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Many 0! the important policy issues confronting present 
day urban planners involve regionwide transportation 
system changes that will have many effects. Conven­
tional urban transportation planning models do not cap­
ture the full range of travel impacts, and are cumber­
some and resource consuming for evaluation of these 
poHcy options. In response to this, new behavioral 
travel demand models have been developed; these are 
policy sensitive and can be generalized among urban 
areas. However, there are several unresolved questions 
about these disaggregate demand models that prevent 
their widespread application. These problems are: 

1. Models estimated in one urban area have not been 
validated on other urban areas to test their generality. 

2. Models estimated on small data sets have not been 
applied to other small data sets to predict regioowide 
travel behavior. 

3. Disaggregate logit models give biased forecasts 
when applied to sketch plan or district sized zones. 

4. Disaggregate demand models estimated en auto­
mobile drive al.one and transtt mode cho ces will not pre­
dict the iull range oi choic es availabl e to tnp makers, 
which may include car pooling, chauffeuring, and walk­
ing, in response to a change in system performance. 

This paper presents methods that apply disaggregate, 
probability choice demand models to a sample of sketch 
plan zones to evaluate various automottve pollution <.:oo­
trol strategies in the Los Angeles region. Each of the 
above problems is considered. 

THE AGGREGATION PROBLEM 

In the logit specification of probabllity choice mudels, 
the probability of an individual choosing any given mode 
has the following functional form: 

PlAJ = I [l + t, exp(-Y,bll 
b~ • 
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where a is one among n alternatives and Y.b is the rela­
tive costs and attributes between alternatives a and b. 
Each Y.b represents the log of the ratio of the probability 
of a to the probability of b. The prediction of travel be­
havior in a zone of T individ111als requires estimates of 
individual probability choice of a: 

Typically, the only lnformation available aboot the argu­
ments of the Ys is their me.ans for a zonal interchange 
and, possibly, the variances and covariances oi the 
terms ln Y. There is no analytical form to translate this 
information into an estimate of N •. 

A Taylor ' s series approximation of equation 1 eval­
uated about the zonal means of the data has been sug­
gested to adjust for this problem (1). Tile expected value 
of the resulting expression, truncated after the third 
term, gives the followi.ng equation: 

n 

f·[P(J1't'1[ =P1a1Y1 I + ~ var[Y,bi*Plbl Yl -Y2 (3) 
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where 

E : ~ = expected value operator and 
var = variance . 

The variabl es with bars over them are means. : Equation 
3 is somewh t dlI!erent fr om those de.rived by Talvitie. 
The operational differenc e is that s tochastic independence 
between the attnbutes of alternative a and other alterna­
ti ves 1s not assumed here but is by Talv ltie ( l). 

The expected value o! choices other than a-is 
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n 

E[P(c!Yll =P(c!Y> I+ ~ var[Y,bl [P(b!Y)-61 [P(blY)J -Vz .. , 
•f• 

where ei = 1 if b = c and 0 if b ~ c. 

(4) 

Consider the comparison function, Y,.. For the mode 
choice, the functional form for Y (~) Ls 

where 

C = operating cost of the trip, 
T =waiting and line-haul time of the trip, 
S = walking time for the trip, 
O = availability of an automobile, and 

a, ~ = estimated constants. 

(5) 

There are 28 possible variance-covariance terms for 
this equation. About half of these can be presumed to be 
zero because of stochastic lndependence or constancy 
over a zone. Of the other half, there is a presumptlon 
that most are proportional to, or simple functlons of, the 
variance of the distanc e tr av eled in a zone Lnterchange. 

With the information available, one cannot be very 
precise in measuring the var ianc e in dis tance Ln zonal 
int erchanges. The approach here is to assume that dis­
tances (or or igin and des tlna tion points) are dis tr ibuted 
over the a,: ea of a zone pair according to a well-defined 
probabillty density function. This approach, ultimately , 
allows estimates of the variance of distanc e a s a function 
of the areas of the two zones ln a zonal interchange. 

[n deriving the appropriate dens ity func tions, i t ls 
presumed that, for a given zone pair , tr ips are distrib­
uted over a range that reflec ts both the dis tance betw een 
the zone centroids (geographic centers) and the sizes of 
the zones. In symbols this is 

(6) 

where 

D = a stochastic variable that represents the dis­
tance between zones i and j for person trips, 

D' =the distance between the geographic centers 
of zones i and j, and 

Yu YJ =some measure of the size of zones i and j. 

If another stochastic variable, X, which can have 
values in the range from 0 to (Y 1 + Y J), is now intro­
duced, the distance for any trip can be represented by 
the sum of two variables: 

(7) 

The above relation indicates that trips must travel a non­
stochastic minimum distance (the term in [ J) and that 
the rest of the distance varies randomly between 0 and 
Y1 + YJ. The variance of Dis 

var[D] = E[X2 l - (E[X] )2 (8) 

The distribution function for X is assumed to be 

f(X) = (3/[2(Yi +Yi)]} - [X/(Y1 + \')2] for 0 < X <Yi+ Yi (9) 

The premise of the density func tion is that the distribu­
tion of trips can be appr oximated by a linear declining 
function over the r ange bounded by Y 1 + Y J . 

The first two moments about zero of the distribution 
are 

E(X) = [S(Yi + YJ)l/12 

E!X2
) =(Yi+ Yi) 2/4 

(10) 

(II) 

The variance of distance can then be calculated from 
equation 9 and the above moments: 

var[D] = [ l l(Y; + Yi)l/144 (1 2) 

The measures of zone size over which trips are dis­
tributed should reflect the length of the zone. Use of an 
intuitive measure of length, the square root of area, 
leads to the following: 

var[D I = [ 11 ( v'A;°- v'A;° j} I /144 = [I !(A;+ 2 ../i\Ai +Ai)] /144 

for if j (13) 

For intrazonal trips, the above equation must be mod­
ified to account for the fact that the stochastic part of the 
range is only half, on an average, of that of interzonal 
trips: 

var[D] =I IA/144 for intrazonal trips (14) 

The remaining terms Ln the Taylor expansion tend to­
ward zero. However, the t runcation of the series after 
the third term opens the possibility that, for values of Y 
that diverge rather far from Y, equatioos 2 and 3 wlll 
not provide a measure of probability that increases 
monotonically with P(a IY). In symbols, E[P(a IY)] must 
satisfy the following three conditions: 

n 

L E[P(a!Y)J = I 
a= I 

0 < E[P(alY)] for all a 

oE[P(a!Y)J I [oP(a IY)j,. O for all P(aiY)e[O, 11 

(15) 

(16) 

(17) 

Conditions 15 through 17 ensure that E[ P(a I Y)J ls a 
probability measure. Stronger conditions are required 
if E[ P(a lY) ] is to have plausible properties in terms of 
individual choic e beh.avior. One of these is that the elas­
ticity be greatest at E[P(alY)] = 0.5, i.e., 

o2 E[P(a!Y)J/3Y2 = 0 at E[P(aiY)I = 0.5 

3'E[P(alY)]/3Y3 < 0 at E[P!alY)] = 0.5 

(18) 

(19) 

Of the above five conditions, 15 and 18 hold for all values 
of the variances. The followlng constraints on the vari­
ances are sufficient to ensure that the other conditions 
are met: 

n 

~ var[Y,b I < 16 
b=i 
b~a 

(20) 

(21) 

The variance and covariance of terms in equations 3 
and 4 are comput ed as proportions of 13 and 14 subject 
to the above constraints. 
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Table 1. Estimated versus actual work trips. 

Mode Shares Cor 172 
Zonal Interchanges 

Mode Actual Estimated 

Automobile driver 1040 
Transit 47 
Automobile passenge r 123 
Driver serve-passenger 
Walk 

'E11; c ludes driver stl"lle-pauenger and walk 

960 
54 

196 
40 
10 

THE NEW MODE PROBLEM 

Shares for LARTS 
Reg10n (•) 

Actual Estimated' 

84 
l 

12 

79 
4 
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If mode choices are constrainted to be automobile drive 
alone and bus transit, the model will not predict the 
range of responses caused by a policy that significantly 
alters system performance. The consideration of new 
modes requires a heuristic approach that results in the 
construction of new comparison functions, Y.b· 

The new comparison functions are formed by attribut­
ing to each new mode a variable cost per mile a time 
spent in-vehicle and waiting, and a walking time for per­
son round trtps between each l, j zone pair. Each of 
these trip system performance variables can then be 
substituted for their transit counterparts in the estimated 
mode spilt equations to derive the odds between auto­
mobile choice and the given new mode choice, and from 
equation 1, the probabHlty of choosing any alternative 
among all modes- automobile alone, transLt, car pool, 
serve passenger, and walk- can be derived. 

The values for level of service for the new modes are 
largely the results of assumptions about extra time pen­
alties involved with car poollng and chauffeurmg. Such 
assumptions are required because of the paucity of data 
about these alternatives. In pa.rticular, for individuals 
who currently drive alone, virtually nothing is !mown 
about the availabllity and attributes of potential car 
pools. 

TRAVEL DEMAND MODEL WITH LOS 
ANGELES REGIONAL TRANSPORTATION 
STUDY DATA 

This section compares actual Los Angeles Regional 
Transportation Study f LARTS) data for 1967 against pre­
dictions from the demand model. The data given are the 
number of person round trips between zone palrs by trav­
elers surveyed in the 1967 household survey {a 1 in 100 
sample). The level of aggregation ls sketch plan zones 
defined by LARTS in 1970 ; there are about 12 traffic 
analysis zones to each sketch plan zone and 69 sketch 
plan zones for the analysis area (Los Angeles and Orange 
Counties- the Los Angeles Alr Q..iality Control Region). 

The tests described below attempt to determine 
whether (a) application of the disaggregate demand model 
estimated on Pittsburgh data and adjusted for zonal vari­
ations and new modes can be ge11eraltzed to Los Angeles, 
and (b) a small but representative sample of zonal inter­
changes can be used to predict regionwide effects. 

The approach to applying the model is summarized in 
the following steps: 

1. Odds functions for automobile versus other modes 
are estimated for each zonal interchange using the zonal 
averages for system performance; 

2. Probabilities of each mode choice for each zonal 
interchange are calculated from applicaticn of equation l ; 

3. The mode shares for each zonal interchange are 
calculated using the probabilities, the calculated 
variance-covariance t.erms from the formulas in the pre-
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vious section, and equations 3 or 4, to adjust for aggre­
gatioo; and 

4. The estimated mode shares are multiplied by total 
trips in the zonal interchange to derive predicted trips by 
mode. 

A random sample of 172 zonal interchanges was 
chosen for testing and applying the approach. Because 
the policies in the study were evaluated by their efiects 
on vehicle-miles traveled (VMT) the model also was 
tested by placing the most emphasis an actual versus 
predicted VMT. 

Table 1 compares the mode shares predicted from the 
sample to the work-trip mode shares for the entire 
LARTS region. The model gives .reasonable predictions 
of mode split. Although the total vehicle trips were 
underpredict.ed by 7 .69 percent, the VMT (estimated, 
15 302; actual, 15 211) were predicted with vtrtually no 
error. 

CONCLUSION 

The results presented in this paper indicate that disag­
gregate demand models hold promise for quick evaluation 
of transportation-related pollctes. Although actual poll­
cies are not discussed (; ~), the models were used to 
simulate the effects of various pollution control st.rate­
gies by projecting 1974 base case trip behavior and the 
change·s that would have been caused by gasoline taxes, 
emissions taxes, parking surcharges, and bus system 
improvements. The resulting predictions were compar­
able with other research efforts; for example, the im­
plied elasticity of gasoline in Los Angeles in 1974 was 
between 0.19 and O .24, which corresponds with many 
econometric estimates of short-run gasoline demand. 
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