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A continuous-time semi-Markov highway model can be 
used to simulate and design highway situations that re
quire a merging maneuver. With such a model, math
ematical manipulations of probability density functions 
are not required. A general continuous-time semi
Markov model can be used to simulate a number of merg
ing situations by the substitution of appropriate values 
for the design parameters. The substitutions are made 
into established general formulas. The continuous-time 
semi-Markov process can then be analyzed with flow 
graph and Laplace transform techniques. 

The design parameters included in the model are 
freeway vehicle headway distributions, lane volumes, 
lane running speeds, and a gap acceptance function that 
describes a driver's willingness to accept a given head
way in an adjacent lane. 

DESCRIPTION OF CONTINUOUS-TIME 
SEMI-MARKOV PROCESS 

A continuous-time semi-Markov process is similar to 
the discrete-parameter Markov process, which has been 
used by others to model some freeway operations, but 
the continuous-time semi-Markov process requires two 
matrices to describe transitions: 

1. A transition matrix, similar to that of the dis
crete Markov process, that defines the probability, PiJ, 
of making a transition from state i to another state j and 

2. A holding time matrix that embodies the continu
ous probability density function, f,J(x), of the time or 
distance associated with making a transition from state 
i to state j. 

The continuous-time semi-Markov process is used to 
model a multilane, unidirectional section of highway. In 
the simplest formulation, the states of the semi-Markov 
process represent lanes of a freeway. Transitions must 

Publication of this paper sponsored by Committee on Traffic Flow 
Theory and Characteristics. 

always occur from one lane to an adjacent lane. The 
probabilities associated with a freeway driver making a 
transition from a given lane or state to any other lane or 
state are obtained by calculating the probability that the 
gap that is adjacent to the driver in question is equal to 
or greater than the driver's acceptance criterion. If the 
driver accepts this gap, the distance associated with 
making the transition, or chang"ing lanes, is a random 
variable and is described by the holding time matrix. If 
the driver rejects the first gap, he or she must drive at 
a different speed from that of the vehicles in the adjacent 
lane and wait for another opportunity to change lanes. 
The next opportunity occurs when he or she is adjacent to 
to the next gap in the traffic stream. The waiting time 
from one merging opportunity to the next can be described 
in terms of the volume of traffic in the lane being merged 
into, which a merging vehicle must pass, or by the vol
ume of traffic that must pass the merging vehicle. 

An example of the merging process is shown in Figure 
1. The figure shows a two-lane, one-way pavement with 
a vehicle in lane one attempting to merge into lane two. 
It is assumed in this case that the vehicles in lane two 
are traveling at a higher rate of speed than those in lane 
one. If the driver in lane one is constrained by a vehicle 
in front of him or her, as is normally the case in mod
erately heavy traffic, he or she must attempt to merge 
by moving into gap one. If the merging driver rejects 
gap one, a spacing G1 separates him or her from gap 
two. The distance G1 can be expressed as a function of 
the traffic that must pass the merging vehicle. It will 
be referred to as the differential distance and is mea
sured in meters. The differential distance associated 
with rejecting a gap or making a transition into the same 
lane is a random variable with a distribution equal to the 
distribution of rejected gaps. The actual distance on the 
freeway that the vehicle in lane one must travel while 
waiting for the next opportunity to merge, a differential 
distance G1 away, is dependent on the difference between 
the mean speeds of the vehicles in lanes one and two. If 
there is a speed differential between lanes, the differ
ential distance G1 between gaps can be converted to the 
downstream travel distance for vehicle one by applying 
the speed of vehicle one. If, for example, the lane one 
vehicle in Figure 1 rejects gap one, the time required 
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to move into position to select gap two can be found by 
using the differential speed between lanes. This time 
multiplied by the speed, S1, of the lane one vehicle gives 
the required downstream travel distance. 

A flow graph of the process is shown in Figure 2. 
This flow graph can be reduced by using Mason's rule to 
yield the Laplace transform of the probability density 
function of the first passage time from lane one to lane 
two in terms of the lane differential distance. The La
place transform of the differential distance probability 
density function, f(s), is 

F(s) = [p12 f, 2 (s)] /[ I - p 11 f,i(s)J (I) 

A variety of forms of gap density functions and gap ac
ceptance functions could be substituted into equation 1 
to find the probability density function of the differen
tial distance. 

Several methods can be used to represent a driver's 
willingness to accept a gap between vehicles during a 
merge maneuver including distributions of critical gaps 
and gap acceptance functions. The most convenient 
method of representing a driver's gap acceptance cri
terion for the continuous-time semi-Markov highway 
model is a gap acceptance function. The gap acceptance 
function is assumed to be stationary with respect to the 
distance from the lane termination point but may vary 
according to highway conditions and geographical lo
cation. 

Weiss and Maradudin (1) showed that the probability 
of accepting a gap can be found by integrating the product 
of the gap density function and the gap acceptance func
tion over the range of gaps. To obtain meaningful re
sults from traffic delay calculations requires the as
sumption that vehicles occupy no space. The term gap 
is in such a case synonymous with spacing, and the 

Figure 1. Merging on a two-lane, unidirectional pavement. 
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Figure 3. Comparison of observed gap acceptance 
characteristics and an assumed gap acceptance function. 
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former term is used throughout this paper. The prob
ability, p, that any available gap will be accepted is 
therefore 

p = i -p(x)f(x)dx (2) 

The probability of staying in lane one is 1 - p. 
The distribution of rejected gaps is needed for the 

continuous-time semi-Markov model. The density 
function of rejected gaps is a conditional density func
tion that gives the probability that any gap is less than 
or equal to a certain value, given that the gap is re
jected. The probability that the length of a rejected gap 
is between x and x + ~x is therefore 

p = [p(gap between x and x + 6x) 

- (gap between x and x + 6x accepted)] /p(gap rejected) (3) 

In terms of the gap acceptance function p(x), the gap 
probability density function f(x), and the probability of 
accepting a gap, the density funciion of rejected gaps, 
g(x), is 

g(x) = [ f(x) - f(x)p(x)] /(1 - p) 

Equation 4 can be substituted for f11(x) in the semi
Ma.l'kov process . Several sample problems are dis
cussed elsewhe1·e (2). 

COMPARISON WITH ACTUAL 
FREEWAY CONDITIONS 

(4) 

Data were collected on the 404-m (1325-ft) auxiliary lane 
of I-4:75 in Toledo. This auxiliary lane was modeled by 

Figure 2. Entrance ramp situation. 
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Figure 4. Comparison of results of continuous-time 
semi-Markov model and data collected at auxiliary lane 
site. 
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a continuous-time semi-Markov process. 
The distribution of gaps during the study period was 

found to fit a negative exponential distribution. A mean 
volume of 1500 vehicles per hour and a minimum gap of 
12.2 m (40 ft) were observed. A time mean speed of 82 
km/ h (51 mph) was measured in lane two, and the en
trance ramp design was such that most entering vehicles 
attained a speed of approximately 74 km/h (46 mph) by 
the time they reached the auxiliary lane. The volume of 
entering and exiting traffic was low compared to the lane 
one volume. 

A gap acceptance function was developed from motion 
picture data collected at the auxiliary lane site. During 
the study period, 123 accepted gaps and 62 rejected gaps 
were recorded. The gaps ranged from 12.2 to 64 m (40 
to 210 ft). They were grouped in intervals of 9 m (30 ft) 
so that a gap acceptance function could be established. 
The probability that a gap in a given interval was ac
cepted was calculated by dividing the total number of gaps 
in a particular time interval into the number of accepted 
gaps in that interval. The results are shown in Figure 3. 

A gap acceptance function in the form 

p(x) = I - exp[-A(x -T)] x ;;, T 

= 0 x < T (5) 

is suggested from the figure. A minimum gap, T, of 
approximately 12.2 m (40 ft) is suggested, with the pa
rameter, \, equal to 0.025. A gap acceptance function 
in this form and with the indicated parameters is com
pared in Figure 3 to the gap acceptance data collected at 
the site. 

The auxiliary lane was modeled by using equation 5 
and the negative exponential gap density function in the 
form 

f(x) = aexp[-a(x-N)] N .; x < oo 

= 0 x < N (6) 

The constant 1/a is the mean gap and N is the minimum 
gap. 

The distribution of rejected gaps was found by sub
stituting into equation 4. Because the minimum accepted 
gap and the minimum observed gap between vehicles are 
taken to be equal, the result of this substitution is 

g(x) =(a+ A)exp[-(a + A)(x - N)] N ,;; x < oo 

= 0 x < N 

The Laplace transform of g(x) is 

L[g(x)l = (a + A)/(s + a + A)exp(-Ns) 

(7) 

(8) 

The distance required to merge into a gap was rep
resented by the distribution of rejected gaps. Substitu
tion of the known conditions gives the following result if 
q is substituted for 1 - p and c for a + \ and F(s) is the 
Laplace transform of the differential distance probability 
density function. 

F(s) = pc/[s + c = cq exp(-Ns)J (9) 

The inverse transform of equation 9 can be obtained 
by partial fraction expansion. It is an infinite series of 
exponential functions. 

f(x) = pc exp(-cx)n(x) + pcqc[(x - N)/1 ! J exp[ -c(x - NJ u(x - N) 

+ pc(qc}' [(x - 2N)2 /2!] exp[-c(x - 2N)] u(x - 2N) 
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+ .. . x ;;, 0 

: Q X < 0 (10) 

where 

C =a+\, 
p = probability of accepting a gap, and 
N = size of the minimum gap. 

The probability of making a transition for a number 
of differential distances was calculated by using equation 
10 and the measured values of the required parameter. 
The differential distance was converted to the corre
sponding freeway distance by using an 8-km/h (5-mph) 
differential speed. The predicted cumulative transition 
probabilities were compared to corresponding probabil
ities calculated from observations of vehicle transitions 
at the auxiliary lane site. The observed probabilities 
were found by dividing the auxiliary lane into four zones 
of from 45.7 to 176.6 m (150 to 550 ft) long and calculat
ing the probability for a vehicle merge into lane one 
within each zone. The cumulative observed probability 
of making a transition within a zone and the predicted 
probability of making transition are shown in Figure 4. 
Data given in Figure 4 show that the transition proba
bilities predicted by the semi-Markov model are similar 
to the observed data. 

SUMMARY AND CONCLUSION 

The continuous-time semi-Markov model can be used to 
find the distribution of the time spent by a driver waiting 
to emerge from an entrance ramp. This distribution can 
be used to evaluate the freeway entrance ramp designs. 
The effect of improved visibility on waiting time, for 
example, could be studied by using the waiting time dis
tribution. Different gap acceptance functions can be used 
to reflect the effect of improved visibility on a typical 
driver's merging behavior. 

The location of a warning that a freeway lane drop is 
imminent can also be studied by means of a continuous -
time semi-Markov model. Design conditions can then 
be calculated. This proportion can be related to the level
of-service concept. Providing a warning at a point cal
culated to allow 9 5 percent of the vehicles to merge from 
the lane being terminated may, for example, be associ
ated with level of service A. Further work is required 
before a definitive relation can be established between 
the output of a semi-Markov model and levels of service 
as those levels are currently defined. 
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