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In this paper, three sampling techniques for calibrating disaggregate travel 
demand models are considered: random, stratified, and choice-based 
sampling. In a random sample, the probability of all members of the pop­
ulation being in the sample is equal; in a stratified sample, the population 
is divided into groups based on one or more characteristics and each group 
is sampled randomly but at different rates; and in a choice-based sample, 
the number in the sample selecting each alternative is predetermined, i.e., 
the sample is based on the outcome of a behavioral choice process. Exist­
ing disaggregate choice calibration methods yield consistent parameter es­
timates for random and stratified sampling techniques. Although maxi­
mum likelihood estimation for the third technique is extremely complex, 
an alternative, tractable estimator whose estimates are both consistent 
and asymptotically normal exists. This new estimation technique can be 
applied by using existing capabilities in ULOGIT or other multinomial 
logit estimation programs with only minor revisions. This implies that 
choice-based samples such as on-board surveys and roadside interviews 
can now be used for disaggregate model calibration. This should sub­
stantially reduce the cost of data collection in disaggregate model devel­
opment. In addition, it opens an entire range of questions regarding the 
most appropriate sample design for future data collection efforts oriented 
toward the development of disaggregate choice models for urban travel 
demand forecasting. 

The development of travel demand models invariably 
involves the use of a data sample. From 1950 to 1970, 
when most major urban areas undertook large-scale 
urban transportation planning studies, home interview 
surveys were the principal source of such data. How­
ever, these surveys were relatively expensive then and 
are even more so now. It is not surprising that most 
urban areas are reluctant to repeat a major home in­
terview survey, and agencies that have done so have 
taken update samples that are substantially smaller 
than those taken previously. 

The large-scale home interview survey was generally 
viewed as an essential element in the development of 
traditional aggregate demand models. Because aggre­
gate models use data at the zonal level, fairly large 
random samples were required to calibrate them. How­
ever, in the past decade transportation analysts have 
begun to rely heavily on disaggregate choice models 
that use observations of individual decision makers 
rather than geographically defined groups. One major 
advantage cited for such models (1) is the efficiency 
with which they use available data-and their consequent 
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potential for reducing the time and effort expended on 
data collection. 

Most of the existing research using disaggregate choice 
models has relied on data from some variant of the home 
interview survey. The type of sampling used has gen­
erally been random, i.e., the probability of being selected 
is the same for all members of the population. Some 
studies have used stratified sampling in which the popula­
tion is divided into groups based on some characteristics 
and each subpopulation is sampled randomly. 

The assumed need for a random or stratified sample 
has often limited the usefulness of disaggregate choice 
models. For example, in a city with low transit use 
such as Los Angeles, a large random sample of obser­
vations from the population may not include a single 
transit user. In general, inferences regarding transit 
preferences are impossible in such a situation. Intu­
itively, a sample designed so that the number of transit 
users is predetermined might circumvent this problem. 
Such a sampling process is termed choice-based, be­
cause the ohse1~vatlous are drawu based ou the outcu1u~ 
of the decision-making process under consideration. 

Choice-based samples are extremely common in 
transportation analysis. On-board transit surveys and 
roadside interviews, for example, are both choice­
based if one is considering the mode choice process. 
Such samples can frequently be obtained fairly inexpen­
sively and are often used to evaluate the performance 
of a particular mode or to assist in determining how 
service should be altered to better meet the travel de­
sires of current users. However, choice-based sam­
ples have not been used for calibrating disaggregate 
choice models because of the way in which the parameters 
of disaggregate choice models are generally estimated. 
Choice models are typically calibrated by using the max­
imum likelihood method. It is shown later that each of 
the three sampling methods results in a different dis­
tribution of observed choices and characteristics in the 
sample and, hence, has a different associated likelihood 
function. Existing estimation programs maximize the 
likelihood appropriate for random and stratified samples. 
However, the likelihood function for choice-based sam­
ples is not maximized by these programs. This likeli­
hood function is significantly more complex and is not 



computationally tractable. A major finding of this study 
is that another, more tractable function exists that, when 
maximized, also yields consistent parameter estimates 
for choice-based samples. This result should have a sig­
nificant impact on the entire model calibration process. 
Many models that previously relied on home interview sur­
veys costing at least $40 per interview can now be de­
veloped by using alternative survey techniques that may 
prove an order of magnitude less expensive. 

To discuss alternative sampling and estimation pro­
cedures requires first that the sampling processes be 
defined in analytic terms. This is done below, but it is 
assumed that the reader is familiar with the basic ele -
ments of disaggregate choice models (!, ~ '.!). After 
the definition, a brief discussion of consistency, a de­
sirable property of parameter estimation techniques, is 
presented. Existing estimation procedures that maxi­
mize the likelihood of the observed choices given the 
observed characteristics are discussed. These methods 
yield consistent parameter estimates only in random and 
stratified samples. Then, an estimation procedure for 
choice-based samples and an intuitive rationale for its 
consistency are presented. A formal proof of the con­
sistency of this estimator is given by Manski (5). The 
various trade-offs that exist in the design of a sampling 
procedure are explored, and the basic conclusions and 
recommendations of the paper are summarized. 

Although all of the results described in this paper are 
applicable to the commonly used multinomial logit model, 
they are by no means limited to it. In fact, they apply 
to almost all reasonable disaggregate choice models. 
Thus, the techniques proposed here should prove to be 
useful for the multinomial probit model now under de­
velopment (i, ~) as well as later generations of models 
that have not yet been developed. 

BASIC SAMPLING CONCEPTS 
AND NOTATION 

Sampling, as used in this paper, refers to the process 
of selecting a finite set of observations from some larger 
population. Each observation sampled is described by 
two variables, i and z , where 

i = the observed choice of the sampled decision 
maker (e.g., whether the decision maker took 
the transit or automobile mode to work) and 

z a vector of characteristics of the decision maker 
and the choice alternatives available (e.g., a 
vector consisting of household income, auto­
mobile ownership, and travel time by automobile 
and transit ). 

The entire decision-making population can be char­
acterized by a distribution of (i, z) pairs. This prob­
ability distribution is P(i, z). The sampling process 
describes the way in which members of the population 
are drawn from this distribution. Any type of sample 
also has a distribution of i's and z's, which is denoted 
as f(i, z). 

Throughout this paper it is assumed that some be­
havioral choice process exists that is governed by a 
vector of parameters e. This process might be the 
multinomial logit model or some other assumed form. 
It will often be convenient to indicate that the choice 
process depends on e by denoting the probability that i 
is chosen from a choice set characterized by attributes 
z as P(i I z, 8) . ln addition, the joint dis tribution of i and 
z in the population is writt en as P(i, z I e) and the cor­
responding sampling distribution as f(i, z I 0). 

Based on this notation, the alternative sampling pro­
cedures can be formalized. 
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1. In a random sample, such as that used in tradi­
tional home interview surveys, the distribution of i and 
z in the sample is identical to that of the population, i.e., 

f(i,zlli) = P(i,zlli) ( I ) 

2. A stratified sample is a sample drawn nonrandomly 
with respect to the choice set or decision maker char­
acteristics. For example, a sample of half low-income 
households and half high-income households is a stratified 
sample if there was no bias within any income group with 
respect to transit and automobile users. In this case, 
the sampling procedure is defined by f(z), the probability 
of sampling an observation with characteristics z. The 
distribution of i and z in the sample is 

f(i,zlli) = f(z)P(ilz,li) (2) 

3. A choice-based sample is a sample that is drawn 
based on the actual choices made by decision makers. 
For example, a sample of travelers, half of which was 
taken at a transit station and half at a roadside inter­
view, would be a choice-based sample. The sampling 
procedure is defined by some f(i), the probability that 
an observation is drawn from the subpopulation select­
ing alternative i, and the sampling distribution is 

f(i,zlli) = f(i)P(zli ,li) = [f(i)P(ilz ,li)P(z)] /P(illi ) 

where the last expression relies on Bayes rule that 

P(zli,li) = [P(ilz,li)P(z) 1/[; P(i lz,/i)P(z)] 

and 

P(illi) = L P(ilz,li)P(z) 
~ 

(3) 

(4) 

(5) 

(The z's are treated here as discrete variables. How ­
ever, an extension to continuous z's is straightforward.) 

Intuitively, each type of sampling method generally 
produces a different sample. For example, a stratified 
sample with a disproportionate share of low-income 
households might be expected to have a greater share of 
transit users than a random sample. Similarly, a 
choice-based sample with a disproportionate share of 
transit users might have a greater number of travelers 
residing near transit stations . In short, each sampling 
method leads to a different distribution of choices and 
characteristics in the sample, and there is no a priori 
reason to expect that an estimation technique that pro­
duces meaningful parameter estimates for one sampling 
method will be useful for samples drawn by other methods. 

CONSISTENCY 

The goal of any estimation procedure is to find a e that 
in some sense comes close to the true parameter value, 
9. This paper focuses principally on finding consistent 
estimates of e. Although consistency is perhaps the most 
basic desirable property of a parameter estimate, all the 
methods presented also produce asympototically unbiased, 
normally distributed estimates. 

Consistency is a statistical property that refers to the 
behavior of a parameter estimate as the sample size gets 
incr easingly large. Obvious ly, in finite samples 9 does 
not exactly equal a. (a denotes the true parameters, i.e., 
fixed, nonrandom numbers, and il denotes a parameter 
estimate, which is generally random in nature since it 
depends on the particular sample drawn from the popula-
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tion.) However, it would be desirable for the probability 
that a is within any given distance of a to approach one 
as the sample size grows larger. This is what is meant 
in intuitive terms by a consistent estimate. More for­
mally, a is a consistent estimate of a true parameter a 
if, for any arbitrarily small positive ex., 

Jim Prob ( [[O T - /J II< a)= J (6) 

where 

T = sample size, 
8r = parameter estimate associated with the sample 

of size T, and 
II II = a distance measure. 

CONSISTENCY OF EXISTING 
ESTIMATION PROCEDURES 
IN RANDOM AND 
STRATIFIED SAMPLES 

If the model is correctly specified, the property of con­
sistency holds for virtually all commonly used estima­
tion techniques, including the maximum likelihood method 
used for estimating the parameters of the multinomial 
logit model. 

A well-known theorem that the maximum likelihood 
estimates are consistent is used below to indicate that 
existing disaggregate model calibration procedures 
yield consistent estimates for random and stratified 
samples. In general the maximum likelihood estimator 
seeks a a that satisfies the following condition: 

T • 

M!x IT f[(i ,z), 1/JJ (7) 
(J t = ] 

where (i, z)t denotes the actual value of the (i, z) pair 
for the tth observation in the sample. Typically, this 
problem is solved by taking the logarithm of the likeli­
hood function, inasmuch as the likelihood function is 
maximized when its log is. Thus, we seek 

T • 

M.ax ~ log f[(i ,z),1/JJ (8) 
(=t 

Equation 8 ls t he log lilcelihood for any s ampling dis­
tribution c. u the £unction r(1, z I al obeys certain regu­
larity conditions , general theorems ensuring the con­
sistency of maximum likelihood estimates can be ap­
plied. McFadden (7) presents one such set of conditions 
for the multinomiaClogit model. 

Existing calibration procedures for disaggregate 
choice models do not directly maximize the likelihood 
function; rather, they solve the following problem 

T • 
M!lx ~ Jog P(i,lz,,/J) 

(J t=] 

(9) 

This function is the likelihood of the observed choices 
conditional on the values of z a and does not reflect the 
sampling process. It can readily be s hown, however, 
that for random and stratified s am ples the 8 that maxi ­
mizes equation 9 also maximizes equation 8. Hence, 
under sufficient regularity conditions, equation 9 yields 
consistent parameter estimates. Stated more formally, 
if the sampling process for (i, z) pairs is random or strati-

fied, then 9 that is a solution to equation 9 is also a solu­
tion to equation 8 and is, therefore, consistent for a. 
To see this, observe that in both random and stratified 
samples (a random sample is treated here as a special 
case of a stratified sample in which f(z) = P(z) for all 
values of z) 

f(i ,z[O) = P(i[O)f(z) (10) 

Thus, equation 8 can be written as 

T • 
M,:ix ~ [Jog P(i1[z1,/J) + Jog f(z1)] (I J) 

(J t= l 

where f(zt) is not a function of a. It follows that maximizing 
the left portion of equation 11 is equivalent to maximiz­
ing the entire expression. Note that this result is not 
applicable to choice-based samples because in such sam­
ples the sampling distribution of z depends on the param­
eter a. 

ESTIMATION TECHNIQUE FOR 
CHOICE-BASED SAMPLES 

Inasmuch as existing estimation software packages do 
not maximize the likelihood function for choice-based 
samples, a relevant question is why not develop one that 
does. Examination of the appropriate log-likelihood 
function shows why this would be extremely difficult: 

T • • 
~ Jog (P(i,lz1,/J)P(z1)f(i1)] /P(itl/J) (12) 
t=l 

The term P(it I il) is the marginal probability that alterna­
tive i, is selected over the entire relevant population at a. 
This probability is in general a complex integral or sum­
mation and is not analytically tractable. Furthermore, 
its computation requires knowledge of the probabilities 
P(z), which is rarely available. These problems point 
to the need for a simpler procedure. 

Maximization of the function 

T 
~ Jog P(i, lz,,i))IP011e)/F(i1JI (13) 
t=] 

produces consistent parameter estimates (5). This func­
tion is identical to that in equation 9 except-that it re­
quires P(it I e) and f(it), the true shares of the population 
and sample choosing alter native i,; it does not require 
the evaluation of P (it\ 9) for 8 f. a. 

Conditions sufficient for the above estimation method 
to be consistent are quite general and apply to most com­
monly used choice models. Fi rst, the choice probability 
must be cont inuous in il. Second, all the choice prob­
abilities must be positive; none may be zero. Finally, 
the sampling process and choice model must be such 
that 0 is identifiable, i.e., the 8 that satisfies equation 
13 must exist in large samples and be unique. 

The similarity between the functions in equations 13 
and 9 is not insignificant. Basically, the proposed esti­
mation technique for choice-based samples is computa­
tionally identical to the maximum likelihood method in 
random or stratified samples except that each observa­
tion is exponentiated by a factor P(it J e )/ f(i , ). If the 
number in the sample choosing alternative i is less than 
the corresponding marginal probability (i.e., if f(i,) < 
P(i,Je)J, then this factor is great er than one. In a loose 
sense, each observation is weighted. For this reason 
we have termed this estimator the weighted maximum 



likelihood estimation method. 
It is interesting to note that when f(i) is identical (by 

chance or design) to P(i \ 0) for all i, the weighted max­
imum likelihood estimation method is computationally 
identical to maximizing the sample likelihood as though 
the sample were random or stratified. Thus, when the 
choice-based sample is drawn such that the fraction 
choosing each alternative in the sample is identical to 
the corresponding marginal population probability, the 
use of a computer estimation program that maximizes 
the likelihood of a random or stratified sample will pro­
duce consistent estimates for a choice-based sample. 
In all cases where the sample shares and the population 
marginal probabilities are not identical, the weighted 
maximum likelihood estimator will in general produce 
different estimates from the unweighted one, and the 
unweighted estimates will not have the consistency prop­
erty (6). 

McFadden (7), however, has demonstrated that there 
is a special case in which inconsistency is confined to a 
subset of all the parameters and that consistent esti­
mates for this subset of parameters can be obtained by 
a simple transformation of the estimation results. This 
case is when the choice model is of the logit form and 
there is a constant term in the utility of every alternative 
except one. (One constant term must generally be omit­
ted in the logit model in order for the maximum of equa­
tion 9 to be unique.) In this case, we can express the 
choice probability model as 

exp 'Y; +Xu¢ 
P(i,10) = "' 

"-" exp 'Yi + xi, ¢ 
jeAt 

where 

(14) 

'Yi, 'Yl = constant terms associated with alternatives 
i and j respectively [the y's are parameters 
of the model to be estimated; in the previ­
ous notation, 0 = (y1, y2, ••• , 'YN, ¢ )]; 

X11 , XJt vectors of all the attributes of alternatives 
i and j respectively for decision maker t ; 

¢ a vector of parameters; and 
At = the set of available alternatives for deci­

sion maker t. 

A typical example of this situation is a logit model of 
mode choice in which each mode has an alternative­
specific constant term. If an unweighted estimation 
method is used in this case, McFadden has shown that 

1. The estimates of¢ are consistent and 
2. If each of the estimates of the y (denoted as y) is 

modified so that 

~ i = 'Y; - log [f(i)/P(ilO)] (15) 

then Yi is a consistent estimate for y1 • 

In practical terms, McFadden's result implies that, 
as long as there are constant terms for every alterna­
tive except one, only the constant terms are affected by 
the use of choice-based samples for estimating the mul­
tinomial logit model. The inconsistent constant terms 
can then be corrected by a simple transformation. 

In more complicated situations, such as destination 
choice models in which it is impractical or impossible 
to define a separate constant for every alternative, the 
effect of using a nonweighted estimation procedure on a 
choice-based sample is still unknown. Inasmuch as 
some of the parameter estimates will certainly be in-
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consistent, the use of the weighted estimation procedure 
in these cases is clearly indicated. In cases for which 
McFadden's result is applicable, the decision between a 
weighted and unweighted procedure depends on still unre­
solved statistical questions about the efficiency and robust­
ness of the two techniques. The approaches have virtually 
identical computation and data requirements, and the weight­
ing procedure can be performed by some of the existing 
multinomial logit estimation programs such as ULOGIT, 
a program developed cooperatively by the Urban Mass 
Transportation and Federal Highway administrations. 
(Minor modification of existing software is required to 
obtain correct t-statistics, but this can readily be done 
as a postprocessing step to the actual model calibration.) 

CHOICES IN SAMPLE DESIGN 

The availability of a practical estimation procedure for 
choice-based samples inevitably leads to the question of 
what type of sampling approach is best. Unfortunately, 
the answer to that question is extremely specific to the 
situation, depending among other things on 

1. The cost of various sampling methods, 
2. The choice situation being modeled, 
3. Characteristics of the decision-making population, 

and 
4. The cost to society of estimation errors in terms 

of losses from misdirected policy. 

Random samples often require a major expenditure 
of time and funds to collect. For many general trans­
portation modeling situations, a random sample must be 
based around travelers' homes; a sample taken any­
where else inevitably is choice-based because the re­
spondent has of necessity already made a trip choice. 
This requirement for a home-centered survey has as its 
consequences all of the problems associated with such 
data collection efforts: high cost; low response rates by 
frequent travelers; undercounting in many inner-city 
areas; and failure to interview all the trip makers in 
the household, which leads to an undercounting of dis­
cretionary trips. On the other hand, home interview 
surveys generally offer the opportunity for longer inter­
views than are offered by other techniques because the 
respondent is not traveling somewhere or doing some­
thing else. 

A further disadvantage of random sampling is that it 
offers no opportunity to increase the amount of informa­
tion in a sample of fixed size. Loosely, the more varia­
tion that exists in the data, the more reliable the result­
ing choice models will be, In random sampling this 
variation cannot be controlled; rather, the random out­
come of the sampling process determines how much 
variation there will be in a given sample. 

Stratified sampling eliminates one aspect of this 
problem. Even when the characteristics of the decision 
maker population vary little, the sample can have a high 
variance. For example, high-income households can be 
sampled at different rates from households with low in­
comes, thereby increasing the sample's expected vari­
ance over what could be obtained in a purely random 
sample. stratified samples, however, may often be 
even more expensive than random ones. The sample 
design must often distinguish among various survey 
candidates based on characteristics that may be dif­
ficult to observe, and it may often be necessary to begin 
an interview to find out in which stratum a respondent 
belongs. 

For example, if automobile ownership were used for 
stratification it would be necessary to select observa­
tions through a preinterview, which might or might not 
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lead to a full interview. It is questionable whether such 
a procedure would be economically justifiable; once the 
interview was begun it might prove more efficient to 
complete it. In cases where the stratification was more 
readily observable (e.g., housing type), stratified sam­
ples would probably prove highly effective. 

In general, choice-based samples are the least ex­
pensive. Their proper use requires that values of 
P(i I e )/ f(i), the ratio of the share of entire population 
choos ing each alte rnative to the sample shar e, be known. 
Fortunately, because P (i I e) is an aggregate statistic, 
under varying situations information about it might be 
obtained from several sources. 

1. Published dat a-Because P(i I e) is an aggregate 
figure, it may be pubUs hed in census data, Bureau of 
Labor statistics, transit industry data, or other con­
ventional sources. For example, the Bureau of the 
Census collects and publishes mode choice to work in­
formation for SMSAs. 

2. Random subsamples-Part of the entire sample 
may be randomly drawn, and the remainder may be 
choice-based. Thus , if the random portion is reason­
ably large, the share of the sample choosing alternative 
i may be an extr emely good estimate of P (il e). A good 
example of this is a random home interview survey sup­
plemented with an on-board transit survey. This ap­
proach might prove most valuable when small home in­
terview surveys yield a very low number of transit 
riders. 

3. Supplementary surveys-Data for estimating choice 
models are often quite detailed and are therefore expen­
sive to collect. In contrast, merely finding out what 
alternatives members of the population selected is gen­
erally quite s imple. For this reason, finding P(i I e) for 
any given population can probably be accomplished by a 
very efficient supplemental survey. For example, a 
random telephone survey that asks about mode of travel 
without collecting or coding any additional data would be 
sufficient to obtain estimates of P(i I e) for a mode choice 
model. 

In all probability the question of sample design will 
remain a judgmental problem. Far too little is known 
about the detailed properties of any of the estimators 
discussed in this paper to completely formalize the ex­
plicit analysis of sample design. However, it is clear 
that the chvicc-bas~d estiriuition. p1-ulit:du1~e develupt:U 
in this paper opens a new dimension to the possible 
sampling alternatives. Decisions about sample design 
should recognize the potential efficiencies of using 
choice-based samples and weigh the possible benefits and 
costs of this technique against those of random and strat­
ified samples. 

CONCLUSIONS AND 
RECOMMENDATIONS 

The relative efficiency of disaggregate choice models 
over their aggregate counterparts significantly reduces 
data collection requirements. However, the full poten­
tial of such models has not yet been realized because no 
computationally tractable way of using choice-based 
samples has been demonstrated to yield consistent pa­
rameter estimates. This paper describes such a method 
and presents some of the significant ramifications of 
using choice-based samples for demand model estimation. 

More generally, it seems clear that transportation 
planners in the past paid scant attention to the question 
of sample design. However, if sampling costs continue 
to rise as they have and if large quantities of funds for 
surveying are unavailable, a great deal more thought 

into sample design will be required. 
The weighted maximum likelihood estimator described 

here opens an entire range of possible designs that were 
not previously usable in the calibration of disaggregate 
choice models. In many contexts, appr opriate use of 
choice-based samples should greatly reduce data collec­
tion costs and improve model estimation results by per­
mitting the analyst to prespecify characteristics of the 
sample. Study resources previously dedicated to data 
collection could then be reallocated to the task of de­
veloping improved model specifications. 
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