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Tests of the Temporal 
Stability of Travel Simulation 
Models in Southeastern 
Wisconsin 

KeIUleth R. Yunker, Department of Civil Engineering, Northwestern University 

The assumption of the stability of travel simulation models over time is 
an essential element of the urban transportation planning process. This 
auumption was tested using travel simulation models developed with 
data from an origin and destination survey conduct.ad in 1963 and travel 
inventory dam from a similar study conducted in 1972. Both surveys 
were conducted by the Southeastern Wisconsin Regional Planning Com· 
mission; the travel models tested were those that had been used in the 
preparation of a regional land use and transpormtion plan for south· 
eastern Wisconsin that was completed in 1966. The testing performed 
cu a part of the reappraisal of the land use and transportation recommen­
dations of 1966, which was of the temporal stability of the three major 
travel simulation models-trip generation, modal split, and trip distribu· 
tion-indiceted that 1972 trip generation. transit use. and trip length 
characteristics within southeastern Wisconsin were predicted with ade· 
quate accuracy through the application of the original 1963 models. 

A basic assumption of most urban transportation studies 
is that travel simulation models defined through analysis 
of base-year origin and destination survey data will re­
main stable over time, thus allowing the evaluation of 
a lternative transportation plans for the future. In re­
cent years considerable interest has been directed to­
ward the validity of this assumption. The doubts of the 
validity of the assumption have been a result of asser­
tions that the travel simulation models employed in most 
transportation planning efforts, which are based on a · 
system ol spatial aggTegation and do not consider all the 
variables known to affect travel, have been developed 
on a descriptive, rather than a causative, basis (1). In 
consequence, the ability of such models to accurately 
predict future travel under conditions substantially dif­
ferent from those of the base year has been questioned. 
This assumption of temporal stability has never been 
adequately tested, as comparable data for the same 
area for two points in time have been available in only 
a limited number of instances (2) . However, as a re­
sult of major origin and destination (O-D) surveys now 
being conducted ln areas in which similar surveys were 
completed in the 1960s, the testing of this assumption­
over short periods of time (10 years)-is now possible. 

One of the areas in which two compatible 0-D studies 
have been completed is the seven counties of southeastern 
Wisconsin. Major travel studies have been conducted 
by the Southeastern Wisconsin Regional Planning Com­
mission ~EWRPC), which was established in 1960 to 

assist in solving areawide problems and in planning the 
physical development of the region. The first 0-D study, 
performed in 1963, was part of the basis for the prep­
aration of a regional land use and transportation plan for 
the area that was completed in late 1966. The second 
0-D study was conducted in 1972 and used in the reeval­
uation of the original land use and transportation rec­
ommendations. One of the factors prompting th.ls re­
appraisal of the original planning effort was the recognized 
need to update the plans in light of changing conditions 
within the region, particularly the changes in those fac­
tors that would influence transportation system develop­
ment. 

A significant part of the analysis of changing condi­
tions was the review of the ability of the travel simula­
tion models used in the initial planning effort to pre­
dict 1972 travel, i.e., a test of the temporal stabillty of 
the relationships defined in the travel simulation models. 
The 1972 travel was predicted by applying the models 
developed .in the original planning effort and comparing 
the results with the results of the 0-D survey. The fol­
lowing sections summarize the approaches used by the 
three major travel simulation models-trip generation, 
model split, and tr ip distribution-and evaluate their 
continual validity. 

TRIP GENERATION 

In the SEWRPC 1963 regional land use and transportation 
study, trip generation was analyzed and simulated through 
the development of nine equations, four of which related 
total trip production by trip purpose to the land use 
within each traffic analysis zone and five of which re­
lated total trip attractions by trip purpose to such land 
use . The nine equations were developed with multiple 
regression analysis applied in a stepwise manner for 
the trip purposes of home-based work, home-based 
shopping, home-based other (a combination of personal 
business, medical-dental, social, and recreation), and 
non-home-based. Home-based school trips were 
analyzed and forecast using a growth factor technique. 
A balancing procedure was used for trip generation 
forecasts, which adjusted zonal totals of home-based 
shopping, home-based other, and non-home-based trip 
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attractions so that the total trip attractions were equiv­
alent to the total trip productions for these three pur­
poses. For the home-based work trip purpose, zonal 
trip productions were adjusted so that regional home­
based work trip productions were equivalent to total 
home-based work trip attractions. 

The ability of the trip generation equations developed 
in the original land use and transportation planning pro­
gram to simulate 1972 trip making was investigated by 
comparing the predictions of the equations to the actual 
1972 travel survey data. Travel surveys conducted by 
the commission indicated that trip generation within 
southeastern Wisconsin increased by about 25 percent 
from 1963 to 1972, with work trips having the smallest 
increase (19 percent) and shopping tripe the largest (30 
percent). The ability of the trip generation equations 
developed. and applied in 1963 to accurately predict 
these changes in regional trip generation is shown in the 
comparison of estimated and observed number of trips 
in 1972 gi\ren below. 

Trip Estimated No. (Estimated) 
Purpose of Trips 06serveo x 1 OO% 

Home-based 
work 1 151 800 108.2 

Home-based 
shopping 770 600 113.6 

Home-based 
other 1 552 700 99.8 

Non-home-
based 749 100 90.0 

Total 4 435 100 102.5 

The equations predicted regional trip generatton with a 
high degree of accuracy considering the nature of the 
phenomena involved. That ls , the actual 1972 regional 
trip generation data used as the basis for comparison, 
the 1963 trip generation data used to calibrate the 
original equations, and much of the data necessary to 
prepare predictions of 1972 trip generation-household 
socioeconomic characteristics-are all estimates de­
rived from travel surveys. Thus, considering the 
limitations inherent in the data, the total trips generated 
in 1972 were predicted by the equations with a high de­
gree of accuracy, although with some divergence with 
respect to trip purpose. 

The ability of the original equations to estimate 1972 
trip generation on the level of a small geographic area 
or traffic analysis zone is shown in Figures l and 2. 
These figures indicate the correspondence between ob­
served and estimated 1972 zonal trip productions for 
the trip purposes of home-based work and home-based 
other; similar results were obtained for other trip pur­
poses. Although there are considerable differences 
between actual and predicted trip generation by zone, 
there is no consistent bias of overestimation or under­
estimation. Moreover, much of the variance can be 
attributed to the random variations expected in any 
survey data, as well as to zonal characteristics not 
considered in the trip generation equations-both of 
which may cause deviations between observed and esti­
mated values from regression procedures in a base 
year-rather than to possible changes over the past 
decade in the relationship between trip generation and 
the variables used to explain trip making in the equa­
tions developed in the initial planning effort (3 ). Again, 
considering the nature of the data used to develop the 
equations and to compare observed and estimated trip 
generation, and the detailed level at which this analysis 
and comparison were conducted, the 1972 trip generation 
was predicted with an adequate degree of accuracy on a 
zonal level. 

MODAL SPLIT 

Modal split was determined prior to trip distribution in 
the initial regional land use and transportation study for 
southeastern Wisconsin. The trip end models used were 
based on the relationships between the percent transit 
use in a traffic analysis zone, the average household 
automobile availability in the zone, and the relative 
availability and quality of highway and transit service 
as measured by an accessibility ratio (4). Two separate 
sets of modal split models were calibrated for the three 
urban areas within the regiou in which there was transit 
service ln 1963 : one set for the Milwaukee area and the 
other for the Racine and Kenosha areas combined. In 
the Milwaukee urban area the modal split relationships 
were developed for four trip purposes: home -based 
work, home-based shopping, home-based other, and 
non-home-based. The Racine and Kenosha urban area 
models were developed for three trip purposes : bome­
based work, home-based other and shopping, and non­
home-based. The modal split relationships were defined 
mathematically by developing by hand three-dimensional 
surfaces whose axes were : automobile availability ex­
pressed in terms of the number of automobiles per 
household in a zone, the accessibility ratio of a zone for 
the trip purpose considered, and the percent transit use. 

The modal split modeling procedure used in the initial 
land use and transportation study for the Milwaukee area 
was reviewed and modified slightly as a part of a Mass 
Transit Technical Planning Study in Milwaukee County 
begun in 1968 and completed in 1971. This modification 
included the consideration of home-based shopping, 
home-based other, and non-home-based trips In a single 
combined model as opposed to the three separate models 
of the initial study, and a redefinition of the accessibility 
ratio as used in the original model formulation (5). 

The ability of the modal split models developed and 
used in the initial land use and transportation study and 
the Milwaukee County Mass Transit Technical Planning 
Study to predict 1972 transit use within the region was 
evaluated using actual 1972 0-D survey data. From 
1963 to 1972 transit use in southeastern Wisconsin de­
creased significantly, ln both the total number of transit 
trips and the percentage of the total market that used 
transit for tr ip making. The reduction in transit trip 
making was about 50 percent in the Milwaukee urban 
area and almost 80 percent ln the Racine and Kenosha 
urban areas. The abiUty of the modal split models 
formulated and calibrated in the initial transportation 
study to estimate this change in regional transit use over 
the past 9 years is illustrated in Table 1. The model 
from the original land use and transportation study over­
estimated 1972 transit use within the region by approxi­
mately 10 percent: the modified model underestimated 
transit use within the Milwaukee area by about six per­
cent. However, since the data-such as transit travel 
and total person travel by zone, zonal automobile avail­
ability, trip attractions, and transit and highway zonal 
interchange travel times -used in the application of the 
model are estimates, and since substantial changes in 
automobile availability and transit service and use have 
occurred over the past decade, the 1972 regional transit 
use predicted through application of the original and 
modified modal split models has a high degree of ac­
curacy. 

The ability of the modal split model to estimate transit 
use on a traffic analysts zone level in the Milwaukee 
urban area is shown in Figure 3, which displays the 
correspondence between predicted and observed 1972 
zonal total transit tTip productions. Similar results 
were obtained with the modified modal split model and, 
in the Racine-Kenosha areas, with the original predic-



Figure 1. Comparison of predicted and observed 1972 
total person home-based work trip generation by zone. 

~ ... a 
a 
" ... 
~ 
~ • 20 0 .. 
e 
" 5 10 ... 

0 
10 

OBnllnD ZCIU.L ftIJ' GDml.l!llll 

Figure 2. Comparison of predicted and observed 1972 total person 
home-based other trip generation by zone. 
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Table 1. Comparison of observed and estimated 1972 transit use 
within the southeastern Wisconsin region. 

Estimated 
No . of Trips (Estimated/Observed)' 

ModUied Modified 
1963 1963 1963 1963 

Trip Purpose Model Model Model Model 

Milwaukee 
Home-based work 78 810 72 070 111.9 102.3 
Home-based nonwork~ 63 860 46 850 108.7 83 l 

Home-based shopping 21 310 117 0 
Home-based other 25 070 90.5 

Non-home-based _!2.21£ 136.6 

Subtotal trips' 142 670 120 920 110.4 93 .6 

Raclne-Kenosha 
Home-based work 1 040 100 .2 
Home-based shopping/ other 1 510 125.8 
Non-home-based ~ 82 .0 

Subtotal 2 790 110 .2 
Total' 145 400 110.4 

'No. of Tripi x 100%: 0 Also 1nclud" school tr1pt1. 

Figure 3. Comparison by zone of predicted and observed 
1972 total transit trips in the Milwaukee urban area . 
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Figure 4. Comparison 
of observed total 
person trip length 
frequency distributions 
for home-based work 
travel within the 
region: 1963 and 
1972. 

Figure 5. Comparison 
of observed total 
person trip length 
frequency distributions 
for home-based 
shopping travel within 
the region: 1963 and 
1972. 
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tion procedures. Although there are considerable dif­
ferences between the observed and predicted zonal 
transit trips, there is no consistent bias of substantial 
overestimation or underestimation. Much of the vari­
ance can again be attributed to random variation in sur­
vey data, rather than to changes in the relationship be­
tween modal split and automobile availability and the 
relative quality and quantity of highway and transit ser­
vice over the past decade. 

TRIP DISTRIBUTION 

In the initial study internal person trip distribution was 
simulated by mode, following modal split through the 
uses of automobile driver and transit person gravity 
models, for travel with the trip purposes of home-based 
work, home-based shopping, home-based other, and 
non-home-based. For each of these gravity models, 
the calibrated friction factors were assumed to remain 
valid for the future. Zonal adjustment factors, although 
investigated, were not used for forecasting future travel 
patterns. 

The stability of the 1963 trip distribution procedure 
was tested through a comparison of predicted and ob­
served 1972 trip length characteristics. Trip length 
characteristics within southeastern Wisconsin have re­
mained fairly stable from 1963 to 1972. As shown below, 
the average trip length for automobile and transit travel 
increased only slightly over the past 9 years for both 
modes for all trip purposes except automobile travel 
with the trip purpose of home-based shopping, which 

Figure 6. Comparison of 1972 predicted and observed transit 
trip length frequency distributions for home·based work travel 
within the region. 
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Figure 7. Comparison of 
10 1972 predicted and observed 

automobile driver trip length 
frequency distribution for 
home-based other travel El 

within the region. 
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Average Trip Length Change 
Trip Purpose 1963 1972 (%) 

Transit 
Home-based work 35 .9 37 .2 +3.7 
Home-based shopping 28.5 31 .9 +11 .9 
Home-based other 32.5 36.3 +11 .7 
Non-home-based 28.4 31 .2 +9 .9 

Automobile driver 
Home-based work 17.9 17.9 0.0 
Home-based shopping 9.2 11.6 +26.5 
Home-based other 12.4 13.5 +9.4 
Non-home-based 12.6 14.0 +11.9 

increased significantly. Another measure of the trip 
length characteristics simulated in trip distribution is 
the trip length frequency distribution, a determination 
of the percentage of total trips that occur in 1-min 
time increments. From 1963 to 1972 the trip length 
frequency distribution for combined automobile and 
transit travel for the trip purpose of home-based work 
remained stable, as shown ln Figure 4, but the frequency 
distributions for combined automobile and transit travel 
for all other trip purposes changed slightly. This change 
consisted of a shift in the peak trip length, as shown in 
Figure 5, which compares 1963 and 1972 trip length fre­
quency distribution !or aggregated automobile and transit 
travel for the trip purpose of home-based shopping. 

The ability of the automobile driver and transit 
person gravity models, as calibrated in 1963, to esti­
mate th.is change, measured in terms of average trip 
length and trip length frequency distributions, is shown 
below and in Figures 6 and 7. The average trip lengths 
for trips with a purpose of home-based work for both 
automobile driver and transit person were accurately 
predicted. The average trip lengths for home-based 
shopping, home-based other, and non-home-based trips 
for both automobile driver and transit person were pre­
dicted with reasonable accuracy, considering that the 
data used to establish both the actual and estimated trip 
distributions were estimates derived from travel sur­
veys. The predicted trip length frequency distributions 
generally corresponded with the observed distributions; 
however, for all modes and all trip purposes except 
home-based work, the peak percentage of trips within 
a single time increment had been predicted to occur in 
a time increment shorter than that observed in the 1972 
travel survey data. Figure 6 displays the accuracy with 
which the transit trip length frequency distributions of 
1972 for the trip purpose of home-based work were pre­
dicted. The differences between predicted and observed 
1972 automobile and transit trip length distributions for 

. other trip purposes are shown by the example of Figure 
7, which compares observed and predicted 1972 distribu­
tions for home-based other travel by the automobile. 
However, although trip length characteristics were pre­
dicted with reasonable accuracy with the 1963 models, 
a better test of the time stability of the trip distribution 
procedure would have been a test of its ability to predict 
zone-to-zone trip interchanges over time. 

1972 Average Trip Length Difference 
Trip Purpose Predicted Actual (%) 

Automobile driver 
Home-based work 17.9 17.9 0.0 
Home-based shopping 9.3 11.6 -19.8 
Home-based other 12.7 13.5 -5.9 
Non-home-based 12.4 14.0 -11.4 

Transit 
Home-based work 36.9 37 .2 -0.8 
Home-based shopping 29.6 31 .9 -7.2 
Home-based other 32.3 36.3 -11 .0 
Non-home-based 27.2 31.2 -12.8 



SUMMARY AND CONCLUSIONS 

The assumption of the stability over time of travel sim­
ulation models calibrated with base-year data is an 
essential element of present urban transportation plan­
ning. This assumption was tested in southeastern Wis­
consin by using travel simulation models calibrated with 
data from an 0-D survey conducted in 1963 and travel 
inventory data from a second survey completed in 1972. 
This was accomplished by com~ring observed 1972 
trip generation, transit use, and trlp length character­
istics with estimates derived by applying the original 
1963 trip generation, modal split, and trip distribution 
models individually to 1972 observed independent vari­
able data; the testing indicated that the predictions of 
the models on both regional and zonal levels were rea­
sonably accurate. Even though the model relationships 
for travel forecasting purposes had remained stable over 
time, changes were made in the travel simulation model­
ing framework used in the reevaluation of the original 
land use and transportation plan for southeastern Wis­
consin. These changes were made primarily as a re­
sult of advances in the state of the art In travel simula­
tion and included the use of cross-classification analysis 
for trip generation as opposed to the aggregate technique 
used in the origlnal study. 
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Location, Housing, 
Automobile Ownership, and 
Mode to Work: A Joint 
Choice Model 

Steven R. Lerman, Department of Civil Engineering, Massachusetts Institute 
of Technology 

Household location decisions are closely related to other choices of 
housing. automobile ownership, and mode to work. This paper de· 
scribes a model that considers these long-run decisions, termed the 
mobility bundle, as jointly determined , thus eliminating the need for 
an arbitrary set of assumptions about a sequence of choices. The 
model developed ls based on disaggregate choice theory. Each poten· 
tial locatlon·hous1ng-automobile ownership·mode to work combination 
is a distinct alternative, of which only one is selected by each house­
hold. The basic methodology used Is the multinomial logit model. A 
sample of skilled, single worker households working and residing in 
the Washington. 0.C., metropolitan area in 1968 was used to estimate 
the model . The variables used to describe each alternative included 
locational anributas, housing anributes, transportation level of service 
ro work. spatial opportunities for shopping trips, automobile owner­
ship attributes, and the socioeconomic characteristics of the house­
hold. Even with the relative ly small sample used, a wide range of be­
havioral effects were measured. It is concluded that models such as the 
one described here could replace existing model systems used to fore· 
cast residential locatio.n panerns. The increase in behavioral content 
such models permit would allow credible work-trip forecasts to be 
made as a part of land use forecasting. 

Transportation planners have long recognized that the 
facilities they lmplement today will have a. great influ­
ence on the future location patterns of the activities those 
facilities w 11 serve. These long-term interactions be­
tween transportation and location, termed activity shifts, 
have been the focal point of much of the debate about the 
desirability of various fixed transportation investments 
such as highways or rail rapid transit systems. The 
locati<mal impacts of such facilities are not only impor­
tant in and of themselves; they also have an enormous 
in.flu enc e on the future transportatlon demand in that the 
size and characteristics of the served population may be 
greatly altered over the useful Hie of the facility . 

These locational effects may be most signiiicant in 
urban transportation planning. For example, a new tran­
sit system in a city will in the short run attract current 
highway users; this mode choice effect has been the prin­
cipal focus of the vast buJ.k of travel demand modeling 
efforts and is probably the best understood aspect of 
travel behavior. However, in the longer run, the same 
system may have profound effects on residential and em ­
ployment location patterns. Sltes near transit stations 
will be more desirable (1), and those farther away may 
experience reduced levels of activity. Furthermore, as 
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a consequence of the new location and work trip patterns, 
households may alter their automobile ownership and 
housing decisions. Thus, over its useful life, a major 
transportation facility may have the potential. to com­
pletely alter the spatial. structure of a city. Until the 
nature of the interactions among transportation services, 
location decisions, and travel demand is understood, 
there is little hope that existing forecasting models will 
provide reliable tools for long-run policy analysis (2). 

This paper describes a model that applies disaggre­
gate choice models to represent household location and 
the related choices of housing type, automobile owner­
ship level, and mode to work. The particular choice 
theory methodology used is the multinomial logit model 
(3), which is analytically tractable and widely used (4, 
5-;-6). -
- -The first section of the paper describes the set of 
available alternatives, i.e., the various location-housing­
automobile ownership-mode to work combination or mo­
bility bundles, that are feasible choices for representa­
tion in the model. The next section is a brief description 
of the way in which the various factors that affect the 
choice of mobility bundle are combined to form the vari­
ables entering into the household utility function. C This 
description is somewhat cursory; further descriptions 
of the model structure, the motivation for the variables 
used, and the final functional form can be found in Lerman 
(7)1 . This is followed by a p1·esentation of the parameter 
estimation results and, [inally , by a revised forecast ing 
framework that uses the model structure developed and is 
consistent with a behavioral theory of how household de­
cisions are reached. 

DEFINITION OF MOBILITY BUNDLES 

Location, housing, automobile ownership, and mode of 
travel to work can be almost infinitely subdivided. Lo­
cations can be taken to be cities, towns, census tracts, 
blocks, zones, or any other geographical unit. Alterna­
tively, location can be defined simply In terms of distance 
from the CBD or in terms of whether a site is in the cen­
tral city, urban ring, suburbia, or rural fringe. Housing 
can be defined along a broad spectrum of dimensions, in­
cluding age of the structure, Lot size, architectural. style, 



number of rooms of various types, garage space, qual­
ity and condition of unit, and type of tenure. Automobile 
ownership can consist of the number of automobiles as 
well as their make, age, gas mileage, horsepower, or 
operating cost. Mode to work can be classified as tran­
sit or car, or further described as bus, trolley, rail 
rapid transit, taxi, shared ride, paid car pool, or drive 
alone. 

Clearly, at some level of detail the number of possi­
ble alternative mobility bundles is enormous. Even lf 
sultable data were available, a model developed with 
such detailed alternatives would be almost impossible to 
estlmate and apply. Some level of abstraction in defining 
alternatives is required. 

Reducing the number of alternatives of the location 
dimension of the mobility choice presents some basic 
methodological difficulties. Ultimately, each household 
selects a particular dwelling unit, of which there are 
thousands or millions in any one metropolitan area. Any 
method of grouping alternatives is by its very nature 
somewhat arbitrary. Fortunately, it is possible under a 
set of fairly rigorous approximations to use the multi­
nomial Logit model in a way that allows one to rely on 
data about arbitrarily defined groups of dwelling units, 
but still obtain consistent estimates of parameters de­
scribing how households perceive the dwelling units 
themselves (7) . This approximation makes it possible 
to consider census tracts as the basic locational alter­
native and permits the use of a large, relatively reliable 
data base. 

The dimensions of housing alternatives used in this 
study are structure type and tenure. Four feasible 
choices, owner-occupied single family house, ren ted 
single family house, rented walk-up or garden apart­
ment, and high rise dwelling were used. This choice 
was determined primarily by the data available from the 
horn e interview survey. For the purposes of transporta­
tion planning, where the primary focus ls on the spatial 
aspect of mobility rather than on the housing itself, this 
choice set should be adequate. However, the use of 
s tructui·e type and tenure only does restrict the applica­
bility of this study to the analysis of housing policies, 
where issues of st.ructure size and quality are very sig­
nificant. 

Automobile ownership choices have the dimensions of 
number owned. make, type horsepower , and options. 
However , since the transpol'tatlon planner is mainly in­
terested in the ways in which people will alter their 
travel behavior in response to various policies, a con­
s iderat ion of tne number of automobiles should be sum­
cient. 

The final choice, mode of travel, is restricted to two. 
modes of vehicular travel car and transit. These two 
together constitute 93 percent of all work trips in the 
study city, Washington D.C. (This figure does not in­
clude some very short work trips . ) In order to further 
limit the scope of the empirical study, all forms of ride 
shar ing were eliminated. 

Not all possible residential location-houslng ­
automobUe ownership-mode to work combinations are 
feasible alternatives. For example, some locations 
are not served by transit, some tracts have a limited 
range of housing options due to zoning ordinances, cer­
taln households may not have some mobility bundles open 
to them (households without drivers do not own auto­
mobiles, and low-income households can only afford a 
limited subset of all feasible mobility bundles) . In addi­
tion to restrictions such as these the tracts available to 
any particular household are limited to the set of tracts 
actually selected by all workers ( in the sample used) in 
the employment zone. This method of defining choice 
availability (E_, ~) provides an operational way to avoid 
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including infeasible alternatives in household choice sets: 
The fact that some feasible alternatives may be eliminated 
does not affect the properties of the parameter estimates 
ln the multinomial logit model. 

SPECIFICATION OF TIIE JOINT UTILITY 
FUNCTION 

The variables that affect the choice of mobility bundle 
can be divided into six general categories. They are as 
follows: 

1. Transportation level of service to work- travel 
time (in-vehicle and excess time) and cost for the work 
trip; 

2. Automobile ownership attributes- taxes, deprecia­
tion , registration costs, maintenance, and title costs; 

3. Locational attributes- neighborhoOd quality , demo­
graphic composition, taxes, urban services, parking 
availability and local insurance rates; 

4. Housing attributes- age of the structure, quality, 
size of the unit, garages driveways, and structure type; 

5. Spatial opportunities- measures of accessibility 
to shopping and other nonwork destinations; and 

6. Socloeconomic characteristics- income, race, 
household size, number of drivers, number of workers, 
education, and marital status. 

Each of the above six categories might be represented 
with a wide range of variables and each of the variables 
can, ln theory , be combined with the others to produce a 
virtually limitless number of possible independent vari­
ables for each utility function. The final set of variables 
selected draws heavily on previous empirical work and 
on a set of more fully developed model estimations (7). 

In a joint model of mobility choice there are an f!X­
tremely large number of possible location-housing­
automobile ownership-mode to work combinations. Thus, 
the number of utility functions is correspondingly great. 
Rather than consider each utility function Lndiv1dually, 
every variable will be defined as pertain.lng to all alter­
natives but as taklng zero value for those utilities where 
it is not included. 

The first group of variables are constant terms in the 
util ity function. These constants measure the pure alter­
native effect i. e., the net effect of all attributes of an 
alternative that are not measured by the other vari­
ables. rn theory , a constant could be introduced into all 
but one utility function that would act as a base against 
which the effects o! the other var iables are measured. 
This choice of the base utility functlon would be arbitrary 
and have no influence on the parameter estimates of the 
choice probabil ities. en practice, however, alternatives 
such as locations that are unnnlted and very numerous 
do not have constants associated wlth them unless they 
have pa1·ticular attributes that make them distinguish­
able such as the CBO in models of destination choice. 

Even when the location choice group ls ignored, the 
number of possible options is quite large. A household 
has a maximum of two modes: car and transit; three 
automobile ownership levels: zero one, and two or 
more: and four housing types: to own a single family 
house, to rent a single family house, to rent a garden or 
walk-up apartment, and to rent a high-rise apa.rtment. 
After the logically inconsistent alternative of zero auto­
mobile ownership and car to work ls eliminated, there 
are 20 possible options for any one household. To re­
duce the number of dummy variables to less than 19 (the 
number of possible options minus one for a base), a way 
to appr0itlmate each independent effect by a linear 
combination of a smaller number must be foond. The 
approach adopted here ls to give each choice group a 
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constant term for all lts members but one, and assign 
constants to those of the interactions among choice 
groups that an exploratory clata analysis hacl indicated to 
be significant. The result.ing set of eight constant terms 
are as follows ; 

l
l in the rent single family dwelling 

DRENTl = alternative 
0 otherwise 

l
l in the rent garden or walk-up apart­

DRENTG = ment alternative 
0 otherwise 

1

1 in the rent high rise apartment alter­
DRENTH = native 

O otherwise 
AOl =jl in the one automobile alternative 

D tO otherwise 

\

1 in the two or more automobiles alter­
DA02 = native 

0 otherwise 
DCAR = Jl in the car to work alternative 

1<J otherwise 

1

1 in the rent garden, walk-up, or high 
DAPTSTYL _ rise apartment and own less than 

- two automobiles alternatives 
0 otherwise 

1

1 in the own single family dwelling and 
DSUBSTYL = ow~ two or more automobiles alter­

natives 
0 otherwise 

The next two variables represent the travel time as­
pects of level of service to work. These variables have 
been expressed as the in-vehicle and out-of-vehicle time 
in most mode choice studies. More recent work (~ 10) 
has indicatecl that the disutility of out-of-vehicle time 
may be perceived as a function of the total trip length, 
which can be measured by travel clistance. After exper­
imentation with a number of alternative functional forms, 
the following specification (~) was chosen: 

TOTIME = total two-way travel time (min) and 

OVTT/ DIST = two-way out-of-vehicle time (min) + 
two-way travel distance (km) 

In adclition to these variables, a dummy variable was 
defined to reflect the addecl disutility associated with the 
use of a .car in the downtown area as follows: 

1

1 for households with downtown workplaces 
DCITY = in the car to work alternatives 

0 otherwise 

The next variable arises from the fact that there are 
a large number of monetary measures such as house­
holcl incqme; federal, state, and local truces; housing 
costs; automobile ownership costs; and out-of-pocket 
travel costs for the work trip Ln the model. To avoid 
introducing a separate variable for each of these cost 
factors, they were combined into a stngle one termed 
for reference the Z variable, representing the money 
that would be available to the household lf it selected 
each alternative. The value of Z (in dollars per year) is 
thus an estimate of the amount of money a household has 
after the following expenses: (a) federal taxes, (b) state 
taxes, ( c) property taxes ( ifappHcable), ( d} housi.ng cost, 
(e) direct automobile ownership costs (f) automobile insur­
ance, tags, and taxes, and (g) commuting cost to work. The 
coefficient of the Z variable in the utility fwlction should 
always be positive, reflecting the fact that all else being 
equal households would rather have more mcney than 

less left for other things. The Z variable should not 
enter the utility functions linearly· the uti.li.ty a poor fam ­
ily derives from extra money ls muchgreater than that de­
rived by a wealthy family. Thus the marginal utility of 
money should decrease as the value of Z increases . This 
hypothesis can be reflected by using the natural log of Z 
rather than simply the value of Z as the independent vari­
able . 

The next variable used commonly appears in simple 
mode choice models in which automobile ownership is 
assumed fixed. It is defined as 

AALD = 
number of automobiles in alternative + num­

ber of licensed drivers in the household in 
the car to work alternatives 

0 otherwise 

and represents the level of automobile availability that 
would be obtained if the household chose a given alterna­
tive. Alternatives with high automobile availability 
should be associated with high car to work utilities rela­
tive to those for transit to work alternatives; hence, the 
expected sign of its coefficient is positive. 

The next variable was clesigned to reflect another ef­
fect of the number of licensed drivers within a house­
hold. While the number of licensed drivers impacts on 
choice of mode to work through the AALD variable, it 
also affects the level of automobile ownership directly: 
the more licensed drivers in a household, the more 
likely it will select a high automobile ownership level, 
independent of the mode to work selected. This effect 
was measured by introducing into each utility function 
a variable that reflects the number of licensed drivers 
with a clifferent coefficient for each automobile owner­
ship level, except one selected arbitrarily as a base. 
These va;riables are defined as follows: 

1
1/ number of licensed drivers in the household 

ILDl = for one automobile alternative 
0 otherwise 

1
1/ number of licensed drivers in the household 

ILD2 = for two automobiles alternative 
0 otherwise 

When these variables were originally introduced into the 
model, it was hypothesized that the effect for the two car 
alternative (as measured by the coefficient value) would 
be twice as great as the effect for the one car alterna­
tive. Statistical tests by Lerman and Ben-Akiva have 
indicated that this is indeed the case and that ILDl and 
ILD2 can be combined Lnto a single variable defined as 
follows: 

1
0 for the zero automobile alternatives 

ILD = ILDl for the one automobile alternatives 
2ILD1 for the two automobiles alternatives 

The use of the lnverse of the number of drivers rather 
than the number itseH reflects the hypothesis that, as the 
number of ctrivers increases, the marginal effect of an 
additional driver on the need for automobiles decreases. 
Clearly, the coefilcient of ILD should be less than zero. 

Spatial opportunities influence the mobility decision in 
at least two ways. First, the absolute level of accessi­
bility to shopping by either car or transit is probably 
important in a household choice of location. Second, the 
level of shopping accessibility by car relative to that of 
transit affects the mode with which the household will 
travel to shop, which in turn influences their desired 
level of automobile ownership. 

The first of these effects was represented by 



GPTINV = l I expected generalized shopping price by 
transit 

The generalized shopping price by transit is a weighted 
sum of estimates of the average in-vehicle time, out-of­
vehicle time, and out-of-pocket cost of a shopping trip 
by transit that is derived from a disaggregate shopping 
trip choice model ( 10). The varia.ble GPTINV Is zero 
when transit is completely unavailable since the transit 
generalized price in such areas is, for practical pur­
poses, infinite. The coefficient of this variable should 
be positive, since decreased travel costs resulting from 
improved transit service should increase the household 
utility. 

Attempts to use a corresponding variable for the 
absolute level of car accessibility produced statistically 
insignificant coefficient estimates having an unexpected 
sign. This problem (15) may be the result of the high 
levels of externalities\ such as noise. and traffic con­
gestion) often associated With locations With good high­
way accessibility ( 12). Thus, the car accessibility 
coefficient may alsobe measuring the effects of some 
omitted variables. For this reason, it was not included 
in the final specification. 

The effect of the relative accessibility was measured 
by a variable defined as follows: 

R = expected generalized car costs for shopping 
+ expected generalized transit cost for shopping 

This variable does not change value for different auto­
mobile ownership alternatives, and therefore must be 
lntroduc ed into the utility function as alternative spe­
cific. Thus, the following two variables appear in the 
model : 

Rl ={R in one automobile alternatives 
0 otherwise 

and 

RZ ={R in two automobiles alternatives 
0 otherwise 

As the general ized shopping cost by car increases, the 
value of R increases. This increase in car cost should 
1·esult in greater use of transit for shopping trips and, 
consequently, the likelihood of high automobile owner­
ship should decrease. The coefficlents of both Rl and 
R2 should therefore be negative, since they both mea­
sure the effect of shopping accesslbility relative to the 
zero automobile-transit to work alternatives. Further­
more, the effect should be greater for the two auto­
mobiles alternatives than for the one automobile options 
and the magnitude of the coefficient of R2 should be 
greater that tnat of Rl. 

In order to re.fleet the effect of household size an the 
desire for living in a single family dwelling, the follow­
ing variable was defined: 

l
household size in single family dwelling 

HHSIZEl = alternative (own or rent) 
0 otherwise 

The coefticient estimate of thts variable should be 
greater than zero since, other things being equal, 
larger households probably have a stronger perference 
for single family dwellings than do smaller households. 

The next group of variables are all locational attri­
butes and are defined as follows: 
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(Y - Y°)2 for Y " Y, where Y and Y are the 
INCDIFF = ! household and average annual tract in­

come, in thousands of dollars 
0 otherwise 

!
fraction of nonwhite households in tract 

FBFORW = for white households 
0 for non-whites 

!
fraction of nonwhite households in tract 

FBFORB = for nonwhites 
0 for whites 

SITY 
_ {net residential density in households per 

DEN - acre 

!
per pupil school expenditures (in dollars 

SCHOOL = per year) except in District of Columbia 
0 in District of Columbia 

OOC = { 1 in Dist~ict of Columbia 
0 otherwise 

The first variable ts a measure of the neighborhood 
quallty in a tract. The income differential ls squared, 
reflecting the hypothesis that large differences are pro­
portionately much more important than small ones. This 
vartable should have a negative coefficient. The oppo­
site variable, which ls defined as non-zero when the 
household income is less than the average, consistently 
gave very small, statistically insignificant estimates 
having the wrong sign, and was omitted in the final spec­
ifications. 

The two racial composition variables reflect the 
hypothesis that whites and nonwhites perceive the racial 
composition qulte differently. The coefficients of 
FBFORW and FBFORB should be negative and positive 
respecuv-ely. 

The density variable is self-explanatory; a negative 
coefficient should be expected. The OOC dummy vari­
able was defined to correct for the setting of the annual 
per pupil school expenditure variable to zero in tne 
SCHOOL variable, the coefficient of which should have 
a posltive sign. The SCHOOL variable is defined to be 
zero for households without children even though the 
DOC variable is not. This was done to explore the possi­
bility that the District has certain attributes that make 
it distlnct from other locations regardless of whether or 
not a household has children. 

The final variable in the model is the measure of 
tract size requu-ed to correct for the fact that a census 
tract is actually a group of housing units. Other condi­
tions being equal, a very large tract (i.e., one with a 
large number of housing units) would have a higher prob­
ability of being selected than a very small one, since the 
number of disaggregate opportunities is greater in the 
former than the latter. l! all units of a particular type 
in a given zone are relatively homogeneous and the loglt 
model applles to each individual unit then the appro­
priate term to correct for tract size is th·e natural loga­
rithm of the number of units ('7). This variable, denoted 
as lnN, should, under the previously cited assumptions, 
have a coefficient of one. However, lf the assumptions 
o! the iogit model are violated, the coetflclent may differ 
from one; for this reason, parameter estimates both 
w-ith and without the coefficient of lnN constrained to 
unity are reported. 

ln order to derive the structure of the utility function 
for any particular location-housing-automobile 
ownership-mode to work combination, the variables that 
are set to zero for that alternative can be omitted. 

ESTIMATION RESULTS 

The variables in the model described above were esti­
mated using the maximum likelihood method (13) with 
data from a 1968 Washingtm, D.C., home interview sur-
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Table 1. Parameter estimates for the model. 

No . 

10 

ll 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

Var table 

DRENTl 

DRENTG 

DRENTH 

DAO! 

DA02 

DCAR 

DAPTSTYL 

DSUBSTYL 

TOTI ME 

OVTT DIST 

DCITY 

ln Z 

AALD 

ILD 

GPTINV 

RI 

R2 

HHSIZEl 

!NCDIFF 

FBFORW 

FBFORB 

DENSITY 

SCHOOL 

DOC 

ln N 

L" IO) 
L"IBI 
NOBS 
NCASES 
Pe rcent 

ri gh t 

Unconstrained 
Estimates 

-0. 361 
l-1.03) 

2.31 
12 .87) 
0 .828 

U .02) 
7 86 

(2 .57) 
12.0 
12. 71) 
0.433 

(0 500) 
0 .542 

(0 .966) 
0 336 

l0 .764) 
-0 .008 31 

(-2 . 13) 
-0 .0 57 0 

(-0 .787) 
-0.437 

(-0 .9 32) 
l.07 

12.64) 
0.964 

I l.O ll 
-6 . 57 

1-2 . l 7) 
2.92 

ll.3 8) 
-l 35 

l -l.08) 
-4.05 

1-3.0IJ 
o .a 5o 

(5 .2ll 
-0.012 3 

I -2 89) 
-2.18 

(-3 . 79) 
l.9 5 

12.231 
-0 005 57 

1-1.25) 
0 .000 442 

10 .685) 
-0.009 93 

1-2.06) 
0.492 

15,251 
-824.4 
-645 .9 

177 
25 60 l 

8, 5 

~ c o nsrra1nt imposed. hence t statistic not relevant 

Constrained 
Estimates 

0 393 
ll.l8) 
2 93 

13. 58) 
0.809 

10.973) 
7 98 

12,60) 
12 l 
12 78) 
0.483 

10 501) 
0 524 

10 927) 
0 .261 

(0 591) 
-0 008 18 

(-2.05) 
-0 052 6 

1-0.708) 
-0 .415 

1-0 .879) 
l.20 

(2.81) 
0.975 

I l.02) 
-6. 56 

1-2.16) 
3. 14 

(1.47) 
- l 54 

1-t.21) 
-4.ll 

1-3.03) 
0. 875 

15 16) 
-0 .012 l 

I -2 .80 I 
-2 .21 

l -3 , 78) 
1.85 

12.12> 
-0 008 10 

1-1.751 
0.000 342 

I0 ,523) 
-0 100 

(-0.204) 
l 

-824 4 
-6 58. 4 

177 
25 601 

10.2 

vey for a small sample of single worker households in 
which the worker was at least minimally skilled. This 
data set was augmented by 1970 census housing data 
(appropriately deflated) and transportation level of ser­
vice from highway and transit networks. Two different 
estimations were made. The first allowed the coeffi­
cient of the tract size variable, lnN, to attain its highest 
probable value: These estimates are shown in column 
3 of Table l. The second set of estimates are based on 
the constraint that the coefficient of the tract size vari­
able is unity: These estimates are shown in column 4 
of Table 1. For each model, the asymptotic t-statistics 
are given in parentheses below their corresponding pa­
rameter estimates. In addition, five summary statistics 
are given. 

1. L*(O) is the value of the log probability function 
when all of the parameters are zero (i.e., when every 
alternative has the same probability); 

2. L*(,9) is the value of the log probability functicn 
at the maximum probability coefficient values; 

3. NOBS is the number of households in the sample; 

4. NCASES is the number of available alternatives 
(in excess of one per household) used in the estimation; 
and 

5. Percent right is the percentage of households for 
which the alternative with the highest systematic compo­
nent of utility was actually selected. This value ls maxi.­
mi.zed when the maxi.mum score estimation technique is 
used (~). 

All of the coefficient estimates in both the unconstrained 
and constrained models for variables about which hy­
potheses were formulated have the expected sign. How­
ever, the statistical significance of some coefficients 
such as the estimate for OVTT/ DIST is marginal. This 
probably results from the very small sample used, since 
mode choice models with larger samples of the Washing­
ton data result in estimates significantly different from 
zero at fairly high levels of confidence, 

The constrained estimates are similar to the uncon­
strained ones, with the exception of the coefficient of 
DRENTl. This suggests the possibility of some mea­
surement error in the value of N, the number of units of 
rented single family dwellings. 

As might be expected with an average of over 145 
alternatives available for each household, the percent 
right result is low in absolute terms. A useful way of 
viewing this is ln terms of the probability of a model 
classifying a given percent correctly U all the alterna­
tives were actually equally likely. Suppose that all 
households have exactly 145 available alternatives, and 
that each is equally likely. In this case, the probability 
of a model classifying none of the 177 observations 
correctly is 

(144/145) 177 = 0.2938 

and the probability of classifying k of 177 correctly is 
distributed as binomial, i.e., 

Pr (k correct) ={1 C) (I /145 )k (144/ 145) 1 77-k 

According to this formula, the probability of classifying 
nine or more households correctly (about 5 percent right) 
is less than 0.0001, but the percent right found for the 
unconstrained and constrained estimates are 8.5 percent 
and 10.2 percent respectively. 

IMPLICATIONS OF THE RESEARCH FOR 
REVISED ANALYSIS FRAMEWORK 

Forecasts of urban land use have traditionally played an 
inportant role in the transportation planning process. 
However, the models used to forecast residential loca­
tion patterns have usually been logically separable from 
those used to forecast both automobile ownership and 
trip-making patterns. Land use models have provided 
forecasts of zonal population and employment before a 
separate automobile ownership model is applied. These 
forecasts are then used as inputs to the four-step pro­
cess, consisting of trip generation, distribution, mode 
split, and assignment. 

A critical implication of the theory upon which this 
study is based is that such a forecasting approach fails 
to behaviorally represent the true process it seeks to 
model. In reality, it is more reasonable to assume that 
both automobile ownership and work-trip travel patterns 
arise as a logical consequence of a long-term choice 
process and should therefore be forecast within what has 
traditionally been termed urban land use forecasting. 
For work trips, trip generation actually represents labor 
force participation in a decision process that probably 
depends more on the household structure andli.fe-style and 



the state of the regional economy than on the trans­
portation system. Work-trip distribution is simply 
the outcome of urban location patterns rather than a 
distinct behavioral phenomenon that can be modeled 
separately. 

Nonwork trips can then be modeled as conditional on 
the outcome of the work-trip pattern. Feedback between 
the longer run land use C·omponent and the non work trip pat­
terns can readily be incorporated by extending the shop­
ping generalized price variables to include other relevant 
trip purposes. 

The choice models developed in this paper are proto­
types for one part of such a system of models. Many of 
the other required model system components are the 
object of a great deal of research(~,~) . New models 
of the land use supply sector are being studied by the 
National Bureau of Economic Research. Thus, the pro­
posed forecasting process represents a synthesis of the 
results of research in a variety of areas, and could 
possibly be implemented in a faii·ly short time. 

Thi s study represents one step in the process of im­
proving land use forecasts by introducing joint behavioral 
choice models into the representation of the household 
mobility choice. Obviously, lf the models described 
here are to be used effectively, they must be a portion 
of a much larger research effort to restructure the en­
tire travel forecastlng process to bette.r reflect a be­
havioral understanding of the true causal mechanisms 
that determine supply and demand. Only by developing 
more behaviorally structured models can transportation 
analysts and urban planners hope to provide reliable 
forecasts of the impact of alternative policies on which 
an ln:iormed decision-making process can act. 
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Transferability and 
Updating of Disaggregate 
Travel Demand Models 

Terry J. Atherton, Cambridge Systematics, Inc., Cambridge, Massachusetts 
Moshe E. Ben-Akiva, Department of Civil Engineering, Massachusetts 

Institute of Technology 

In recent years much work has gone into the development of disaggre· 
gate travel demand models. However, little has been done to evaluate the 
ability of these models to predict travel behavior in locations other than 
the area for which the model was estimated. Unlike aggregate models. 
the parameters of disaggregate models are not dependent on a particular 
ional system and therefore have th& potential for transferability. The 
motivation behind transferring is clear-if a model estimated in one araa 
can be transferred to another, the cost of conducting transportation stud ­
ifl could be greatly reduced. Several possible approaches for transferring 
are developed and discussed from a theoretical perspective. For an em· 
pirical evaluation, a worl< ·trip modal-split model estimated on Washington, 
D.C., data is transferred to New Bedford. Massachusetts, using each of the 
proposed approaches. The results of estimating the original model on Los 
Angeles data ara also represented. The most significant result is the ex · 
ceptional performance of the original Washington work mode choice 
model on both New Bedford and Los Angeles data. This is noteworthy 
in view of the extreme differences of the means for several variables be­
tween these cities. Of the several approaches for transferring that ware 
developed , Bayesian updating based on combining the existing model co· 
efficients with the estimation results from a new sample gave the best 
overall performance. The results of th is study indicate that the potential 
transferability of disaggregate travel demand mode.ls can be real ized. 

Traditional aggregate models of travel demand, which 
are based on existing relationships between aggregate 
variables, tend to be correlative rather than causal, and 
often are insensitive to proposed changes in transporta­
tion policy. Recently, travel demand models based on 
disaggregate data (l. e., individual observations of travel 
behavior have been developed. These models can in­
clude the causal relationships between transportation 
level of service, household socioeconomic characteris­
tics, and travel behavior and, therefore, provide a more 
meaningful analysis of various transportation policy op­
tions. 

Often, particularly in small urban areas, there is 
neither the time nor the money to develop a travel de­
mand model. This makes desirable the development of a 
travel demand model that could be transferred from one 
area to another. Disaggregate models are most llkely 
to be transferable because they represent the average 
behavior of the individual traveler, and lt ls reasonable 
to expect individual travel behavior to be essentially the 
same in one area as ln another. Moreover, the estima­
tion of disaggregate models does not rely on a particular 
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zonal aggregation so that a correctly specified disaggre­
gate model that properly explains travel behavior in one 
area should be valid (or at least more valid than a com­
parable aggregate model) for predictions ot travel behav­
ior in other areas. 

This paper discusses the theoretical justi!icatlon 
for the t1·ansferab!lity of disaggregate models. The 
results of transfern ng an existing disaggregate mode 
choice model [or work trips, developed using 1968 
data from Washington, D.C., to data sets representa­
tive of New Bed.ford, Massachusetts, in 1963 and Los 
Angeles, California, in 1967 are presented. Several 
possible approaches for updating are developed, com­
pared from a theoretical standpoint, and evaluated 
empirically using the New Bedford data base. The 
most useful product of the research is a procedure 
for travel demand model development suitable for 
low-budget or short-duration transportation planning 
studies. 

PROPERTIES OF DISAGGREGATE MODELS 

Before empirical updating procedures are developed, the 
theoretical justification for the transferability of these 
models should be established by identifying the attri­
butes that affect any model ' s ability to be transferred 
from one area to another. Clearly, all those factors that 
ailect the reliability of predictions will also affect the 
transfe.rability. If a model cannot successfully predict 
travel behavior in the area for which it was estimated, 
there is no reason to expect it to function better in any 
other area. To be transferable, then, it is not enough 
that the model merely fit existing data; it must also ex­
plain why travel behavior changes as conditions change. 
Rather than simply correlating existing travel behavior 
with socioeconomic characteristics and transportation 
level of service, the model specification must represent 
the causal relationships between these variables. Thus, 
the causal specification of a model is a precondition to 
its consideration for transferability. 

From a practical point of view, no model is ever per­
fectly specified. Some variables that shoold be included 
in the model often must be excluded (e.g., when the esti­
mation data set does not contain sufficient variability of 



these variables). In particular, when data for model de­
velopment are taken from one urban area and applied to 
another, there may be cultural differences between the 
two areas that are not explicitly represented in the 
model. These peculiarities of tile data will be implicitly 
hidden in the model coefficients and so toe coeffici ents 
estimated in one area will not be valid for the other. For 
a model to be perfectly transferable Its coefficients must 
be free from contextual factors. 

What are the differ enc es between aggregate and dis­
aggregate models that affect their potential transfera­
bility? If we assume that the model specification is 
given, what effect does the use of aggregate or disaggre­
gate data in its estimation have on its potential transfer­
ability? An implicit assumption in using aggregated data 
is that the characteristics of households within zones are 
relatively homogeneous as compared to the differences 
between zones. However, several studies have shown 
the opposite to be true- there is more variation within 
zones than between them (1, 2). Because of this, prob­
lems such as the loss of variability in the data, collin­
earity between variables, and the risk of an ecological 
fallacy (3) can arise in the estimation of aggregate 
models and adversely affect their predictive ability and, 
hence, their transferability. 

Suppose for a moment that these problems have been 
considered and do not affect the estimation of an aggre­
gate model. One serious problem that still remains is 
the linkage of the coefficients of the aggregate model to 
the zonal structure of the area for which it was esti­
mated. This linkage is directly observed from the defi­
nition of an aggregate demand model. If the disaggre­
gate model is denoted as f(X, e) where X is a vector of 
independent variables and 9 is a vector of the coeffi­
cients of the disaggregate model, the aggregate demand 
is the sum of the disaggregate demands and therefore 
the aggregate model is 

1 f( X.1:1) h! X.X.a) dx 
x 

(ll 

where h(X, X, a) is the distribution .function of the Inde­
pendent variables for the group on which the aggregation 
is performed, X is the vector of means of the indepen­
dent var iables, and a denotes other parameters (or 
higher moments ) of h(X.X oc). The l'esult of this Inte­
gral ls an aggl'egate demand model that could be ex­
pl'essed as F (X', oc, 9). where the function F(X, oc, 9) does not 
necessarily have the same analytical form as f(X, 9), 
Traditional aggregate models do not explicitly include 
all the paramete1·s of the within-zo~e distributions 
, h(X, X, a l, and therefore these parameters are implicit 
ln the resulting coefficents of the model. Slnce these 
distributions would certainly differ from one area to 
another {4) they would have to be reflec ted in the model 
in order Tor it to be transferred succe.s sfully. However, 
existing aggregate models are not capable of this and so 
are Less likely to be t1·ansferable than disaggregate 
models that are estimated on observations of individual 
behavior and have model coefficients that are not bound 
to any particular zonal stt~ucture . Thus, .a disaggregate 
model is always more transferable than a comparable 
(i.e., same set of variables) aggregate model. 

TEST OF TRANSFERABILITY 

As an initial test of the transferability of disaggregate 
demand models, the specification of an existing mode 
choice model developed on 1968 Washington, D.C. , data 
was reestimated on data sets representative of New 
Bedford, Massachusetts, ln 1963 and Los Angeles, Cali-
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fornia, in 196'7. The model coefficients from this re­
estimation and the statistical significance of the differ­
~ces between these and those of the or iginal model are 
discussed below. 

Existing Model 

T.h~ model sel:ctect_ for this test (and the subsequent em­
ptrical evaluatrnn) LS a multinomial loglt mode cholce 
model (!) that has been modified and extensively tested 
(~, ~ 2.l ( the multinomial legit formulation ltself ls de­
scribed ln many .places (~ ~ !.Q., 11). J This model pre­
dicts ~e probability of a commuter driving alone, shar­
ing a _ride (i.e., two or more persons in a car), or using 
transtt for the hame-to-work trip. The model specUlca­
tLon ls given in Table l. 

The model contains all the normally expected vari­
ables-in-vehicle travel time, out-of-vehicle travel 
time, out-of-pocket costs, income, and automobile avaU­
ability- plus some spectal variables to differentiate be­
tween alternative modes. A primary worker dummy 
variable is included for the drive alone mode under the 
hypothesis that the head of household bas some priority 
in using any available automobile. The CBD dummy 
variables for the drive alone and shared ride modes ex­
press the added inconvenience of driving an automobile 
into the Washington, D.C., CBD above that refl.ected in 
the level-of-service variables. Three additional vari­
ables are included to account for the choice of the shared 
ride mode. These variables are a government worker 
variable (GW) that serves as a proxy for employer pro­
vided incentives for forming car pools, the destination 
employment density times one-way trip distance variable 
(DTECA), and the number of workers in the household 
variable (NWORKl. 

In transferring this model to the New Bedford and Los 
Angeles data sets, the specifications of the independent 
variables are identical to those of the original model with 
the exceptions that both CBD variables and the govern­
ment worker variable are excluded. In the case of the CBD 
variables, the cong estion and inconvenience associated 
with driving into the CBD of a large, dense city such as 
Washington are real factors in choosing between auto­
mobile modes and transit. In a small city such as New 
Bedford or in a very diffuse city such as Los Angeles, 
however, the distinction between CBD and non-CBD trips 
would probably have little effect on this choice. There­
fore, the DCITY variables are assumed to have a value 
of zero. Similarly, the effec ts of large organizations 
offering incentives to car pool do not exist ln either New 
Bedford or Los Angeles and the government worker 
variable also has a value of zero. 

Estimation Results 

The coefficients and statistics of the models estimated 
on the Washington, New Bed.ford, and Los Angeles data 
sets are given in Table 2. (The data base is given 
below.) 

Log 
No. of No. of log Likelihood 
Observa· Al tern a· Likelihood at Conver-

City tions t1ves at Zero gence 

Washington 1114 2924 -1054.0 727.4 
New Bedford 453 1208 -436.4 -256.5 
Los Angeles 879 2549 -930.0 -391.2 

The coefficients of the original Washington model all have 
the correct signs, and, for the most part, are highly sig­
nificant (i.e., having large t-statistics). The coefficients 
of the New Bedford model also have the correct signs. 
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The t-statistics, however , are not nearly as large as 
those of the original model, although for only three co­
efficients (in-vehicle travel time, shared ride auto­
mobile availability, and empl oyment density times dis­
tance) are they seriously low. This relatively poor 
statistical performance may be related to the smaller 
sample size (453 versus 1114 observations) and the much 
lower variability observed for several of the level-of­
service variables. (Data were available only for those 
trips having both origin and destination within the city of 
New Bedford itself.) The coefficients for the Los Ange­
les model also have the correct signs. In this case the 
overall statistical performance is much better than in 
the New Bedford case due in part to the larger sample 
size (879 observations) . 

Comparison of Coefficients 

The three sets of coefficients are remarkably similar. 
The significance of the d1fferences in coefficient values 
that do exist can be evaluated from two viewpoints: the 
practical policy analysts and the statistical. From the 
point of view of transportation policy evaluation the con­
cern is with the consequences of the differences for 
ti·ansportation planning dec isions, i.e., differences be-

Table 1. Work mode choice model : definition of variables. 

Variable 

D, 

D, 

OPTC, !NC 

!VTT 
OVTT / D!ST 

AALD. 

AALD, 

BW, 

GW, 

DC!TY. 

DCITY, 

DINC,. 

NWORK, 

DTECA, 

I, !or drive alone 
0, otherwise 
I, for shared ride 
0, otherwise 
Round trip out-of-pocket travel cost\!) hou8ehold annual 

income 1$ l 
Round trip in-vehicle travel time I n11nl 
Round trip out-of-vehicle travel time I min) one-way 

distance \miles) 
Number of automobiles ·licensed drivers, for drive alone 
0, otherwise 
Number of automobiles licensed drivers, for shared nde 
a. otherwise 
l, if worker is head of household, for driver alone 
0, otherwise 
I, if worker is a civilian employee of the federal govern-

ment, for shared ride 
0, otherwise 
I, 1! work place ts in the CBD, for drive :ilone 
O, otherwise 
l, i[ work place is in the CBD, for shared ride 
0, otherwise 
Household annual mcome-800 x number o! persons in ttre 

household, :5 ), (or drive ..tlone J.nd shared ride 
0, otherwise 
Number of workers in the household, for shared ride 
0, otherwise 
Employment density at the work zone \employees per 

commercial acre) '<one-way distance tnulesl, for 
shared ride 

0, otherwise 

tween coefficient values for level-of-service variables. 
As given in Table 2, with the exception of the travel cost 
coeffi.cient for the New Bedford model, all levei-of­
sei·vice coefficients are suCficiently slmliar to warrant 
the conclusion that, ev.en if the model as a whole may 
not be transferable, the level-of-service coeificients of 
the Washington model are. 

The dl.fference between two sets of coefflcients can be 
tested by uslng the Ukelihood ratio test ( 12) where 
the null hypothesis is that the two sets orcoefficients 
are equ.al. To perform this test it would be necessary 
to estimate the model with the two data sets pooled to­
gether ln addition to the two separate estlmations pre­
sented here. This was not done primarily because in an 
actual planning situation access to raw data cannot be 
assumed. Therefore, the original Washington coeffi ­
cients were taken as constants (rather than random vari­
ables) , and the likelihood rat lo test was performed With 
the new data set only. The test statistic is gtven by 

where 

(2) 

L*(gNB) = the log likelihood of the New Bedford 
coefficients on the New Bedford data 
(= -256.5), and 

L *( Bw ASH) = the log likelihood of the Washington co­
efficients on the New Bedford data 
(= -262.4). 

From this, the value of the statistic is 11.8; it is chi­
square distributed with 11 degrees of freedom. The prob­
ability of this statistic exceeding 11 .8 Ls 38.3 percent. 
Therefore, the null hypothesis cannot be rejected, and 
the two sets of coefficients a.re not signliicantly different 
for the New Bedford data. 

Rather than comparing sets of coefficients, the di!fer­
enc es between individual coefficients can be evaluated 
by expressing the significance of the difference between 
the New Bedford or Los Angeles coefficients and the 
Washington coefficients as the t-statistic for the absolute 
difference. The test statistic used is the difference of 
the two coefficients divided by the square root of the sum 
of the variances of the two coefficients, and for large 
samples is normally distributed. Only for two of these 
coefficients (AALD. and AALD,) are the dlfferences sig­
niiicant at the 90 percent level. 

The facts that the original specification gave a reason­
able model in other areas and that the sets of coefficients 
taken together and key level-of-service coefficients are 
not significantly different are encouraging. The differ­
ences between several of the coefficients indicate areas 
in which more research on improved specification could 
be fruitful, and show that the comparison of coefficients 

Table 2. Transferability of work mode choice model Washing run :\ew Bedlord Lus Angeles 
to different cities. 

Variable Coefficient t-Statist1c Coefficient t-Stat1sttc Coefficient <-Statistic 

D. -3 24 -6 86 -2 19B -2 , 648 -2 .746 -4 .85 
D, -2 .24 -5 60 - l. 53 5 -1. 53 5 - l.830 -3 .95 
OPTC !NC -28 .8 -2 .26 -87.33 - l.576 -24 37 -2 .07 
IVTT -0 0 15 4 -2 67 -0.019 9 -0 4849 -0.014 65 -2 25 
OVTT DIST -0 160 -4.08 -0 to l 3 -2 903 -0 . 186 0 -4 02 
AALD, 3.99 10 .08 2.541 3 674 3.741 7 19 
AALD, 1.62 5. 31 0.449 9 0 .847 8 0.609 3 l.58 
BW. 0.890 4. 79 1.026 3. 769 0 .810 l 3.28 
Gw: 0.287 I. 78 
DCITY. -0 .854 -2.75 
DC!TY, -0.404 -1.36 
DINC,. 0.000 07 3.46 0 .000 072 1.279 0 .000 083 2 .31 
NWORK, 0 .098 3 1.03 0.187 4 1.249 0.081 0 0.46 
DTE CA, 0 000 63 l.34 0 .000 60 0 766 5 0 .000 27 2.23 



estimated for two different data sets is a powerful method 
of detecting specification errors. But, whatever im­
provements are implemented, no model will be perfectly 
specified and therefore perfectly transferable, hence the 
motivation for the application of updating procedures for 
the model coefficients. 

PROCEDURES FOR UPDATING 

This section develops several approaches for transfer­
ring a model from one area to another . Since the motive 
for transferring is to provide a reasonable travel de­
mand model while meeting stringent resource con­
straints, the level of effort required for each of these 
approaches will be an important factor in evaluating 
their effectiveness. In terms of level of effort required, 
these approaches can be divided into two broad categor­
ies: those that require a disaggregate sample from the 
area in question and those that do not. 

Transferring With No Disaggregate Sample 

The simplest approach requiring the minimum level of 
effort is to use the existing model with its original co­
efficients. This assumes that all factors relevant to the 
choice. process are embodied in the model, an assump­
tion that wlil never be fully justified. For example, 
the specification of most models contains constant terms 
to accowit for factors not explicttly explained by the 
model. The presence of these constants indicates that 
in fact the model has not captured all aspects of the 
choice process and because these other factors can 
vary between areas, the value of such a constant esti­
mated in one are.a may or may not be appropriate for 
another. Therefore although there is a theoretlcal 
basis for transferring the relationships estimated be­
tween time cost, income, automobile availability, and 
such, there ts no such basis for transferring these con­
stant terms. Fortunately, in most applications data on 
existing conditions are available and the model wlll be 
used to predict changes in travel behavior that result 
from changes ln the independent variables. For incre­
mental predictions, therefore, the constant terms have 
no effect on the results. rn some situations, however, 
data on existing conditions are not W'liformly available 
at the requt.red level of detail and the constants must be 
modified. 

A suitable approach to this might be to use the exist­
ing model with adjustments of these constants. ln thls 
approach the coefficients other than the constants are 
accepted and aggregate data on travel patterns in the new 
area are used to acljust the constants to better reflect the 
e.xistlng situation. The acljustment is performed by 
applying the model to the new area in the way in which 
it will be applied for forecast:lng. The results are ag­
gr egated to the level for which data (e.g. aggregate 
mode splits for work trips for the model tested in this 
paper) are available and the constants then adjusted un­
til the model 1·eplicates the e.xisting aggregate data . 
This Improves the goodness of Ht to the existlng data, 
but the use of areawide averages for the independent 
variables could result u1 poo1·er estimates of the con­
stants because of an aggregation bias. The primary 
criticism of this approach is that in practice, other co­
efficients are not perfectly transferable and adjusting 
only the constant terms will compensate for these errors. 

Transferring Wlth a Disaggregate Sample 

In this category, it ls assumed that at l~ast a small 
sample of observations on individual trip-making be­
havior representative of the study area will be available 
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for use in updating the original model. The sample 
should be selected such that it could be used to re­
estimate the original model. (The effect of sample size 
on the performance of each approach is discussed later.) 
The most straightforward approach ls to use the small 
disaggregate sampie to reestimate all the coeffic ients 
of the original specification, reason ing that, since the 
model specification was successful in one area, it should 
work in another, and that, by using the coefficients esti­
mated on data from the area where the model is to be 
used, none of the original coefficients need be ace epted. 
However, because a model specification results in good 
statistical performance on one particular data set does 
not guarantee that estimating it in another area would re­
sult in reasonable coefficients. Even ii the specification 
were correct, the use of a small sample for estimation 
is a potential source of problems. The maximum likeli­
hood estimation technique used for these models gives 
coefftcient estimates that have asymptotically optimal 
properties. For the small samples used ln this approach, 
it is possible that the resulting biases and standard de­
viations will be large. 

Another approach is to reestimate only the constant 
terms. In this approach, a single coefficient that modi­
fies the scale of the other cc•efficients could also be esti­
mated. This would retain the original trade-offs among 
the independent variables and should give a better good­
ness of fit on existing data. Forecasting accuracy for 
changes of individual variables should increase for those 
coefficients that benefit from the single scale coefficient 
and decrease for the others. 

A better approach is to combine the original coeffi­
cients with those estimated on the small sample. Ideally, 
this should be done in such a way that all of the original 
coefficients ar e modi!ied and at the same time any ad­
verse effects r esulting from the small sample available 
for the new area are minimized. Updating the original 
coefficients by using sample information should result 
in a model that better reflects travel behavior in the new 
area. 

Bayesian Updating 

The methodology used for combining sample information 
with prior information was that of Bayesian statistics 
(13), which relates the posterior distribution in an un­
known parameter, ~ . to the prior distribution in a and 
the sample likelihood function by 

(

Posterior ) (likelihood) 
probabilit) _ of the (prior probability) 
ore given - c x sample ( of e 
the sample given e 

(3) 

(The normalizing constant, C, is to ensure that the re­
sulting posterior distribution is a proper set of probabil­
ities.) The estimated coefficients of the original model 
are random variables that, for large samples, are nor­
mally distributed: This is the prior distribution. The 
data for the small sample for the new area are next used 
to reestimate the model to obtain a different distribution 
of the model coefficients : This is the sample distribution. 
These two distributions are then combined to obtaln the 
posterior, or updated, distribution of the coefficients. 
This is shown in Figure l for the single coefficient case. 

Since both the prior and the sample distributions are 
normal and the variance is assumed to be known, the 
mean and standard deviations for the posterior distribu­
tion in the single coefficient case are 

02 = ((Oi/at) +(11,/a;)J/[(1/ah +{1/aDJ (4) 
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and 

where 

81 = original coefficient, 
9

1 
= sample coefficient, 

82 = updated coefficient, 

(5) 

cr1 = standard deviation of the original coefficient, 
a, = standard deviation of the sample coefficient, 

and 
cr2 = standard deviation of the updated coefficient. 

Thus, 92, the updated coefficient, is a weighted average 
of the original coefficient, 91, and the coefficient esti­
mated from the new sample, a,, the weights being the 
inverse of their respective variances. The extension to 
the multivariate normal case is given by Raiffa and 
Schlaifer (,!1 p. 310). For the case shown in Figure 1, 
in which the prior information is rellable and a relatively 
small sample is used, the posterior distribution of 8 wlll 
be based primarily on the prior information. For the 
case shown ln Figure 2 ln which the prior information is 
not very reliable and a relatively large sample is used, 
the posterior distribution of 9 will be based primarily on 
the sample information. In both cases, the variance of 
the posterior distribution will always be less than that of 
both the prior distribution and the sample likelihood dis­
tribution. 

This procedure also offers an opportu.nity to introduce 
subjective judgments into the model estimation process. 
Consider the case in which the data used to estimate the 
original model are thought to be inaccurate: The variance 
of the original coefficients can be increased to reduce the 
weight of these estimates in the updating process. Sim­
Uarly, if the original estimation has been done a long 
ti.me earlier, the relative weight placed on the prior dis­
tribution can be reduced. 

It should be stressed that the key advantage of the 
Bayesian updating procedure is economic. By combining 
new sample information with prior information, tt per­
mits the use of small sample surveys that, by them­
selves, would not be statistically adequate for updating 
models. This procedure appraKimates the pooling of 
the sample used to estimate the e.'l:isting model with the 
new sample but obviates the need to go back to the 
original sample data. rt also has the advantage of being 
able to subjectively alter the weight of the prior sample 
with relative ease. 

EMPffiICAL EVALUATION OF UPDATING 
PROCEDURES 

This section describes an empirical evaluation of these 
approaches using New Bedford data. Two measures of 
effectiveness, goodness of fit on existing data and fore­
casting ability, are used to compare the models resulting 
from. the various procedures of transferring. Each pro­
cedure ls evaluated in terms of both; the results of this 
empirical evaluation indicate which method dominates at 
a given level of effort. 

Goodness of Fit 

One way of measuring how well a particular model fits 
the existing data la to use the log likelihood of the coef­
ficients of that model for the New Bedford data to deter­
mine a value for a goodness of flt measure such as p2, 
which equals the fraction of the log likelihood explained 
by the model, and ls defined as 

pi= I - [L•(§)]/[L*(Ol] (6) 

where 

L*(0) =the log likelihood of the sample for B = 9 and 
L*(O) = the log likelihood of the sample for B = 0. 

This approach has the advantage that it provides a single 
measure by which to rank the various models. However, 
p

2 is an abstract measure and it is difficult to grasp what 
differences in p2 actually mean in terms of model per­
formance. 

Another approach is to compare the observed mode 
split of the data set with that predicted by the model by 
using values for the independent variables given in the data 
set. This ls done by calculating individual probabilities 
of choosing available modes for each observation using 
the particular model being evaluated. These individual 
probabUities are then summed and compared with the 
observed mode split for the entire data set. These dif­
ferences between observed and predicted mode splits 
provide a more specific measure of the goodness of fit 
of a model. 

Forecasting Ability 

To assess the forecasting ability of the models resulting 
from the transferring methods, the predicted changes ln 
mode split resulting from policy changes are compared 
with the true changes predicted by the New Bedford 
model. The true changes are obviously unknown, but the 
model estimated with the entire New Bedford data set 
provides the best estimate available of the New Bedford 
conditions and therefore the best estimate of the true 
changes. The responses to policy changes are deter­
mined by recalculating the choice probabilities for each 
observation in the data set to account for the changed 
variables. These probabilities are then summed for each 
mode to find the forecasted mode shares. The policy 
selected to evaluate forecasting ability was that of asslgn­
lng preferential lanes for multiple occupancy vehicles, 
resulting in a 15 percent decrease in shared ride and 
transit in-vehicle travel time. 

EVALUATION OF APPROACHES FOR 
TRAN SF ERRING 

The following models are used in this empirical evalua­
tion: 

1. True New Bedford model- the model estimated 
on the entire New Becliorcl data set (453 observations), 

2. Washington model- the original model estimated 
on Washington data, 

3. Washington model with updated (aggregate) con­
stants- the original Washington model with the constant 
terms adjusted by use of aggregate mode split data, 

4. New Bedford small sample models- models esti­
mated on small random samples taken from the New 
Bedford data set [ the size of the sample is indicated by 
the number of observations ( 44, 89, or 177)), 

5. Washington model with updated (disaggregate) con­
stants- models resulting from using disaggregate sam­
ples to reestimate the constant terms and a scale factor 
for all other coefficients, and 

6. Model resulting from Bayesian updating- models 
resulting from Bayesian updating with the inverse of the 
variance-covariance matrix as the weighting factor. 

Before discussing the evaluation results, a point 
should be made concerning the bias introduced into the 



Figure 1. Posterior distribution 
resulting from sharp prior and 
diffuse (small) sample. 

Table 3. Evaluation of approaches for transferring. 

Figure 2. Posterior distribution resulting from diffuse prior and sharp 
(large) sample. 
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Predicted - Observed '.'vlode Shares• l ~) Predicted - True Changes in Mode Shares' t•l 
No. of 

Updatrn~ Procedure Observations ,,' Drive Alone Shared Ride Transit Drive Alone Shared Ride Trana it 

True New Bedford model 0 .412 0 0 
Washington model 0 399 -0 39 -0 7 
Washington model wtth 0. 398 -1.90 0 .96 

updated I aggregate) 
constants 

New Bedford small 44 0. 29 1 -4 .91 3 55 
sample models 89 0 382 -1.69 0.31 

177 0 .397 - 1.20 -0 58 
Washington model with 44 0. 396 -3 51 4,22 

updated ld1s...:gregate ) 89 0 40 1 -1.33 0 83 
constants 177 0 .398 - 1.95 0 .35 

Models resulting from 44 0. 399 -2 . 20 l. 26 
Bayesian updating 89 0 400 -0 ,39 - 1 16 

177 0.400 -0 51 I 03 

• obser"ed mode shares arednve a1on e = 55 12. shared ride :: 37 76 . tra ns1 c = 7 1201
., 

'' True mode share cnanges are cuive alone= 1 0 1. shared ride-;; 0 .96 transit -= O . OS~o 

evaluation measures. Because the observations for the 
small samples used in some of the transferring methods 
a.re taken from the data set that was used as the standard 
for New Bedford the resulting measures of effectiveness 
for these approaches are biased toward indicating better 
performance, especially for the models estimated di­
recUy on these small samples. The magnitude of this 
bias varles with the sample Size: For example, the bias 
fot• the model using 44 observations is relatively small 
since 409 observations (90 percent of the full data set) 
are different from those used in estimating the model. 
For the model using l '17 observations, however, the bias 
may not be negligible since only 276 observati.ons (61· 
percent of the full datci. set) are different. 

The p2 values for the different models are listed in 
Table 3. For sample sizes of less than 89 observations, 
performance ls very poor : the sma.il sample approach 
requires a sample size of at least 180 observations. 1n 
general, the Bayesian updating approach ls best. 

The comparison of predicted versus observed mode 
shares for the existing data ls given in Table 3 for the 
enttre data set. As observed with the o? values, below 
89 observations the performance decreases for all ap­
proaches to transferring that require a disaggregate 
sample. The pattern of errors is not the same for all 
three modes and no gene1·al pattern of dominance 
emerges. Overall, the Washington model and the Bay­
esian updating models performed better than other ap­
proaches, particularly for the drive alone mode. The 
performance of the different approaches tn predicting 
changes in mode shares due to a preferential lanes policy 
is also given in Table 3. The Bayesian updating ap­
proac~ in general performs better than the other ap­
proaches; the Washington model is superior to small 
sample models. 

0 0 o 0 
1.09 0 .25 -0.24 0 01 
0.94 0.22 -0 .21 -0 .01 

l.36 -1.04 I 09 -0 .05 
1.37 -2.30 2.28 0.02 
l .78 0 .82 -0. 78 -0 .04 

-0. 71 0 37 -0 .34 -0 .03 
0.50 0.36 -0 .34 +-0.02 
I. 59 0 26 -0 .26 0.0 
0.91 0 .27 -0.26 -0.01 
1.56 0.24 -0 25 0 01 
I. 54 0 20 0 .20 0.0 

CONCLUSIONS 

The most interesting result of this empirical study is the 
surprisingly good performance of the original Washington 
model on both the New Bedford and Los Angeles data 
sets. This is remarkable in view of the fact that the New 
Bedford and Los Angeles data sets represent very differ­
ent conditions than those existing in the Washington data 
set. Although differ enc es in individual coefficients be­
tween the models were observed, only three of these 
differences can be considered significant. Of all the 
approaches to updating the original model, Bayesian up­
dating gives consistently better results. The small sam­
ple approach resulted in models that were inferior to the 
original Washington model for every measure of effec­
tiveness and is clearly unreliable for the purposes of 
transferring. 

Two approaches were taken to updating the constants: 
one using aggregate mode split data and the other using a 
s mall sample. For the first approach, because the orig­
inal model had lit the data so well, the resulting model 
performed more poorly than the Washington model. Al­
though slight improvements in some measures were ob­
served for reestimating the constants, these improve­
ments were insignificant when compared with those re­
sulting from Bayesian updating. Therefore, the approach 
of reestimating the constants, like the small sample 
approach, is an inefficient use of the disaggregate sam­
ple for updating. 

However, the superior performance of the Bayesian 
updating approach to that of the small sample models 
can be attributed to the good performance of the Washing­
ton model by itself for the New Bedford data. If the 
Washington model had had serious specification errors 
the small sample models would probably have performed 
much better relative to the Bayesian updating models. 
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Thus, it is clear that a credible specification is a pre­
condition to any attempt to transfer a model. 

In summary, three important conclusions are indi­
cated from the empirical results : 

1. A well-specified disaggregate mode choice model 
is transferable. 

2. It is useful to update the model coefficients when 
transferring. 

3. The Bayesian updating procedure using a small 
disaggregate sample is the most effective procedure 
for transferring well-specified models. 

The emplrical results reported ln this paper are 
based on a model for the condition.al probability of mode 
choice, which is only one component of the entire travel 
demand model system. These results are indicative but 
further work is needed ln other aspects of travel demand 
for which model development effort has been significantly 
law er. 
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Guidelines for Aggregate 
Travel Prediction Using 
Disaggregate Choice 
Models 

Frank S. Koppelman, The Transportation Center, Northwestern University 

This paper describes procedures for aggregating disaggregate choice mod· 
els after estimation of the choice model parameters to obtain an aggre­
gated modal structure. This structure consists of (a) a disaggregate choice 
modal , (b) a representation of the distribution of eicplanatory variables. 
and (cl an aggregation procedure. A taiconomy of aggregation procedures 
that classifies models according to their structural characteristics is de­
veloped. Errors in prediction by use of alternativa aggregation procedures 
are empirically estimated . Analysis of thMe errors leads to conclusions 
about the performance of dltterent aggregat ion procedures. These con· 
clusions suggest the following guidel ines for aggregate travel prediction 
using d isaggregate choice models: (a) Disaggregate choice models may be 
most effacttvely used for prediction at high levels of aggregation appro· 
pr late to policy analysis ; (bl enumeration procedures should be used 
whenever adequate sample data are available, especially at high levels of 
aggregation; (cl when sample data are not available , classification proce­
dures should be based on the most important class dis'tinction, which will 
be differences in choice set when such differences eicist ; (d) when data are 
not available to predict class specific variable values, predictions by the 
naive procedure should be adjusted for differences in choice set when such 
differences exist ; (el the specification of the underlying disaggregate 
choice model should be develo.ped and evaluated with particular care in 
the grouping of ind.ividuals with struoturally different choice sets; and (t ) 
incremental prediction should be used for prediction of the aic pected im· 
pacts of policy changes whenever an existing set of choice shares is avail· 
able to_ use as a basis for adjustment. 

A central component of transportation planning and pol­
icy analysis is the prediction of the future performances 
and impacts on the transportation system for each of the 
available plan or policy alternatives. These predictions 
should pr ovide adequate information about the effects oi 
each alternative so that an informed choice can be made 
among them and should distinguish among the effects of 
diiferent policies with i·espect to travel flows, system 
performance, and external impacts . The evaluation and 
selection process requires that these predictions be at 
a level of aggregation that is relevant to the alternatives 
under study and the prec ision with which they have been 
formu lated. 

In contrast with the need for aggregate predictions 
based on aggregate descriptions of transportation plan 
and policy options, travel behavior theory is postu­
lated at the level of the behavioral unit-usually an indi­
vidual or household. Group behavior, which is the ob­
ject of prediction, is the aggregation of numerous travel 
choices of individual behavioral units . This aggregation 

is implicit in the use of models that are estimated on 
mean value aggregate data. When disaggregate choice 
models are used the aggregation is accomplished by use 
of an explicit aggregation procedure. The aggregate 
predietion will be sensitive to both the structure of the 
disaggregate choice model and the distribution of in­
dependent variables in the population or predlction 
group (1). 

Ther-e are two approaches to the development of ag­
gregate prediction models that are consistent with un­
derlying disaggregate behavior. The first approach 
is to aggregate the model to obtain a consistent struc­
ture that can be estimated with aggregate data (Fig­
ure 1, part A) and then to use this model to make 
aggregate predictions. When the underlying choice 
model is nonlinear and the aggregate groups are not 
homogeneous, a consistent aggregate function will in­
clude parameters of both the choice model and the distri­
bution of independent variables. The requirements on 
the structure of the cholce model and the distribution of 
variables necessary to develop a consistent estimable 
aggregate relationship are extremely restrictive . The 
only successful example of this approach (2) i:s limited 
to use with the binary probit choice function and requires 
the assumption of multivariate normally distributed var ­
iables. The estimation is based on information about 
the distribution of variables in aggregate groups as well 
as on their mean values . The second approach is to 
estimate a disaggregate choice model using disaggregate 
data and then aggregate the estimated choice model when 
i t is used for prediction (Figure 1, part B). The ad­
vantage of this approach is that it makes no assumptions 
about the future distribution of independent variables 
prior to the model estimation: Assumptions about the 
distribution of independent variables can be deferred 
until the time of prediction and may be varied for each 
prediction situation. 

It is conceptually simple to make aggregate predic­
tions of travel behavior when the characteristics of in­
dividual trip makers and the alternatives available to 
them are known or can be predicted. In this case, pre­
dictions of the expected choice behavior can be made for 
each individual and summed or aver aged to obtain the ag­
gregate travel predictions (!). Generally, however, this 
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disaggregate information is not available and aggregate 
predictions must be based on a less than completely de­
tailed set of independent variables. 

This paper reports the results of a study of the ac­
curacy of predictions based on disaggregate choice mod­
els using less than completely detailed data. It describes 
the structure of aggregated prediction models, develops 
a taxonomy of aggregation procedures, describes the 
error in prediction by alternative aggregation procedures 
in different prediction situations, and develops tentative 
conclusions about the performances of the different ag­
gregation methods in different prediction situations. It 
then proposes a set of guidelines based on these conclu­
sions for prediction with disaggregate models. 

STRUCTURE OF AGGREGATED 
PREDICTION MODELS 

Any model that predicts the travel behavior of groups of 
beha.vioral units is an aggTegate prediction model . Such 
models predict travel demand at some level of aggrega­
tion based on input variables that are also aggregate. 

An aggregated prediction model explicitly Incorpo­
rates disaggregate behavioral relationships in a structure 
that describes the causal relationship between socio­
economic and travel service characteristics on the one 
hand and aggregate travel behavior on the other. A 
model structure for aggregate prediction based on dis­
aggregate travel choice relationships has three com­
ponents. These are (a) a disaggregate choice model, 
tb) a representation of the distribution of explanatory 
variables, and (c) an aggregation procedure that oper­
ates on the two other components to obtain the required 
aggregate prediction. This structure of an aggregated 
prediction model makes explicit two important advan­
tages of aggregated prediction models over aggregate 
models based on correlative analysis of aggregate data . 
These are sensitivity to changes in individual behavior 
due to changes in travel service or other environmental 
attributes, including policy control variables, and sen­
sitivity to changes in the distribution of the characteris­
tics of the population that makes up the prediction group. 

The disaggregate choice model relates the probability 
of choosing one alternative out of a set of avaUable al­
ternatives to the relative use of each alternative to the 
individual decision maker. The utility of an alternative 
is defined as a function of the characteristics of the in­
dividual and the attributes of the alternatives available 
to him. The choice model may have a wide range of 
functional forms that are derived from the underlying · 
assumptions about the choice process of the individual 
(4, 5) . 
- it'he distribution of independent variables describes 

the presence in the prediction group of individuals with 
different socioeconomic characteristics or facing dif­
ferent transportation service attributes . That is, the 
distribution represents the frequency of occurrence in 
the prediction group of different values of t.he socioeco­
nomic and travel service variables that influence indi­
vidual travel choice decisions. These distributions may 
be represented in a variety of ways and with different 
degrees of detail. The various methods for represent­
ing the distribution of variables are given below. 

1. Enumeration represents the distribution of vari­
ables by actual or estimated values of the variables for 
individuals. Complete enumeration provides variable 
values for every member of the aggregate prediction 
group. Partial enumeration provides variable values 
for a subset of the prediction group. 

2. Density functions represent the distribution of 
variables by the frequency of different variable values in 

the prediction group. These distributions are based on 
theoretical or empirical analyses or both, which describe 
the structure of the distributions and their parameters. 

3. Distribution moments represent the distribution of 
variables in terms of moments and cross moments, which 
provide information abo1;1t the spread and shape of indi­
vidual distributions and their interactions . 

4. Classification represents the distribution of vari­
able values in terms of the proportion that is assigned 
to each of several relatively homogeneous subgroups. 

The different methods of representing the distribution 
of independent variables provide similar information 
about the actual distribution in different forms. The rep­
resentations may, to some degree, be transformed to al­
ternative representations. Some transformations imply 
a loss of information while others imply an increase in 
information by the use of externally available information 
or simplifying assumptions . Enumeration, if based on a 
large enough sample, can be used to estimate parameters 
of a density function or distribution moment and can be 
used as a basis for classification. Density functions can 
be used to determine distribution moments or as a basis 
for classification. Distribution moments may be used to 
identify density functions directly or by augmenting them 
with an assumed distributional form. Classifications, 
unless they are extremely fine, cannot be used to gener­
ate any of the other distributional representations . The 
process of transformation may be used to modify an ini­
tial representation to an alternative representation that 
is required as input to a selected aggregation procedure. 

The aggregation procedure operates on the disaggre­
gate choice model and the distribution of independent 
variables to produce aggregate predictiona. The theo­
retically consistent aggregation procedure is to estimate 
the choice probabilities for each individual and then av­
erage these choice probabilities to obtain the expected 
share choosing each alternative. The extreme data re­
quirement of this procedure, prediction of all variable 
values for every member of the prediction group, mo­
tivates a search !or aggregation methods that have less 
extensive input data requirements. A variety of alterna­
tive aggregation procedures have been proposed for this 
purpose. These procedures can be grouped in five cat­
egories: 

1. Procedures of enumeration are procedures that 
represent the explicit theoretical relationship between 
aggregate and disaggregate demand. The expected share 
choosing an alternative ls the average of the individual 
choice probabilities for that alternative. Complete enu­
meration averages the choice probabilities for all indi­
viduals in the prediction group; sample enumeration av­
erages the choice probabilities for a sample or subset of 
individuals in the prediction group. 

2. Procedures of s ummation or integration weight 
conditional disaggregate choice probability estimates by 
the probability density function for the independent var­
iables. This is done by integration or summation over 
the multivariate distr ibution of explanatory variables in 
the prediction group . The computational requirements 
of procedures in this group are high if the integration or 
summation must be applied over a large number of var­
iables. 'This group of procedures may use distributions 
(density functions) determined from theoretical and em­
pirical analyses , or assumed distributions that offer 
computational or other advantages. The most advanta­
geous distributional assumption is that the variables are 
multivariate normally distributed (2, 6) . 

3. Procedures of statistical differentials express ag­
gregate shares as a function of the moments of the utility 
distribution. The aggregate function is obtained by lin-



Figure 1. Alternative procedures to obtain aggregate predictions 
based on disaggregate choice models . 
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earizing the disaggregate choice function by the use of a 
Taylor series expansion and then taking expectation 
across the aggregate prediction group ( '!) . U the utility 
function of the alternatives is a linear function of the in­
dependent variables, the share estimate is given by a 
s er ies of terms that includes the nth order derivative 
multiplied by the nth distributional moments and divided 
by n factorial. The practical issues associated with es­
timating higher order moments and the instability of the 
series when the distribution is highly dispersed (8) sug­
gest that the series be terminated after the second, or 
variance, term. 

4. Procedures of classification assign members of 
the aggregate group to identifiable classes, use the av­
erage variable values for each class to predict aggregate 
choice shares for each class, and compute overall ag­
gregate share as the weighted average of the class 
shares. Procedures in this group are differentiated 
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by the basis of classification and the number of classes 
used. Alternative possibilities include classification by 
differences in choice set and classification by differences 
in variable values . 

5. Naive procedures use the mean value of the choice 
influencing variables in the disaggregate choice function. 
These procedures implicitly assume that each individual 
acts as If he is described by the average values of the 
prediction group. The naive procedure is a special case 
of summation or integration procedures (the distribution 
is assumed to be concentrated at a point), statistical dif­
ferentials procedures (truncating the series after the 
first term), or classification procedures (using one class 
only). It is useful to treat thi.s procedure separately be­
cause (a) the data requirements are the same as those 
for models ca.librated with aggregate data, (b) it is com­
putationally and conceptually simple, and (c) it is the 
method most likely to be used in the absence of recogni­
t ion of the aggregation problem. Predictions by naive 
procedures can be adjusted to account for differences in 
choice set availability when such differences exist. 

The different types of aggregation procedures may be de­
scribed i n terms of the taxonomy represented in Figure 
2. The major classes of aggregation procedures are di­
vided into differentiable subgroups of procedures . These 
subgroups are defined by their important characteristics. 

INFLUENCE OF PREDICTION ENVIRONMENT 
ON CHOICE OF AGGREGATION PROCEDURE 

Choice of an aggregation procedure for use in a specific 
prediction environment depends on the expected magnitude 
of the aggregation error of alternative procedures and 
the contribution of the aggregation error to the overall 
error in prediction from all sources. The aggregation 
error of alternative procedures depends on the prediction 
situation, particularly the distribution of explanatory 
variables in the prediction group, the level of aggrega­
tion, the differences In choice set availability among 
group members, and the choice probabilities for the av­
erage member of the prediction group (~. The contri­
bution of the aggregation error to the total error in pre­
diction from all sources depends on the magnitude of the 
aggregation error relative to the magnitude of error from 
other sources. The prediction error from other sources 
is determined by decisions made in the model formulation 
and prediction process (3). These decisions include the 
soecification of the disaggregate choice model including 
the functional form and variables to be included, the se­
lection of data to be used in model estimation, the method 
selected to represent and predict the distribution of ex­
planatory variables, and the selection of the aggregation 
procedures to be used . The characteristics of the pre­
diction situation and the decisions made in the model de­
velopment and prediction process influence both the ag­
gregation error and the errors from other sources. 

ANALYSIS OF ERRORS IN PREDICTION 
WITH DISAGGREGATE CHOICE 
MODELS 

Errors in pr ediction with disaggregate choice models 
arise from each of the components of the aggregated 
model structure . For the purpose of the following dis­
cussion, these errors in prediction are separated into 
two categories : 

1. Model and variable error, which includes errors 
in the specification of the choice model, errors in pa­
rameter estimation, and errors in the input variables; and 

2. Aggregation error, which includes errors due 
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to the use of approximate aggregation procedures. 

Empirical analysis of these errors was based on pre­
diction of mode shares to work in the Washington metro­
politan area for the drive alone, shared ride, and tran­
sit modes . The predictions were made for aggregate 
groups Identified as 45 districts with an average sample 
size of 47, 10 super-districts with an average sample 
size of 213, and four rings with an average sample size 
of 533 . The disaggregate mode choice model predicts 
the probability of drive alone, shared ride, ana transit 
choices for the first work trip of breadwinners working 
in the CBD. The overall mode shares in the prediction 
sample were 38, 30, and 32 percent for the drive alone, 
shared ride, and transit alternatives respectively. The 
model specification and parameter estimates based on 
824 work trips, of which 621 had all choices avallable 
and 253 did not have the drive alone alternative available 
due to lack of a car or driver's license, are given below. 

Estimated Standard 
Variable Symbol Coefficient Error 

Drive alone dummy Dd ·2 .62 0.36 
Shared ride dummy D, ·2.36 0.27 
Automobiles per licensed 
driver (drive alone) AALDd 3.64 0.38 

Automobiles per licensed 
driver (shared ride) AALD, 1.51 0.24 

Out·of·vehicle cost per in· 
come OPTC/INC ·0.028 0.012 

Total travel time TTT ·0.024 0.005 
Out·of·vehicle time per dis· 

tance OVTT/DIST ·0.077 0.055 
Government worker (shared 
ride) GW, 0.77 0.16 

Number of workers in 
household (shared ride) NWORK, 0.24 0.10 

The aggregation procedures used include the naive pro­
cedure, with adjustment for choice set availability, the 
statistical differentials procedure, with mean and vari­
ance terms, and classification by differences in choice 
set availability and automobile ownership. 

Model and variable error in prediction was estimated 
by comparison of share predictions by the enumeration 
procedure against observed choice shares in the data set. 
Aggreg~tion error was determined by comparison of 
share predictions by a selected aggregation procedu.re 
against share predictions by the enumeration procedure. 
Both types of error are reported as a percentage of the 
magnitude of prediction. Prediction errors were ob­
tained for each prediction group (districts, super­
districts, or rings) and each choice share. These errors 
are summarized in terms of average error, standard 
deviation of the error, and root mean square error (3). 
The combined error (model and variable error and ag­
gregation error) is the square root of the squared model 
and variable error and the squared aggregation error. 
(This formulation implies independence between the er­
rors from these two sources. This is a reasonable as­
sumption in the absence of structural interdependence.) 
It is most sensitive to changes in the magnitude of error 
from the source that contributes the larger error. 

COMPARISON OF AGGREGATION 
PROCEDURES 

The naive procedure produced aggregation errors of ap­
proximately 10 percent of predicted values. Adjustment 
of the naive procedure by choice set availability reduced 
aggregation error to about 8. 5 percent. Classification by 
choice set and automobile availability reduced the aggre-

gation error to about 3 percent. The statistical differen­
tials procedure resulted in higher aggregation error than 
the naive procedure . [ Under certain conditions the sta­
tistical differentials produced can be expected to increase 
rather than decrease the aggregation error (9 ). ] The er-
rors are as follows : -

Error of Different Aggregation Procedures(%) 

Prediction Naive With Statistical Classification 
Group Naive Adjustment Differentials by Choice Set 

Districts (45) 10.5 8.1 12.9 3.3 
Super· 
districts ( 10) 9.8 8.5 11.8 2.9 

Rings (4) 9.6 8.4 12.2 2.8 

These results suggest the following conclusions: 

1. When differences in choice set availability exist, 
these differences should be used as a basis for adjusting 
predictions by the naive procedure or as a basis for clas­
sification. 

2. The statistical differentials procedure should be 
used only after verifying that it actually reduces aggrega­
tion error in prediction. 

LEVEL OF AGGREGATION 

Increasing levels of aggregation are expected, a priori, 
to have two effects on prediction error . First, model and 
variable error is expected to decline . This reduction of 
error results from averaging the expected choice proba­
bility over the larger sample of observationa in the more 
aggregate prediction group . If the sample predictions 
are independent, the expected error in the estimate of 
choice shares would be inversely proportional to the 
square root of the number of observatlons in the predic­
tion group. Predictions made with a common disaggre­
gate choice model are not independent (3). Therefore, 
the effect of increas ing the prediction group size should 
be less than proportional to the prediction group si.ze . 
Second, aggregation error is expected to be larger for 
prediction groups with greater geographical dispersion 
as these groups are also expected to have greater dis­
persion of explanatory variable values. 

The first expectation is supported by the results ob­
tained. The model and variable error for each mode, 
and for all modes combined, declined with increasing 
level of aggregation. 

Model and Variable Error (%) 

Drive Shared Transit All 
Prediction Group Alone Ride Ride Modes 

All districts (45) 19.8 35.4 28.7 27.B 
Super-districts ( 10) 12.3 24.9 21.6 19.7 
Rings (4) 5.4 18.0 20.1 15.4 

This decline in errors was less than proportional to the 
square root of prediction group slze. On the other hand, 
the second expectation is not supported by the results, 
as the aggregation error for the three different aggrega­
tion procedures was not strongly or consistently related 
to the level of aggregation. This is a consequence of the 
fact that increasing levels of aggregation do not lead to 
significant increases in intragroup variation in socioeco­
nomic characteristics (10) or in intragroup differences 
in mode service characteristics. The net effect of these 
results, however, is that the combined error in prediction 
declines with increasing levels of aggregation as given 
below. As the size of the prediction group increases, 
the portion of the combined error attributable to aggre­
gation error increases and the differences in prediction 
errors between aggregation procedures are amplified. 

-



Combined Error of Different Aggregation Procedures (%) 

Prediction Naive With Statistical Classifi · Enumera-
Group Naive Adjustment Differentials cation ti on 

Districts 
(45) 29 .7 29.0 30.7 28.0 27.8 

Super-
districts 
(10) 22.0 21.4 23.0 19.9 19.7 

Rings (4) 18.1 17 .5 19.7 15.7 15.4 

These results lead to the following conclusions: 

3. Predictions made with disaggregate choice models 
based on a fixed data set increase in accuracy as the 
level of aggregation increases. 

4. The relative improvement in prediction error 
from the use of more precise aggregation procedures 
increases as the level of aggregation increases. 

DIFFERENCES IN CLASSIF1CATION 
STRUCTURE 

The classification procedure used classifies the popula­
tion according to both choice set availability and intra­
household automobile availability. This classification 
was compared to classification solely by choice set 
availability and classification solely by intrahousehold 
automobile availability to identify the influence of dif­
ferent classification schemes on aggregation error. 
The aggregation errors for all three classification pro­
cedures at three levels of aggregation are given below. 

Prediction Group 

Districts 
Super-districts 
Rings 

Aggregation Error of Different Classification 
Procedures (%) 

Choice Set and 
Automobile 
Availability 

3.3 
2.9 
2.8 

Automobile 
Availability 
Alone 

9.9 
8.4 
7.8 

Choice Set Alone 

5.2 
5.2 
5.3 

The most complete classification that by choice set and 
automobile availability, has the least aggregation error . 
Classification by choice set alone has substantially lower 
aggregation error than classification by automobile 
availability alone. These results lead to two further 
conclusions: 

5. Increasing refinement in classification leads to 
redu·ced aggregation error. 

6. Classification by differences in choice set avail­
ability, when appropriate, results in lower levels of ag­
gregation error than classification by variable values. 

CHOICE MODEL SPECIFICATION 

The large magnitude of model and variable error rela­
tive to aggregation error indicates the need to improve 
the choice model specliication . The model and variable 
erro1·s reported for the different levels of aggregation 
are substantially higher for the prediction of shared ride 
and transit shares than for the prediction of drive alone 
mode shares . The sources of these errors can be in­
vestigated by disaggregating them into average error 
and standard deviation of error for each mode as given 
below. The large errors in the prediction of shared 
ride and transit ride shares compared to drive alone 
shares are due to both higher average errors and greater 
standard deviation of errors . The opposite signs of the 
average error for shared ride and transit and the higher 
magnitude of average error and variability indicate that 
the model ls deficient in predicting shares between these 
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two alternatives. This deficiency may be due to inherent 
difficulties in specifying the utility function for these al­
ternatives (due to large variations in excluded character­
istics such as comfort and convenience or greater hetero­
geneity of preferences for different types of aroup ride 
alternatives) . It may also be due to too great reliance 
on the independence of irrelevant alternatives axiom to 
estimate model parameters for individuals with different 
choice sets. The errors are disaggregated as follows: 

Model and Variable Error Dis-
aggregated by Error Type 

Drive Shared Transit All 
Error Type Alone Ride Ride Modes 

Average error +1.6 -7.1 +4.1 4.5 
Standard deviation of error 19.7 35.3 28.4 27 .3 
Root mean square error 19.8 35.4 28.7 27.8 

These results suggest two additional conclusions: 

7. Analysis of error in prediction provides a basis 
for reevaluation and modification of the disaggregate 
choice model. 

8. Individuals with structurally different choice sets 
should not be combined for estimation without testing the 
effect of this grouping on estimation and prediction errors. 

PREDICTING CHANGED CHOICE SHARES 

The discussion to this point has been concerned with the 
prediction of existing choice shares . We now turn our 
attention to prediction of choice shares after a change in 
travel service characteristics. The changes considered 
a.re (a) provide shared ride incentives to all trip makers 
(change 1) (b) reduce transit fares to zero (change 2), 
and (c) reduce transit times by one-half (change 3). The 
expected effect of these changes on mode share for the 
entire data sample is given below. 

Mode Choice Shares 

Prediction Situation Drive Alone Shared Ride Transit Ride 

Change 1 
Change 2 
Change 3 
Base 

0.35 
0.37 
0.35 
0.39 

0.36 
0.26 
0.23 
0.28 

0.30 
0.37 
0.42 
0.33 

The new mode shares may be predicted directly by mod­
ifying the variables to reflect the policy changes. Al­
ternatively, the new mode shares may be obtained by 
predicting the incremental cha.nge i.n shares resulting 
from a change in policy and using the predicted change 
to modify the observed choice shares. The aggregation 
error by the incremental prediction procedure ls sub­
stantially lower than that by the direct procedure for all 
aggregation methods and for all of the policy changes. 
Thls result suggests the following conclusion: 

9. lncremental prediction should be used to predict 
aggregate choice shares after policy change whenever 
predictions can be made for an observed set of choice 
shares to provide a base .for adjustment . 

SUMMARY 

The preceding discussion describes a framework for the 
use of disaggregate choice models for the prediction of 
aggregate choice shares and proposes a taxonomy of pro­
cedures for making aggregate predictions based on dis­
aggregate choice models . The aggregation error and 
the effect on the combined error of d.ifferent aggregation 
procedures are empirically estimated for a variety of 
prediction situations. The results are summarized in 
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a set of conclusions about the expected performances of 
selected aggregation procedures in specific situations. 
These conclusions suggest the following guidelines for 
aggregate prediction using disaggregate choice models. 

1. Disaggregate choice models may be most effec­
tively used for prediction at high levels of aggregation 
appropriate to policy analysis. 

2. Enumeration procedures should be used whenever 
adequate sample data are available, especially at high 
levels of aggregation. 

3. When sample data are not available, classification 
procedures used should be based on the most important 
class distribution (which will be differences in choice 
set when such differences exist). 

4. When data are not available to predict class spe­
cific variable values, predictions by the naive procedure 
should be adjusted for differences in choice set when 
such differences exist. 

5. The specification of the underlying disaggregate 
choice model should be developed and evaluated with 
particular care in the grouping of individuals having 
structurally different choice sets. 

6. Incremental prediction should be used for pre­
diction of the expected impacts of policy changes when­
ever an existing set of choice shares is available to use 
as a basis for adjustment. 
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A Disaggregate Modal-Split 
Model for Work Trips 
Involving Three 
Mode Choices 

Jeffrey Ganek, * American Telephone and Telegraph Company, New York 
Raymond Saulino,* Office of Budget and Management Systems, District of 

Columbia 

This paper d&Jcr ibas a disaggregate mode choice modal with three travel 
modes: drive alone, car pool , and traruit. A number of alternative modal 
specifications ware tasted and the results analyzed. In general, the coaf· 
ficiants of in·vehicle time, out-of·vehicle time. and costs agree closely 
with the results of similar studies. Estimated coaHiciants of variables 
not included in previous logit model studies are also presented : Of these 
c:onvanienoa. comfort, and flexibility influenced mode choice but mode 
unreliability and household income did not. Work location, cars per 
driver, and sax were the only socioeconomic variables for which statis· 
tically significant coefficients were found . Coefficients and models ware 
als.o estimated for various subpopulations of commuters. The detarmi· 
nants of mode choice for CBD workers were diffe rent from those of non· 
CBD workers. Differences in the cost and time coefficients among travel 
corridors and income classes were also examined. The estimated models 
ware validated by successfully predicting the mode choices of the com· 
muters for whom the model was estimated, of other commuters, and, 
finally . of commuters for whom chang8$ in the levels of service were 
made available. 

This paper discusses a study that explored the determi­
nants of commuter mode choice in the six-county region 
around Pittsburgh. The study was part of an evaluation 
of the car pool-public transit program administered by 
the Southwestern Pennsylvania Regional Planning Com­
mission (SPRPC) . Models of the multinomial logit form 
were estimated on disaggregate data to predict the short­
run mode choices of commuters in the region, given the 
current work locations, residential locations, and auto­
mobile ownership patterns. The models predicted these 
choices from a set of alternative modes that include 
driving alone, car pooling, and riding on public transit 
as functions of the socioeconomic status (SES) of the 
commuters and the service attributes of the three modes. 
Variances in the influences of particular SES character­
istics and mode attributes were determined by testing 
alternative specifications on subpopulations defined by 
work location and SES characteristics of the commuters. 
The objectives of this work were to learn why commuters 
choose the modes they do and to suggest how they could 

•Both authors were at Carnegie·Mellon University when this research was 
performed . 

be enticed to choose shared ride modes. 
The region around Pittsburgh has several concentra­

tions of commercial and industrial employment. The 
largest of these is the CBD, which has five major trans­
portation corridors leading to lt from suburban areas. 
The quality of transportation services varies among these 
corridors. The southwest and east corridors have lim­
ited access highways that run to the CBD. The southern 
corridor is plagued by bottleneck problems as automo­
biles attempt to pass through Mt. Washington and over 
the Monongehela River. The northern corridors have a 
network of well-traveled streets where traffic flow is 
regulated by stop lights. Bus service to the CBD is 
available along all corridors, and streetcar lines, some 
of which have a right-of-way, run from the south. Com­
muter rail service is limited, and transit service to non­
CBD locations is not extensive . The region served by 
these transportation systems has a population of over 2 
million, with an average density of 300 people/km~ 
The SES characteristics of the population are not dif­
ferent from the average characteristics of populations 
of other large standard metropolitan statistical areas. 
The region under study, then, has a diverse and 
well-established transportation system serving a dense 
population. 

METHODOLOGY 

The methodology used to estimate mode choice models 
was the multinomial logit form (1). This methodology 
was chosen because of its use for policy analysis due 
to its base in behavioral theory, its capacity to con­
sider choice sets greater than two, and its successful 
application in other studies (~, ~). 

DATA 

The data used in this study were obtained from commuter 
surveys conducted as part of the study and from the 
Southwestern Pennsylvania Regional Planning Commission 
(SPRPC) travel time and cost networks. The complete 
data base included the SES characteristics, commuting 
preferences, and transportation services available to 
740 commuters in the six-county region. This sample 
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population was generally representative of the working 
population of the region in terms of SES characteristics 
and available transportation services although there was 
a slight overrepresentation of commuters who work in the 
CED. Additional data were obtained from a survey of 
commuters matched with potential car peelers by SPRPC. 

The data used to estimate the model are discussed below. 
In-vehicle time (IVT) is the time in minutes that 

commuters spend in their primary vehicle on a one-way 
work trip. These were obtained from the SPRPC net­
work data. 

Access time (A TIME) is the time in minutes that 
commuters spend between leaving home and reaching the 
primary vehicle for their work trip. Commuter estimates 
of the ATIME of their chosen modes were obtalned from 
the surveys . Estimates of the ATIMEs of nonchosen modes 
were also derived from these survey results. A TIMEs 
for the transit alternative for nontransit riders were es­
timated to be 6.98 min, the mean ATIME report by tran­
sit riders. ATIME for the drive alone alternative was 
assumed to be 0 for all commuters . All car poolers 
were assumed to have a 4-min ATIME for the car-pool 
alternative, the mean time reported by car poolers . It 
was assumed that of all commuters those with lower 
car-pool ATIMEs would tend to car pool more often than 
those with higher; there'fore, noncar poolers were as­
signed 6-min car-pool ATIMEs. 

Egress time (ETIME) is the time in minutes that com­
muters spend between leaving the primary vehicle and 
arriving at the workplace. The ETIMEs that commut­
ers reported for their chosen modes were used in es­
timating the model. ETIMEs for nonchosen modes were 
derived from the same data . The ETIMEs were gen­
erally homogeneous within commuter subpopu.lations de­
fined by chosen mode and location of workplace (i.e., 
CED or non-CBD) . Therefore, the mean ETIME for 
each mode ridership to CBD workplaces and the mean 
time for each mode ridership to non-CBD workplaces 
were used as estimates of the ETIME associated with 
noncbosen modes. 

Travel cost data were obtained from SPRPC network 
data . Transit travel costs were taken directly from the 
SPRPC data. These data do not consider the possible 
purchases of monthly and yearly discount fare passes . 
Automobile travel costs were the zone-to-zone costs of 
driving alone, calculated by SPRPC, and include gaso­
line, oil, tires, and maintenance costs. Parking costs, 
which were not included in the SPRPC calculations, were 
obtained from survey results . The reported parking 
costs of commuters who drive alone to work were added 
to the S PRPC cost estimates to obtaln dally commuting 
costs . Parking costs for other commuters were assigned . 
according to the traffic zone in which the commuter 
worked from the average of the daily parking costs of 
commuters who drive alone to that zone . These costs 
were added to the SPRPC cost estimates to establish 
total drive alone costs for commuters who do not drive 
alone. 

The same data were used to estimate car-pool costs . 
All car pools were assumed to share costs equally among 
all members. Car-pool costs, then, were obtained by 
dividing the drive alone costs for the same zone-to-zone 
trip by tbe mean size of car pools as reported by car­
pooler respondents . 

Commuter perceptions of the relative levels of com­
fort and convenience offered by various modes were ob­
tained from their responses to questions that asked them 
to compare their nonchosen modes with their chosen 
mode. Their responses were coded on an integer scale 
of -2 to +2, indicating the service level of the nonchosen 
mode as compared to that of the chosen mode. A nega­
tive num.ber indicated that the nonchosen mode had a 

lower level of service with respect to either comfort or 
convenience than the chosen mode with 0 taken as the 
service level of the chosen mode. Although the data are 
subject to uncertainties wi h respect to scaling and defi­
nition ( 4.), they are the best available approximation of 
commuter perceptions, and were used as such. 

Flexibility is a measure of the possible irregularity 
in commuter schedules . It was determined from the 
survey by asking commuters how often they arrive at or 
leave work early or late . Those who arrive at or leave 
work early or late between 5 and 15 times a month are 
assumed to have flexible schedule patterns. Others are 
assumed to have regular schedule patterns. All com­
muters who commute flexibly were assigned a value 1 
for flexibility· others were assigned a value of 0. This 
measure of flexibility reflects the preference of a com­
muter for flexibility, although data from which the mea­
sure is constructed may also represent a.n interaction 
between the preferences of the commuter and the actual 
flexibility of the service offered by his chosen mode. 

Mode unreliability ls a measure of how often each 
mode is not available for the trip to work. Data describ­
ing this service attribute were gathered in the mode 
choice survey by asking transit riders how many times 
per month their bus or trolley was more than 0.5 h late, 
car poolers how many times per month their car pool was 
unavailable for the trip to work, and those who drive 
alone how often their car was not available for the trip. 

The standard SES attributes (including sex, income, 
and automobile ownership) of the sample population were 
obtained from the mode choice survey. The mode con­
stants account for the SES characteristtcs, commuter 
preferences, and service attributes that influence the 
choice decision but are not explicitly contained in the 
model. The mode choice process ls highly complex, 
with many factors influencing the decision. If a model 
were estimated without mode constants, then the factors 
left unaccounted for could affect the values of the coef­
ficients associated with the variables that are explicitly 
included in the model. 

ESTIMATION RESULTS 

A random subsample of 400 observations from the sample 
population was used to estimate the model parameters 
for a number of m.odel specifications of which the most 
interesting are models 1 and 2 in Table 1. Table 1. also 
includes models 3 and 4, which represent separately es ­
timated specif ications for CBD and non-CBD workers 
respectively. 

Some observations about the success of the modeling 
efforts can be made from Table 1. 

1. The signs on all the significant coefficients are as 
expected. 

2. The relative magnitudes of the coefficients are 
reasonable. 

3. In general, the results agree with similar studies 
made elsewhere. 

4. The variances in the magnitudes of the coefficients 
estimated on different subgroups of commuters were as 
expected. · 

The coefficients, then, appear to be stable estimates of 
the true parameters. 

The coefficients for the IVT are consistently negative 
and statistically significant, reflecting the dislike of in­
vehicle time. F\irther analysis of these coefficients sug­
gests that different groups of commuters have different 
sensitivities to IVT. For example, analysis of a model 
that included two IVT variables, one for all commuters 
and one for commuters wlth annual household incomes 



greater than $15 000, showed that all commuters have 
an IVT coefficient of -0 .023 and that wealthier commut­
ers have an additional IVT coefficient of -0 .015 . While 
the additional factor of -0 .015 ls not statistically sig­
nificant, it does suggest that income level may have 
some influence on how commuters value !VT. 

TI1e hypothesis that the value placed on IVT depends 
on the quality of service available to the commuter was 
tested by the estimation of five corridor-specific IVT 
coefficients: these coefficients were not statistically dif­
ferent from one another . 

Separate coefficients, which were different from each 
other, were estimated for ATIME and ETIME. This 
difference may explain the disparity between these es­
timates and the coefficients for out-of-vehicle time (OVT) 
estimated elsewhere, i.e., the higher A TIME here may 
reflect a division of the independent influences of A TIME 
and ETIME on mode choice that are aggregated in single 
OVT coefficients. These variables, however, do not 
discern whether commuters disvalue A TIME or ETIME 
differently for different modes but the data were insuf­
ficient to estimate mode-specific ATIME coefficients . 
However, the coefficient here has the appropriate sign 
and agrees with other results <; !• ~) that changes in 
OVT have a greater effect on mode choice than similar 
changes in IVT. 

The ETIME coefficient for commuters who work ln 
non-CBD locations is close in magnitude to the OVT coef­
ficients reported (2). It is not significant for CBD work­
ers for whom the ETIME differences for different modes 
were too small to signilicantly affect mode choice de­
cisions . 

Table 1 also shows that cost has a negative coefficient 
and that, although it is relatively small, its difference 
from zero is statistically signilicant. The magnitude of 
the coefficient is not incongruous with other cost coef­
ficients. The cost elasticities derived from the coef­
ficient shown below are similar to those reported else­
where (5). 

Percent Change in Ridership Transit Car Pool Drive Alone 

From a 1 percent change in 
transit costs ·0.17 +0.09 +0.09 

From a 1 percent change in 
car-pool costs +0.06 ·0.14 +0.06 

From a 1 percent change in 
drive alone costs +0.18 +0.18 -0.48 

Therefore, the relatively small magnitude of the coeffi ­
cient may be accepted as a reasonable estimate . 

Since it was not possible to estimate mode-specific 
differences in the cost coefficients , a generic cost vari­
able was used in the model. Attempts to identify differ: 
ences in the sensitivity to cost of commuters in different 
income classes gave a coefficient that was not statisti­
cally significant. This may be due to the small number 
of low - income commuters in the sample. 

The comfort associated with a mode is important to 
commuters with household Incomes ~ s 15 000 /year, but is 
not important to those with smaller incomes . This is in­
dicated by the statistically significant coefficient esti­
mated for comfort (~$ 1 5 000 onlyl. The coefficient for 
comfort (< ~ 15 000) was not statistically different from zero. 

Com muters also highly value the mode characteristic 
identified as convenience . The statistically significant 
coefficient for convenience is very important in mode 
choice decisions, but, because of similarities in meaning, 
comfort and convenience were not included ln the same 
equation. Qualitative factors like comfort and conve­
nience can be included in choice models along with more 
quantified variables such as time and cost . 
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The preference for flexibility has been included in the 
model as a mode -specific variable because car pooling 
is regarded by the commuters in the sample as very in­
flexible relative to the other modes (6) . Therefore, 
commuters are assumed to take special consideration 
of their preference for Uexibllity only when they assess 
their car-pool alternative. The statistically s!gnlficant 
and negative value of the estimated coefficient confirms 
this assumption. 

Car availability is included in the model twice . The 
two estimated coefficients represent the relation between 
the num,ber of cars per driver in the household and the 
value that a commuter gives to the drive alone and car­
pool modes relative to transit. These coefficients show 
that a strong factor in the mode choice ls the number of 
cars per driver in the household. The more cars per 
driver, the higher the tendency to commute via automo­
bile . High car availability especially favors the d.rive 
alone choice . 'The influence of car availability on mode 
choice is a short-run effect. In the long run, car avail­
ability becomes a function of mode choice, and, in the 
long run, the tendencies of commuters to change modes 
as a result of changes in the levels of service offered 
may be greater than those estimated here. In the short 
run, few drivers with high car availability can be en­
ticed to change their mode of commuting. 

Work location was a mode-specific variable for both 
the drive alone and car-pool modes. 'The resulting neg­
ative and highly significant coefficients indicate that for 
CBD workers the problems of driving and the avallabillty 
of transit service to the CBD strongly discourage use of 
the automobl.le modes and encourage use of transit. The 
magnitudes of these coefficients suggest that commuting 
to the CBD is very different from commuting to non-CBD 
locations . Traffic congestion, the difficulty and cost of 
parking, higher worker density, and transit availability 
make the determinants of mode choice in the CBD differ­
ent from those elsewhere . Therefore, two sets of coef­
ficients, one for CBD workers (model 3) and one for all 
other commuters (model 4l, were estimated. The results 
show the following influences of work location: 

l. CBD workers find IVT more onerous than do non­
CBD workers . This may result from the greater traffic 
congestion in the CBD. 

2. Non-CBD workers are much more sensitive 
to ATIME than are CBD workers, and policies that 
affect A TIME should have greater impact on non-CBD 
commuters. The relative magnitudes of these coef­
ficients however, may be due to the method used to 
assign ATIMEs . However non-CBD commuters, who 
do not have to consider the inconveniences of con­
gestion and parking, undoubteqly discriminate between 
modes on other dimensions, and it is not surpr ising 
that ATIME is more important to them. 

3. All commuters are relatively insensitive to costs . 
4. CBD workers are very sensltive to the con­

venience of commuting, but the coefficient of con­
venience for non- CBD workers is not statistically 
significant . Thus, where the work trip does not re­
quire copl.ng with heavy congestion, parking problems, 
and the like, commuters are not very concerned with 
convenience. 

5. The preference o.f a commuter for flexibility de-
tracts more from the value of the car-pool alternative 
for commuters bound for CBD destinations than for non­
CBD workers . The greater and more frequent availa­
bility of transit to the CBD may make car pooling, with 
its rigid schedules, a less attractive alternative there. 

6. Car availability (as measured by the number of 
cars per driver in a household) Is more influential in the 
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Table 1. Estimated variable coefficients in four models. 

Model l' Model 2' Model 3: CBD' Model 4: non-CBDa 

Standard Standard Standard Staooard Variable Description Coefficient Error Coefficient Error Coefficient Error Coefficient Error 

lVT One-way (min) -0.032 0.008 -0,028 0.008 -0.046 0.009 -0.029 0.011 ATIME Home to primary vehicle (min) -0.221 0.047 -0.212 0.046 -0. 83 5 0.037 -0.835 0.105 ETIME (non-CBD Primary vehicle to workplace 
only) (min) -0.178 0.074 -0.170 0.075 

COST Commuting cost (cents per day) 0.002 0.000 9 -0.002 0.001 -0.002 0.001 -0.002 0.001 Relative comfort 
(•$15 000 only) Scaled from -2 to •2 0.443 0.119 0.001 0.137 Relative convenience Scaled from -2 to +2 0.600 0.093 0.942 0.115 

Flexibility" 1 if commuter pre le rs flexibility, -0.802 0.357 -0. 736 0.365 - 1.45 0.456 -0.691 0.339 0 otherwise; car-pool function 
only 

Mode unreliability Times per week mode not avail- 0.552' 0.391 0.696' 
able !or work trip 

0.439 0.360' 0.225 0.816' 0.510 

Cars per driver,. Drive alone function only 2.30 0.578 2.26 0.595 3.482 0,681 1.213 0.931 Cars per driver,. Car-pool function only 0.698' 0.532 0.817 0.539 1.508 0.562 0.856' 0.939 CBD workplace,. 1 if CBD, 0 otherwise; drive alone -2.17 0.452 -2.21 0.473 
function only 

CBD workplace" 1 if CBD, 0 otherwise: car-pool -1.90 0.433 -2.00 0.451 
function only 

Household lnccune,, $ per year; drive alone function -0.000 005' 0.000 03 0.000 02• 0.000 03 0.000 02' 0.000 03 0.000 03' 0.000 04 
only 

Household incomee, S per year; car-pool function only 0.000 009' 0.000 03 0.000 02• 0.000 03 0.000 02• 0.000 03 0.000 05' 0.000 04 
Sex.. 1 if female, 0 otherwise; drive 0.943 0.378 -1.10 0.397 0.688' 0.424 --0.578' 0.546 

alone function only 
Sex.,. 1 if female, 0 otherwise: car-pool --0.980 0.375 -1.32 0.391 -0.451' 0.358 --0.889' 0.587 

function only 
Mode constant.. 1 if drive alone, 0 otherwise; drive -2.49 0.825 -3.12 0.849 -6.318 0.935 -5.597 1.31 alone function only 
Mode constant" 1 if car pool, 0 otherwise; car-pool --0.769' o. 755 --0.9684 0.777 -3.823 7.18 -1.534' 1.07 function only 

-S.mple 1iz1 • 400. cSample 1iz1 .. 36 1 ~ 
tJs.mple suze • 347. d'fhe estimated coettic11nt is not s1gn1ficantly different from Oat the 0~05 18\/el or better, 

Table 2. Validity of modal 1: predicted and actual distributions 
over the modes for the estimation and validation samples 
(percentage for each mode). 

EsUmatton Sample Validation Sample 

Car Drive Car Drive 
Distributions Transit Pool Alone Transit Pool Alone 

Actual 38.5 30.2 31.3 32.7 43.3 24.0 
Predicted (aggregate 

of predicted indivld-
ual mode choices)" 43.8 25.2 31.0 40.3 29.3 30.3 

Ellpected value (mean 
of individual proba-
bllltles)' 38.8 28.7 32.6 35.8 31.3 32.9 

.11Computed by as.signing each commuter in the sample to highest probability mode and calculat­
ing the resulting proportion of commuters on each mode. 

bDer1ved by computing the mean of the individual probabilities [l:pi(i)) /n where n is the num­
ber of commuten 1n the umple and pi(il 1s the probabilitv tl'lat commuter t chOOSM mode 1. 

mode choices of CBD workers. This may be due to the 
general lack of transit service to non-CBD locations, 
which forces non-CBDworkers to commute by automobile, 
regardless of their car availability. 

7. A number of the estimated coefficients were not 
significantly different from zero. These include: rela­
tive comfort (s$15 000 only), mode uIU"eliability, sex, 
and household income. A priori, these variables had 
been considered important factors in the mode choices 
of commuters; their actual lack of significance, then, 
is important. 

All of the coefficients in models 3 and 4 have the ex­
pected signs and are of reasonable magnitudes. Their 
significance is that they demonstrate the necessity to 
consider work location when modeling mode choice. 

While the coefficients for sex in models 1 and 2 are 
highly significant they are not significant in the separate 
CBD and non-CBD models. This is due to the fact that 
almost twice as many female commuters work in the 
CBD than in the non- CBD. When variables are correlated, 
their estimated coefficients are a clue to the total effect 
of both variables on mode choice. Since sex became 

unimportant when the population was partitioned by work 
location, the total negative effect of sex and CBD must 
be primarily a CBD effect. 

Several variables had insignificant coefficients; i.e., 
the commuters in the sample were insensitive to varia­
tions in these variables when discriminating among the 
alternative modes. Since these variables were previ­
ously considered to be important, their failure to be sig­
nificant here is worthy of note. 

The failure of household income to discriminate was 
particularly troubling. None of the attempts to include 
household income (e.g., cost per household income and 
household income adjusted for family size) gave coeffi­
cients that were significantly different from zero. House­
hold income may be an important discriminator only in 
the lower ranges (e.g., under $ 8000) in which the sample 
was deficient. 

Attempts to estimate a statistically significant coef­
ficient for the SES of the job held by the commuter also 
failed. Blue collar workers did not have any greater or 
lesser tendencies to choose any one mode over the others. 
Nor did the number of workers employed by the employer 
of a commuter have any influence on mode choice. 

MODEL VALIDATION 

As a test of the validity of model 1, the probabilities of 
choosing each of the three modes were calculated for 
each commuter included in the sample of 400 commuters 
used to estimate the coefficients. In 68 percent of the 
cases, the mode with the highest probability of choice 
was the one actually chosen. This percentage is similar 
to the percentages reported elsewhere (2). 

The predicted distribution over the modes (i.e., the 
mode split) was calculated in two different ways. First, 
the mode choice of each individual was predicted by the 
highest probability method and the percentage of indi­
viduals predicted to choose each mode then calculated. 
Second, the individual probabilities of each mode were 
summed and averaged to give the expected value esti­
mate of the modal-split distribution. These two distri-



butions are compared with the actual distribution for the 
estimation sample ln Table 2. The proportion of com­
muters predicted to drlve alone is almost equal to the 
actual proportion in the sample. At the worst, transit 
ridership is overpredicted by 5.3 percent and car poolers 
are underpredicted by 5 percent. The model, then, does 
very well at aggregate prediction of the distribution over 
the modes and reasonably well at prediction of the indi­
vidual mode choices for the estimating sample. 

To further test the predictive ability of the model, the 
three mode choice probabilities were calculated for 300 
commuters who were not used in the estimation of the 
model. The model predicted their individual mode 
choices correctly in 59 percent of the cases. 

CONCLUSION 

This modeling effort has identified numerous character­
istics of car pools and potential car poolers that should 
be considered in managing programs to encourage the 
use of car pooling. It identifies subpopulations of com­
muters who have high car-pool potential and service at­
tributes of car pooling that would entice more commuters 
into car pools if they were improved. 

The subgroups of commuters at whom car pool en­
couragement efforts should be directed are 

1. Commuters who have regular (as opposed to flex­
ible) commuting schedules, 

2. Commuters who have moderate or low ratios of 
cars per driver in their households, 

3. Commuters who have annual incomes of less than 
$15 000 (suggested by the coefficient of comfort for 
commuters having incomes greater than $15 000 and 
by the fact that commuters who drive alone generally 
view car pooling as a considerably less comfortable 
mode), and 

4. Commuters who drive alone to the CBD who will 
not easily be lured into car pools (because CBD com­
muters are very sensitive to convenience and those 
who drive alone generally consider car pooling to be 
a less convenient mode) . 

The modeling effort also helped to identify improve­
ments in the service attributes of car pools that would 
have a significant impact on mode choice. These include 

1. Provision of a back-up service for car poolers­
This would lessen the influence of its inflexibility on 
mode choices . Taxi and emergency ca.r-pool matching 
operations are possible back-up services . 

2. Policies that minimize the OVT of car pooling­
Here again, preferential parking spots for car poolers 
would be effective . To minimize the OVT of car pooling, 
commuter computer matching operations should strive 
to match only commuters with very similar origins, 
destinations, and schedules . Also, s ince the 4- min 
average ATIME of car poolers in the sample is signifi­
cantly lower than previous estimates , advertising lts 
real magnitude could alter the perceptions of car pooling 
held by commuters . The magnitude of the OVT coef­
fic ient suggests that such a change could have a sizeable 
impact on mode choices . 

3. Policies, such as exclusive car-pool lanes, that 
influence IVTs. 

4. Policies that improve the convenience of car pool­
ing-Such policies include preferential parking or flex­
ible work hours for car poolers. Another effective 
policy would be an advertising campaign designed to 
dispel subjective notions about the inconvenience of car 
pooling. 
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In addition to these conclusions, the model casts 
?oubts ~n some efforts that previously have been effective 
in drawing commuters to car pools. These include: 

1. The economy of car pooling does not substantially 
enco.urage many _ commuters to car pool. Therefore, ad­
vertising campaigns that emphasize cost will not be as 
effective as the themes suggested above. 

2 · The estimated cost coefficients show that in the 
sh?r.t run 11ondrastic cost incentives (e.g., taxes on 
d_rivrng alone) should not be expected to yield substan­
tial changes in mode choices. 

F~nally , the modeling effort has defined some areas 
needing further research. Further work on the long- and 
short-ri:in influences of costs, the slgniiicance of OVT, 
and the importance of comfort and convenience will be 
useful. 
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An Application of Mode­
Choice Methodologies to 
Infrequent Commuter­
Rail Service 

R. Ian Kingham, National Cooperative Highway Research Program 

The feasibility of commuter-rail transit in the southwest Baltimore cor· 
ridor was studied by a variety of passenger estimation methodologies. 
The methodologies selected were re.quired to be applicable to the cor· 
ridor scale, to be run manually, and to be capable of quick response. 
They were also required to be responsive to the addition of one or two 
trains per peak period, changes in station location and accessibility. and 
changes in costs such as parking charges and gasoline costs associated with 
the automobile. No one methodology met all of the above requirements. 
However, two methodologies were adapted to consideration of infrequent 
rail service Iona or two trains per peak period) and applied to the corridor. 
The first methodology involved the application of a simple graphical 
technique that relat11d mode split to station distance from the CBD; the 
second involved the application of a marginal utility modal to corridor 
census tracts. The infrequent service capability was added. in the case 
of the graphical approach, by applying experience factors, and in the 
computational approach by relating automobile captivity to the number 
of trains per peak period. Both methodologies were transferable, with· 
out rtieS1imation of coefficients. to the southwest Baltimore corridor. 
Botfl approaches could be applied manually in a person-week or less; the 
need for any greater sophistication than the graphical methodology is 
seriously questioned. 

In many u.rban a reas of the United States, development 
of commuter-rail transportation is being advocated in 
lieu of further highway deveiopqient. This is the case 
in the Baltimore-Washington corridor where a policy to 
improve present train service on the Baltimore and Ohio 
Railroad right-of-way has been adopted . The pressure 
to improve this service has come from the northeast 
Washington, D. C., corridor, and little thought has been 
given to service improvements for the corresponding 
southwest Baltimore corridor. Although the Baltimore 
regional plan has recommended that commuter-ran ser­
vice to downtown Baltimore, using existing rail lines, 
be given serious study and adequate experimentation, 
for the most part it has concentrated on two modes of 
public transportation: a rapid transit system and a mlx­
ture of express and local bus service. The question 
that initiated this study is whether resources should be 
directed to commuter-rail service in the southwest Bal­
timore corridor . 

Good corridor planning should consider ridership po­
tential. This requires a methodology that is responsive 
to a number of proposed transportation strategies, such 
as parking regulation, gasoline taJCation, commuter-rail 
fare changes, and commuter-rail service improvements. 
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Since the number of alternative strategies may be large 
and the time available for evaluation short (a month or 
less in a citizen participatory process), the methodology 
must be simple and easily applied. Models must consider 
travel time and cost within their structures. For quick 
response, a methodology should be sufficiently simple to 
allow for manual computations. Data requirements 
should be confined to the corridor of interest. Since 
census tract data are easily obtained, the methodology 
should be designed to use them directly. Home interview 
data (other than those obtained in the 1970 census) should 
not be required. For commuter-rail passenger estima­
tion, the methodology should consider the exact number 
of peak-period trains under considerat.ion. 

DESCRIPTION OF THE CORRIDOR AND 
EXISTING COMMUTER-RAIL SERVICE 

Corridor Descrlption 

The southwest Baltimore corridor served by the Balti­
more and Ohio (B&O) Railroad is shown in Figure 1. 
The population of the corridor, from the greater Laurel 
area to the Baltimore beltway \Interstate 69 5), is ap­
proximately 68 000. Average family incomes in 1969 for 
corridor census tracts ranged from $10 281 to $12 672 
except for one of $16 632 . The number of cars per cap­
ita is 0. 41, a figure almost as high as the 0 .44 in Los 
Angeles (1). There are 21 000 housing units and an av­
erage of [32 cars/household. A length of approximately 
33 km (20 miles) of the corridor has a significant Balti­
more orientation (based on newspaper circulation ob­
servations). The residential density is generally low, 
and, except for the Laurel area, existing communities 
have remained approximately the same size since World 
War II. The area surrounding Laurel has been part of 
the fastest growing area of Prince Georges County. 

The corridor routes are all very heavily traveled, 
primarily by automobile, truck, and rail freight. There 
are two freeways, the Baltimore-Washington Parkway 
and Interstate 95, and two primary highways, US-1 and 
US-29, parallel to the freeways. The parkway carries 
no truck traffic but provides access to the Baltimore 
CBD. Interstate 95, however, terminates inside the 



beltway and leads to an arterial street, requiring a 15 
to 20-min drive to the CBD in the peak hour. 

There are two railroads . The Penn Central ap­
proaches Baltimore almost directly from the south and 
then changes direction to skirt the west side of the 
Baltimore-Washington International ( BWI) Airport and enter 
the city from the west. However, the Penn Central Sta­
tion is nor th of the CBD and weil out of walking range . 
The second railroad, the B&O, approaches Baltimore 
between the two expressways from a southwesterly di­
rection and terminates at Camden Station, approximately 
1.2 km (0.7 mile) from the key employment centers of 
the CBD. 

Highway transportation perpendicular to the rail lines 
consists almost exclusively of primary state highways . 
There are no freeways at present although several are 
planned. Thus, there is no east-west accessibility of 
Interstate standards outside the .Baltimore beltway, ap­
proximately 8 km ( 5 miles) from the CBD. 

Existing Commuter-Rail Service and 
Patronage 

Passenger service in the southwest Baltimore corridor 
is maintained by the Penn Central, which has one stop 
between Washington and Baltimore , and the Baltimore 
and Ohio Railroad, which has four stops (Riverdale, 
Laurel, Jessup, and St. Denis ). 

The location of the terminal stations serving the CBD 
is extremely important to any ridership estimate. A 
geographical plot of the orlgins and destinations of 10 000 
Philadelphla area commuters has shown that these com­
muters used trains only if their CBD destinations were 
within 10 min by foot or transit from their arrival 
station (2). The camden Station of the B&O Railroad is 
not well situated with respect to the Charles Center, the 
major employment area · in the CBD, for those who 
presently take the train. A walk of l.2 km (0 .7 mile), 
approximately 15 min, is typical. The Penn Central 
Railroad Station, however , is well beyond the CBD, and 
without shuttle service to meet the trains, this system 
is not likely to attract potential riders . For this reason, 
the Penn Central Railroad was not considered an attrac­
tive alternative to bus and automobile in the corridor 
and is not further considered in this paper. 

The B&O runs one train, which leaves Laurel at 
7:22 a.m. and arrives in Baltimore at 7 :48 a.m. In the 
evening, the train leaves Baltimore at 4:55 p.m . and 
arrives in Laurel at 5:22 p.m. 

Passenger counts and an origin-destination (O-D) 
survey made in 1973 showed 63 people traveling into 
Baltimore in the morning and 62 retu.rning in the even­
ing in a train providing 130 seats. The largest number 
of passengers (23) boarded at the Laurel station, 30 km 
(18 miles) from the CBD. There were 43 passengers 
using the Laurel, .ressup, and St. Denis Stations . Al­
most all respondents were employed in the Charles 
Center. 

MODE-CHOICE METHODOLOGY 
EVALUATION AND 
DEVELOPMENT 

Evaluation 

Mode-choice methodologies have been developed for both 
intercity and intracity passenger demand forecasting. 
The length of corridor and the results of the 0-D survey 
suggest that the B&O commuter-rail service is an intra­
city rather than an intercity service. The majority of 
fare-paying passengers travel a distance of 33 km (20 
miles) or less. Those traveling longer distances, par-
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ticularly those traveling from Washington to Baltimore, 
were B&O employees traveling on passes . For these 
reasons, the i~tercity methodologies developed for the 
northeast corridor were cons idered to be inappropriate 
here and are n.ot considered further in this paper . 

Methodologies presently being used by departments 
of transportation and highways are limited in their use­
Cul_ne~s for commuter-rail passenger forecasting. The 
principal ~ackages available are those developed by the 
Federal Highway Administration and the Urban !'vlass 
Transportation Administration. These require Input data 
for a network that comprises the entire urban area 
wh.ere~s in this study only a corridor ls of inter'est. 
It is d1f~icult to break away from the seque.nce of tri 
generation, trip distribution, and mode split when ~ 
in this case, a trip table can be obtained from ce ~us 
data. For the heactways greater than 30 min that are 
common. for commuter-rail service, the models are not 
appropriate. Both packages required a computer and 
provide exact numerical computations when only a rough 
estimate may be necessary. The use o.f the computer 
places the analysis at a distance from the analyst which 
may hide good strategy alternatives that mlght a~ear 
during manual manlpulation of the data . 

Conceptual Development 

The methodology of estimating commuter-rail patronage 
shown in Figure 2 (2, 3) appears to be a logical and sim­
ple approach for makrng quick estimates of travel de­
mand for proposed transportation strategies. It is a 
deductive methodology that considers the potential mar­
ket and its characteristics (such as residential density 
and length of corridor), the competing transportation 
modes in the corridor, and the frequency of train ser­
vice, -in order to determine the anticipated patronage. 
However , to use this methodology requires an experi­
enced analyst. For a less experienced analyst, a modal­
choice relationship that considers all those factors is re­
quired . To meet thls need, the methodology was ex­
panded in two ways. The first approach was to test the 
use of an existing graphical technique in place of the 
deduce ~rail shown in Figure 2. The second (compu­
tational) appI'oach was to impose an existing modal-split 
model on the methodology as shown in Figure 3. 

Elements Common to the Two Approaches 

Demand Area 

The determination of a demand or geographic area over 
which patronage will be drawn Is common to both method­
ologies. Experience must be the guide for this . A 6-km 
(4-mile) corridor width based on observations in Phila­
delphia that suggest most potential riders will not drive 
more than 3 km l2 miles ) perpendicular to the corridor 
direction has been used (4) . In a study of park-and-ride 
facilities (5), It was fou nd that 50 percent of those using 
park-and-ilde resided within a distance of 4 km (2 to 3 
miles) from the lot with 90 percent residing 5 to 10 km 
(3 to 6.5 miles) from the lot. Since these distances in­
clude travel In all directions, their perpendicular com­
ponent could be close to the 3-km {2-mlle) criterion ob­
served in Philadelphla. By analogy with these observa­
tions, the southwest Baltimore corridor was defined as 
being 6 to 11 km (4 to 7 miles) wide, except in Laurel 
where, to include the entire greater Laurel area, a 
width of approximately 15 km (9 miles) was used. These 
limits are compatible with census tract boundaries and 
are shown in Figure 1. 

The total distance of the automobile journey as com­
pared to that of the commuter-rail journey was also 
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used in establishing corridor boundaries. The criterion 
here was that the distance traveled by automobile not be 
greater than the distance traveled by train. In all cases 
the ratio of automobile distance to train distance was 
actually considerably less than one. 

Data 

The 1970 census hati enumerated for each census tract 
the employed persons who journeyed to the CBD. Since 
commuter-rail service is used for work trips almost 
exclusively, only such trips were considered in the 
methodology developed . Tue total market is 508 per­
sons, of whom approximately 40 percent reside within 
the demand area for the St. Denis Station, approximately 
11 km (7 miles) from the CBD. 

The census data also included the number of house­
holds having one, two, and three or more automobiles. 
These data were used to determine the average car 
ownership per household and per capita for each census 
tract. 

Figure 1. The southwest Baltimore corridor. 

Figure 2. The deductive methodology. 
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Competing Modes 

Another step in the methodology common to both the 
gJ"aphical and computational approaches is the ident ifica­
tion of modes competing with commuter-rail service . In 
the g·r aphical approach, experience in other corridors 
must reflect similar competition, wh ich in most in­
stances includes the automobile and transit bus. In the 
computational approach, running tlmes, access times , 
and costs must be determined for all modes . 

Elements of the Graphical Approach 

Mode-split relationships for the graphical approach are 
based on a correlation of the commuter ridership, ex­
pressed as the percentage of the total number of trips to 
the CBD, and the distance from the station to the CBD 
(.~.>. Relationships based on experience in Philadelphia, 
Chicago, and San Francisco are shown in Figure 4. The 
selection of the appropriate relationship should be based 
on the similarity of residential densities and competing 
modes. The lower commuter-rail percentages repre­
sent combinations of low residential densities and strong 
competition from parallel freeways. 

From the mode-split curve, the appropriate commuter­
rall percentage is multiplied by the number of CBD em­
ployees for each census tract in the demand area to de­
termine the potential patronage. Since patronage de­
termined in this manner is representative of service 
frequencies of three or more trains in the peak period, 
it must be reduced for lower frequencies . The following 
reductions are suggested (!) : 

No. of Trains 
per Peak Period 

1 
2 

Reduction in 
Patronage (%) 

38 to 43 
53 to 60 

Elements of the Computational Approach 

Mode-Split Models 

There are several additional important characteristics 
that a commuter-rail mode-split model must have in 
order for it to be policy responsive. The first is that 
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Figure 4. Graphical approach for commuter-rail ridership 
estimation. 
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the model must consider low service frequencies as 
characterized by one or two trains per peak period . The 
second is that the model should account for income or 
be calibrated using high-income patronage as commuter­
rail studies have shown that commuter-rail patrons have 
access to a car and higher than average incomes. 

The models reviewed are trip interchange or post 
distribution models. These synonymous terms describe 
a model requiring knowledge of the trips made between 
zones . This type of model is advantageous because 
CED-employed persons are known for the corridor cen­
sus tracts . 

To meet the need to be policy responsive, the models 
reviewed were limited to those that considered both 
travel time and cost. A disutility or impedance is de­
termined for each mode by a linear combination of run­
ning times, wa.iting and walking times , and costs, ap­
propriately weighted by factors derived from previous 
studies. The greater the dis utility, the greater the 
travel time and cost; hence, the likelihood that an indi ­
vidual will choose the mode is reduced _ Thus, the as ­
sumption ls made that a person rationally measures, 
lor each travel mode, the disutility (such as time and 
cost) necessary to arrive at a destination, and chooses 
the mode that will minimize the disutility. There are 
many models iitting this description (l, !, §, 1., .!!., ~ 1Q., 
lL 12) . Other models based on this premise (!b 13) 
were not evaluated in detail since their complex struc­
tures make manual computations more difficult. 

Of the models evaluated, none were capable of con­
sidering service frequencies as low as one or two trains 
per peak period: All accounted for long headways through 
the waiting time var iable . Some (!, J.1) were not cali­
brated for commuter-rail, and one (12) did not consider 
income directly. 

The model for the Washington Council of Gover nments 
(WASH COG) ( 11) considers Income directly, but is cal­
ibrated with anareawide bus system. However, this 
model al so considers automobile and transit captives as 
functions of transit accessibility and household lncome. 
Accessibility is defined as the proportion of jobs witllin a 
45-mln transit travel time. Automobile and transit cap­
tive rates wer e deduced from Washington data that con­
sidered accessibility at both origin and destination points . 
Hence, for a commuter -rail problem accessibility would 
be high for the destination and low for the origin, and 
household income would be high. For such a problem, 
automobile captivity is given as 38 percent and tr ansit 
captivity as l percent. 

Study Hypothesis 

Since the WASH COG model was calibrated from data for 
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a cit~ having an areawid.e bus system, the frequency of 
service was much greater than that tYPical for a 
c?mmuter-rail system . For this study, it was hypothe­
sized that automobile captivity would be substantia lly 
greater for a commuter-rail operation having only one or 
two trains per peak period. Furthermore it was as­
sumed that transit captivity would be zero since an auto­
moblle is necessary for access to the raU stations . 

Development of Automobile Captivity Per 
Number of Trains Relationship 

It ls possible to compute the free choice patronage for the 
commuter -rail and automobile modes for the Laurel 
Jessup, and St. Denis Stations using the WASH COG' 
fr ee choice model for work trips by an equatlon that re ­
lates the per centage of patrons using transit to the mar­
ginal utility, which ls defined as the difference between 
the automobile and tr ansit disutilities for each census 
tract. 

To determine commuter-rail and automobile disutlllty 
measures, the following assumptions were made: 

1. Passengers have a 15-min walk from the B&O 
Station to their place of work. 

2. The perceived automobile cost in 1970 was $0.04/ 
km ($0.06/ mile ) for the automobile mode only trip . 

3. For the rail trip, the average patron does not 
perceive the cost of driving his automobile to the station 
except for the time taken. 

4. The average commuter-rail patron has an income 
of $15 000 / year . 

5. The average passenger perceives a wait time of 
5 min if he expects the traln to be on time . (It was fur ­
ther assumed that a passenger would allow 4 min to find 
a parking space nd to reach the station platfor m. Hence, 
a 9- min wait time was assumed for dependable service. 
Since present patrons feel that the service is not de­
pendable, it was assumed that this increased the per­
ceived wait period from 9 to 12 min.l 

6. The time required to drive to a station is assumed 
to be a component of excess time and is weighted by a 
factor of 2. 5. 

Disutilities were computed for the automobile and 
commuter-rail modes . In general, there were no com­
peting public transit modes, except in the st. Denis 
Station area. In that area the Halethorpe bus provides 
service at9-min headways during the peak hour . The 
disutilities determined for the bus were approximately 
the same as those determined for the commuter-rail 
service even though the commuter-rail trip has a much 
shorter running time. However, the bus discharges its 
passengers at the Charles Center with little or no walk 
and has short wait times due to the shor t headways . Be­
cause these disutilities were equal overall, the commuter ­
rail patronage determined from the automobile-rail 
mode-split computation was halved for the St . Denis 
Station demand area . 

The only other public transportation in the corridor 
is provided by the Greyhound Company, which runs three 
buses in the peak period along US-1 to lts Baltimore 
terminal . This service suffers as a commuter service 
because the terminal is considerably north of the CBD. 
It was assumed, then, that Greyhound does not serve 
CED-oriented employment. From the percentage of 
free choice patrons using the commuter-rail service 
determined from the marginal disutllities for each cen­
s us tract, passenger estimates can be generated as a 
function of automobile captivity as follows : 
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where 

P = number of passengers, 
CR~1 = percent commuter rail for census tract i, 

E1 = CBD employees for census tract i, and 

(I) 

AC = automobile captivity expressed as a fraction. 

To determine the automobile captivity corresponding 
to one, two, or three trains per peak period, it is neces­
sary to independently determine the patronages for one, 
two, and three trains . For one train, the current patron­
age can be used . However, some reduction in patronage 
must be expected i.f all passengers are required to pay the 
regular fares. In a Maryland Department of Transportation 
on-board passenger survey it was estimated that, of the 
43 persons boarding at Laurel, Jessup, and St. Denis, 38 
were fare paying passengers . For two and three trains, 
a factoring process can be used to determine reve·nue 
passengers, and, for the revenue passengers determined, 
the automobile captives can be determined from equation 
1. These results are shown in Figure 5. The shape of the 
curve is reasonable because it can be anticipated that re­
duction in automobile captivity will be less as the number 
of trains increases. With such an adjustment the WASH 
COG model becomes responsive to the policy action of 
increasing the number of trains. 

If 66 percent automobile captivity is used, the WASH 
COG model gives the present patronage for the study 
corridor. However, the appropriateness of such a mode­
split relationship for other corridors must be tested. 
Thus, the model was compared to relationships (1) that 
describe the variation in percent transit as a function of 
the disutility for various values of car ownership per 
capita. For three or more trains and dependable ser­
vice, a patronage estimate from the Chicago model (9, 
10) should compare closely to the patronage estimated 
using the WASH COG model with 26 percent automobile 
captivity. 

PATRONAGE ESTIMATION 

Commuter-Rail Strategies 

The following strategies were considered for the im­
provement of commuter-rail patronage: 

1. Increased number of trains, 
2. Improved service dependability (to give a per­

ceived reduction in wait time from 12 to 9 min), 
3. Increased parking charges (from $ 36 to $ 72 / 

month) in the CBD) and 
4. Reduced transit access times (by improving sta­

tion access roads , constructing new stations, or elimi­
nating old ones). 

The Graphical Approach 

It is a simple matter to compute anticipated ridership 
patronage from the known market by using Figure 4. 
The results, given below, indicate the present service 
carrying 46 fare-paying passengers. 

No. of 
Fare· Paying 

Strategy Passengers 

One train (present service) 46 
Two trains in peak period 59 
Three trains in peak period 99 

The curve for San Francisco was chosen for use in the 
study corridor because of similarities in residential 
density and competing highways. The estimated in­
creases in patronage for two and three trains per peak 
period were determined by using factors inferred pre­
viously (~). The graphiCal approach does not provide a 
means to determine changes in demand caused by changes 
in parking charges or in translt excess times. 

The Computational Approach 

Travel Forecast for Service and Parking 
Cost Changes 

Travel forecasts were prepared using both the modified 
WASH COG and Chicago models (9, 10). Present rider­
ship for the Laurel, Jessup, and St."Denis Stations is 
compared with ridership estimates below. 

WASH WASH WASH 
Chicago, COG, 1 COG, 2 COG, 3 

Patronage Condition 3 Trains Train Trains Trains 

Present patronage 75 37 51 85 
Patronage if dependability 

improved 101 42 56 94 
Patronage if parking charges 

increased and dependability 
improved 90 55 74 123 

The improved dependability estimates are comparable to 
those developed from the graphical approach. There 
were, however, large diffe1·ences for the doubling of 
parking charges, due largely to dli.ferences in converting 
cost to time . (Variation in the value of time with income 
is considered in the WASH COG model and not 1n the 
Chicago model.) 

Whatever the strategy, estimates of patronage are 
low. If increasing the service frequency by adding trains 
adds only 20 to 30 passengers/train, such increases are 
not cost-effective. These figures, however, could be 
useful in estimating additional revenue if trains were 
deadheaded over the route during peak periods to meet 
service requirements in Washington. 

These estimates for the Laurel, Jessup, and St. Denis 
stations should be expanded to obtain total patronage by 
including passengers boarding at Riverdale and Wash­
ington. At present, the 20 such passengers are approx­
imately one-third of the patronage. It is not likely that 
this number will increase for fare-paying passengers, 
primarily because of the small number of persons who 
reside in the Washington suburbs and work in the Balti­
more CBD. 

Travel Forecast for Changes in Station 
Locations 

A close study of population concentrations in the corridor 
suggests only two possible additional locations for sta­
tions. The first was Hanover Road, which would better 
serve Elkridge, Dorsey, and the area west of BWI Air­
port. However, forecasts indicate that there would be 
no overall increase in commuter-rail patronage from 
this. The second possible station location is the Balti­
more beltway at Hollins Ferry Road. The accessibility 
provided by the beltway would increase the potential 
market from 508 to 957. However, most of this market 
is served by Metro transit buses, and, in order for this 
station to be feasible, transit bus service would have to 
be reduced. Aside from that consideration, moreover, 
the practicality of a station only 7km (4.5 miles) from the 
CBD is questionable; most commuter railroads have aban­
doned stations less than 10 km (6 miles) from the CBD. 



Figure 5. Automobile captivities and train service. 
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Travel Forecast for 1980 Travel Conditions 

A limited study was conducted to determine the impact 
of more congested highways; 1980 travel speeds provided 
by the Maryland Department of Transportation were used 
with 1970 demographic data. The forecasts showed 
commuter-rail passenger counts increasing by only 15 
passengers . Even though the peak-hour travel speed 
from Laurel to the Baltimore CBD is forecast to be 29 
km / h (18.5 mph) on the Baltimore-Washington Parkway, 
the impact on commuter-rail patronage will be small 
because of the congested east-west arterials leading to 
the commuter- rail stations. 

THE NEED FOR A MODEL 

A comparison of patronage estimates made by the graphi­
cal and computational approaches shows the differences be­
tween the two approaches to be ve r y small and provides 
evidence that the graphical approach is good enough to be 
used In an initial approach to determining passenger demand. 

COMPARISON OF RESOURCE 
REQUIREMENTS 

Both the deductive and modeling approaches were con­
ducted manually using Maryland DOT highway maps and 
regional traffic assignments, census publications, pub­
lished transit schedules, and a desk calculator . The state 
DOT traffic assignments were not necessary to the suc­
cess of the study . Average speeds, and hence average 
times could be judged from the road classification, 
speed limit, and density of development. 

An estimate of the person-hours r equired to do two 
analyses is given below. 

Task 

Determine demand area 
Identify census tracts 
Determine CBD work trips 
Identify competing modes 

Determine residential density 
Select mode-split curve 

Determine disutilities for each of 11 
census tracts for each mode 

Graphical Computational 
Approach Approach 

16 16 

4 

24 

Determine mode split for each of 11 4 4 
census tracts 

Correct for one or two trains per peak 
period, if necessary 

Determine patronage for each census 
tract and total ridership 

Tu~ M 44 
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A generous amount of time ls allowed to the first four 
tasks of assembling materials . The computational ap­
proac? time requirements are almost double those of the 
grap~1cal appro~ch because of the time required to de ­
te rm ine travel times ;i.nd disutilities for each mode. 

CONCLUSIONS 

~h.e question of allocating greater resources to comrnuter­
ra1l transit in the southwest Baltimore corridor was an­
swered by the yery small market of 508 persons. Unless 
the demographic characteristics of the area were to 
change d.rasticaUy, the potential or commuter-rail tran­
sit could never be exploited . However , the study did 
demonstrate the success~ul manual application of several 
mode-choice methodologies and the response to a numbe r 
of policy options relating to infrequent service . 

Commuter-rail corridors can be characterized by 
residential density, competing parallel freeways and 
terminal station location relative to the CBD. P.itronage 
experience in corridors defined by these characteristics 
can provide a valuable guide in planning rail service for 
other corridors . Such eJq)erience has been described (4) 
by a function that relates distance from the CBD to the -
percentage of the market using commuter-rail transit. 
Estimates of patronage determined from this g.ra,phical 
approach can be factored from past experience to de­
termine the effects of low-frequency service. This 
methodology can eliminate the need for a more sophisti­
cated model and be applied with approximately 24 person­
hours of effort. However, the relationship ls based on 
past experience and is tied to time, cost factors, com­
fort, and convenience experienced ln the past. Also, 
there is no way to determine patronage changes resulting 
from changes in accessibility or parking charges. 'These 
limitations may require a more sophisticated approach 
such as disutility models. 

Of existing post-distribution, mode-split models, 
those using utility models are responsive to policy and 
planning issues such as parking taxes, transit fares, 
station location, and road access to rail stations. One 
such model, the WASH COG model, can be adapted to 
low-frequency operations by adjustments to automobile 
captivities and the development of a relationship between 
automobile captivity and the number of trains in the peak 
period. 

'This model can be applied at the corridor scale by using 
CBD employment for corridor census tracts . Detailed 
transportation zone data or regional networks are not re­
quired. Because of the narrowness of a commuter-rail 
corridor and the resulting few census tracts involved, 
the entire computational process can be done by hand. 
The model can be applied to a 32-km (20-mile) corridor 
in a person-week of effort. The model exhibited trans -
ferability without recalibration in its application to a 
Baltimore corridor. 
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The Subarea Focusing 
Concept for Trip 
Distribution in the 
Puget Sound Area 

Donald G. Miller, Peat, Marwick, Mitchell and Company 
Nancy L. Nihan, University of Washington 

This paper explores one method of reducing the computational costs as· 
sociated with urban travel demand modeling. The technique investigated 
is a data base approach called subarea focusing. The distinction between 
this technique and other data simplification methods is in the detailed 
analysis of pnly a port ion of a study area and the simultaneous presence 
of several levels of areal detail In the data base. A computerized technique 
for subarea focusing was developed and used for a sample trip distribution 
application to data from the Puget Sound region. The procedure was not 
unduly expensive in either manpower or computer time. When aggregate 
data sets were used to obtain travel demand predictions. substantial sav· 
ings in computer time were realized. The error analyses indicated some 
sacrifice in accuracy, but not a serious sacrifice. The results appear to 
justify continued refinement of the aggregation procedure and investiga· 
tion of the effects of subarea focusing on other demand models. 

Conventional travel demand forecasting procedures have 
received substantial criticism from professionals and 
policymakers since the late 1960s. A repeated com­
plaint : e.g., Bouc.hard ( 1). is that conventional forecast­
ing procedures are too time-consuming and too expen­
sive. In response to these and other criticisms, new 
methods are being discussed, developed, and tested. 

One method of reducing the excessive costs of com­
puter modeling is the simplification of model inputs . 
Dial and others (2) have proposed three types of data 
base simplification : regionwide abstraction, subarea 
focusing, and subarea windowing. Figure 1 illustrates 
chese three concepts. Regionwide abstraction is the 
uniform aggregation of network and zone information 
across a study region to create a district system (areal 
scheme bin Figure 1). Subarea focusing is the extrac­
tion of a subarea of interest (called the window\ from the 
original data base and the abstraction of zone and net ­
work information outside the window (areal scheme c in 
Fi<rure 1): All data within the Window boundary are kept 
at a zonal level of detail. Subarea windowing also ex­
tracts a subarea of inte rest from the original data base 
but then collapses trip ends outside the window onto the 
window boW1dary much like the treatment of external 
stations in the original network (areal scheme d in Fig­
ure 1). 

For analyses in which only a small section of a.n en­
tire region is of interest, subarea focusing appea.rs to 
be the best method for reducing data requirements with­
out adverse effects on investigations inside the windowed 

section. It is best suited to local planning, corridor 
analyses, and major updates of existing regional plans 
when only a small number of subareas are under inves­
tigation. 

Although subarea focusing has played a role in trans­
portation planning studies for many years (3, 4), it has 
been formally recognized only recently withthe advent 
of sketch planning techniques. Thus, while the concept 
has been applied informally for some time, there is 
little documentation on how this was done, and no studies 
have been initiated on the effects of applying it. Thus, 
the prime objective of this investigation was the develop­
ment and automation of an aggregation methodology for 
subarea focusing. A second objective was the demonstra­
tion of the effects of such simplification on predicted trip 
flows to, from, and within a subarea of interest for a 
realistically sized study region. 

A few recent studies have considered means of alle­
viating many of the time and money problems associated 
with conventional modeling techniques. Peat, Marwick, 
Mitchell and Company (5) have proposed new simulation 
models, network and zone aggregation techniques, and 
an interactive computer environment in an early but de­
tailed look at sketch planning techniques. When opera­
tional these concepts were to have been added to the 
UMTA Transportation Planning System, but they have 
since been superseded by others (2). These techniques 
included an integrated multimodaldemand model, a 
time-sharing compute1· environment and the three types 
of data simplification described above. Mann (6), on the 
other hand , has de\·eloped a composite model using sim­
plified versions of existing models with a district-level 
data base that achieves significant savings in computer 
time. The most unconventional sketch planning tech­
nique for travel demand forecasting is that of Schleifer, 
Zimmerman, and Gendel! (7), which does not require ex­
tensive network coding since arterials are considered 
ubiquitous and areal data are aggregated to the commu­
nity level. The model is noniterative and requires only 
trip end data by mode for each community. Transit es­
timation is presently done manually. 

Two other studies were of interest to this project. 
One aided in the study design; the other gave some in­
sights about the effects of zonal aggregation. 
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Bovy and Jansen (8) define the problem and present 
an experimental design for investigating the effects of 
spatial abstraction in transportation planning. They pro­
pose investigating the effects of abstraction on travel 
predictions and costs for three types of trip assignment 
models , three degrees of network abstraction, and three 
degrees of zonal abstraction. The models investigated 
are conventional in nature and include all-or-nothing, 
capacity restraint, and multipath assignment techniques. 
Although not clearly stated, the data simplifications 
seem to be of the regionwide abstraction type. 

Wilbur Smith and Associates (9) studied the effects 
of zonal data simplification on trip distribution and as­
signment models. The areal simplifications were of a 
regionwide abstraction type, manually created, and 
spanned a range of total centroids from 630 to 73. Three 
trip purposes in the trip distribution stage, two trip as­
signment models , and siJc different sized areal systems 
were analyzed for both trip assignment and trip distribu­
tion. It was concluded that major reductions in the num­
ber of centroids on a regionwide basis could be achieved 
before errors due to aggregation became larger than 
errors inherent in the trip assignment process. 

PROJECT DEFINITION 

Study Scope 

The salient features of the subarea focusing study are 
presented here. A more detailed description of the ex­
perimental design aggregation procedure, and error 
results is given in Miller ( 10}. 

In applying the subarea rocusfug concept the data sim­
plification was limited to zonal information. Network 
modifications were avoided for three reasons: (a) Zonal 
aggregation appeared far easier to achieve, (b) although 
a network aggregation technique has been developed ( 11) 
it has not been successfully automated for large net- -
works , and (c) significant regionwide reductions in areal 
units have been achieved without incurring unreasonable 
trip prediction errors (9 ). 

In the initial demonstration of the subarea focusing 
procedure, one design variable the degree of aggrega­
tion, was varied while others such as window location 
and size were held constant. ~In an associated project 
( 12) the sensitivity analysi s is extended by examining 
two additional window locations for approximately the 
same degrees of aggregation. Both studies limlt their 
investigations to trip diStribution predictions using the 
gravity model. ] 

The study area was the three -county mainland portion 
of the Puget Sound region. The data base for this area 
consists of a base 635-z.one system containing 597 traffic 
analysis zones a.nd 38 external stations , a network with 
9495 one-way links and 3186 nodes, projected 1990 home­
based person work-trip productions and attractions , and 
projected impedance factors for work trips in 1990. 

The Seattle CBD was the subarea of interest. There 
are 42 traffic analysis zones within this window. Aggre -
gate districts were created from one or more or~ginal 
zones outside the window and approximately aggregated 
to the same level of detail regardless of distance from 
the window boundary. ·The degree of aggregation was 
measured by the percentage reduction in the number of 
centroids outside the window. Three degrees of aggre­
gation, 55, 79, and 90 percent reductions in centroids 
outside the window, were analyzed. The total number 
of centroids present in each system was 302, 165, and 
103 respectively. 

A forecast trip matrix was obtained for the 63 5-zone 
system by applying the gravity model to the base data. 
This forecast trip matrix was considered correct, and 

any deviation from it was attributed to data aggregation. 
A computerized aggregation procedure was developed to 
generate aggregate district data [rom the base zone sys­
tem. An aggregate trip ma trL'< was obtained for each 
degree of aggregation by applying the gl"avity model to 
the district-level data. The fundamental co mparison in 
the error analysis was between the forecast trip matrix 
(compressed into appropl"iate district-level dimensions ) 
a nd each of the aggregate trip matrices . 

Spatial Aggregation Procedure 

There are several assumptions associated with the ag­
gregation procedure developed. They are : that zonal 
trip and network data are available for a particular re­
gion and that some subarea of the study region is of spe -
cial interest ; that the network representing the transpor­
tation system need not be modified and that the zones 
cannot be split during aggregation ; and that the conven­
tional demand prediction methods are sufficiently accu­
rate !or subarea analysis. 

Several means of achieving zonal aggregation were 
considered and three criteria used to select the proce­
dure that was finally implemented. These were: sim­
plicity, transferability, and reasonable accuracy of trip 
prediction with respect to the window. The three major 
steps of the aggregation procedure selected are given 
below: 

Step 1. Construct aggregate district boundaries, 
Step 2. Establish district centroids, and 
Step 3. Assign terminal and intrazonal travel time 

for districts. 

In step 1 outside zones were aggregated into dis­
tricts based on a minimum travel time difference cri­
terion. That is, zones that displayed the smallest dif­
ferences in travel time to a common node on the window 
boundary were combined first . The process was then 
continued until the desired number of districts was 
reached. 

In step 2, a district centroid was chosen from the 
set of zone centroids originally contained in the district. 
The chosen centroid was centrally located in the district 
and ranged nearest the median value with regard to travel 
time to the window boundary. 

In step 3, a simple unweighted average approach was 
used to calculate terminal and intradistrict times for 
each district. . 

With the exception of minor hand adjustments, the 
procedure was fully automated. An example of an areal 
system obtained by this method is shown in Figure 2. 
~A more detailed discussion of the process is given by 
Miller (10).) 

PRESENTATION OF RE SUL TS 

Time Savings and Expenditures 

The reduction in computer time for trip distribution was 
calculated for each level of aggregation. This involved 
three tasks: (a) the creation of a minimum path travel 
time matrix that included terminal and i11trazonal travel 
times (SKIMTREE PROGRAM), (b) the production of a 
line printer list of a matrix (T PRINT PROGRAM), and 
(c) the production of a trip matrix by the gravity model 
(WILSON PROGRAM). The computer execution times , 
the gross reductions in computer times, and the percent­
age reductions for the three programs are shown in 
Table 1. 

The preparation of the data inputs for the aggregation 
procedure required 2 person-days. Additional costs of 



10, 7.5, and 4 person-days were incurred to obtain the 
district-level data sets for the 55, 79, and 90 percent 
degrees of aggregation respectively. These manpower 
requirements were for the existing aggregation proce -
dure, which should be considered a prototype. Signifi­
cant savings may be realized by further automation. 
(The manpower requirements included learning time. 
Thus, it should decrease as more experience is gained.) 

The computational costs of the aggregation procedure 
in terms of computer execution time were minimal and 
relatively inelastic with respect to aggregation level. 
The total costs for a single application of the algorithm 
for either 55, 79, or 90 percent degrees of aggregation 
were 81, 74, or 73 s respectively. When all three levels 
of aggregation were desired, the total CPU time was 164 s. 

Errors Attributable to Degree 
of Aggregation 

Analysis bf the differences between the forecast and ag­
gregate trip matrices was limited to the calculation of 
seven error measures. Three of these were regional 
measures. The remaining four measured matrix errors 
on an interchange-by-interchange basis. In calculating 
these four measures it was necessary to compress the 
forecast trip matrix to a size that comformed with each 
of the aggregate trip matrices. Thus , compression of 
the single 635-zone trip matrL-: created a distinct com­
pressed trip matrLx for each degree of agg.regation in­
vestigated. (These will be termed compressed trip 
matrices. ) Analysis of pairs of equally dimensioned 
compressed and aggregate trip matrices was performed 
for all matrix cells. 

In addition to the comparisons of full matrix pairs, 
ma trix quadrants were compared to isolate errors for 
trips to from, and within the subarea of interest. Spe­
cifically, the three g roups of interchanges of interest 
were: trips produced at eentroids outside the window 
and attracted to centroids inside the window ; tr ips pro­
duced at centroids inside the window and attracted to 
centroids outside the window ; and trips made completely 
within the window. To facilitate this analysis the aggre­
gate and compressed trip matrices were arranged so 
that the lowest numbered centroids were those contained 
within the window. The specially arranged matrices 
were separated into four quadrants based on the types 
of trip interchanges as illustrated in Figure 3. 

Matrix Error Measures 

P airs of trip matrices of conformable sizes were com -
pared on an interchange-by-interchange basis to provide 
a microscopic analysis of the differences between them. 
The error measures, absolute percent deviation and ab­
solute deviation are defined in equations 1 and 2 below. 

r.,::: ic11- A,1: ,clJ ( l l 

subject to 

Ct~ > 0 trips and 
C1J > 3 trips, except when I C1J - AiJ I > 10 trips; 

and 

(3;j =JC,; -A,;l ( 21 

where 

C = compressed 635-zone trip matrix (dimensions 
r x r), 

A= aggregate trip matrix (dimensions r x r), 
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Cu = trips predicted from i to j for matrix C 
A1J = trips predicted from i to j for matrLx A

1 

r =number of total centroids (i.e., 302, 165. or 103), 
Yu = absolute per?e~t error (or interchange i, j . and 
Bo =absolute deviation for interchange i,j . 

The ~bsolute percent error measure was constrained to 
consider onl~ compressed trip interchanges with the 
~umber .of trips greater than zero s ince division by zero 
is undefined. Compressed trip interchanges having mag­
nitudes of less than three trips were not analyzed unless 
the absolute deviation was greater than ten trips because 
many small trips created large absolute percent errors 
(e.g. 2 trips = 1 trip gives a 50 percent error). (These 
large percent errors were insignificant because of the 
small number of trips involved. ) 

The mean and standard deviations for the two error 
measures for each level of aggregation are given in 
Table 2. The computer program that calculates these 
measures also stratifies the error by row and column 
for the full matrix and for particular matrix quadrants. 
These results are not included here but are available for 
future, more detailed analyses and refinements. Such 
analyses might isolate centroids with unusually high er­
ror magnitudes and study their properties for further re­
finement of the aggregation procedure. 

The maximum error for a single trip interchange in 
the full matrix and in each matrix quadrant was deter -
mined for the three degrees of aggregation. These er­
rors are shown in Table 3. In all instances the maxi­
mum error found in quadrant IV ts also the maximum 
error found in the entire matrix. Since the aggregation 
criteria were purposely biased against quadrant IV trips, 
this is an expected result. (Only a subset of quadrant 
rv trips, namely through trips, are of interest to the 
subarea planner. These are discussed later.) The num­
ber of trips listed for each error measure is the number 
of trips for the associated compressed trip interchange. 
For example, the full 302-by-302 matrix had a maximum 
percent interchange deviation of 304 based on six trips. 
:These percentages were calculated before trips were 
rounded off. In terms of whole trips this was (24 - 6)/6 
= 300. ] 

Error Length Distributions 

The error length distributions indicate the bias of devia­
tions for trips of different lengths. Two error measures, 
the mean absolute percent deviation per time interval and 
the mean absolute deviation per time interval, were used 
to calculate these distributions. They are given by 

~ [1IC,,-A,, ll C, , J 
IJJt 11e\f 

and 

P~t = 

where 

Cu = trips predicted from i to j for matrix C, 
A1i = trips predicted from i to j for matrix A, 

M = time interval, 
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N = number of trip interchanges in time interval M, 
t1J = travel time from i to j in the aggregate system, 
"'• = mean absolute percent error for time interval 

M, and 
p,, = mean absolute deviation for time interval M. 
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Figure 1. Types of data base simplifications. 
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Figure 2. Aggregate traffic analysis 
districts . 

Table 1. Comparison of computer execution times for trip distribution 
programs. 

Degree of Sk1mtree 
~gregation No. of SkJ.mtree• Wilson~ and Wilson Tprint' 

Centroids Program Program Programs Program 

Computer Execution Times 

635 822 360 ll82 218 
55 302 370 55 425 49 
79 165 213 19 232 15 
90 103 137 g 146 6 

Gross Reduction 1n Computer Time.t 

55 302 452 305 757 169 
79 165 609 341 950 203 
90 103 685 351 1036 212 

Percentage Reduction in Computer Ttme1 

55 302 55 85 64 77 
79 165 74 95 80 93 
90 103 83 98 88 97 

Note All t•me is measured 1n CPU sec !or CDC 6400 These mav be con1o1erted to dollu terms by the 
following convel'11on umt · O.J583 !dollan/CPU sec). 

•see ttJ). 
00oubi'Y constrained gravrtv model carried throu~ four 1nt1ract1ons of balancing procedure . 
c Pnnt out orogram that 011nn SO • 28 entries per P•· 
\)Based on 635 zone system execu r1on time . 

Figure 3. Quadrant Trips 
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Table 2. Trip matrix error summary. 

Abeolute Abeolute 
Percent Error Deviation 

No. of Standard Standard 
Centroids Mode of Analysis Mean Deviation Mean Deviation 

302 Full matrix 9.93 11.57 1.94 20.81 
Quadrant f 1.02 0 .70 0.80 0.38 
Quadrant II 6 26 6.47 0 . 15 1.12 
Quadrant III 5 82 6.24 1.00 3 52 
Quadrant IV 11. 77 12 .66 2.43 23.87 

165 Full matruc l2 . 45 18 17 7 68 60.88 
Quadrant I 1.63 1.01 0 28 0.63 
Quadrant lI 9.00 7.84 0.51 2. 70 
Quadrant III 8.73 \5 l6 2 .35 5.29 
Quadrant IV l 5 77 20 28 12 81 81.22 

103 Full matrlx ll 84 15 63 21 75 266 .09 
Quadrant I 1.90 1.09 0 .31 0.60 
Quadrant [! ll 91 11.20 l.46 6. 77 
Quadrant ill 8 95 11 l 7 5.27 10. 44 
Quadrant IV l8.02 19 71 57 .23 447 .01 

Table 3. Maximum trip matrix error magnitudes. 

Absolute Absolute 
Percent Error Deviation 

No. of ;\1.ax.imum Number Ma.Xlmum Number 
Centro1.ds Mode of Analysis Error of Tnps Error Of Trips 

302 F\tll matrtx 304 6 2 836 3 573 
Quadrant I 4 ll 4 216 
Quadrant !I 37 25 57 188 
Quadrant Ill 57 6 96 553 
Quadrant IV 304 6 2 836 3 573 

165 Full matrix 704 3 2 976 l 965 
Quadrant I 5 7 10 288 
Quadrant !I 41 5 106 328 
Quadrant llI 191 10 76 43 
Quadrant IV 704 3 2 976 I 985 

103 Full matrix 214 317 15 195 29 485 
Quadrant I 5 4 7 275 
Quadrant !I 62 3 124 807 
Quadrant III 101 11 146 821 
Quadrant IV 214 317 15 195 20 485 



Figure 4. Error length distribution 
results for 302·zone system: 
Seattle CBD window. 

Figure 5. 1990 home-based person work· 
trip distribution gravity model output: 
Seattle CBD window. 

...J 
cc 
~ l .., .... = II 
u.J 
J::: 
;::: 96 

J: 

15 80 

= [5 64 

a:: 
0:: 
.., 48 
.... z 
u.J 
u 32 
0:: 
u.J .... 
~ 16 

~ 
0 

6 

0 

0 

Nu1, Symbul1' ue plulled every lirrti dal3 vuinl 

- QURORRNT I 
QURORRNT I I 

---• QURORRNT III 

>Y, 
I • 1l , : ~ \ 

10 15 20 25 30 35 40 46 so 55 60 65 10 '75 80 I!S 90 

HIGHWAY TRAVEL TIME ( MINUTES l 

---<I 635 ZONE SYSTEl1 
-·-··--1 302 ZONE SYSTEM 

10 15 20 25 30 35 40 •5 50 55 60 65 10 15 80 85 90 
H!OHMRY TRAVEL TIME C MINUTES l 

41 

Figure 6. Comparison of gross savings in computer time with 
total computer time required by the aggregation procedure. 

The error length distributions were calculated for the 
full matrix and all four quadrants for each degree of ag­
gregation. An example of the mean percent error distri­
bution is illustrated in Figure 4. In all instances, large 
percent errors were associated with small numbers of 
trips when compared with the absolute deviation distri­
butions. 
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Trip Length Distributions 

Trip length distributions were calculated for the forecast 
matrix and for each aggregate matrix. Figure 5 illus­
trates a sample comparison of trip length distributions 
for the 635 and 302-centroid systems . Since quadrant IV 
errors are of less relative importance than errors in the 
other three quadrants the trip length distribution for each 
quadrant was also calculated. This permitted the isola­
tion of the types of trip interchanges that caused the 
largest deviations in the trip length distribution curve. 

Regional Trip Length Measures 

The final measures calculated were the mean and stan­
dard deviations of the trip length and person-kilometers 
traveled in the study region. The mean trip length for 
the 635-zone base system was 23.98 min with a standard 
deviation of 14.66 min. The mean trip lengths for the 
55, 79, and 90 percent aggregation levels were 24.09, 
23.71, and 25.01 min respectively, with corresponding 
standard deviations of 14.61, 13.84, and 13.59. The 
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total person-hours of travel was 507 790 for the base 
system and 510 202, 502 193, and 529 598 for the re­
spective aggregation levels. 

INTERPRETATION OF RESULTS 

The significant computer time savings achieved by sub­
area focusing were shown in Table 1. The data indicate 
that it is possible to perform six 103-centroid, four 165-
centroid, or two 302-centroid skimtree runs in approxi­
mately the same computer time as required for one 635-
centroid run. Similarly, either forty 103-centroid, nine­
teen 165-centroid, or six 302-centroid gravity model 
runs can be made for approximately the same cost as 
one 635-centroid rwi. Therefore, more alternatives 
can be examined by subarea focusing than by conven -
tional methods for the same costs, at least with regard 
to computer time. 

The costs of preparing the three degrees of aggregate 
district data appear to be modest in terms of both man­
power and computer time. The total manpower expended 
in the creation of the aggregate district data sets ranged 
from approximately 6 to 12 person-days. A substantial 
portion of the manual tasks could be automated in further 
refinements to the aggregation procedure. The total 
computer time consumed in preparing the aggregate dis­
trict data sets was small relative to the computer time 
saved during trip prediction. This is shown graphically 
in Figure 6. For example, it required 81 s to run the 
aggregation programs for the 302 -centroid system, but 
the computer time saved in skimtree and gravity model 
runs for the same system was 757 s. (TPRINT was not 
included in this calculation since it was unlikely that a 
full trip matrix would be printed for each run.) 

The loss of accuracy between each Gf the three aggre­
gate trip matrices and the 635-zone trip matrix appears 
acceptable. The average percent errors for the quad­
rants of special interest (e .g., I, II, and Ill) for the 302, 
165, and 103-centroid systems were 6, 9, and 12 re­
spectively. These error magnitudes are within the ac­
ceptable range (9) and agree with other results (7). 
Similarly, the largest average absolute deviations among 
the key quadrants are one, two, and five trips respec­
tively . The results for trip interchanges with the worst 
error magnitudes indicate that large percent errors ex­
ist but are associated with small numbers of trips. The 
largest percent error fowid among the three primary 
quadrants for all three degrees of aggregation is 190 
based·on 10 trips in the compressed trip matrix [i.e., 
(10 - 29) / 10 = 190;. The largest absolute deviation 
found for these quadrants is 146 trips based on 675 trips 
(i.e., 1675 - 821 I = 146 trips). 

The results of the error length distribution analyses 
do not indicate any systematic bias with regard to travel 
time, and the magnitude of errors in these results is not 
serious. CSerious error is defined here as any error 
over approximately 15 to 20 percent (7, 9). J Only a 
single 1-min time interval (70 to 71 min~ quadrant II, 
103 -centroid system ) showed a large percent error, but, 
since this time interval contained only five trips , the 
total error was insignificant. It appears, therefore, tbat 
a balance has been achieved for quadrants I. II, and Ill 
and that the simple choice of unweighted ·averages for 
calculating district-level terminal and intrazonal times 
is not overly damaging. Of course, more complicated 
weighted average computations could lead to incremental 
improvements. 

The results lndicate that the trip length curve be -
comes less dispersed about the mean as the degree of 
aggregation increases. This is to be expected since 
fewer trips of very short or very long duration will oc­
cur as the number of centroids is reduced. This shift 

of short and lGng trips occurs at the 103-centroid system. 
The large peaks in intermediate length time intervals ap­
pear to offset tlus shift so that average trip length varies 
only slightly . 

The mean trip length and the person-hours of travel 
for the 302 and 165-centroid systems closely correspond 
to those measured for the 635-zon.e system. Even at the 
highest degree of aggregation ( 103 centroids) both the 
mean trip length and person-hours of travel are only 4 
percent in error. Since trip distribution models are 
usually calibrated within a 5 percent error of the origin­
destination matrix, these errors are quite small. 

CONCLUSIONS 

The subarea focusing concept as applied to trip distribu­
tion appears to be both economical and reasonably accu­
rate: 

1. The computer time cost of the aggregation proce­
dure is very low in comparison to the computer time 
savings realized for trip prediction. 

2. The procedure is not widuly expensive in terms 
of the manpower required to develop an aggregate data 
set. 

3. Substantially more alternatives may be examined 
by subarea focusing than by conventional methods for the 
same cost. 

4. At very high degrees of aggregation subarea focus­
ing may be suitable for preliminary screening of subarea 
alternatives (i.e., sketch planning) even with conventional 
models. 

5. Data base simplification can be limited to zonal 
information and still achieve significant savings in com­
puter time. 

6 . . Assuming subarea focusing is applied, the addi­
tional savings in computer time that might be realized 
by network aggregation appear to be small. 

The last conclusion, the potential of network aggregation 
given subarea focusing, requires more substantiation. 
Both the gravity model and the printout process will not 
be affected by network aggregation. Thus, the only 
means of varying computer time in the trip distribution 
p.hase involves the minimum travel time path program. 
Consider the example of the highest degree of zonal ag­
gregation. If it is assumed that the network aggregation 
is 80 percent successful in reducing computer time (the 
percent reduction realized for zonal aggregation), there 
will be a saving of approximately 134 CPU s. This sav­
ing will, of course, be diminished by the costs of apply­
ing the network aggregation technique and the additional 
uncertainty brought into the demand predictions. But 
even ignoring these costs, the results still compare 
poorly with the savings attributable to zonal aggregation 
alone. If the costs of creating the aggregate district data 
are included, the computer time saving for one run is 
612 CPUs. Since subarea focusing by definition re­
quires zonal aggregation additional savings due to net­
work aggregation do not appear to merit the probable 
added costs and uncertainties in the trip predictions. 

The error investigation was initially limited to one 
urban region (the Puget Sound region), one particular 
Window type and location (the centrally located Seattle 
CBD), one window size (42 zones), three degrees of ag­
gregation {55, 79, and 90 percent reduction in the number 
of centroids outside the window), and one travel demand 
model (gravity model). Thus, only preliminary conclu­
sions about accuracy can be made. The initial results 
indicate that subarea focusing is sufficiently accurate 
for conventional planning at the first two aggregation 
levels and for sketch planning at the highest aggrega- I 



tion level. Subsequent analyses of additional windows 
and ~hrough-trips ( 12) support these preliminary con­
clus10ns. 
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Abridgment 

Statewide Disaggregate 
Attitudinal Models for 
Primary Mode Choice 

stephen M. Howe and Gerald S. Cohen, Planning and Research Bureau, New 
York state Department of Transportation 

Statewide disaggregate models for predicting the choice 
of primary mode were developed, using attitudinal and 
situational (demographic and trip-related) data collected 
in a recent home interview survey in New York (1). The 
modeling effort had two objectives: to build mode-choice 
models having both predictive and explanatory value, and 
to assess the relative significance of situational and at­
titudinal variables in regional or statewide models. 
Hartgen (2) has found that situational variables possess 
greater strength in disaggregate models for urban mode 
split. Recker and Golob (3), however, have used situa­
tional, choice-constraint variables to define distinct 
market segments, and found attitudinal variables to be 
highly significant in models built for separate segments. 

Disaggregate binary logit models for the choice of 
bus as primary mode were constructed for six area­
purpose cases: NYC-work, NYC-nonwork, upstate­
work, upstate-nonwork, statewide-work, and statewide­
nonwork. Except for the NYC-work and statewide-work 
cases, the models had significant statistical strength 
and goodness of fit. The most significant explanatory 
variables were situational ones, in particular the num:­
ber of automobiles available to the household and whether 
the respondent possessed a driver's license. Attitudinal 
variables were generally less significant than situational 
ones. 

DATA SET AND VARIABLES 

A sample of 1000 households selected at random through­
out New York state was surveyed. Controls ensured that 
the sample matched statewi.de population characteristtcs 
(1). The demographic variables surveyed (one respon­
dent per household) included age, sex, employment 
status (EMPSTA), possession of a driver ' s license 
(LICEN), distance to nearest bus stop (DISTOP) and bus 
fare, household income, number of automobiles owned 
(AUTOS), number of workers (WORKRS), and household 
size (HHSIZE). Several automobile availability indexes 
were also constructed from the basic variables. 

The attitudinal variables included comfort, cleanli­
ness, quietness, crowdedness, safety from crime, 
safety from accidents, reliability, convenience, speed, 
frequency, and cost. The survey contained two attitu-
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dinal responses for each attribute: general importance 
and bus-specific satisfaction, each measu.red on a seven­
point scale. For each travel attribute, a third attitudinal 
variable was created from the product of the importance 
and satisfaction responses. The dependent variable for 
both work and nonwork models was a (0-1 ) dummy (1 = 
bus, 0 = otherwise). 

MODELS 

Correlation matrices and stepwise order-of-entry tables 
were prepared from llnear regression runs to gulde the 
selection of independent variables. These runs clearly 
demonstrated the significance of the AUTOS and LICEN 
variables as factors ln mode choice. TheautomoblleavaU­
ability indexes were generally no stronger than the basic 
AUTOS variable, and were not used In the log Lt mOdels. Al­
though LICEN Ls correlated with AUTOS the coefficients 
of both were relatively uniform across dlfierent area­
purpose contexts and were also stable when other vari­
ables were introduced. Below AUTOS and LICEN, there 
was a second tier of situational variables having less 
consistent strength. The attitudinal variables formed a 
third tier that was generally of less significance than the 
tiers of situational variables. Among the attitudinal 
variables, the importance variables were stronger than 
either the satisfaction or the product variables. No logit 
models were developed for NYC-work or statewide-work 
as attempts to build models for these cases showed early 
entry of variables having incorrect signs and failed to 
adequately explain observed travel behavior. 

The program PROLO was used to construct binomial 
logit models for choice of primacy mode, for the area­
purpose cases NYC-nonwork (II), upstate-work (Ill), 
upstate-nonwork (IV), and statewide-nonwork (VI) . For 
each case a series of models was built by incorporating 
the independent variables selected earller. Two models 
for each case are presented in Tables l to 4: Model A 
contains only the AUTOS and LICEN variables; other situa­
tional and attitudinal variables are added to form model 
B. Three indicators of model strength are given in these 
tables. The pseudo-R2 and the statistic (-2 log >.) are 
both widely used goodness-of-fit measu.res, but, as 
pointed out by Stopher (~). appear to be weak in discrim-



inatory power. Thus, a third indicator, the 0.50 classi­
fication, which consists of the four entries in a 2-by-2 
classification table as shown below, is also given. 
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Group P, < 0.50 P,,. 0.50 

Nonusers 
Users 

A strong m.odel presumably should estimate P, 2 0.50 for 
most transit users in 'the data set , and P ~ < O. 50 for most 

Table 1. New York City-nonwork-bus versus 
other (sample size = 208). 

Table 2. Upstate-work-bus versus other 
(sample size= 148). 

Table 3. Upstate-nonwork-bus versus other 
(sample size= 317) . 

Table 4. Statewide-nonwork-bus versus other 
(sample size = 525) . 

Model 

IIA 

IIB 

Model 

llIA 

IIIB 

Model 

IVA 

!VB 

'2 d f 

Model 

VlA 

VIB 

'2 d f 

Independent Variables 

Name Coe[(ic1ent t-Stat1sllc 

CONST 0.93 1.4'1" 

AUTOS -2.20 -5.16 
LICEN -0.61 -1.31' 

CONST -3 .96 -1.40' 

AUTOS -2.26 -5.20 
LICEN -0.52 - l.06' 
DISTOP -0.06 - I. 48' 
AGE 0.04 2.81 
QUIE-IMP 0.43 2.10 
ACCI-IMP 0.52 1.15' 
COMF-IMP 0.39 -1.65 

0 2 d r c7 d. f 

Independent Variables 

~fame Coefiicient t-Statist1c 

CONST 2.40 2.33 

AUTOS -1. 70 -3.35 
LICEN -!. 73 -2.55 

CONST -23. 52 - I. 68 

AUTOS -3.31 -3. 53 
LICEN 0.44 0.42' 
SEX -2.41 -2.60 
HHS!ZE 1.60 2.67 
AGE 0.05 1.39' 
INCOME -0.17 - I.98 
RELi-iMP 4.58 1.89 
CONY-IMP -1.12 -1. 43 

'tns1gn1f1cant wuh incorrect sign. 

Independent Variables 

Same Coefficient t-Statistic 

CONST I. 71 2.50 

AUTOS . -2.32 -5.17 
LICEN -1.50 -2. 79 

CONST 1.68 0.94 

AUTOS -2.31 -5.11 
LICEN -1.52 -2. 81 
FREQ-IMP 0.35 1.H' 
FARE -0.53 -1 .79 

0 4 d I lJw tO 801 s1gn1hcance 

Independent .Variables 

~fame CoeCC1c1ent t-Stat1st1c 

CONST 1.24 2.68 

AUTOS -2.34 -7 .31 
LICEN -0.97 -2.76 

CONST -2.38 -1. 78 

AUTOS -2.44 -7.26 
LlCEN -0. 76 -2.06 
AGE 0.03 2.42 
FREQ-IMP 0.40 1.98 

0 4 d f 

-2 Log >. Pseudo-R' 
0.50 
Class1Hcat1on 

64.5' 0.41 142 22 
16 28 

82. 7- 0. 51 151 13 
19 25 

0.50 
-2 Log >. Pseudo-R' Classilication 

36. 7' 0. 43 125 6 
9 8 

60.8' 0.66 126 5 
8 9 

~Log !O 80) s1gn1ficance 

0.50 
-2 Log ~ Pseudo- R' Classilication 

86.4' 0 .49 263 21 
11 22 

92.0' 0.52 273 11 
13 20 

0.50 
-2 Log >. Pseudo-R' Classification 

158. B' 0.46 405 43 
27 50 

169. 7' 0.49 418 30 
37 40 
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nonusers. In each of the four cases, model A shows high 
overall significance in the log-likelihood statistic. Both 
AUTOS and LICEN show a negative relation to the choice 
of bus, and (except in case II) both AUTOS and LICEN 
have significant statistics in model A. In general, at 
least 85 percent of the nonusers and at least half of the 
observed bus users are correctly classified by using 
only the first-tier variables AUTOS and LICEN. 

The inclusion of additional variables in model B ap­
peai-ed to provide only a marginal improvement in over­
all model strength. The LICEN variable was consider­
ably affected by the addition of other variables, becoming 
insignificant in cases CI and III, but the coefficient of the 
AUTOS variable remained significant and stable in all 
four cases. 

A cross-comparison of the effects of the first-tier 
variables, for NYC versus upstate areas and for work 
versus nonwork trip purpose, can be made on the basis 
of the models IIA, IIIA, and IVA. AUTOS has a substan­
tially smaller coefficient and T-statistic in the work­
purpose model IHA than in either of the nonwork models 
IlA and IVA, implying that C!,utomobile availability is of 
lesser Lmportance in mode choice for work than for non­
work purposes. The coefficient of LICEN is strong in 
both upstate models (IIIA and IVA), but has low signifi­
cance in the downstate model (JIA). In New York City, 
transit is a viable alternative even for licensed drivers. 

CONCLUSIONS 

These findings suggest that attitudinal variables are less 
significant than situational variables in predicting pri­
mary mode choice. This conclusion is consistent with 
findings reported ln previous research at local and re­
gional levels. However, attitudinal variables may be 
significant determinants of variation within market seg­
ments defined by situational context, as found by Recker 
and Golob (3). 

An analysis of the data showed that automobile users 
consistently express more satisfaction with the attributes 
of transit than did those who actually used transit, pos­
sibly because many automobile users simply do not know 
what the local bus system is like. Relationships between 
mode choice and satisfaction variables were therefore 
largely spurious and often contradictory. 

The principal conclusions are the following: 

1. Relatively small disaggregate data sets appear to 
be quite adequate for the development of useful mode 
choice models at the statewide level. 

2. The independent variables best explaining mode 
choice were consistently the nurµber of automobiles avau.: · 
able to the household and the possession of a driver ' s Li­
cense. Cross-comparison and sensitivity analyses sug­
gest in addition, that AUTOS is of greater importance 
In mode choice to work, and that LlCEN ls more Lmpor­
tant in upstate than in NYC models. 

3. Variables have different levels of inllu.ence on 
mode choice in different areas. This suggests that 
transferability is most appropriate for similar areas and 
trip purposes . Thus, the NYC model should be appro­
priate for very large cities that have extensive transit 
systems and the upstate models for other areas. 

4. Attitudinal variables are generally of less signifi­
cance than situational variables in ex.plaining mode choice 
at the statewide level. 
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Abridgment 

Quick Policy Evaluation 
With Behavioral Demand 
Models 

Frederick C. Dunbar, Charles River Associates, Cambridge, Massachusetts 

Many 0! the important policy issues confronting present 
day urban planners involve regionwide transportation 
system changes that will have many effects. Conven­
tional urban transportation planning models do not cap­
ture the full range of travel impacts, and are cumber­
some and resource consuming for evaluation of these 
poHcy options. In response to this, new behavioral 
travel demand models have been developed; these are 
policy sensitive and can be generalized among urban 
areas. However, there are several unresolved questions 
about these disaggregate demand models that prevent 
their widespread application. These problems are: 

1. Models estimated in one urban area have not been 
validated on other urban areas to test their generality. 

2. Models estimated on small data sets have not been 
applied to other small data sets to predict regioowide 
travel behavior. 

3. Disaggregate logit models give biased forecasts 
when applied to sketch plan or district sized zones. 

4. Disaggregate demand models estimated en auto­
mobile drive al.one and transtt mode cho ces will not pre­
dict the iull range oi choic es availabl e to tnp makers, 
which may include car pooling, chauffeuring, and walk­
ing, in response to a change in system performance. 

This paper presents methods that apply disaggregate, 
probability choice demand models to a sample of sketch 
plan zones to evaluate various automottve pollution <.:oo­
trol strategies in the Los Angeles region. Each of the 
above problems is considered. 

THE AGGREGATION PROBLEM 

In the logit specification of probabllity choice mudels, 
the probability of an individual choosing any given mode 
has the following functional form: 

PlAJ = I [l + t, exp(-Y,bll 
b~ • 

•I 1 

where a is one among n alternatives and Y.b is the rela­
tive costs and attributes between alternatives a and b. 
Each Y.b represents the log of the ratio of the probability 
of a to the probability of b. The prediction of travel be­
havior in a zone of T individ111als requires estimates of 
individual probability choice of a: 

Typically, the only lnformation available aboot the argu­
ments of the Ys is their me.ans for a zonal interchange 
and, possibly, the variances and covariances oi the 
terms ln Y. There is no analytical form to translate this 
information into an estimate of N •. 

A Taylor ' s series approximation of equation 1 eval­
uated about the zonal means of the data has been sug­
gested to adjust for this problem (1). Tile expected value 
of the resulting expression, truncated after the third 
term, gives the followi.ng equation: 

n 

f·[P(J1't'1[ =P1a1Y1 I + ~ var[Y,bi*Plbl Yl -Y2 (3) 

" I 

"' ' 

where 

E : ~ = expected value operator and 
var = variance . 

The variabl es with bars over them are means. : Equation 
3 is somewh t dlI!erent fr om those de.rived by Talvitie. 
The operational differenc e is that s tochastic independence 
between the attnbutes of alternative a and other alterna­
ti ves 1s not assumed here but is by Talv ltie ( l). 

The expected value o! choices other than a-is 
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n 

E[P(c!Yll =P(c!Y> I+ ~ var[Y,bl [P(b!Y)-61 [P(blY)J -Vz .. , 
•f• 

where ei = 1 if b = c and 0 if b ~ c. 

(4) 

Consider the comparison function, Y,.. For the mode 
choice, the functional form for Y (~) Ls 

where 

C = operating cost of the trip, 
T =waiting and line-haul time of the trip, 
S = walking time for the trip, 
O = availability of an automobile, and 

a, ~ = estimated constants. 

(5) 

There are 28 possible variance-covariance terms for 
this equation. About half of these can be presumed to be 
zero because of stochastic lndependence or constancy 
over a zone. Of the other half, there is a presumptlon 
that most are proportional to, or simple functlons of, the 
variance of the distanc e tr av eled in a zone Lnterchange. 

With the information available, one cannot be very 
precise in measuring the var ianc e in dis tance Ln zonal 
int erchanges. The approach here is to assume that dis­
tances (or or igin and des tlna tion points) are dis tr ibuted 
over the a,: ea of a zone pair according to a well-defined 
probabillty density function. This approach, ultimately , 
allows estimates of the variance of distanc e a s a function 
of the areas of the two zones ln a zonal interchange. 

[n deriving the appropriate dens ity func tions, i t ls 
presumed that, for a given zone pair , tr ips are distrib­
uted over a range that reflec ts both the dis tance betw een 
the zone centroids (geographic centers) and the sizes of 
the zones. In symbols this is 

(6) 

where 

D = a stochastic variable that represents the dis­
tance between zones i and j for person trips, 

D' =the distance between the geographic centers 
of zones i and j, and 

Yu YJ =some measure of the size of zones i and j. 

If another stochastic variable, X, which can have 
values in the range from 0 to (Y 1 + Y J), is now intro­
duced, the distance for any trip can be represented by 
the sum of two variables: 

(7) 

The above relation indicates that trips must travel a non­
stochastic minimum distance (the term in [ J) and that 
the rest of the distance varies randomly between 0 and 
Y1 + YJ. The variance of Dis 

var[D] = E[X2 l - (E[X] )2 (8) 

The distribution function for X is assumed to be 

f(X) = (3/[2(Yi +Yi)]} - [X/(Y1 + \')2] for 0 < X <Yi+ Yi (9) 

The premise of the density func tion is that the distribu­
tion of trips can be appr oximated by a linear declining 
function over the r ange bounded by Y 1 + Y J . 

The first two moments about zero of the distribution 
are 

E(X) = [S(Yi + YJ)l/12 

E!X2
) =(Yi+ Yi) 2/4 

(10) 

(II) 

The variance of distance can then be calculated from 
equation 9 and the above moments: 

var[D] = [ l l(Y; + Yi)l/144 (1 2) 

The measures of zone size over which trips are dis­
tributed should reflect the length of the zone. Use of an 
intuitive measure of length, the square root of area, 
leads to the following: 

var[D I = [ 11 ( v'A;°- v'A;° j} I /144 = [I !(A;+ 2 ../i\Ai +Ai)] /144 

for if j (13) 

For intrazonal trips, the above equation must be mod­
ified to account for the fact that the stochastic part of the 
range is only half, on an average, of that of interzonal 
trips: 

var[D] =I IA/144 for intrazonal trips (14) 

The remaining terms Ln the Taylor expansion tend to­
ward zero. However, the t runcation of the series after 
the third term opens the possibility that, for values of Y 
that diverge rather far from Y, equatioos 2 and 3 wlll 
not provide a measure of probability that increases 
monotonically with P(a IY). In symbols, E[P(a IY)] must 
satisfy the following three conditions: 

n 

L E[P(a!Y)J = I 
a= I 

0 < E[P(alY)] for all a 

oE[P(a!Y)J I [oP(a IY)j,. O for all P(aiY)e[O, 11 

(15) 

(16) 

(17) 

Conditions 15 through 17 ensure that E[ P(a I Y)J ls a 
probability measure. Stronger conditions are required 
if E[ P(a lY) ] is to have plausible properties in terms of 
individual choic e beh.avior. One of these is that the elas­
ticity be greatest at E[P(alY)] = 0.5, i.e., 

o2 E[P(a!Y)J/3Y2 = 0 at E[P(aiY)I = 0.5 

3'E[P(alY)]/3Y3 < 0 at E[P!alY)] = 0.5 

(18) 

(19) 

Of the above five conditions, 15 and 18 hold for all values 
of the variances. The followlng constraints on the vari­
ances are sufficient to ensure that the other conditions 
are met: 

n 

~ var[Y,b I < 16 
b=i 
b~a 

(20) 

(21) 

The variance and covariance of terms in equations 3 
and 4 are comput ed as proportions of 13 and 14 subject 
to the above constraints. 

l 
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Table 1. Estimated versus actual work trips. 

Mode Shares Cor 172 
Zonal Interchanges 

Mode Actual Estimated 

Automobile driver 1040 
Transit 47 
Automobile passenge r 123 
Driver serve-passenger 
Walk 

'E11; c ludes driver stl"lle-pauenger and walk 

960 
54 

196 
40 
10 

THE NEW MODE PROBLEM 

Shares for LARTS 
Reg10n (•) 

Actual Estimated' 

84 
l 

12 

79 
4 

\6 

If mode choices are constrainted to be automobile drive 
alone and bus transit, the model will not predict the 
range of responses caused by a policy that significantly 
alters system performance. The consideration of new 
modes requires a heuristic approach that results in the 
construction of new comparison functions, Y.b· 

The new comparison functions are formed by attribut­
ing to each new mode a variable cost per mile a time 
spent in-vehicle and waiting, and a walking time for per­
son round trtps between each l, j zone pair. Each of 
these trip system performance variables can then be 
substituted for their transit counterparts in the estimated 
mode spilt equations to derive the odds between auto­
mobile choice and the given new mode choice, and from 
equation 1, the probabHlty of choosing any alternative 
among all modes- automobile alone, transLt, car pool, 
serve passenger, and walk- can be derived. 

The values for level of service for the new modes are 
largely the results of assumptions about extra time pen­
alties involved with car poollng and chauffeurmg. Such 
assumptions are required because of the paucity of data 
about these alternatives. In pa.rticular, for individuals 
who currently drive alone, virtually nothing is !mown 
about the availabllity and attributes of potential car 
pools. 

TRAVEL DEMAND MODEL WITH LOS 
ANGELES REGIONAL TRANSPORTATION 
STUDY DATA 

This section compares actual Los Angeles Regional 
Transportation Study f LARTS) data for 1967 against pre­
dictions from the demand model. The data given are the 
number of person round trips between zone palrs by trav­
elers surveyed in the 1967 household survey {a 1 in 100 
sample). The level of aggregation ls sketch plan zones 
defined by LARTS in 1970 ; there are about 12 traffic 
analysis zones to each sketch plan zone and 69 sketch 
plan zones for the analysis area (Los Angeles and Orange 
Counties- the Los Angeles Alr Q..iality Control Region). 

The tests described below attempt to determine 
whether (a) application of the disaggregate demand model 
estimated on Pittsburgh data and adjusted for zonal vari­
ations and new modes can be ge11eraltzed to Los Angeles, 
and (b) a small but representative sample of zonal inter­
changes can be used to predict regionwide effects. 

The approach to applying the model is summarized in 
the following steps: 

1. Odds functions for automobile versus other modes 
are estimated for each zonal interchange using the zonal 
averages for system performance; 

2. Probabilities of each mode choice for each zonal 
interchange are calculated from applicaticn of equation l ; 

3. The mode shares for each zonal interchange are 
calculated using the probabilities, the calculated 
variance-covariance t.erms from the formulas in the pre-
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vious section, and equations 3 or 4, to adjust for aggre­
gatioo; and 

4. The estimated mode shares are multiplied by total 
trips in the zonal interchange to derive predicted trips by 
mode. 

A random sample of 172 zonal interchanges was 
chosen for testing and applying the approach. Because 
the policies in the study were evaluated by their efiects 
on vehicle-miles traveled (VMT) the model also was 
tested by placing the most emphasis an actual versus 
predicted VMT. 

Table 1 compares the mode shares predicted from the 
sample to the work-trip mode shares for the entire 
LARTS region. The model gives .reasonable predictions 
of mode split. Although the total vehicle trips were 
underpredict.ed by 7 .69 percent, the VMT (estimated, 
15 302; actual, 15 211) were predicted with vtrtually no 
error. 

CONCLUSION 

The results presented in this paper indicate that disag­
gregate demand models hold promise for quick evaluation 
of transportation-related pollctes. Although actual poll­
cies are not discussed (; ~), the models were used to 
simulate the effects of various pollution control st.rate­
gies by projecting 1974 base case trip behavior and the 
change·s that would have been caused by gasoline taxes, 
emissions taxes, parking surcharges, and bus system 
improvements. The resulting predictions were compar­
able with other research efforts; for example, the im­
plied elasticity of gasoline in Los Angeles in 1974 was 
between 0.19 and O .24, which corresponds with many 
econometric estimates of short-run gasoline demand. 
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Abridgment 

A Sensitivity Evaluation of 
the Traffic Assignment 
Process 

Vergil G. Stover and Jimmie D. Benson, Texas Transportation Institute, 
Texas A&M University 

Jay Buechler, East Central Wisconsin Regional Planning Commission 

The nature of the input and the nature of the output (com­
puter printout that gives an impression of very precise 
and accurate traffic volumes for each link) lend a very 
deterministic appearance to the traffic assignment pro­
cess. This paper reports an investigation of the sen­
sitivity of the assignment results to the inputs Crom the 
preceding modeling phases (1). Additionally, analyses 
of the assignment results produced by different trip 
matrices provide a means of evaluating the sensitivity 
of various commonly used measures of assignment ac­
curacy. 

METHOD OF STUDY 

A better-worse approach was used in developing data 
for analyzing the sensitivity of the measures of accuracy 
of traffic assignment results. Four different trip ma­
trices were used to generate different traffic assign­
ments to one network. The existing network for the 
Tyler, Texas, Urban Transportation Study was used !or 
test and evaluation. 

The better-worse gradient hypothesized that the least 
desirable assignment (i.e., the worst case) would result 
from a stochastic trip matrLx constrained only to total 
trips. The fully modeled trip matrix developed in the 
urban transportation study was used as the standard for 
comparison in the analyses. The four matrices used in 
the analyses are defined as follows: 

Stochastic matrix 1-a stochastic trip matrix con­
strained only to the total trips for the urban area, 

Stochastic matrix 2-a stochastic trip matrix con­
strained to the total trips as well as to the desired trip 
length frequency for the urban area, 

Stochastic matrix 3-a stochastic trip matrix con­
strained to the total 'trips, the desired trip length fre­
quency, and the desired trip ends at each external sta­
tion for the urban area, and 

Existing trip matrix-the fully modeled trip matrix 
as developed and used in the urban transportation study. 

Analyses 

Comparison of the three stochastic matrices with the 
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existing fully mcxleled matrix indicates that these ma­
trices represent significant differences at both the zonal 
level (i.e., comparison of zonal trip ends) and at the 
zonal interchange level (i.e ., cell by cell comparison of 
the trip matrices). An indication of the differences ob­
served at the zonal level is shown below. 

Range of Trip 
Matrix Ends per Zone 

1 2000 to 3000 
2 500 to 4500 

Matrix 

3 
Existing 

Range of Trip 
Ends per Zone 

500 to 14 000 
0 to 15 500 

The assignment analyses used a variety of common mea­
sures such as vehicle miles of travel (VMT), screenlines, 
cutlines, and travel routes. They also focused on various 
statistical measures of link differences (i.e., assigned 
volume minus counted volume) by counted volume group 
such as mean differences, standard deviation of the dif­
ferences, percent standard deviation, RMS error, and 
percent RMS error. 

The results of these analyses indicated that the fully 
modeled existing trip matrix gave consistently superior 
assignment results. The most important observations 
from these analyses, however, were that the assignment 
results from the stochastic matrices were not nearly as 
different as had been expected In view of the major dif­
ferences at the zonal and zonal interchange levels re­
flected by the matrices. 

Comparison of these assignments with those from 
various urban transportation studies indicated that the 
results obtained using stochastic matrices 2 and 3 were 
consistently well within the range of accuracy observed 
in other studies. Of 10 recent studies in Texas, only 3 
had a smaller total percent RMS error than the assign­
ment using stochastic matrix 3. Analysis of the percent 
RMS error by five volume groups (Figure 1) indicated 
that the stochastic assignments compare favorably at 
volumes greater than 4000. 

Comparison of assigned to cowited volumes for 17 
cutlines shows that assignment 1 (i.e., the assignment 
using stochastic matrix 1) generally resulted ln over 
assignment, but that assignments 2 and 3, as well as the 
existing trip assignment, tend to be underassigned. As 
shown below, assignment 3 was consistently better than 



the other stochastic matrix assignments in the percent 
of cutlines with assigned volumes within a stated percent 
difference from the ground counts, but not as good as 
the existing trip assignment. 

Stated Percent 
Percent of Cutlines by Assignment Difference From 

Ground Count 2 3 Existing Trip 

:t10 24 29 35 47 
:tl5 41 41 47 71 
:t20 47 41 53 76 
.!25 47 47 71 100 
±50 76 94 100 100 

These results indicate that, while the fully modeled 
existing matrix gives the best assignment results, the 
stochastic matrices with the trip length frequency con­
straint give reasonable assignment results. 

Evaluation 

Measures of goodness such as percent RMS error, error 
range, and standard deviation (type rr measures) showed 
the greatest improvement between assignment 3 and the 
existing trip assignment. VMT, travel routes, cutlines, 
and screenllne (type I measures) all showed the greatest 
improvement between assignments 1 and 2. Thus, the 
type I measures appear to be relatively more sensitive 
to the trip length frequency than do the type II measures. 
However, the type II measures are more sensitive to 
the distribution of zonal trip ends. The sensitivity of 
the type I and type 11 measures (shown in italics ) to the 
trip length frequency and the distribution of zonal trip 
ends appears to relate tn the following manner : 

+ VMT • <1J 
Travel Route ~ .... 
Mean Di f fe 'f'ence '+- "' 0 0 0 "O .... Cutline .... c: 

c: l.J.J 
>,~ + Screenline • >, 0 

a> ........ C'I~ ..... a. 
c: .,.... O'\ >, c .,.... +-' .,.... 

.,.... > c: u .,.... > :I s... 
V"I .,.... QJ c:::: V"I ..... ..c }-
ra ~ .....J QJ re +l .,... 
<lJ·~ ::J E'f''f':!'f' Ranges W•.- ~-s... vi c.. C" s... "'....,i re u c: .,.... (1.J Percent F/115 EY"!'or u c:::: (/) c: 
c QJ s... s... • c:GJ·.-o 
-V") 1-- l.J... + Standard Deviation -f.l')ON 

This suggests that, as the measures are listed from 
top to bottom, there is a decreasing tendency to mask 

Figure 1. Percent RMS error as a function of counted volume. 
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matrix inaccuracies. As a measure of the accuracy of 
an assignment, VMT is the least discriminating of the 
e·tght measures analyzed, while percent RMS error is 
the most discriminating. (Standard deviation probably is 
mo~t sensitive to the distribution of trip ends, but it is 
dUf1cu!t to lmow a reasonable value of standard deviation 
for any. assignment because lt Is so dependent on net· 
work size.) 

Since percent RMS error Is calculated In terms of 
network size, it is the preferred measure of assign­
ment accuracy. However, the single most Lrnportant 
conclusion from these analyses is that several measures 
must be used in combination, with full awareness of the 
strengths and weaknesses of each. 

Interpretation 

As in virtually all urban transportation studies, the Tyler 
zonal structure tends to reflect the geographical distri­
bution of activities in the urban area. This may be 
illustrated by subdividing the area into four concentric 
rings: Ring 1 consists of the CBD; rings 2 and 3 com­
prise the remainder of the developed urban area; and 
ring 4 contains those zones in the fringe area. As the 
intensity of activities within a ring (reflected In the trip 
ends per square mile) declines, the average number or 
zones per square mile tends to decline in a similar 
manner. 

The application of the trip length frequency constraint 
tends to increase the trip ends in rings 1 and 2 (i.e., the 
CBD and the inner portion of a developed urban area) 
where the more intense activities are reflected in the 
average number of zones per square mile. This simply 
reflects the disproportionate opportunities to travel at 
the shorter separations (t.e., 1 to 5 min) within rings 1 
and 2, which results from the smaller zone sizes in 
these rings. The zonal structure imposed on the urban 
area is, therefore, a major determinant of the trip end 
distribution resulting from the stochastic matrices. For 
example, if the zonal structure is redefined such that 
the CBD consists of only two zones, the resulting trip 
ends will substantially underestimate the desired trip 
ends within the CBD. In essence, the zone structure 
provides a crude tool for a distribution of activities in 
the urban area. 

IMPLICATIONS RELATIVE TO 
ORIGIN-DESTINATION 
TRIP TABLES 

Previous research, based on a 100 percent home inter­
view survey of three selected zones (2), showed that the 
estimates of zonal trip ends, based on the expansion of 
home interview data from that zone, are subject to sub­
stantial error. For example, the observed expected 
error ranges at the 95 percent probability level varied 
from ±32 to ±66 percent, when using a 5 percent sam­
pling rate for a zone containing 424 occupied dwelling 
units. Other research (3), using the same data base, 
demonstrated that estimates of interchange volumes 
from expanded survey data are subject to even greater 
variance of estimate than the zonal trip ends. 

WhUe expanded origin-destination trip tables are 
subject to substantial error, in terms of the resa.J.ting 
zonal trip ends and interzonal interchange volumes, 
these trip tables have generally given reasonable as­
signment results. This has led practitioners to feel 
confident of the accuracy of their survey data. In 
reality, the power of the assignment process masks 
inaccuracies at the zonal level (i.e., the trip end esti­
mates ) and at the zonal interchange level. The assign­
ment results from the stochastic matrices demonstrate 
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the power of the assignment process to overcome and 
mask most of the data inadequacies that are encountered 
in an origin-destination trip table. 

In spite· of inaccuracies, expanded origin-dest ination 
trip tables provide good estimates of total tr ips and tr ip 
length frequency for the urban area, and at least a crude 
estimate of the geographical distribution trip ends and 
travel patterns . From the perspective provided by the 
stochastic matrices , it is not surprising that the ex­
panded origin-destination trip tables generally give 
reasonable assignment results and that mathematical 
modeling of urban travel patterns gives even better 
results. 

While the comparisons of trip ends and travel patterns 
indicate that there are significant dilferences between 
assignment 3 and the existing trip matrices, the dif­
ferences in the assignment results, due to their aggre­
gative nature, .are not nearly as significant. This sug­
gests that the assignment results are not overly sensi­
tive to the results of the preceding modeling phases (i.e., 
the trip generation and trip distribution phases ). There­
fore, a simplified or short-cut trip generation analysis 
procedure might be used in conjunction with traditional 
distribution and assignment models for preliminary sys­
tem evaluations . 

The land use patterns could be described by a map 
reflecting the desired land use categories. These 
categories should be kept reasonably simple but have 
sufficient detail to reasonably describe the urban area 
being studied. In addition, a number of special land use 
categories to handle unusual situations may be used . 
With a description of the land use categories in each 
zone (i.e., the number of acres or of wtits of each land 
use category within a zone), a set of vehicle trip genera­
tion rates consistent with the land use categories may 
be applied to determine the zonal productions and at­
tractions. The resulting geographical distribution of 
trip ends will be adequate input to the subsequent trip 
distribution and assignment procedures to yield accept­
able assigned volumes for preliminary system evaluation. 

CONCLUSIONS 

Due to the aggregative nature of the assignment proce­
dure, many of the differences observed at the zonal and 
zonal interchange levels tend to disappear in the assign­
ment results (1 ~). This implies that much of the 
prectsion in the preceding modeling phases (i.e., trip 
gener!ltion and trip distribution phases ) can be sacrificed 
while sti.11 producing reasonably accurate assignment 
results. Therefore, abbreviated or sketch planning 
techniques should produce assignment results of suf­
ficient accuracy for valid evaluation and comparison of 
system alternatives. 
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