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In recent years much work has gone into the development of disaggre· 
gate travel demand models. However, little has been done to evaluate the 
ability of these models to predict travel behavior in locations other than 
the area for which the model was estimated. Unlike aggregate models. 
the parameters of disaggregate models are not dependent on a particular 
ional system and therefore have th& potential for transferability. The 
motivation behind transferring is clear-if a model estimated in one araa 
can be transferred to another, the cost of conducting transportation stud ­
ifl could be greatly reduced. Several possible approaches for transferring 
are developed and discussed from a theoretical perspective. For an em· 
pirical evaluation, a worl< ·trip modal-split model estimated on Washington, 
D.C., data is transferred to New Bedford. Massachusetts, using each of the 
proposed approaches. The results of estimating the original model on Los 
Angeles data ara also represented. The most significant result is the ex · 
ceptional performance of the original Washington work mode choice 
model on both New Bedford and Los Angeles data. This is noteworthy 
in view of the extreme differences of the means for several variables be­
tween these cities. Of the several approaches for transferring that ware 
developed , Bayesian updating based on combining the existing model co· 
efficients with the estimation results from a new sample gave the best 
overall performance. The results of th is study indicate that the potential 
transferability of disaggregate travel demand mode.ls can be real ized. 

Traditional aggregate models of travel demand, which 
are based on existing relationships between aggregate 
variables, tend to be correlative rather than causal, and 
often are insensitive to proposed changes in transporta­
tion policy. Recently, travel demand models based on 
disaggregate data (l. e., individual observations of travel 
behavior have been developed. These models can in­
clude the causal relationships between transportation 
level of service, household socioeconomic characteris­
tics, and travel behavior and, therefore, provide a more 
meaningful analysis of various transportation policy op­
tions. 

Often, particularly in small urban areas, there is 
neither the time nor the money to develop a travel de­
mand model. This makes desirable the development of a 
travel demand model that could be transferred from one 
area to another. Disaggregate models are most llkely 
to be transferable because they represent the average 
behavior of the individual traveler, and lt ls reasonable 
to expect individual travel behavior to be essentially the 
same in one area as ln another. Moreover, the estima­
tion of disaggregate models does not rely on a particular 
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zonal aggregation so that a correctly specified disaggre­
gate model that properly explains travel behavior in one 
area should be valid (or at least more valid than a com­
parable aggregate model) for predictions ot travel behav­
ior in other areas. 

This paper discusses the theoretical justi!icatlon 
for the t1·ansferab!lity of disaggregate models. The 
results of transfern ng an existing disaggregate mode 
choice model [or work trips, developed using 1968 
data from Washington, D.C., to data sets representa­
tive of New Bed.ford, Massachusetts, in 1963 and Los 
Angeles, California, in 1967 are presented. Several 
possible approaches for updating are developed, com­
pared from a theoretical standpoint, and evaluated 
empirically using the New Bedford data base. The 
most useful product of the research is a procedure 
for travel demand model development suitable for 
low-budget or short-duration transportation planning 
studies. 

PROPERTIES OF DISAGGREGATE MODELS 

Before empirical updating procedures are developed, the 
theoretical justification for the transferability of these 
models should be established by identifying the attri­
butes that affect any model ' s ability to be transferred 
from one area to another. Clearly, all those factors that 
ailect the reliability of predictions will also affect the 
transfe.rability. If a model cannot successfully predict 
travel behavior in the area for which it was estimated, 
there is no reason to expect it to function better in any 
other area. To be transferable, then, it is not enough 
that the model merely fit existing data; it must also ex­
plain why travel behavior changes as conditions change. 
Rather than simply correlating existing travel behavior 
with socioeconomic characteristics and transportation 
level of service, the model specification must represent 
the causal relationships between these variables. Thus, 
the causal specification of a model is a precondition to 
its consideration for transferability. 

From a practical point of view, no model is ever per­
fectly specified. Some variables that shoold be included 
in the model often must be excluded (e.g., when the esti­
mation data set does not contain sufficient variability of 



these variables). In particular, when data for model de­
velopment are taken from one urban area and applied to 
another, there may be cultural differences between the 
two areas that are not explicitly represented in the 
model. These peculiarities of tile data will be implicitly 
hidden in the model coefficients and so toe coeffici ents 
estimated in one area will not be valid for the other. For 
a model to be perfectly transferable Its coefficients must 
be free from contextual factors. 

What are the differ enc es between aggregate and dis­
aggregate models that affect their potential transfera­
bility? If we assume that the model specification is 
given, what effect does the use of aggregate or disaggre­
gate data in its estimation have on its potential transfer­
ability? An implicit assumption in using aggregated data 
is that the characteristics of households within zones are 
relatively homogeneous as compared to the differences 
between zones. However, several studies have shown 
the opposite to be true- there is more variation within 
zones than between them (1, 2). Because of this, prob­
lems such as the loss of variability in the data, collin­
earity between variables, and the risk of an ecological 
fallacy (3) can arise in the estimation of aggregate 
models and adversely affect their predictive ability and, 
hence, their transferability. 

Suppose for a moment that these problems have been 
considered and do not affect the estimation of an aggre­
gate model. One serious problem that still remains is 
the linkage of the coefficients of the aggregate model to 
the zonal structure of the area for which it was esti­
mated. This linkage is directly observed from the defi­
nition of an aggregate demand model. If the disaggre­
gate model is denoted as f(X, e) where X is a vector of 
independent variables and 9 is a vector of the coeffi­
cients of the disaggregate model, the aggregate demand 
is the sum of the disaggregate demands and therefore 
the aggregate model is 

1 f( X.1:1) h! X.X.a) dx 
x 
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where h(X, X, a) is the distribution .function of the Inde­
pendent variables for the group on which the aggregation 
is performed, X is the vector of means of the indepen­
dent var iables, and a denotes other parameters (or 
higher moments ) of h(X.X oc). The l'esult of this Inte­
gral ls an aggl'egate demand model that could be ex­
pl'essed as F (X', oc, 9). where the function F(X, oc, 9) does not 
necessarily have the same analytical form as f(X, 9), 
Traditional aggregate models do not explicitly include 
all the paramete1·s of the within-zo~e distributions 
, h(X, X, a l, and therefore these parameters are implicit 
ln the resulting coefficents of the model. Slnce these 
distributions would certainly differ from one area to 
another {4) they would have to be reflec ted in the model 
in order Tor it to be transferred succe.s sfully. However, 
existing aggregate models are not capable of this and so 
are Less likely to be t1·ansferable than disaggregate 
models that are estimated on observations of individual 
behavior and have model coefficients that are not bound 
to any particular zonal stt~ucture . Thus, .a disaggregate 
model is always more transferable than a comparable 
(i.e., same set of variables) aggregate model. 

TEST OF TRANSFERABILITY 

As an initial test of the transferability of disaggregate 
demand models, the specification of an existing mode 
choice model developed on 1968 Washington, D.C. , data 
was reestimated on data sets representative of New 
Bedford, Massachusetts, ln 1963 and Los Angeles, Cali-
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fornia, in 196'7. The model coefficients from this re­
estimation and the statistical significance of the differ­
~ces between these and those of the or iginal model are 
discussed below. 

Existing Model 

T.h~ model sel:ctect_ for this test (and the subsequent em­
ptrical evaluatrnn) LS a multinomial loglt mode cholce 
model (!) that has been modified and extensively tested 
(~, ~ 2.l ( the multinomial legit formulation ltself ls de­
scribed ln many .places (~ ~ !.Q., 11). J This model pre­
dicts ~e probability of a commuter driving alone, shar­
ing a _ride (i.e., two or more persons in a car), or using 
transtt for the hame-to-work trip. The model specUlca­
tLon ls given in Table l. 

The model contains all the normally expected vari­
ables-in-vehicle travel time, out-of-vehicle travel 
time, out-of-pocket costs, income, and automobile avaU­
ability- plus some spectal variables to differentiate be­
tween alternative modes. A primary worker dummy 
variable is included for the drive alone mode under the 
hypothesis that the head of household bas some priority 
in using any available automobile. The CBD dummy 
variables for the drive alone and shared ride modes ex­
press the added inconvenience of driving an automobile 
into the Washington, D.C., CBD above that refl.ected in 
the level-of-service variables. Three additional vari­
ables are included to account for the choice of the shared 
ride mode. These variables are a government worker 
variable (GW) that serves as a proxy for employer pro­
vided incentives for forming car pools, the destination 
employment density times one-way trip distance variable 
(DTECA), and the number of workers in the household 
variable (NWORKl. 

In transferring this model to the New Bedford and Los 
Angeles data sets, the specifications of the independent 
variables are identical to those of the original model with 
the exceptions that both CBD variables and the govern­
ment worker variable are excluded. In the case of the CBD 
variables, the cong estion and inconvenience associated 
with driving into the CBD of a large, dense city such as 
Washington are real factors in choosing between auto­
mobile modes and transit. In a small city such as New 
Bedford or in a very diffuse city such as Los Angeles, 
however, the distinction between CBD and non-CBD trips 
would probably have little effect on this choice. There­
fore, the DCITY variables are assumed to have a value 
of zero. Similarly, the effec ts of large organizations 
offering incentives to car pool do not exist ln either New 
Bedford or Los Angeles and the government worker 
variable also has a value of zero. 

Estimation Results 

The coefficients and statistics of the models estimated 
on the Washington, New Bed.ford, and Los Angeles data 
sets are given in Table 2. (The data base is given 
below.) 

Log 
No. of No. of log Likelihood 
Observa· Al tern a· Likelihood at Conver-

City tions t1ves at Zero gence 

Washington 1114 2924 -1054.0 727.4 
New Bedford 453 1208 -436.4 -256.5 
Los Angeles 879 2549 -930.0 -391.2 

The coefficients of the original Washington model all have 
the correct signs, and, for the most part, are highly sig­
nificant (i.e., having large t-statistics). The coefficients 
of the New Bedford model also have the correct signs. 
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The t-statistics, however , are not nearly as large as 
those of the original model, although for only three co­
efficients (in-vehicle travel time, shared ride auto­
mobile availability, and empl oyment density times dis­
tance) are they seriously low. This relatively poor 
statistical performance may be related to the smaller 
sample size (453 versus 1114 observations) and the much 
lower variability observed for several of the level-of­
service variables. (Data were available only for those 
trips having both origin and destination within the city of 
New Bedford itself.) The coefficients for the Los Ange­
les model also have the correct signs. In this case the 
overall statistical performance is much better than in 
the New Bedford case due in part to the larger sample 
size (879 observations) . 

Comparison of Coefficients 

The three sets of coefficients are remarkably similar. 
The significance of the d1fferences in coefficient values 
that do exist can be evaluated from two viewpoints: the 
practical policy analysts and the statistical. From the 
point of view of transportation policy evaluation the con­
cern is with the consequences of the differences for 
ti·ansportation planning dec isions, i.e., differences be-

Table 1. Work mode choice model : definition of variables. 

Variable 

D, 

D, 

OPTC, !NC 

!VTT 
OVTT / D!ST 

AALD. 

AALD, 

BW, 

GW, 

DC!TY. 

DCITY, 

DINC,. 

NWORK, 

DTECA, 

I, !or drive alone 
0, otherwise 
I, for shared ride 
0, otherwise 
Round trip out-of-pocket travel cost\!) hou8ehold annual 

income 1$ l 
Round trip in-vehicle travel time I n11nl 
Round trip out-of-vehicle travel time I min) one-way 

distance \miles) 
Number of automobiles ·licensed drivers, for drive alone 
0, otherwise 
Number of automobiles licensed drivers, for shared nde 
a. otherwise 
l, if worker is head of household, for driver alone 
0, otherwise 
I, if worker is a civilian employee of the federal govern-

ment, for shared ride 
0, otherwise 
I, 1! work place ts in the CBD, for drive :ilone 
O, otherwise 
l, i[ work place is in the CBD, for shared ride 
0, otherwise 
Household annual mcome-800 x number o! persons in ttre 

household, :5 ), (or drive ..tlone J.nd shared ride 
0, otherwise 
Number of workers in the household, for shared ride 
0, otherwise 
Employment density at the work zone \employees per 

commercial acre) '<one-way distance tnulesl, for 
shared ride 

0, otherwise 

tween coefficient values for level-of-service variables. 
As given in Table 2, with the exception of the travel cost 
coeffi.cient for the New Bedford model, all levei-of­
sei·vice coefficients are suCficiently slmliar to warrant 
the conclusion that, ev.en if the model as a whole may 
not be transferable, the level-of-service coeificients of 
the Washington model are. 

The dl.fference between two sets of coefflcients can be 
tested by uslng the Ukelihood ratio test ( 12) where 
the null hypothesis is that the two sets orcoefficients 
are equ.al. To perform this test it would be necessary 
to estimate the model with the two data sets pooled to­
gether ln addition to the two separate estlmations pre­
sented here. This was not done primarily because in an 
actual planning situation access to raw data cannot be 
assumed. Therefore, the original Washington coeffi ­
cients were taken as constants (rather than random vari­
ables) , and the likelihood rat lo test was performed With 
the new data set only. The test statistic is gtven by 

where 

(2) 

L*(gNB) = the log likelihood of the New Bedford 
coefficients on the New Bedford data 
(= -256.5), and 

L *( Bw ASH) = the log likelihood of the Washington co­
efficients on the New Bedford data 
(= -262.4). 

From this, the value of the statistic is 11.8; it is chi­
square distributed with 11 degrees of freedom. The prob­
ability of this statistic exceeding 11 .8 Ls 38.3 percent. 
Therefore, the null hypothesis cannot be rejected, and 
the two sets of coefficients a.re not signliicantly different 
for the New Bedford data. 

Rather than comparing sets of coefficients, the di!fer­
enc es between individual coefficients can be evaluated 
by expressing the significance of the difference between 
the New Bedford or Los Angeles coefficients and the 
Washington coefficients as the t-statistic for the absolute 
difference. The test statistic used is the difference of 
the two coefficients divided by the square root of the sum 
of the variances of the two coefficients, and for large 
samples is normally distributed. Only for two of these 
coefficients (AALD. and AALD,) are the dlfferences sig­
niiicant at the 90 percent level. 

The facts that the original specification gave a reason­
able model in other areas and that the sets of coefficients 
taken together and key level-of-service coefficients are 
not significantly different are encouraging. The differ­
ences between several of the coefficients indicate areas 
in which more research on improved specification could 
be fruitful, and show that the comparison of coefficients 

Table 2. Transferability of work mode choice model Washing run :\ew Bedlord Lus Angeles 
to different cities. 

Variable Coefficient t-Statist1c Coefficient t-Stat1sttc Coefficient <-Statistic 

D. -3 24 -6 86 -2 19B -2 , 648 -2 .746 -4 .85 
D, -2 .24 -5 60 - l. 53 5 -1. 53 5 - l.830 -3 .95 
OPTC !NC -28 .8 -2 .26 -87.33 - l.576 -24 37 -2 .07 
IVTT -0 0 15 4 -2 67 -0.019 9 -0 4849 -0.014 65 -2 25 
OVTT DIST -0 160 -4.08 -0 to l 3 -2 903 -0 . 186 0 -4 02 
AALD, 3.99 10 .08 2.541 3 674 3.741 7 19 
AALD, 1.62 5. 31 0.449 9 0 .847 8 0.609 3 l.58 
BW. 0.890 4. 79 1.026 3. 769 0 .810 l 3.28 
Gw: 0.287 I. 78 
DCITY. -0 .854 -2.75 
DC!TY, -0.404 -1.36 
DINC,. 0.000 07 3.46 0 .000 072 1.279 0 .000 083 2 .31 
NWORK, 0 .098 3 1.03 0.187 4 1.249 0.081 0 0.46 
DTE CA, 0 000 63 l.34 0 .000 60 0 766 5 0 .000 27 2.23 



estimated for two different data sets is a powerful method 
of detecting specification errors. But, whatever im­
provements are implemented, no model will be perfectly 
specified and therefore perfectly transferable, hence the 
motivation for the application of updating procedures for 
the model coefficients. 

PROCEDURES FOR UPDATING 

This section develops several approaches for transfer­
ring a model from one area to another . Since the motive 
for transferring is to provide a reasonable travel de­
mand model while meeting stringent resource con­
straints, the level of effort required for each of these 
approaches will be an important factor in evaluating 
their effectiveness. In terms of level of effort required, 
these approaches can be divided into two broad categor­
ies: those that require a disaggregate sample from the 
area in question and those that do not. 

Transferring With No Disaggregate Sample 

The simplest approach requiring the minimum level of 
effort is to use the existing model with its original co­
efficients. This assumes that all factors relevant to the 
choice. process are embodied in the model, an assump­
tion that wlil never be fully justified. For example, 
the specification of most models contains constant terms 
to accowit for factors not explicttly explained by the 
model. The presence of these constants indicates that 
in fact the model has not captured all aspects of the 
choice process and because these other factors can 
vary between areas, the value of such a constant esti­
mated in one are.a may or may not be appropriate for 
another. Therefore although there is a theoretlcal 
basis for transferring the relationships estimated be­
tween time cost, income, automobile availability, and 
such, there ts no such basis for transferring these con­
stant terms. Fortunately, in most applications data on 
existing conditions are available and the model wlll be 
used to predict changes in travel behavior that result 
from changes ln the independent variables. For incre­
mental predictions, therefore, the constant terms have 
no effect on the results. rn some situations, however, 
data on existing conditions are not W'liformly available 
at the requt.red level of detail and the constants must be 
modified. 

A suitable approach to this might be to use the exist­
ing model with adjustments of these constants. ln thls 
approach the coefficients other than the constants are 
accepted and aggregate data on travel patterns in the new 
area are used to acljust the constants to better reflect the 
e.xistlng situation. The acljustment is performed by 
applying the model to the new area in the way in which 
it will be applied for forecast:lng. The results are ag­
gr egated to the level for which data (e.g. aggregate 
mode splits for work trips for the model tested in this 
paper) are available and the constants then adjusted un­
til the model 1·eplicates the e.xisting aggregate data . 
This Improves the goodness of Ht to the existlng data, 
but the use of areawide averages for the independent 
variables could result u1 poo1·er estimates of the con­
stants because of an aggregation bias. The primary 
criticism of this approach is that in practice, other co­
efficients are not perfectly transferable and adjusting 
only the constant terms will compensate for these errors. 

Transferring Wlth a Disaggregate Sample 

In this category, it ls assumed that at l~ast a small 
sample of observations on individual trip-making be­
havior representative of the study area will be available 
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for use in updating the original model. The sample 
should be selected such that it could be used to re­
estimate the original model. (The effect of sample size 
on the performance of each approach is discussed later.) 
The most straightforward approach ls to use the small 
disaggregate sampie to reestimate all the coeffic ients 
of the original specification, reason ing that, since the 
model specification was successful in one area, it should 
work in another, and that, by using the coefficients esti­
mated on data from the area where the model is to be 
used, none of the original coefficients need be ace epted. 
However, because a model specification results in good 
statistical performance on one particular data set does 
not guarantee that estimating it in another area would re­
sult in reasonable coefficients. Even ii the specification 
were correct, the use of a small sample for estimation 
is a potential source of problems. The maximum likeli­
hood estimation technique used for these models gives 
coefftcient estimates that have asymptotically optimal 
properties. For the small samples used ln this approach, 
it is possible that the resulting biases and standard de­
viations will be large. 

Another approach is to reestimate only the constant 
terms. In this approach, a single coefficient that modi­
fies the scale of the other cc•efficients could also be esti­
mated. This would retain the original trade-offs among 
the independent variables and should give a better good­
ness of fit on existing data. Forecasting accuracy for 
changes of individual variables should increase for those 
coefficients that benefit from the single scale coefficient 
and decrease for the others. 

A better approach is to combine the original coeffi­
cients with those estimated on the small sample. Ideally, 
this should be done in such a way that all of the original 
coefficients ar e modi!ied and at the same time any ad­
verse effects r esulting from the small sample available 
for the new area are minimized. Updating the original 
coefficients by using sample information should result 
in a model that better reflects travel behavior in the new 
area. 

Bayesian Updating 

The methodology used for combining sample information 
with prior information was that of Bayesian statistics 
(13), which relates the posterior distribution in an un­
known parameter, ~ . to the prior distribution in a and 
the sample likelihood function by 

(

Posterior ) (likelihood) 
probabilit) _ of the (prior probability) 
ore given - c x sample ( of e 
the sample given e 

(3) 

(The normalizing constant, C, is to ensure that the re­
sulting posterior distribution is a proper set of probabil­
ities.) The estimated coefficients of the original model 
are random variables that, for large samples, are nor­
mally distributed: This is the prior distribution. The 
data for the small sample for the new area are next used 
to reestimate the model to obtain a different distribution 
of the model coefficients : This is the sample distribution. 
These two distributions are then combined to obtaln the 
posterior, or updated, distribution of the coefficients. 
This is shown in Figure l for the single coefficient case. 

Since both the prior and the sample distributions are 
normal and the variance is assumed to be known, the 
mean and standard deviations for the posterior distribu­
tion in the single coefficient case are 

02 = ((Oi/at) +(11,/a;)J/[(1/ah +{1/aDJ (4) 



16 

and 

where 

81 = original coefficient, 
9

1 
= sample coefficient, 

82 = updated coefficient, 

(5) 

cr1 = standard deviation of the original coefficient, 
a, = standard deviation of the sample coefficient, 

and 
cr2 = standard deviation of the updated coefficient. 

Thus, 92, the updated coefficient, is a weighted average 
of the original coefficient, 91, and the coefficient esti­
mated from the new sample, a,, the weights being the 
inverse of their respective variances. The extension to 
the multivariate normal case is given by Raiffa and 
Schlaifer (,!1 p. 310). For the case shown in Figure 1, 
in which the prior information is rellable and a relatively 
small sample is used, the posterior distribution of 8 wlll 
be based primarily on the prior information. For the 
case shown ln Figure 2 ln which the prior information is 
not very reliable and a relatively large sample is used, 
the posterior distribution of 9 will be based primarily on 
the sample information. In both cases, the variance of 
the posterior distribution will always be less than that of 
both the prior distribution and the sample likelihood dis­
tribution. 

This procedure also offers an opportu.nity to introduce 
subjective judgments into the model estimation process. 
Consider the case in which the data used to estimate the 
original model are thought to be inaccurate: The variance 
of the original coefficients can be increased to reduce the 
weight of these estimates in the updating process. Sim­
Uarly, if the original estimation has been done a long 
ti.me earlier, the relative weight placed on the prior dis­
tribution can be reduced. 

It should be stressed that the key advantage of the 
Bayesian updating procedure is economic. By combining 
new sample information with prior information, tt per­
mits the use of small sample surveys that, by them­
selves, would not be statistically adequate for updating 
models. This procedure appraKimates the pooling of 
the sample used to estimate the e.'l:isting model with the 
new sample but obviates the need to go back to the 
original sample data. rt also has the advantage of being 
able to subjectively alter the weight of the prior sample 
with relative ease. 

EMPffiICAL EVALUATION OF UPDATING 
PROCEDURES 

This section describes an empirical evaluation of these 
approaches using New Bedford data. Two measures of 
effectiveness, goodness of fit on existing data and fore­
casting ability, are used to compare the models resulting 
from. the various procedures of transferring. Each pro­
cedure ls evaluated in terms of both; the results of this 
empirical evaluation indicate which method dominates at 
a given level of effort. 

Goodness of Fit 

One way of measuring how well a particular model fits 
the existing data la to use the log likelihood of the coef­
ficients of that model for the New Bedford data to deter­
mine a value for a goodness of flt measure such as p2, 
which equals the fraction of the log likelihood explained 
by the model, and ls defined as 

pi= I - [L•(§)]/[L*(Ol] (6) 

where 

L*(0) =the log likelihood of the sample for B = 9 and 
L*(O) = the log likelihood of the sample for B = 0. 

This approach has the advantage that it provides a single 
measure by which to rank the various models. However, 
p

2 is an abstract measure and it is difficult to grasp what 
differences in p2 actually mean in terms of model per­
formance. 

Another approach is to compare the observed mode 
split of the data set with that predicted by the model by 
using values for the independent variables given in the data 
set. This ls done by calculating individual probabilities 
of choosing available modes for each observation using 
the particular model being evaluated. These individual 
probabUities are then summed and compared with the 
observed mode split for the entire data set. These dif­
ferences between observed and predicted mode splits 
provide a more specific measure of the goodness of fit 
of a model. 

Forecasting Ability 

To assess the forecasting ability of the models resulting 
from the transferring methods, the predicted changes ln 
mode split resulting from policy changes are compared 
with the true changes predicted by the New Bedford 
model. The true changes are obviously unknown, but the 
model estimated with the entire New Bedford data set 
provides the best estimate available of the New Bedford 
conditions and therefore the best estimate of the true 
changes. The responses to policy changes are deter­
mined by recalculating the choice probabilities for each 
observation in the data set to account for the changed 
variables. These probabilities are then summed for each 
mode to find the forecasted mode shares. The policy 
selected to evaluate forecasting ability was that of asslgn­
lng preferential lanes for multiple occupancy vehicles, 
resulting in a 15 percent decrease in shared ride and 
transit in-vehicle travel time. 

EVALUATION OF APPROACHES FOR 
TRAN SF ERRING 

The following models are used in this empirical evalua­
tion: 

1. True New Bedford model- the model estimated 
on the entire New Becliorcl data set (453 observations), 

2. Washington model- the original model estimated 
on Washington data, 

3. Washington model with updated (aggregate) con­
stants- the original Washington model with the constant 
terms adjusted by use of aggregate mode split data, 

4. New Bedford small sample models- models esti­
mated on small random samples taken from the New 
Bedford data set [ the size of the sample is indicated by 
the number of observations ( 44, 89, or 177)), 

5. Washington model with updated (disaggregate) con­
stants- models resulting from using disaggregate sam­
ples to reestimate the constant terms and a scale factor 
for all other coefficients, and 

6. Model resulting from Bayesian updating- models 
resulting from Bayesian updating with the inverse of the 
variance-covariance matrix as the weighting factor. 

Before discussing the evaluation results, a point 
should be made concerning the bias introduced into the 



Figure 1. Posterior distribution 
resulting from sharp prior and 
diffuse (small) sample. 

Table 3. Evaluation of approaches for transferring. 

Figure 2. Posterior distribution resulting from diffuse prior and sharp 
(large) sample. 
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Predicted - Observed '.'vlode Shares• l ~) Predicted - True Changes in Mode Shares' t•l 
No. of 

Updatrn~ Procedure Observations ,,' Drive Alone Shared Ride Transit Drive Alone Shared Ride Trana it 

True New Bedford model 0 .412 0 0 
Washington model 0 399 -0 39 -0 7 
Washington model wtth 0. 398 -1.90 0 .96 

updated I aggregate) 
constants 

New Bedford small 44 0. 29 1 -4 .91 3 55 
sample models 89 0 382 -1.69 0.31 

177 0 .397 - 1.20 -0 58 
Washington model with 44 0. 396 -3 51 4,22 

updated ld1s...:gregate ) 89 0 40 1 -1.33 0 83 
constants 177 0 .398 - 1.95 0 .35 

Models resulting from 44 0. 399 -2 . 20 l. 26 
Bayesian updating 89 0 400 -0 ,39 - 1 16 

177 0.400 -0 51 I 03 

• obser"ed mode shares arednve a1on e = 55 12. shared ride :: 37 76 . tra ns1 c = 7 1201
., 

'' True mode share cnanges are cuive alone= 1 0 1. shared ride-;; 0 .96 transit -= O . OS~o 

evaluation measures. Because the observations for the 
small samples used in some of the transferring methods 
a.re taken from the data set that was used as the standard 
for New Bedford the resulting measures of effectiveness 
for these approaches are biased toward indicating better 
performance, especially for the models estimated di­
recUy on these small samples. The magnitude of this 
bias varles with the sample Size: For example, the bias 
fot• the model using 44 observations is relatively small 
since 409 observations (90 percent of the full data set) 
are different from those used in estimating the model. 
For the model using l '17 observations, however, the bias 
may not be negligible since only 276 observati.ons (61· 
percent of the full datci. set) are different. 

The p2 values for the different models are listed in 
Table 3. For sample sizes of less than 89 observations, 
performance ls very poor : the sma.il sample approach 
requires a sample size of at least 180 observations. 1n 
general, the Bayesian updating approach ls best. 

The comparison of predicted versus observed mode 
shares for the existing data ls given in Table 3 for the 
enttre data set. As observed with the o? values, below 
89 observations the performance decreases for all ap­
proaches to transferring that require a disaggregate 
sample. The pattern of errors is not the same for all 
three modes and no gene1·al pattern of dominance 
emerges. Overall, the Washington model and the Bay­
esian updating models performed better than other ap­
proaches, particularly for the drive alone mode. The 
performance of the different approaches tn predicting 
changes in mode shares due to a preferential lanes policy 
is also given in Table 3. The Bayesian updating ap­
proac~ in general performs better than the other ap­
proaches; the Washington model is superior to small 
sample models. 

0 0 o 0 
1.09 0 .25 -0.24 0 01 
0.94 0.22 -0 .21 -0 .01 

l.36 -1.04 I 09 -0 .05 
1.37 -2.30 2.28 0.02 
l .78 0 .82 -0. 78 -0 .04 

-0. 71 0 37 -0 .34 -0 .03 
0.50 0.36 -0 .34 +-0.02 
I. 59 0 26 -0 .26 0.0 
0.91 0 .27 -0.26 -0.01 
1.56 0.24 -0 25 0 01 
I. 54 0 20 0 .20 0.0 

CONCLUSIONS 

The most interesting result of this empirical study is the 
surprisingly good performance of the original Washington 
model on both the New Bedford and Los Angeles data 
sets. This is remarkable in view of the fact that the New 
Bedford and Los Angeles data sets represent very differ­
ent conditions than those existing in the Washington data 
set. Although differ enc es in individual coefficients be­
tween the models were observed, only three of these 
differences can be considered significant. Of all the 
approaches to updating the original model, Bayesian up­
dating gives consistently better results. The small sam­
ple approach resulted in models that were inferior to the 
original Washington model for every measure of effec­
tiveness and is clearly unreliable for the purposes of 
transferring. 

Two approaches were taken to updating the constants: 
one using aggregate mode split data and the other using a 
s mall sample. For the first approach, because the orig­
inal model had lit the data so well, the resulting model 
performed more poorly than the Washington model. Al­
though slight improvements in some measures were ob­
served for reestimating the constants, these improve­
ments were insignificant when compared with those re­
sulting from Bayesian updating. Therefore, the approach 
of reestimating the constants, like the small sample 
approach, is an inefficient use of the disaggregate sam­
ple for updating. 

However, the superior performance of the Bayesian 
updating approach to that of the small sample models 
can be attributed to the good performance of the Washing­
ton model by itself for the New Bedford data. If the 
Washington model had had serious specification errors 
the small sample models would probably have performed 
much better relative to the Bayesian updating models. 
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Thus, it is clear that a credible specification is a pre­
condition to any attempt to transfer a model. 

In summary, three important conclusions are indi­
cated from the empirical results : 

1. A well-specified disaggregate mode choice model 
is transferable. 

2. It is useful to update the model coefficients when 
transferring. 

3. The Bayesian updating procedure using a small 
disaggregate sample is the most effective procedure 
for transferring well-specified models. 

The emplrical results reported ln this paper are 
based on a model for the condition.al probability of mode 
choice, which is only one component of the entire travel 
demand model system. These results are indicative but 
further work is needed ln other aspects of travel demand 
for which model development effort has been significantly 
law er. 

REFERENCES 

1. M. E. Ben-Akiva and S. W. Haws. Estimation of 
a Work Mode-Split Model Which Includes the Car 
Pool Alternative. Department of Civil Engineer!.ng, 
M.I.T., Cambridge, 1974. 

2. G. M. McCarthy. Multiple Regression Analysis of 
Household Trip Generation- A Critique. HRB, 
Highway Research Record 297, 1969, pp. 31-43. 

3. R. de Neufville and J. S. Stafford. Systems Analy­
sis for Engineering and Managers. McGraw-Hill, 
New York 1971. 

4. F. Koppelman. Travel Prediction with Disaggre­
gate Choice Models. Department of Civil Engineer­
ing, M.I. T ., Cambridge, PhD thesis, 1975. 

5. Cambridge Systematics. A Behavioral Model of 
Automobile Ownership and Mode of Travel. Federal 
Highway Admlnistration, U.S. Department of Trans­
portation, 1975. 

6. T. J. Atherton, J. H. Suhrbier, and W. A. Jessi.­
man. Use of Disaggregate Travel Demand Models 
to Analyze Car Poollng Polley Incentives. TRB, 
Transportation Research Record 599 , 1976, pp. 35-
40. 

7. Cambridge Systemattcs. A study Design for Dual 
Mode Transit Planning Case Studies. Urban Mass 
Transportation Administration, U.S. Department of 
Transportation, 1976. 

tl . M. E. Ben-Akiva. Structure of Passenger Travel 
Demand Models. Department of Civil Engineering, 
M.I.T., Cambridge, PhD thesis, 1973. 

9. T. Domencich and D. McFadden. Urban Travel De­
mand: A Behavloral Analysts. North-Holland, 
Amsterdam, 1975. 

10. D. McFadden. Conditional Logit Analysis oi Qual­
ltative Choice Behavior. In Frontiers in Econo­
metrics (Paul Zarembka, ed. ), Academic Press, 
New York, 1973. 

11. M. G. Richards and M. E. Ben -Alc lva. A Disag­
gregate Travel Demand Model. Saxon House, D.C. 
Heath, Westmead, England, 1975. 

12 . H. Theil. Principles of Econometrics. John 
Wiley, New York., 1971. 

13. H. Ralffa and R. SchlaUer. Applled Statistical De­
cision Theory. Graduate School of Business Ad­
ministration, Harvard Univ., Cambridge, 1961. 


