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The impact of an automobile with a breakaway support for a sign or lu­
minaire can be divided into three phases. By using simplifying assump­
tions, one can determine the contribution to change in vehicle momentum 
(L',MV) by each phase. The first phase involves the crushing of the auto­
mobile with negligible motion of the support. The second phase considers 
the contribution to L',MV by base fracture. The third phase considers the 
contribution to L',MV by the acceleration of the pole. The results of this 
analysis are that vehicle change in momentum can be approximated by 
an equation that has provided valuable insight into the effect of vehicle 
stiffness, breakaway force level, base fracture energy, pole inertial prop­
erties, and vehicle impact speed on t.MV. This knowledge has facilitated 
the subsequent development of practical laboratory acceptance test cri­
teria to promote safer sign and luminaire supports. 

The performance of a breakaway support for a sign or 
luminaire is a function of the change in vehicle momen­
tum (AMV) produced during impact with the support. 
The reason for this is that immediately after impact 
the velocity of an unrestrained occupant relative to the 
vehicle interior is about the same as the change in velocity 
of the vehicle. Current Federal Highway Administration 
(FHWA) and American Association of State Highway and 
Transportation Officials (AASHTO) cr iteria (!, ~) set a 
limit of 4890 N,s (1100 lbf·s) for acceptable AMV in full­
scale tests. 

In order to develop practical laboratory acceptance 
test criteria, ENSCO conducted a study for FHWA that 
involved analysis, computer simulation, laboratorytests, 
full-scale tests, and the correlation of all results. This 
study has enabled the development of practical laboratory 
methods of testing breakaway supports to ensure their 
effectiveness. Owings, Cantor, and Adair, in a paper in 
this Record, give some of the background on laboratory 
acceptance testing. The simplified analysis of this paper 
forms part of that background. 

Publication of this paper sponsored by Committee on Safety Appurte­
nances. 

ANALYSIS OF IMPACT 

The following simplified analysis provides a better un­
derstanding of the phenomenon of impact by an automo­
bile with a sign or luminaire support. One major assump­
tion in the analysis is that the support pole can be considered 
a rigid body. Other assumptions will be described when they 
are introduced. The essential validity of these assumptions, 
with regard to vehicle change in momentum, is confirmed 
by the good correlation of predicted results from this anal­
ysis with those of computer-simulated, laboratory, and 
full-scale tests as shown by Owings, Cantor, and Adair 
in a paper in this Record. 

If one neglects tire-roadway forces, the momentum 
change experienced by a vehicle during impact is given by 

(I) 

where 

t3 = time to loss of contact between vehicle and frac­
tured support and 

F0 = force exerted by the support on the vehicle. 

To facilitate the evaluation of this impulse integral, the 
impact is divided into three phases. The first phase, 
from t = 0 tot = t1, is characterized by the crushing of 
the automobile with negligible motion imparted to the 
support. The second phase, from t = t1 tot = t2, in­
volves the contribution to AMV provided by the fracture 
of the base. The third phase, from t = ti to t = h, con­
siders the contribution to AMV that is inherent in the 
momentum imparted to the support. 

Figure 1 shows the geometry of impact; Figure 2 
shows the three phases of impact. During the first phase 
of the impact, the work done in crushing the automobile 
is equal to the change in kinetic energy of the automobile 
and can be expressed as 

rx1. Jo . F0 dx = O.SM (V~ - VD (2) 
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where 

X1 maximum crush deformation of the automobile, 
M mass of the impacting vehicle, 
Vo impact speed, and 
V 1 speed at the end of the first phase of the impact. 

Equation 2 can be rewritten as 

where 

fl.Vi = Vo - V1, and 
fJ = [1 - (ll.V1/2Vo)J-1. 

But the contribution to ll.MV during the first phase is 
simply 

Combining equations 3 and 4 yields 

fXl 
where E 0 = Jo F 0 dx = crush energy. 

(3) 

(4) 

(5) 

The value of {J is always greater than unity. For 
moderate velocity change during the first phase, how­
ever, {J is close to unity and may be regarded as more 
or less constant. For example, if V0 = 32.2 km/h (20 
mph) and if fl.Vi= 9.7 km/h (6 mph), then {J = 1.18. A 
representative value of {J, for the range of acceptable 
impacts, is 1.1. Thus the contribution to ll.MV by the 
first phase can be considered proportional to the energy 
of vehicle crush (up to breakaway force level F1) and 
inversely proportional to impact speed Vo. (Although {J 
is treated as a constant for establishing the basic trends 
in the first phase of impact, the exact relationship of 
11 versus E0 can be determined by using the exact defini­
tion of {J.) 

For a linear force-deformation characteristic, E0 

can be expressed as 

Ee = O.S(KXt) = O.S(Fi/K) 

where 

K = vehicle stiffness and 
F1 = breakaway force level of base. 

In this case, equation 5 can be expressed as 

For a nonlinear force-deformation characteristic, a 
parameter w can be introduced as defined in Figure 3. 
In this case, 

Ee= O.S(wKXt) = O.S[w(Ft/K)J 

where 

K = F1/X1 = equivalent vehicle stiffness and 
F1 = breakaway force level of base. 

(6) 

(7} 

(8) 

Thus equation 5 can be expressed as 

(9) 

This illustrates how a large breakaway force level and 
low vehicle stiffness can increase the contribution to 
~MV during the first phase. 

As shown in Figure 2, the contribution to ll.MV by the 
second phase (base fracture) is 

(10) 

which can be rewritten as 

(11) 

where 6 = base displacement relative to foundation. At 
the beginning of base separation (t = t1), the displace­
ment velocity 6 is zero and, from physical considera­
tions, cannot change abruptly. (A step function change 
in & together with finite inertia of the support would re­
quire an infinite force.) After base separation (at t = t2), 
6 will be close to vehicle velocity V2, which in turn is 
some large fraction of the initial impact speed Vo (if 
one assumes a relatively small ll.V). This can be ex­
pressed as 

(12) 

An average value for y, over a range of acceptable im­
pacts, is 0.8. 

A reasonable form for 6, from t = t1 tot = t2, would 
be a linearly increasing function of time; that is, 

(13) 

or 

(14) 

where 

T - t - t1 and 
.,. = t2 -ti .. 

Integrating equations 13 and 14 results in 

(15) 

Because 6(0) = 0, the integration constant C1 = 0. Thus 

(16) 

At base separation (7" = r,), maximum displacement can 
be expressed as 

By using equations 16 and 17, one can express 7" as 

(18) 

Substituting equations 17 and 18 into equations 13 and 14 
yields 

li(r)=7V0 ~ (19) 

The integral h of equation 11 can now be expressed in 



terms of displacements. Thus 

(20) 

To evaluate equation 20 requires knowledge of the 
base breakaway characteristic Fb(6). In general, Fb(6) 
has a maximum value F1 at 6 = O, and the value of Fb 
decreases to zero when Ii = 6.. One reasonable form 
for the breakaway characteristic is a linearly decreas­
ing function; that is, 

(21) 

Substituting equation 21 into equation 20 and performing 
the integration yield finally 

(22) 

Because, for this particular base characteristic, BFE = 
0.5 F11>., this is equivalent to 

I2 = 8/3 [(BFE)hVo] (23) 

The result for 12, as expressed in equation 23, can be 
shown to be not very sensitive to the form of the assumed 
base characteristic. For example, assume that the base 
had a characteristic that remains constant up to break­
away; that is, 

(24) 

Then substituting this characteristic in equation 20 and 
performing the integration yield 

I2 = 2(BFE)/'yV 0 (25) 

Thus the drastic change from a triangular to a square 
wave characteristic only changes the coefficient in equa­
tion 23 from 8/3 to 2, which is a change of only 25 per­
cent in the momentum associated with the base fracture 
phase. Because the triangular characteristic is much 
closer to a typical base characteristic than the square 
wave is, equation 23 will be used for studying the· con­
tribution to aMV of base fracture. 

Let us now turn to I:i, the contribution to aMV required 
for acceleration of the support. Figure 2 shows that 

(26) 

The force F0 - Fb is the net force acting on the pole, at 
an approximate distance D0 below the center of gravity, 
which accelerates the pole in both translation and rota­
tion. The equations of motion are 

(27) 

and 

(28) 

where 

1\1, mass of support and 
IP moment of inertia of support about its center 

of gravity. 

At time t3 (when the support and automobile lose con­
tact), the bottom of the support has attained a velocity 
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that is denoted by V3. From kinematics, 

(29) 

From equations 27 and 26, 

(30) 

From equations 28 and 24, 

(31) 

Substituting equations 30 and 31 into equation 29 yields 

(32) 

Because IP = ~R2 where R = radius of gyration of the 
support about its center of gravity, equation 32 can be 
written as 

(33) 

or 

(34) 

The velocity V3 of the support bottom will be greater 
than the vehicle velocity V2 at base separation because 
of the presence of some elasticity in vehicle crush and 
pole deformation. The vehicle velocity V2 will be less 
than the initial impact velocity Vo although, for an ac­
ceptable impact, V2 will be fairly close to Vo. From 
empirical data on typical impacts with breakaway sup­
ports, it is estimated that V3 can be expressed as 

(35) 

where QI ""1.1. The actual value of QI will vary depend­
ing on the elasticity of the impact, the severity of the 
impact, and the mass of the vehicle. However, the use 
of a constant, representative value for QI has permit­
ted the development of simplified predictive tech­
niques for aMV, which have subsequently proved quite 
reliable. 

Thus the final expression for h becomes 

(36) 

Unlike I1 and 12, the momentum change h is proportional 
to initial impact speed Vo. The integral h is also pro­
portional to support mass MP and to the support inertial 
ratio 

r .a R2/(R2 + Dl) (37) 

The value of r will generally lie between 0.25 and 0.5 as 
shown by the following. First, consider the case of a 
long, slender member of length L with uniform mass 
distribution. In this case, the radius of gyration is R = 
L/\/12. Do= 0.5L, and the value of r becomes 

r ~ R2/(Dl + R2
) = 0.25 (38) 

Next, consider the mass to be distributed as two point 
masses, each 0.5M, located at the ends of the support. 
In this case, the moment of inertia is given by 

I= 2(0.5M) (L/2)2 = ML2/4 (39) 
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Then R = L/2. Because Do is again equal to L/2, we 
have 

r = R2/(R2 + D5) = 0.5 

The value of r ranges between 0.25 and 0.5 for cases 
ranging from uniform mass distribution to equally 
lumped masses at the end points. 

(40) 

Note that the support inertial ratio r inherently de­
termines the ratio of support center of gravity velocity 
to base velocity as shown by the following. Eliminating 
h between equations 34 and 31 yields 

fl = 0 0 V3 /(R2 + D5) 

Substituting this into equation 29 and solving for X
0

• 

yield 

or 

(41) 

(42) 

(43) 

Thus the support inertial ratio r determines the form of 
the support trajectory after breakaway in addition to af­
fecting the inertial contribution to t.MV. A lower value 
of r implies less motion of the support center of gravity 
relative to the base after breakaway. 

In summary, the expression for the total momentum 
change is given by 

LIMY= I, + I2 + l3 

""[(3w(FU2KVo)] + {s/3[(BFE)/rVol} 

+ (MpaV0 ) [R2/(R2 + D5)1 (44) 

From equation 44, for a given vehicle and support, the 
relationship between momentum change and impact speed 
is of the form 

t.MV,,.,(a/V0 )+bV0 

where 

~ = ~~f/2K) : (8/3 [ {BFE)/ J . ..]} and 
b M.O'CR2 (R2 + Dii)]. 

(45) 

Thus for high impact speeds, the inertia of the pole is 
the dominant term in producing momentum change. For 
low-speed impacts, the breakaway force F,, the auto­
mobile stiffness K, and the base fracture energy are 
dominant. 

Equation 45 allows us to estimate whether impact of 
a support is more severe at the high end of a given speed 
range or at the low end. Figure 4 shows two situations. 
In Figure 4a, the constants a and bare such that vehicle 
crush and base breakaway effects dominate and the im­
pact is more severe at low speeds. (This is the case 
with most luminaires.) In Figure 4b, the inertial char­
acteristics dominate and the impact is more severe at 
the higher speeds. (This is the case for certain mas-
sive sign supports.) . 

The constants a and b are recognized to be not truly 
constant because they involve parameters {3, y, and a, 
which are a function of certain velocities during the 
various phases of impact. However, for a range of 
breakaway support performance that includes that of 
any acceptable support, the variation in these "constants" 
does not produce significant errors in predicted t.MV. 
Fairly good correlation has been obtained with results 

from computer-simulated, laboratory, and full-scale 
tests by using average or representative values for the 
parameters /3, y, and O'. The selected values of these 
parameters have been 1.1 for /3, 0.8 for Y, and 1.1 for a. 

APPLICATION OF RESULTS 

The results of this simplified analysis have been used to 
gain a better understanding of the impact phenomenon 
and to predict t.MV for a given breakaway support and 
impacting vehicle. Comparison of these predicted re­
sults with those of computer-simulated, laboratory, and 
full-scale tests has shown generally good agreement. 
This agreement has confirmed the essential validity of 
equation 45 through the speed range of interest for break­
away support performance. This analytic tool permitted 
the development of rational and practical laboratory 
methods for testing breakaway supports as discussed by 
Owings, Cantor, and Adair in a paper in this Record. 

Assume that a breakaway support must perform satis­
factorily over a designated speed range of impacting ve= 
hicles. Then an examination of equation 45 reveals that 
the critical (worst) performance occurs either at the low 
impact speed VL or at the high impact speed VH. Thus a 
check of breakaway performance at both ends of the speed 
range is sufficient to validate support performance 
throughout the whole speed range. Furthermore, it will 
be shown that the results of one low-speed test can be 
used to predict the high-speed performance with reason­
able accuracy (assuming repeatable vehicle crush and 
breakaway base characteristics). Thus one low-speed 
test can serve as a check of support performance over 
the entire speed range of interest. 

Let the measured t.MV at the low impact speed be 
designated as (t.MV)L. Then from equation 45, 

(llMVk = (a/Vd + bVL 

Designating the predicted t.MV at the high speed as 
(t.MV)H, 

(46) 

(47) 

Solving for a in equation 46, and substituting the result 
into equation 47 yield 

(48i 

Recall that 

(49) 

and a "" 1.1. If the pole inertial parameters and the low­
s peed test results (t.MV)L are !mown, then equation 48 can 
be used to predict the high-speed performance of the 
breakaway system under evaluation. 

The mass M, and the center of mass Do can be easily 
determined by a weight measurement at each end of a 
horizontally aligned support. The radius of gyration R 
about the center of mass can be determined in: several 
ways. One simple way is to suspend the support from 
either top or bottom and measure its natural period T 
for a small angle oscillation (<10 deg). Then 

(50) 

where 

I, moment of inertia of support about suspension 
point, 

g acceleration of gravity, and 
D, = distance from suspension point to center of mass . 



We have 

(51 ) 

Substituting equation 51 into equation 50 and solving for 
R yield 

R= (52) 

The selected speed range for acceptable breakaway 
support performance is 32.2 to 96.6 km/ h (20 to 60 mph). 
Then equation 48 becomes the following (1 m/ s = 3.28 
ft/ s): 

(b.MV)H = I /3 (b.MV)L + b(23 .8 m/s) 

where 

Figure 1. Impact geometry and definitions. 
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Figure 2. Separation of impact into phases. 
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1. Crushing of automobile with insignificant mot.ion of structure 

being impacted. 

2. Activation and completion of the breakaway failure mechanism. 

3. Acceleration of structure by impacting vehicle. 

"' u 
"' 0 
µ. 

. (1 
0 

} 

ti t2 
TIME 

EXPRESSION FOR MOMENTUM CHANGE 

b = ~ar and 
a ~ 1.1. 
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As previously shown, the value of r for nearly all 
supports lies in the range of 0.25 to 0.5. If we use the 
larger value in equation 53, together with the largest 
acceptable value of 4890 N•s (1100 lbf •s) for (aMVh, we 
obtain the following (1 N•s = 4.45 lbf·s and 1 m/s = 3.28 
ft/ s): 

(b.MV)H = (4890 N·s/3) + 0.55 MP (23 .8 m/s) (54) 

Setting (aMV)w = 4890 N·s (1100 lbf•s) in equation 54 and 
solving for M, yield 250 kg (550 lb or 17.1 slugs). Thus, 
if a support is less than 250 kg (550 lb) and has satisfied 
the acceptance criteria in a 32.2-km/h (20-mph) test, it 
will perform satisfactorily in a 96.6-km/h (60-mph) im­
pact. 

Figure 3. Vehicle crush characterization. 
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If, in the future, the allowable .6.MV is reduced to 
3340 N·s (750 lbf,s) [which is listed as a desinble goal 
by the AASHTO specifications (2)], then the support mass 
that could cause excessive AM\Tin a high-speed impact 
would be reduced accordingly. Following the same pro­
cedure as above, we obtain 170 kg (375 lb or 11.6 slugs) 
as the value of support mass above which (AMV)11 may 
become excessive. 

Because most current luminaire supports are less 
than 170 kg (375 lb), there is generally no problem as­
sociated with AMV produced in a 96.6-km/ h (60-mph) 
impact with a luminaire support provided the measured 
.6.MV in the 32,2-km/ h (20-mph) test is satisfactory. 
However, breakaway sign supports can be heavier and 
should be checked for (AMV),i by using equation 51. 

Thus the results of this simplified analysis have been 
very useful in guiding the development of practical lab­
oratory acceptance test criteria for breakaway sign and 
luminaire supports. These criteria, and the studies 
leading to their development, are summarized byOwings, 
Cantor, and Adair in a paper in this Record. 
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