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At one time, low or pony truss bridges were popular for their economy 
and ease of construction. With the tremendous increase in commercial 
vehicle weights, especially after World War II, the load-carrying capacity 
of these bridges became suspect, and many were taken out of service or 
replaced by modern structures. An ultimate load test carried out by the 
Structural Research Section of the Ontario Ministry of Transportation 
and Communications on a pony truss bridge in 1969 indicated that these 
bridges possess an inherent strength that far exceeds the value predicted 
by elementary structural theories. The complex problem of lateral buck
ling of truss compression chords, which in the past has led to oversimpli
,fying assumptions resulting in underestimation of the bridge strength, has 
been solved by a computer program based on a modified version of 
Bleich's method. The program, whose validity has been checked against 
experimental results, will provide bridge engineers with a better assess
ment of the load-carrying capacity of pony truss bridges than has been 
possible in the past. Since there are several hundred pony truss bridges 
in Ontario alone, it is economically important to determine the extent to 
which these bridges can usefully serve their purpose. 

Low truss bridges that have horizontal wind bracings 
at the deck level only are usually referred to as pony 
lrui;i; bridges (Figure 1). Now that more efficient 
modes of construction are available and given the em
phasis on aesthetics, steel pony truss bridges might 
not be constructed in the future. However, there are 
several hundred pony truss bridges in Ontario and 
possibly many thousands throughout North America. 
Most of these bridges are still serving as important 
traffic carriers on secondary highways and county 
roads. The increase in the volume of traffic and 
the weight of commercial vehicles makes it neces
sary to review the serviceability of the existing pony 
truss bridges by evaluating their load-carrying capac
ity. In the present economic environment, the struc
tural strength of a bridge must be fully investigated 
before a decision is made on whether it should be re
placed. 

The weakest component of the pony truss bridge is 
usually the top chord of one of its trusses; for lateral 
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stability these compression members depend on their 
own stiffnesses and the elastic restraints offered by the 
web members of the trusses. 

This paper presents a method for investigating the 
lateral stability of pony truss bridges on a more rational 
basis than has been attempted in the past. The method 
is an iterative one that takes into account the secondary 
stresses caused by change in the geometry of the struc
ture due to loading. 

METHOD OF ANALYSIS 

The problem of lateral instability of the compression 
chord of a pony truss is essentially that of a beam
column elastically restrained at discrete points. This 
pi-oblem has caught the attention of engineers since the 
t\lrn of the last century (1, 2, 3, 4). It was Bleich (5, J_) 
who first solved the problem of stability of a beam- -
column that has varying sectional properties, is sub
jected to varying axial loads, and has discrete elastic 
supports with random spacings. The method is briefly 
outlined below. 

For a pony truss (Figure 2a) with n number of panels, 
(n - 1) compatibility equations relating moments and 
beam stiffnesses and (n - 1) equilibrium equations re
lating moments, deflections, and elastic restraints 
offered by the transverse portals can be written for 
(n - 1) intermediate panel points. The very ends of the 
chord are assumed to be hinged. Thus, together with 
the assumed end conditions of the end moments being 
equal to zero, a total of 2n equations can be written from 
which the (n - 1) unknown moments and (n + 1) unknown 
deflections can be found for any stable condition of the 
top chord. For the top to be in an unstable condition, 
one of the unknown moments and deflections should have 
an infinite value. Such a condition would result in (n - 1) 
solutions of which the solution associated with the mini
mum load would'give the critical buckling load for the 
truss. 

Bleich's method ignores the fixity of the ends of the 
compression chord against rotation and does not account 
for the discontinuity in the direction of the compression 
chord, which is a common feature in North American 
pony truss bridges; the theory had to be modified to con-



Figure 1. A typical pony truss bridge. 

Figure 2. (a) European pony truss used in Bleich's thesis and 
(b) American pony truss with the numbering system used. 

Figure 3. Deflected shape of 
transverse portal frame. 

'l· .... r 
I 

I 
I 
I 
I 

Figure 4. Deformation of a panel length of 
compression chord on the horizontal plane. 
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Figure 5. Moments at left shoulder node. 
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sider these aspects. Bleich' s theory was also modified 
to include live load deflections of the panel points at the 
interface of the compression chord and the vertical mem
bers of the transverse portals. This modification en
abled the solution to be obtained for any loading condi
tion, and reduced the solution from that of stability to 
theory of second-order stresses. Smallest value of the 
applied load that caused the stress, anywhere along the 
chord, to exceed the yield stress of the material was re
garded as the critical load for the chord. 

Derivation of the modified set of equations, which 
were to be solved by using a computer, was based on the 
following assumptions. 

1. The two trusses are of constant height, and their 
distance apart is also constant; 

2. The lateral restraints offered by the diagonal web 
members are negligible; 

3. The torsional rigidities of the compression chords, 
which are formed from open sections, are small and can 
be ignored; 

4. The modulus of elasticity and yield stress of steel 
are constant; 

5. Panel lengths are identical; and 
6. Vertical members of the transverse portals have 

uniform flexural stiffness. 

Although a solution based on the modified method of 
analysis can easily be formulated without any of those 
restrictions, the restrictions were included to avoid un
necessary generality. For brevity, many steps of der
ivation leading to the resulting equations are omitted. 
Detailed formulations can be found elsewhere ~). 

Notation 

The notation used in the equations is defined below. 

A1 = function relating to panel i, as defined by 
equation 7; 

a 1 = cross-sectional area of the top chord of panel i; 
B1 = function relating to panel i, as defined by equa

tion 7; 
2b = distance between the centerlines of the two 

trusses of the bridge; 
D1 = lateral rigidity of the transverse portal frame 

at node i, defined as the force to cause a unit 
displacement of the top chord node; 

d 1,. = distance between nodes i and m, measured 
along x; 

E = modulus of elasticity; 

Fi,1 I F 1,2 =transcendental functions defined by equation 9; 
Fi,3 

G = shear modulus; 
H1 = axial force in chord member of panel i, in the 

direction of longitudinal axis of the truss; 
h "' height of the truss; 

lb 1 = moment of inertia of the floor beam at node i; 
Ih1 = moment of inertia of the portal column at node 

i (or equivalent inertia if the coluinn has non
uniform moment of inertia); 

11 = moment of inertia of the compression chord of 
panel i, about Y-axis; 

J 1 = torsional inertia of the compression chord of 
panel i 

K1 = torsional rigidity of the compression chord of 
panel i 

= GJ1 
L = length of truss panel; 

L' = length of the inclined end member; 
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M1 = lateral moment acting at node i on the com
pression chord; 

Mx = lateral moment acting on the compression 
chord at a distance X from the left node of 
the panel under consideration; 

M1 ,A =lateral moment acting at the left end of the com
pression chord of panel i; 

M 1,a =lateral moment acting at the right end of the 
compression chord of panel i; 

n =number of panels in truss; 
P =concentrated load acting on cross beam; 

R1 =lateral force in top chord member at node i; 
S1 = section modulus of the compression chord of 

node i; 
Ti =torsion in left inclined compression chord; 
V L = left-hand reaction of the truss in lateral direction; 
V R = right-hand reaction of the truss in lateral direc-

tion; 
Vx =shear force, inY-direction, atadistanceX from 

the left node of the compression chord of paneli 
X = distance of a point from the left node of the 

panel under consideration; 
Y1 =lateral deflection of node i with respect to the 

specified initial position of the node; 
Y1 =total lateral deflection of node i with respect 

to the original axis of the truss; 

~~ I = functions relating to panel i and defined by 
Y1 equation 5; and 

a1. = initial lateral deflection of node i (that prior 
to the application of load), with respect to the 
original axis of the truss. 

Lateral moment is the moment associated with displace
ments in the Y-direction, where two horizontal members 
meet at node i. 

Characteristics of Portal Frames 

The transverse portal frame, which provides the elastic 
restraint to the compression chord, is formed from two 
outstanding vertical members rigidly connected to floor 
beams, as shown in Figure 3. The rigidity of the portal 
frame is calculated on the assumption that the ends of 
the beam are restrained against relative vertical move
ment. Under loading, the top ends of the vertical, which 
restrain the movement of the compression chord, deflect 
inward. If at node i, Y1 is the deflection of the compres
sion chord and 171 is the displacement of the node due to 
flexure of the floor beam, the resulting lateral force R1 
is given by 

Ri = Di(Yi - 7Ji) (I) 

where D1 is the rigidity of the idealized portal frame 
shown in Figure 3. It is given by the following relation
ship: 

(2) 

The value of the inward movement of the top of the 
portals can be obtained from elementary statics. For 
example, the value of the inward movement 171 for a 
portal loaded with a simple concentrated load P, as 
shown in Figure 3, is given by 

7Ji = (Phb2 /4Elbi) (3) 

Compatibility Equation 

A total of (n - 3) compatibility equations are obtained 
for nodes 2 through (n - 1) as follows: 

The flexural behavior of the chord in horizontal plane, 
as shown in Figure 4, is given by 

(4) 

By introducing 

Ol;.2 = (Hi/Eli) 'Yt = (M i-i/Eli) (3; = ( R;/Eli) (5) 

the solution of equation 4 is given by 

Y x =Aisin aiX +Bi cos ai x X + Yi-i - (-yf /af) - ((JiX/af) (6) 

where the expressions for A1 and B1 are found from the 
boundary conditions: 

Ai= (Mi - Mi-i x cos aiL)/(H; x sin aiL) Bi= (Mi_i/Hi) (7) 

The slope at a point is given by the first differential 
of the right side of equation 6 with respect to x. 

By equating the slopes at the common node of two ad
jacent panels, the following typical compatibility equa
tion is obtained. 

Yi-1- 2Y; + Yi+1 - (F;,2/HiFi,3) Mi-1 - (Fi-1/HiFi,3) 

+ {lG(i+l),1 /H;+1F(i+l),3 l} Mi - [G(i+l),2/H;+ I G(i+l),31 Mi+I 

=-t.i-1 +2.:l.i-Ll.; +I 

where 

Fi,! = Gi,I = sinaiL-aiLcos aiL 

Fi,2 = Gi,2 = aiL- sin a;L 

Fi,3 = Gi,3 =sin aiL 

(8) 

(9) 

Equation 8 is not valid for nodes 1 and (n - 1 ), the 
shoulder nodes. On the assumption that both the torsion 
and moment act on the inclined member but that there is 
no resultant torsion in the horizontal members (Figure 5), 
the following compatibility equation is obtained for node 
1, the left shoulder node. 

Y1 (I + cos2 w)- Y2 - [(cos2 wF 1,2/H1F 1,3) m1,Al 

+ [(h
2 

cos w/GJ) + (F1,1 cos w/H1 F 1 ,3) - (G2,1/H2 G2,3)] M1 

- (G2,2/H2 G2,J) M2 = 0 

Equation 10 can be easily adapted for node (n - 1). 

Boundary Conditions 

(10) 

By equating the expression for slope at the left end of 
chord 1, obtained by differentiation of the right side of 
equation 6, to zero, the equation for the boundary condi
tion is 

(11) 

Similarly, an equation for the boundary condition at 
node n can be obtained. 

Equilibrium of Lateral Forces 

If we assume that there are no external forces acting on 
the compression chord, the only lateral forces are those 
resulting from the interaction of the compression chord 
and the vertical members of the portal. 

Shear force is given by 

Yx=-EI~" (12) 



Differentiating equation 4 three times with respect 
to x and substituting it in equation 12 yield 

V L = [ex1 L/sin (ex1 L)] [M1 cos w - m 1, A cos (ex, L)/L] (13) 

The equation for VR can be similarly formed. 
The reaction at node i, due to the interaction of the 

portal and the compression chord, is given by equation 
1. From equations 1 and 3, the following equation for 
the equilibrium of forces can be obtained. 

n 

-VL+LDi(Yi-Tl;)+VR=O (14) 
i= 1 

Nonlinear Equilibrium Equations 

Lateral forces at the interface of the compression chord 
and the portals change with the lateral deflection of the 
chord; so do the lateral moments caused by the axial 
forces. The equilibrium equations, which are neces
sarily nonlinear in nature, can be formed by equating the 
moments due to forces on one side of a node to the nodal 
moment. Mo in terms of M1,• and m1,• is given by 

M0 = m,,A cos w + M1 sin 2 w (15 ) 

Taking the moment of forces to the left of node i and 
equating it to Mi yield 

l·l 

-M; - Mo - V 0 di,l + L (Hm+l - Hm) (Y1 - Y m) + H, Y; 
n=l 

1- 1 

+ L Dm (Y m - Tim )di,m = 0 (16) 
m=l 

Substituting the expression for V L and Mo from equa
tions 13and15 respectively and replacing Yi by (Y1 + .:l1 ) 

from (n - 2) equilibrium equations, in terms of the un
known nodal displacements and moments, for nodes 2 
through (n - 1 ). 

SOLUTION 

The equations thus formed are solved for the unknown 
displacements and moments at a given load level. From 
the nodal moments, the maximum moments and stresses 
between the nodes are calculated. If none of the mem
bers is stressed to the yield limit, the load is increased 
in steps, and the whole process of forming and solving 
the equations and calculating the maximum stress within 
the compression chord is repeated until the stress some
where in the chord reaches the yield limit. This load 
is regarded as the maximum load that the truss can 
carry. 

Description of Computer Program 

Implementation of the method of analysis was only pos
sible by using a computer. A computer program was 
developed for this purpose in standard ANSI FORTRAN 
(and par tly in Assembly for the IBM 360 version); it is 
named LATBUK. The program is available on request 
from the Engineering Research and Development Branch 
of the Ontario Ministry of Transportation and Communi
cations. 

A step-by-step increment of the specified initial load 
to reach the lateral buckling load would have consumed 
a lot of computer time in most of the cases, especially 
when the initial load was a low guess. A search tech
nique In which the solutions converge within 12 itera
tions almost irrespective of the initial load was used in 
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the program. The technique consists basically of giving 
a large increment to the specified initial load and then 
iterating by either decreasing or increasing the load by 
an amount equal to half the previous step. The iterations 
are continued until the critical load within the accuracy 
of specified load increment is reached. The process is 
shown in Figure 6. 

Validity of the Method of Analysis 

For checking the validity of the program and the method 
of analysis, a Perspex model of a pony truss bridge with 
six panels and two transverse portals was constructed 
and tested for various loading conditions. The model 
was constructed from a 10-mm-thick (0.4-in) Perspex 
sheet. The dimensions and details of the model are 
shown in Figure 7. The model was used only to validate 
the prediction of the lateral deflections by the program. 

The program assumes that the top chord is laterally 
supported only at the interface of the portal column and 
the top chord. This assumption, although valid in actual 
bridges, does not hold in the model, especially at the 
middle node where the diagonals join the chord. The 
truss was carved from a single sheet of Perspex. Be
cause of the continuity of the members, the middle node 
was offered some lateral restraint by the inclined mem
bers, which at their lower ends were partly restrained 
against rotation through the portal and truss connection. 

To account for the restraint at the middle node, a 
fictitious portal was placed at the center of the truss in 
the analysis by the program. The columns of the portal 
were given the stiffness offered by the two inclined mem
bers. One-quarter of the stiffness of the actual trans
verse beams was arbitrarily apportioned to the beam of 
the fictitious portal. 

Some of the comparisons of the lateral deflections of 
the top chord as given by the model test and the program 
are shown in Figure 8. Given the fact that the model was 
not an exact idealization of a typical pony truss bridge 
for which the program is written, the program results 
compare well with experimental results. 

The model test ensured that the program can correctly 
calculate the lateral deflections of the top chord for vari
ous loadings. The acid tests for the validity of the pro
gram were, however, provided by the test on an existing 
pony truss bridge and an accidental failure of another. 
The load test was carried out in 1969 on a bridge close 
to Exeter, located on the boundary of Perth and Middlesex 
in Ontario. 

The Exeter Bridge consisted of two pony trusses 
spanning 15.2 m (50 ft). The trusses had eight panels 
each and were 4.6 m (15 ft) apart. A view of the bridge 
with the test loads is shown in Figure 9. 

The program predicted a failure load of 721 kN (162 000 
lbf) for the bridge. In the test the bridge failed through 
the buckling of one of the top chords under a load of 623 
kN (140 000 lbf). The concrete blocks (44.5 kN or 10 000 
lbf each) were placed off-center 152 mm (6 in) toward 
the instrumented truss. The equivalent central load is 
on the order of 667 kN (150 000 lbf). Furthermore, to 
ensure the safety of testing personnel, the blocks were 
always dropped from a height of 25 mm (1 in) to create 
an impact that would trigger the failure at the critical 
load. The actual capacity of the bridge was slightly more 
than 667 kN (150 000 lbf) for a central load position. In
asmuch as the calculated properties of the bridge could 
not have been exact, the correlation between the pre
dicted failure load and the actual failure load seemed 
almost fortuitous. Later, anaother opportunity to test 
the validity of the program was provided by an accidental 
failure of the Holland Road Bridge at Thorold. This pony 
truss bridge failed on October 26, 1972, when a three-
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Figure 6. Search technique for fast convergence. 
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Figure 7. Details of the pony truss bridge model. 
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axle tandem truck passed over it. The truck was re
ported to weigh 20. 7 Mg (457 000 lb). The bridge was 
analyzed by the program for various longitudinal posi-

Figure 9. A pony truss bridge with test loads. 

tions of the vehicle. The smallest failure load of the 
vehicle given by the program was 200 kN (45 000 lbf). 
There seemed little doubt that the program can predict 
realistic values of the failure loads for the top chords 
of pony trusses. 

CONCLUSIONS 

The behavior of the compression chord of a pony truss 
cannot be predicted intuitively or by simple hand calcu
lation. Based on the proposed method of analysis, which 
accounts for the interaction of the compression chord 
and the transverse portals and for the change of direc
tion of the chord at the shoulder points, a computer 
program has been written. Comparison of the program 
results to those of model and full-scale tests has proved 
the validity of the method. The program can now be used 
to check the load-carrying capacity of the many existing 
pony truss bridges before their replacement is con-
templated. · 
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