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During the first major renovation of the Lions' Gate Bridge joining Van­
couver, British Columbia, to its northern suburbs, there was evidence of 
deterioration due to the corrosive sea atmosphere. Because traffic loads 
have increased, both in volume and in mass, since the bridge was built, 
a set of analytical equations and a computer simulation were developed 
to estimate the vehicle traffic load on the bridge. The analytical formu­
lation handles the critical vehicle load as a function of the bridge and ap­
proach lengths, the number of lanes, the percentage of cars, buses, and 
trucks in each lane, the number and severity of stoppages, the weight dis­
tribution of trucks, ·and the return period for the critical load. The simu­
lation includes additional factors such as the trickling of vehicles past a 
stoppage, the time of day and day of the week of the stoppage, the loca­
tion on the bridge or approach of the stoppage, the stopped lane or lanes, 
and the duration of the stoppage. The application of these two approaches 
using traffic data observed on the Lions' Gate Bridge gave practically the 
same vehicle load per unit length . The resulting design loads were consid­
erably less than those suggested by Ivy and coworkers or Asplund and 
quite similar to those used in the original analysis. 

The Lions' Gate Bridge is an 830-m, three-lane suspen­
sion bridge connecting Vancouver, British Columbia, to 
its northern residential and commercial suburbs and 
carries approximately 60 000 vehicles per day. The 
bridge spans a navigational channel 365 m wide and is 
1524 m long. The center span is 472.4 m and the two 
side spans are each 187 m long. A 915-m concrete 
roadway having three 2.9-m-wide traffic lanes forms 
the causeway from the Vancouver city center to the 
bridge. The northern ramp of the suspension bridge is 
a series of standard truss sections supported on steel 
columns. Built in 1937-38 by a private land developer, 
the bridge has been subjected to a corrosive saltwater 
atmosphere for 37 years and increasingly heavier vehi­
cle loads, particularly of buses and trucks. This study 
was conducted to confirm the validity of the original traf­
fic loading anci to set the legal load limit for heavy ve­
hicles using the crossing. 

The validity of the original traffic loading was rather 
important because the loads were considerably less than 
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any suggested in the available literature, s uch as the 
American Association of State Highway Officials (1) or 
t he Canadian Standru·cts Association (2) loads . Further 
r eview (3, 4) indicated that no generaf formula or analyt­
ical procedUres existed to help designers set the traffic 
loads on long span bridges. The commercial interests 
using the bridge for trucking were particularly concerned 
about the legal load limit because the only other bridge 
crossing is approximately 8 km to the east. 

Vehicle traffic was simulated in the study for two 
reasons: 

1. Early attempts at an analytical solution were not 
encouraging, and it was fairly certain that an acceptable 
answer could be obtained by simulation; and 

2. The results of the simulation could be used to 
check an analytical solution if one could be found. 

The development of the computer simulation, the sim­
ulator, the analytical solution, and a comparison of the 
results of the two methods are described below. 

TRAFFIC LOADING PARAMETERS 

The aim of the study was to estimate the maximum traffic 
load on any general loaded length of bridge with a given 
return period. The selection of simulation variables was 
based on the criteria of importance and availability of 
data. For the simulation, information was needed on 

1. The vehicle-weight and length; 
2. The bridge-location of stoppage, number of lanes 

blocked, and direction of center lane; 
3. Stoppage-type of event, time to clear event, and 

time of stoppage by hour and day; and 
4. Traffic flow-vehicle mix, maximum vehicle flow 

by hour and day, spacing of vehicles when stopped and 
when moving, and speed of moving lanes. 

Some of this information was collected by the British 
Columbia highway department and some by the bridge 
patrol. Some was s upplied thr ough traffic counts (6), 
and some was estimated. -

The distribution of vehicle weights on the bridge was 
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a critical component in the study. The weight of cars 
and buses was set at 1360 and 13 600 kg respectively. 
Truck weights were found to follow a gamma distribu­
tion having a mean of 0. 7 registered gross vehicle weight 
(GVW). The traffic weight was a function of the length 
of vehicles and their spacing. The length of buses and 
trucks with u GVW of more thun 5400 kg was set at 12 m 
(5), and all others were set at 5 m. The speed-spacing 
relationship was determined by experiments on the bridge. 
Control vehicles were driven at constant predetermined 
speeds across the bridge, and from time-lapse photo­
graphs the following empirical relationship between ve­
hicle density and speed was found: 

D = 1.6/(Q + 1.5 + £ (V/16.1)] (I) 

where 

D = density in vehicles per kilometer, 
l =average vehicle length in meters, and 
V = vehicle stream speed in kilometers per hour. 

This relationship conforms reasonably well to envelope 
cu1·ves of the same variables presented hy Wheeler and 
Troy (8) and others (9) . The only unknown in the rela­
tionship is the vehicle speed, which is assumed here to 
be constant over various sections of the bridge and 
causeway. The speed of vehicles moving in the same 
direction as the stopped vehicle was reduced to 70 per­
cent of the observed speed, and the speed of vehicles in 
opposing lanes was reduced by 20 percent. Once the 
blocked lane was cleared stopped vehicles flowed at 1500 
vehicles/h (10). 

stoppages were classified into event categories such 
as single-lane stoppages (including flat til"es and running 
out of fuel) and more serious events including head-on, 
sideswipe, and rear-end collisions. The type of event 
was assumed to determine both the number of lanes 

Figure 1. Two-lane stoppage. 
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blocked and the time to clear the stoppage. The majority 
of events were assumed to be single lane; only head-on 
and sideswipe collisions blocked two lanes simul­
taneously. 

The direction (and lane, if applicable) stopped was 
randomly generated from a cumulative probability dis­
tribution describing the aiuuual uf veltlcle fluw ia tJach 
lane. The time to clear the traffic backup at a stoppage 
was expressed as 

where 

t =time to clear all backed-up traffic in minutes, 
t1 = time needed to remove the stopped vehicle in 

minutes, 

(2) 

t2 = additional time needed to remove vehicles added 
to queue after stopped vehicle is removed, in 
minutes, 

x =vehicle flow from a stopped situation in vehicles 
per minute, and 

y = vehicle flow at the time of stoppage in vehicles 
per minute. 

The value of y may be reduced to reflect the traffic that 
trickles past a single-lane blockage for the two lanes 
flowing in the same direction. The trickle was estimated 
at 1200 vehicles/ h (11) and the flow after a stop at 1500 
vehicles/ h. Equation 2 then simplifies to 

t = 11 (50/y - 20) (3) 

t1 was obtained by using a random number generator, with 
separate upper and lower bounds for mechanical failures 
and accidents. 

Both the time of the day and day of the week of the 
stoppage influenced the number of heavy vehicles that 
would be on the bridge. Visual examination of the data 
films and manual traffic counts indicated that the greatest 
volume of truck and bus traffic on the bridge was from 7 
a.m . to 7 p.m. The data were summarized by hours to 
give the average upper bound of the vehicle mix by lane. 
The allocation (percent) of vehicle types in each lane 
was as follows: 

Vehicle Type 

Cars 
Buses 
Trucks 

Curb Lane 

50 
BO 
60 

Center Lane 

50 
20 
40 

The time of day also determined the direction of flow in 
the center lane. Finally the location of the stoppage in­
dicated to what extent the bridge would be loaded and, 
combined with the length of time the stoppage was in ef­
fect and vehicle flows, whether the vehicles actually 
backed up on the bridge. 

THE SIMULATION 

The simulator operated in three distinct steps . 

1. All significant events within an analysis period 
(events that created a backup of traffic on the bridge) 
were stored. 

2. All such events within the analysis period (90 days) 
were analyzed to determine the maximum loads for sev­
eral lengths of bridge and all possible combinations of 
the three lanes. 

3. A search produced the maximum of these period 
maxima, and statistics describing the distribution of the 
maxima were obtained. 



A more detailed accounting of the simulator follows. 
There are 12 possible combinations of stopped traffic 

that may cause a backup on the bridge . The event could 
be due to mechanical failure, a one-lane accident, a two­
lane accident, or a head-on collision, each of which oc­
curs with a known freqltency. 

Two-lane accidents are simple (Figure 1). The di­
rection of traffic flow in the center lane is determined 
first. For example, in the northbound center lane, 
northbound traffic is generated in half-minute intervals . 
The delay time due to the stoppage is calculated, and the 
location of the blockage is checked. If the stoppage oc­
curs off the bridge, then a further check is made to de­
termine whether the traffic backs up onto the bridge. 
If not, the event is rejected, and the simulation returns 
to the main program. If an accident occurs on the bridge 
or creates a serious backup of traffic on the bridge, the 
vehicles going north are distributed among the two north­
bound lanes and the resulting weight distributions are ob­
tained. Southbound traffic is generated in a similar man­
ner, and the weight distribution is obtained. A return 
to the main program is then effected . 

After the analysis period has been covered by a suf­
ficient number of events, the maximum loading for that 
period is determined. This is obtained by simply align­
ing the maximum weight in a 45-m moving section with 
that of one or two stationary 45-m sections. The pro­
gram then calculates the maximum weights for single, 
any two, and all three lanes for loaded lengths in mul­
tiples of 45 m up to a maximum of 1100 m. Each max­
imum value and the associated traffic conditions are 
stored for forty 90-day analysis periods. These maxima 
are then used to provide statistics for the Gumbel distri­
bution of maximum values, which estimates the maximum 
load w1. L to be expected in Y years as 

where 

Wmax, L =average of all the maxima observed within 
each analysis period of Y years, 

C1 max, L = Standard deviation Of the maximum values, 
g = a factor depending on the return period Y 

expressed as 

(4) 

(5) 

Yn = 0.5436 for the number of years of simulation, 
and 

Thus, 

an = 1.1413, obtained from table of the Gumbel 
distribution. 

g = 0 .88Qn Y - 0:48 (6) 

This value of g is then used to obtain the maximum weight 
w¢ L expected in a return period of Y years on a loaded 
length L. 

BOUNDARY CONDITIONS 

The shape of the curve relating vehicle weight per meter 
on the vertical axis to loaded length on the horizontal axis 
was assumed to be a very flat s. At short load lengths, 
the weight is fixed by the maximum load of single (or a 
very few) vehicles, and at very long lengths the average 
vehicle mix determines the weight. 

An upper bound to the traffic load is produced by the 
heaviest vehicle observed on the bridge. Studies in the 
province (12) and elsewhere (12,_!!) found that 1.3 (GVW) 
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is a good upper limit for the weight of overloaded trucks 
(without special permits). The pr obability of two or 
three vehicles of similar weight being on the bridge has 
been reported by Stephenson (14). 

The loads on very long spans are easy to calculate. 
As the loaded lengths approach infinity, the average load 
per meter tends to the average mix of vehicles. The lim­
iting value is the number of vehicles in a lane multiplied 
by their average weight and divided by the length of road 
occupied. Thus, 

w~~~ = (Ncwc + Nn we + Nr wr )/ [Nc Cfc + 1.5)(1 + R) 

+ Nn (QB + 1.5)( I + R) + Nr(Qr + 1.5) (1 + R)] 

where 

(7) 

wt-~ = average critical weight for a very long length 
in kilograms per meter, 

N =proportion of vehicles , 
w =average weight of vehicle in kilograms, 
.l =average length of vehicle in meters, 

C, B, T =subscripts for cars, bus es, and trucks, 
R = V (0.0621) where V = s peed of vehicle in kilo-

meters per hour, 
Ne = 0 .94 fraction of cars, 
N8 = 0.04 fraction of buses, 
Nr = 0 .02 fraction of trucks, 
le= 5 m, 
l 8 = lr = 12 m, 
we = 1590 kg, 
w8 = 13 600 kg, and 
wr = 12 200 kg. 

The maximum critical load over a long length will occur 
when the traffic is stopped, in which case the average 
weight per meter for stopped vehicles is given by 

w~- = 0.94( 1590) + 0.04( 13 600) + 0.02( 12 200)/0.94(5 + 1.5) 

+ 0.06( 12 + 1.5) = 330 kg/m on a single lane (8) 

Similarly the weights for two and three lanes may be cal­
culated to get the extreme boundary value. The hypothe­
sized shape of the vehicle traffic loading as a function of 
bridge length is shown in Figure 2. The shorter loaded 
length on the curve is set by the legal load limit and the 
very long lengths by the average vehicle mix. The curve 
in between, the most important, is determined by the 
complex simulation and, eventually, an analytical solution. 

ANALYTICAL SOLUTION 

The derivation of the analytical solution is rather long 
and complex; the following is a condensation. The prob­
lem was to find the maximum weight on an infinite number 
of sections of given length on the bridge. The technique 

Figure 2. Hypothetical traffic loading on long span 
bridges (single-lane example). 
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considered an arbitrary bridge length of ll meters and 
how many (A) of these make up the required length. For 
example, if we wish to know the loading on 300 m, then 
A = 300/0. The critical load w* is given by 

w* = (1.488/h)Qne { [ D - D - 4( I -

where 

A = (k/ 3n)F + [2(n - k + 1)/ 3n] G, 
B -= (n - k + 1/ 3n)F + (2k/ 3n)G, 
C = (1 _~_]JJZ)2 /S 
D = VAJB + (\1A7B)- I, 
F = (Eexp hW.) (Eexp hM0 ) (Eexp hM0 ), 

G = (Eexp hW .) {Eexp hw . > (Eexp hM.), 
k = a value such that K ,; k ,; L, 
J = L - K, 
L = K +(length of bridge / o), and 

Table 1. Vehicle traffic loads based on existing operating policy. 

Two Adjacent Three Outside 
Section Single Lane Lanes Lanes Three Lanes 
L ength 

(9) 

(m) Wn1J,,L O'm""·L wm""•L O'mJ,. l wmJ'l.L (TlllJ\,l Wm~' l (jllhl \l 

45 972 146 1092 146 
~u 754 89 72 6 65 

160 610 60 737 54 
360 500 43 626 37 
720. 432 30 574 37 

1080 403 25 552 40 

Notes: Values are in kilograms per meter 
1 kg= 35 3 oz; 1 m = 3 3 ft 

Figure 3. Single-lane traffic loading. 
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Figure 4. Design traffic load comparison for Lions' Gate 
Bridge (three-lane example). 
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Before going further the terms and notation must be ex­
plained. The bridge and the causeway are composed of 
n subsections, each of length 0, and numbered K = 1, 2, 
... , n. K is the length of the downstream approach af­
Iedlug lite l.Jridge divided by 0. The unit for measuring 
A is 15 m, which was selected because it is approxi­
mately the space occupied by a bus, truck, or two cars . 
The length of the bridge and causeway is approximately 
1500 m . For example, if each causeway is 300 m long 
and A= 5 (unitsof15m), each sU:bsection Kis 75m(5x15) 
long . The total number of subsections n is 20. Each 
s ubsection is composed of the relevant portions of all 
three lanes . The variable Y is the return period (in 
year s ) and defines t he probabiUty that an event will occur 
a s 1/ Y. The number of subsections on th.e bridge is 
given by J where K is the number of subsections on the 
causeway to the bridge and L is the number to the far 
end of the bridge. 

The further calculation of F and G requires additional 
definitions. Stopped lanes are noted by W and moving 
ones by M with subscripts o and c denoting outside and 
center lanes respectively . The proportion of units (o) 
on the average containing vehicles is noted by p, the su­
perscript gives the lane and the subscripts C, B, T de­
note cars, buaeo, and trucks. T, when not a subscript, 
also gives the truck weight in kilograms divided by 453.6. 
The number of trucks and buses at a given instance is 
noted by Nr+e, and q is the average number of trucks plus 
buses divided by Nr+e · The valuer is the proportion of 
heavy vehicles that are either trucks or buses in each 
lane. Sis the number of annual events. 

Finally the value of h, the constant used to produce a 
continuous equation from a discrete probability distribu­
tion, may be selected to ensure that the boundary condi­
tions are met. The value originally selected as most 
appropriate was 0.08, but later analysis has shown h to 
be a function of the loaded length. 

With these definitions and the value of h it is pos­
sible to calculate F and G. For the outside lane when 
stopped: 

Eexp(hWo) = (p~ e8.38h +pi e33h + p~ EehT /> 

Eexp(hW 0 ) = (1.955 p~ + 14.013 pi+ Kp~)6 

and 

K = EehT = (12 .5/M - l 2)[exp(T max) - 2 .61] 

if 

Tmax =maximum truck weight = 18 000 kg, 
K = 9.787, and 
h = 0.08. 

(10) 

The calculations for the inside, middle, stopped lane are 

Eexp(hWc) = (p(; e8·38h + 14.01 3 p~ + Kp~ )6 

= (L955p~ + 14.01 3 p~ + Kp~)6 ( 11) 

For the moving lanes, calculation for the outside lanes is 

Eexp(hM0 ) = { e3·5h [I +q0 
( r~ { E exp[h(T-3.5)] - 1} 

+ ri ( e29 .5h _ I)) r~+B} 6 

= ( 1.323 {I +q0 [9. 59 lri +(0.75 6K- !)r~ l}NT+B)6 ( I~) 

and for the middle lane is 



Eexp(hMc) = { e3•511 [ 1 + qc ( ri { Eexp[h(T-3.5)] -1} 

+r~(e29.s1t_ 1))] Ni+s } 
/1 

= ( 1.323 { 1 +qc [9.591 r~ + (0.756K- l)ril ri+a )"' (13) 

A complete account of the derivation of the analytical 
formulation will be published shortly. 

RESULTS 

As stated earlier two methodologies were used to solve 
the problem of vehicle loads on the Lions' Gate Bridge. 
The analytical approach involved the development of 
probability equations representing traffic flow on the 
three lanes. The traffic conditions used were from an 
extreme peak hour. The alternative method simulated 
traffic flow across the bridge under a variety of condi­
tions. It was possible to hunt for the stoppages that 
produced the maximum load both within individua l lanes 
and a cross the total bridge . The resulting arithmetic 
mean and standard deviation of the maximum live loads 
on the bridge over a period of 10 years based on current 
operating policies are given in Table 1. The maximum 
vehicle traffic load can be calculated from equation 4. 

The values of g for return periods of 30, 100, and 
1000 years are 2.51, 3.57, and 5.58 respectively. Figures 
3 and 4 show the vehicular loading results for existing 
traffic conditions and a return period of 100 years. The 
lower curves in Figures 3 and 4 are plotted from the data 
in Table 1 for three- and one-lane vehicle loads with 
g = 3. 57. The analytical approach gave the upper curves 
in the figures. Visual inspection of the curves developed 
by the two methodologies shows very good agreement, 
which tends to add validity to the results. Beyond 75 m, 
both curves have essentially the same shape. Figure 3 
shows an even closer agreement for a single lane . The 
maximum difference between the two curves at distances 
beyond 90 m is 18 percent. 

The analytical curve should be higher than the simu­
lation since it took slightly more conservative data and 
is in any case intended to be an upper bound. The reason 
that the curves for three lanes show a greater disparity 
than those for one lane is mainly that the third lane is 
treated differently in the two methods. Both assume that 
at least one lane has the traffic flowing at all times. The 
analytical approach tends to overestimate the load in this 
lane. The total effect on the bridge is small, however, 
because the critical side of the bridge is the one with the 
incident in the outer lane. Therefore, the compatibility 
of the two methods to measure the effective load on the 
bridge is more nearly represented by Figure 3 than by 
the simulated-analytical results in Figure 4. 

A comparison of outer estimates and the live loads 
for existing traffic is shown in Figure 4. At lengths less 
than 150 m the difference between the Lions' Gate Bridge 
loads and those of Ivy and others (4) and Asplund is a fac­
tor of 1. 7. At lengths of 900 m the difference is a factor 
of 2 for Ivy's curves and 1.6 for Asplund's curves. It 
would appear that Asplund's curve approaches the Lions' 
Gate curves at extremely long lengths. 

The traffic loadings proposed by Ivy and others (4) 
and Asplund (15) are approximately similar for bridge 
lengths between 150 and 300 m. Ivy and coworkers 
studied the traffic on the lower deck of the San Francisco 
Bay Bridge reserved for trucks and U.S. army regula­
tions for the movement of convoys. Ivy used the maxi­
mum expected loads, and the methodology does not allow 
the varying of vehicle mix or truck sizes. Asplund as­
sumed that cars were mixed with very heavy trucks and 
that the vehicle load was 59 000 kg. This altered the 
very conservative estimates made by Ivy. He then ap-

plied simple probability theory to this mixed traffic. 
Asplund' s selection of such a heavy single vehicle is 
rather arbitrary and does not represent all conditions . 
Asplund' s curve in Figure 4 represents the probability 
of occurrence as more remote than 1 in 100 000. 
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The curves developed for the Lions' Gate Bridge re­
flect a low maximum vehicle load set by legislation over 
short segments of the bridge. At long lengths, the high 
percentage of buses using the bridge at rush hours is also 
apparent . The combination of these two features, unique 
to the Lions' Gate Bridge , accounts for the relative flat­
ness of the traffic load on loaded lengths. 

The resulting traffic load estimates combined with an 
extensive structural analysis verified the original de­
cision to limit legal truck loads to 12 700 kg. The analy­
sis also indicated that buses, operating under conditions 
similar to those at present, would not pose any structural 
problems . 

CONCLUSIONS 

The Lions' Gate Bridge is a unique three-lane suspension 
bridge built in 1938. The original traffic loadings for 
which the bridge was designed reflected vehicle weights 
and vehicle combinations typical in the late thirties. 
Since that time, vehicle weights, in particular truck 
weights, have increased considerably. The structure 
has also been subjected to many years of corrosive sea 
atmosphere. The Britis h Columbia highway department 
required a reevaluation of the s tructUl·a l capabilities of 
the bridge; trucking companies al so took i nter est in the 
bridge since any reduction in the legal load limit would 
greatly increase the distances that trucks had to travel. 
These two concerns helped to initiate the research pre­
sented in this paper. 

The methodology developed reflected the need to in­
dependently estimate the effect of changing the legal load 
limit and varying the number of heavy vehicles that might 
use the bridge. Two methods were developed to estimate 
the vehicle traffic loads on the bridge: a computer simu­
lation and an analytical formulation. 

These methods have been shown to give comparable 
results. In the most extreme case the absolute difference 
between the curves is only 18 percent at a length of 60 m 
on all three lanes. The presence of one large, fully 
loaded bus or truck would account for this difference. 
Again for the three-lane case, at long lengths the differ­
ence is 75 kg/m. The single-lane agreement is even 
closer. At a loaded length of 120 m, the difference is 
only 30 kg/ m or 3600 kg total. Although these results do 
not in themselves confirm the adopted design curve, they 
do lend credibility to the decision. In the absence of an 
extensive field survey in which the weight of each vehicle 
and distance on the highway at the time of an accident 
were known, the design curve is an optimal choice. The 
use of existing estimates such as those proposed by Ivy 
and coworkers, Asplund, or AASHTO would not easily 
allow the impact of reducing the legal load limit to be 
studied. Also, the vehicle combination used in those es­
timates was considerably different from that existing on 
the Lions' Gate Bridge. 

The particular methodology, if generalized, would be 
particularly useful because it would allow the bridge de­
signer to determine the bridge dimensions to fit a par­
ticular vehicle demand specification. If the bridge is 
along a recreational route, then a small percentage of 
heavy trucks would be expected. On the other hand, in 
areas of high industrial concentrations, trucks become 
more important and thus increased truck usage may be 
analyzed. 

The method allows the traffic engineer and bridge de­
signer to design the approaches and exits from the bridge 
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in a way t hat minimizes the potential of vehicles s topping 
on the bri dge. This may be found beneficial in minimiz­
ing the vehicular traffic loads on the bridge. 

The methodology allows the bridge designer to inves­
tigate vehicle traffic loads with a degree of sophistica­
tion approaching that used in the structural engineering 
analysis. 
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