Simulation Runs 

WATSIM was developed at the Pennsylvania State University during the period 1968-1971 
as a general-purpose inland waterway system simulator. WATSIM accepts as input a 
chronologically ordered list of tows that are to be processed during the simulation. 
The other major inputs to WATSIM are a system description and a set of frequency 
distributions for the various components of the locking cycle for each lock chamber. 
Th model output st-atistics-on the t-rafiic p-roeessed at-eaeh leek- in ~he-system, in 
eluding the associated service and delay times. Printouts of selected tables at various 
intervals during one simulation run may be obtained if desired. 

The simulation input data for this experiment were the same as those used for pre
vious simulation studies of the Illinois-Mississippi system (8). Identical tank barge 
movements were input for both runs. Hence, the only difference between the two runs 
was in the hopper barge movements. 

The simulation period for each run was 44,000 min, preceded by a 4,000-min warm-up 
period. Intermediate output was obtained every 4,000 min; hence, 11 observations of 



Figure 1. Illinois-Mississippi 
10-lock subsystem. 

Table 1. Fleet characteristics 
for the Illinois-Mississippi 
system. 

Table 2. Hopper barge 
movements on the Illinois-
Mississippi system. 

~ 
I Chicago 

2 Joliet I 
3 Joliet :::rr 
4 Morris 
5 Ortawa 
6 Peru 
7 Hennepin 
B Peoria 
9 Pekin 

10 /1ovono 
II Grafton-

Florence 
12 Wood River 
13 Mouth of 

Missouri R~ 
14 L.Dwer 

Mississippi R. 
15 UpM~;sissippi R . 

Barge Type 

Open hopper 

Covered hopper 
Tank I 
Tank II 

Note: 1 ton ~ 907 kg. 

13 
L a D No. 27 

14 

Commodities Carried 

Coal 
Cement, stone, sand, and gravel 
Iron and steel 
Industrial chemicals (50 percent) 
Agricultural chemicals 
other 
Miscellaneous 

Grain 
Petroleum 
Sulfur 
Industrial chemicals (50 percent) 

3 8,5-ft (2.6-m) average loaded draft. 

7 

Average Tons Average 
per Barge" Flotilla Size 

1,300 

8 

1,320 
2,000 

2,100 3.5 

Total Flow Total Flow 

Barge Type Initial Optimal Barge Type Initial Optimal 

Loaded Empty 
Open l\opper 1, 719 961 Open hopper 1, 175 520 
Covered hopper 1,013 1, 771 Covered hopper 976 471 

Total 2, 732 2, 732 Total 2, 151 998 

Total movements 4,883 3, 730 



8 

Table 3. Selected simulation results for the Illinois-Mississippi system. 

Run 1: Initial Flows Run 2: Optimal Flows 

Total Barges Total Ba r ges 
Total ADPT Total ADPT 

Location Loaded Empty Tows (min) Loaded Empty Tows (min) 

Lockport 995 675 393 58 980 608 382 88 
Brandon Road 951 691 290 62 998 663 292 60 
Dresden Island 1,024 754 310 24 1,025 700 308 25 
Marseilles 964 698 294 34 908 511 276 23 
Starved Rock 961 691 297 25 934 483 273 22 
Peoria 1, 189 999 363 29 1, 120 419 296 21 
LaGrange 1, 107 933 364 23 1,081 506 317 20 
L&D 25 742 722 241 11 886 89 156 7 
L&D 26 2,018 1, 715 609 91 1,988 515 461 48 
L&D 27 2,107 1, 722 ~ 2 2,087 ~ ~ 1 

Total 12,058 9,600 3, 764 38 12, 007 5,010 3,221 33 

Table 4. ADPT observations and variables for selected locks. 

Run 1: Initial Flows Run 2: Optimal Flows 

Observation Lockport Peoria L&D 26 System Lockport Peoria L&D 26 System 

1 24.3 37 .9 41.l 29 .0 13.0 4.1 22.3 17.0 
2 30.4 10.4 67 .0 30.9 14.1 42 .5 33.1 27.0 
3 24.5 27 .9 98 .3 32.7 83.7 14.2 21.l 32.6 
4 54.7 39.1 84 .1 34.6 100.7 24.8 22.4 28.4 
5 28.8 47.0 90 .1 37.0 20.6 19.6 53.9 40.9 
6 76.8 38.8 106.6 47.8 42.2 18.7 52.2 29.1 
7 60.0 27.3 40.4 28.8 325.0 20.8 98.9 73.2 
8 53.0 5.8 120.0 51. 7 75.5 12.3 34.8 25.7 
9 63.0 28.8 41. 7 27.2 7.2 7.0 33.0 13.1 

10. 48.0 18.3 17 .5 45.8 90.4 30.3 78.3 42.4 
11 164.5 27.4 96 .2 58.0 80.8 25.6 56.2 34.3 

i; 628.0 308. 7 803.0 423.5 853.2 219.9 506.2 363.7 x 57 .1 28.1 73 .0 38.5 77.6 20.0 46.0 33.1 
s. 39.7 12.6 33.3 10.6 89.2 10.9 25.0 16.0 
Si 12.0 3.81 10.0 3.18 26.9 3.28 7.54 4.81 

Table 5. Results of ADPT hypothesis 
tests. 

Location X1- X2 T Signifi c ance& 

Lockport -20.5 -0 .697 0.50' 
Peoria 8.1 1.63 0.062 
L&D 26 27.0 2.16 0 .023 
System 5.4 0.935 0.192 

"20 degrees of freedom. bTwo·tail ed tes t. 

system performance were available for each run. 

S:imulation...&ault.s_ 

Selected traffic and delay statistics for each run after 44,000 simulated min of system 
operation are given in Table 3. There is very little difference between the two runs 
for the upper reaches of the Illinois River (except for an apparently anomalous delay 
situation at Lockport). From Marseilles lock, however, and through the rest of 
the system, fewer empty barges were procedded during the second run than during 
the first run, which gradually brought down the number of tows processed. The largest 
decreases occurred on the Mississippi River segment. At L&D 26, for example, in run 2 
only one-third as many empty barges were processed and 140 fewer tows than in run 1. 



Average delay values do not seem to respond so fast as the traffic data. The only 
large delay reduction is at L&D 26, where average delay for the second run is only 
about one-half of that for the first. Smaller reductions, of 11 and 9 min, were noted 
at Marseilles and Peoria. For an inexplicable reason, average dc~ay at Lockport is 
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30 min higher for run 2, even though the traffic served there was very similar for both 
runs. For the system as a whole, average delay per lockage decreased by 4 min from 
run 1 to run 2. 

Significance Tests 

Because the results discussed above only apply to the operating history of the system 
at one point in time, nothing can be said as yet about whether the differences noted are 
significant. Mean tow delay and its associated variance cannot themselves be used for 
this purpose because the individual tow delay times are autocorrelated. Repeat ob
servations on average delay per tow (ADPT), however, if taken at widely spaced in
tervals, can be treated as a random sample. Some results obtained by Rao (14), based 
on a technique developed by Fishman (15), indicate that the 4,000-min intervals used 
for these runs can be considered to be independent observations. Hence, ADPT values 
for selected locations for each interval were calculated (Table 4). Sample statistics 
are also given in the table. 

Data for Peoria, L&D 26, and the system as a whole were included to determine the 
significance of the apparent delay reductions at those locations. Hence, an appropriate 
hypothesis test is 

Ho: ADPT i ADPT2 

against the one-sided alternative 

H1: ADPT i > ADPT2 

Lockport, on the other hand, was included to examine the anomalous higher delay ob
served there for run 2. Thus a two-tailed test is more appropriate (there being no a 
priori expectation concerning the directionality of the inequality condition). 

T-statistics for testing the above hypotheses, calculated under the equal variance 
assumption, and their associated significance levels are given in Table 5. Only the 
large delay reduction at L&D 26 is highly significant. The 8.1-min savings at Peoria can 
be accepted as genuine if a 6.2 percent chance of making a type 1 error can be accepted. 
Systemwide delay reduction fares even worse, and the equality hypothesis cannot be 
rejected at normal significance levels. Fortunately, the seemingly strange result at 
Lockport turns out to be spurious, for the equality hypothesis cannot be rejected there, 
either. 

These findings point out one of the difficulties involved in interpreting the results of 
simulation experiments. A highly insignificant increase in average delay occurred at 
Lockport because of the "luck of the draw" in the simulation model. This delay in
crease, however, was large enough to offset a highly significant delay reduction at L&D 
26, so that the significance level of the systemwide delay reduction was raised to an 
unacceptable value. Given these somewhat conflicting results, it is the author's in
clination to judge the improvement in system operations to be real, rather than the re
sult of chance occurrences. 
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SUMMARY 

The simulation results indicate that optimization of barge flows can have a substantial 
effect on system operating performance. For the particular system studied, elimina
tion of a great number of empty barge movements allowed the same tonnage to be ser
viced with significantly lower delays at the key bottlenecks. Hence, transportation 
costs were reduced not only through greater equipment use but also through decreased 
system congestion at critical locations. 

These results have several implications regarding effective use of the LP model. 
From the fleet scheduling viewpoint, it must be realized that optimization of vehicle 
flows will produce a change in transit times at any service facility that has flow
dependent delays. These changes may be significant enough to alter the unit trans
portation costs input to the model. Hence, it may be necessary to iterate through the 
scheduling process several times and to reestimate flow costs for each trial, before 
a satisfactory equilibrium is attained. 

From the planning viewpoint, these results show that system performance indexes are 
a function of the degree of efficiency of equipment use that is assumed when traffic 
demand estimates are prepared. The LP model assumes that cooperation among 
shippers is close enough that optimization of total barge flows can be accomplished. 
If this degree of cooperation is lacking, flow predictions based on the LP model will 
underestimate actual demand. 

CONCLUSIONS 

This paper deals with the general problem of determining the origin-destination flows 
of cargo vehicles, both loaded and empty, that are required to serve a specified trans
portation demand matrix. The model derived in the paper applies directly to a partic
ular class of such problems in which one set of commodities must be shipped in a 
special class of vehicles and the other cargo can be shipped in either the special ve
hicles or general-purpose vehicles. 

The particular application used throughout the paper, that of predicting covered 
hopper and open hopper barge movements, is only one example of how the model might 
be used. The problem described by Gould (5) is another. Similar examples include 
refrigerated and nonrefrigerated trucks or railroad cars; container ships and break 
bulk ships (one could assume either that containers move only in container ships or 
that uncontainerized cargo moves only in break bulk ships); and even passenger aircraft 
and cargo aircraft. 

It must be emphasized here that the model was devised for use in the context of 
transportation system planning. Hence, there is no provision in the model for con
sidering vehicle availability. That is, it is assumed that enough vehicles will be pro
vided so that the predicted number of vehicle trips can take place during the analysis 
period. For planning purposes, this is of little concern, since future commodity flows 
will normally not be known precisely enough to warrant a more detailed investigation 
of vehicle flows. 

Inasmuch as the model is intended for use as a predictive tool, some objection might 
be raised to applying optimization techniques to obtain a solution. Indeed, in actual 
practice, vehicle flows are determined by transportation companies or private fleet 
operators so as to meet individual private objectives rather than to minimize system-

- wide cos~lf cost minimization cailbe accepted as fhe universal privately applied 
criterion, however, then the solution should not be far removed from what will actually 
occur . 

This point can be argued as follows. Consider first the initial solution. This might 
correspond to the situation in which each shipper is using his own vehicles (either 
private or hired) to provide the necessary loaded movements. Now suppose shippers 
A and Bare crosshauling loaded and empty vehicles between points i and j. It will be 
to their advantage to arrange to use the same vehicles and thus eliminate some of their 
empty vehicle trips. 



11 

What about shipper C, located at point k between i and j? He may be shipping from 
k to j and returning empties; shipper Bis moving empty units from i to j. Band C 
could obviously reduce costs if B would carry C's loads from k to j. Other things being 
equal, this again is the sort of solution that tends to be provided by the model. The 
three movements involved will be replaced by an empty vehicle trip from i to k and a 
loaded trip from k to j. 

The essential point to be made is that systemwide optimization is not necessarily 
opposed to minimization of individual costs. In fact, a system optimum will normally 
be composed of a great many solution elements that correspond to private optima as 
well. Of course, numerous hypothetical counter examples can be constructed, but real
world problems tend to be more like the waterways example presented. Some theoret
ical support for this line of reasoning is also available in some recent significant find
ings by Dafermos (.!Q, .. !1)· 

As a final note of caution, it is recommended that for planning applications 
model predictions be compared with actual vehicle flows for the base year of the 
study. If substantial deviations are found, it will be necessary to use some other tech
nique or to modify the data input to the model so that the ultimate vehicle flow matrix 
incorporates some of the inefficient vehicle utilization practices that sometimes occur 
in the real world. 

The model can also be used as the first step of a fleet-scheduling model. The second 
step consists of specifying realizable vehicle itineraries that collectively provide for 
all of the movements indicated in the solution matrix. Normally more than one set of 
itineraries will be feasible, and the optimal set will have to be selected so as to satisfy 
the scheduling objective. If the number of feasible itinerary sets is not too large, a 
branch-and-bound method can probably be used to find the optimum. 

As a second possible procedure, the LP solution matrix can be used as a set of flow 
constraints for a vehicle-scheduling mathematical program. Any minimum cost vehicle 
schedule must provide for the loaded and empty movements specified in the solution. 
The scheduling problem is to allocate specific vehicles to each movement requirement. 
Hence, given the LP solution, a relatively simple linear program for vehicle scheduling 
can be devised. 

Regardless of whether the optimal vehicle flows specified by the model can be at
tained in actual practice, they can be used as a basis for measuring the overall effi
ciency with which a transportation system is being used. For this application, it is 
necessary to have available a model that analyzes or simulates the performance of the 
system in serving a particular matrix of vehicle flows. Inasmuch as the model can be 
used to generate a minimal demand matrix, it follows that system performance mea
sures that are functions of traffic flow will also achieve their extreme values in serving 
this demand. Actual traffic flows and delay times observed in the field (or values of 
these quantities predicted by the system model) can then be compared with their optimal 
counterparts to assess the efficiency of system operations (or the potential effectiveness 
of plans for increasing utilization efficiency). 

As a case in point, consider the Illinois-Mississippi waterway system studied above. 
For the 1968 commodity flow matrix, lockage delays and number of empty barges pro
cessed can be no lower than those observed in the second simulation run. Thus, for 
example, a tally of empty barges processed at each lock will indicate how effectively 
towing companies are using their equipment. 

Another application of the model is in establishing the minimum capacity that a 
proposed facility must have if a specified future commodity demand matrix is to be 
served. 

In summary, the model is applicable to many different types of problems, including 
prediction of cargo vehicle flows, vehicle scheduling, and establishment of minimum 
system vehicle processing requirements. With simple modifications, the model can 
incorporate such additional considerations as dedicated equipment, cargo-dependent 
transportation costs, unequal vehicle capacities, equipment availability, and multiple 
commodities. Perhaps the most attractive features of the model are its simplicity and 
its relatively small size. Hence, it could profitably be used to obtain suboptimal or 
approximate solutions for more complex problems that cannot be solved with complex 
models because of size limitations. 
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