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Development and Application of a 
Railroad-Highway 
Accident-Prediction Equation 
Robert A. Lavette, Florida Department of Transportation 

Th is paper reports the development of an accident-prediction equation 
for train-vehicle collisions at railroad-highway grade crossings that can be 
used as the basis for the establishment of a priority order for signal im
provements. Most of the quantitative and physical factors in the grade
crossing environment were included. Of the 6000 public grade crossings 
in Florida, 1140 on state roads were used as the study base. The 
accident-prediction model was developed by the use of a stepwise re
gression analysis and three unconventional statistical techniques: (a) the 
analysis of the plots of the residuals, which indicated that a transforma
tion was required (with the transformation of the dependent variable to 
a logarithmic form, the plot of the residuals was reasonably symmetric); 
(bi the observed interaction between the independent variables, which re
sulted in the use of dummy variables, particularly those for active (warn
ing devices) times daily traffic and number of trains; and (c) a bias in the 
accident prediction that was introduced by the use of logarithms and 
eliminated by use of a nonlinear least squares adjustment. The accident
prediction model had a multiple correlation of 0.43. The indepen
dent variables in the model were the traffic, number of trains, vehicle 
speeds, train speeds, number of lanes, and presence of warning devices. 
The accuracy of the accident-prediction equation was demonstrated by 
comparisons of actual accidents to predicted accidents. The actual num
ber of train-vehicle accidents in 1975 was 70 percent of the number pre
dicted by the model. In 1975, the total number of accidents remained 
unchanged from that in 1974, but the number of train-vehicle accidents 
decreased 22 percent. 

This paper presents a method for developing an 
accident-prediction equation for train-vehicle collisions 
at railroad-highway grade crossings and illustrates the 
benefits of such an equation to a transportation agency 
responsible for establishing a priority order for signal 
improvements. A stepwise regression analysis and 
three statistical techniques (transformation of data, 
use of dummy variables, and transformation of the 
accident-prediction model to its original scale) not 
previously employed in the development of an accident
prediction model were used. 

In Julv 1972. the Florida Legislature authorized the 
Florida Department of Transportation (FDOT) to 

determine and adopt a program ... for the construction cost of projects 
for the elimination of hazards of rail-highway crossings. Every railroad 
company ... shall, upon reasonable demand and notice from the DOT, 
install, maintain, and operate at such a crossing an automatic flashing 
light signal, the design of which shall be approved by the FOOT. 

The grade crossings on state-maintained roads had 
been previously inventoried. After the 1972 legislation, 
the remaining 5000 public grade crossings on local 
streets were also surveyed. The bases for the data 
collected were those physical factors that influence ac -
cidents (2). The field survey, which was conducted 
jointly by the FDOT and the railroad companies in 1973, 
was also part of the Federal Railroad Administration
Association of American Railroads national crossing 
survey. (This survey confirmed the earlier survey 
of grade crossings on state-maintained highways.) 

The first step in the development of an accident pre
diction model for rail-highway grade crossings was a 
review of the existing statistical data and the previous 
publications on the subject and led to the following con
clusions (!): 

1. It is imperative that the data base be as accurate 
as possible. Previous studies did not indicate its veri
fication. 

2. Previous reports did not take advantage of all of 
the statistical techniques available, such as analysis of 
the residuals and dummy variables. 

3. The theory of linear statistical models could be 
applied conveniently to the available data. 

4. Many variables involved in a train-vehicle ac
cident were not included in the data; thus, any model 
selected would have considerable inherent variation in 
the number of accidents at a particular crossing. 

STATJSTICAL ANALYSIS OF THE 
DATA 

Data 

The main object was the determination of the relative 
influences of selected physical factors on the number of 
train-vehicle collisions at rail-highway grade crossings 
in Florida. The data analyzed were limited to those 
features that FDOT could modify and for which com
plete data were available. For example, there were no 
data available for the analysis of driver behavior, the 
optical effectiveness of the railroad signals, or driver
traffic characteristics. A complete listing of the data 
collected and analyzed is shown below. 

1. Maximum posted train speed in miles per hour, 
2. Average number of trains per day, 
3. Highway system (e.g., Federal-Aid Primary), 
4. Rural or urban location of crossing, 
5. Road facility (e.g., arterial), 
6. Number of lanes, 
7. Posted crossings soeed limit in miles oer hour. 
8. Average daily traffic in units of 1000 vehicles/ct, 
9. Warning device, type 1 (crossbucks, flashing 

lights, and such), 
10. Warning device, type 2 (illumination or stop 

sign), 
11. Minimum approach distance in feet (sight dis

tance to crossing), 
12. Parallel road characteristics (within 61 m of 

track), 
13. Minimum clear sight distance in feet (triangle 

to train), 
14. Quadrants with minimum clear sight distance, 
15. Maximum clear sight distance in feet, 
16. Quadrants with maximum clear sight distance 

(I, II, III, or IV), 
17. Year most recent protection device was in-

stalled, 
18. Rate of accidents for 5-year period, 
19. Number of accidents in 1967, 
20. Number of accidents in 1968, 
21. Number of accidents in 1969, 
22. Number of accidents in 1970, 
23. Number of accidents in 1971, and 
24. Total number of accidents for 5-year period, 



(The model derived in this paper is designed for U.S. 
customary units ; therefore the variables in the tables 
and equations are not given in SI units.) 

The data sources included the FDOT annual in
ventory and traffic counts (average annual daily traffic) 
of all state-maintained roads and the field inventory, 
which confirmed the physical data, including the mea
surement of approach and triangle (quadrant) sight dis
tances. The train speeds and the number of trains per 
day were obtained from railroad company timetables 
and verified by station masters. 

Since a careful review showed that the accident his
tory for 1967 (25 percent fewer accidents than in other 
years) was unreliable , only the data for the years 1968 
through 1971 were used in the study. Of the 1155 state -
maintained crossings, 1140 were selected for use. 
Although there were data available for 22 5 city-maintained 
crossings, these were on one railroad line with the 
same number of trains per day, and with no variation in 
an important independent variable, its regression coef
ficient could not be determined. Therefore, that sample 
was not further investigated. 

Tables of the basic characteristics of the state
maintained crossings were compiled. Good distribution 
was obtained for train speed, vehicle speed, traffic 
counts , and land use (urban, rural, or municipality with 
a population of less than 5000 persons). The number of 
trains per day was predominantly in the lower range : 
Of 1140 crossings, 622 had fewer than 5 trains / d and 
1048 had fewer than 15 trains/ d. Only 10 crossings had 
more than 30 000 vehicles / ct. (The FDOT is not con
fident of the accident predictions for crossings with 
traffic counts above 30 000 and those with fewer than 1 
train/ ct, since the predictions appeared too high.) 

Basic Model 

Only those statistical methods not discussed in the pre
vious report (!) are fully discussed in this report. 

Analysis of the Residuals 

The multiple regression model shown below implies 
that the r e lation between the dependent variable (yJ) and 
the i th dependent variable is 11.near (!), 

where 

(I) 

observed number of accidents at crossing j for 
a particular time period, 
value of kth characteristic for crossing j (as
sumed constant for the specified time period), 
regression coefficient for kth crossing char
acteristic, and 
unexplained residual variation. 

The usual statistical assumptions for a regression 
model are that the errors , J have a mean of zero and a 
constant variance, and are uncorrelated and normally 
distributed. These assumptions are never exactly satis
fied in real life. 

Again, if Yi, the independent variable, is the number of accidents per year, 
the variance of Yi will likely depend on the level of the x ;i, i.e ., in effect 

k 

on ~/l;x ;i· The reason for this is, in part, that the dependent variable 
i=1 

must have at least Poisson variation, and the variance of the Poisson dis
tribution is equal to the mean. To stabilize the variance, a transformation 
is needed and the type of transformation will be suggested by an exam-
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ination of the residuals . . . . The original form of the dependent variable Y; 
was the raw number of accidents for the period observed at crossing j. On 
the basis of the Poisson nature of accidents at a crossing, regressions in
volving the raw score (yi) were quickly discarded . Plo ts of the residuals 
(yi - Yi) against the independent va riables such as the average number of 
trains per day, indicated that the distribution was highly skewed and 
some transformation was in order. 

The same was true for independent variables such as 
train speed and average daily traffic. 

Data Transformations 

A square-root transformation was attempted prior to 
the logarithmic transformation since this would stabi
lize the residual variance at 0.25 for a Poisson random 
variable, but the plot of the residuals (yf' - Yj' ) against 
the average daily traffic unfortunately exhibited con
siderable skewness (!), 

The square-root model produced a higher multiple correlation than the 
model finally adopted ( R = 0.4528 against R = 0.4285 respectively), but 
the increase was not judged to outweigh the advantage of the symmetric 
distribution of residuals produced by the logarithmic model. 

There may be some question as to why none of the re
gr essions reported hel'e explained more tl1an 20 percent 
(100 R2

) of the variance while those r eported by Coleman 
and Stewart (8) explained from 63 to 78 percent. This 
may be due tothe fact that, besides the differences in 
sample size and area covered, Coleman and Stewart 
wer e fitting to grouped data so that their R2 figures 
pertain to variances of group means. The variance of 
individual crossings within groups is not considered, 
although it would have a substantial effect on the vari
ability of a prediction for a single crossing. 

From the report by van Belle , Meeter, and Farr (!), 

The residual mean square, after f itting the square-root model, was 0.288 
as compared to the theoretical variance of 0 .25. Since the variance about 
the mean (for the square-root model) was 0 .359, a significant reduction 
in variance was produced by fitting the model , but a substantial amount 
of variation (0.288 versus 0.250) remained unexplained . 

Logarithmic transformations on independent variables 
that had large coefficients of variation were also posi
tively skewed. 

The transformation ln(yi + a) was se lected with the value of a determined 
from a plot of the residuals. Initi al values of a tested were 1, Y:. , and . .. 
finally 0.04. 

The residuals were reasonably symmetric for a= 0.04. 
An additional reason for this particular choice of a is 
that an analysis on an annual basis using ln [(y/ 4) + 0.01] 
would differ from the present analysis by only a con
stant. 

Partitioning the Sample 

Besides the investigation of several transformations, the data were parti
tioned into two samples by the rural-urban as well as the active-passive 
dichotomies. This approach resulted in equations which fitted the data 
as closely (in the sense of multiple R) as the approach finally adopted : 
i.e., the dummy variable techniques . The latter was used because dummy 
variables allow the selective interaction of variables. 

However, partitioning the sample produces separate esti
mates for all of the parameters in both samples, whether 
significantly different or not. Also, 

dummy variables allow the examination of more combinations of dichot
omies without reducing the sample size. 
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Finally, the splitting of the sample on the basis 
of the active-passive warning devices created the 
problem of crossings whose warning devices were 
improved during the study period. These crossings 
had to either be discarded or be allocated into both 
the active and passive groups, which would artificially 
increase the sample size. 

Influence of Sight Distances 

One aspect of the partitioned samples that was not present 
in the final model is the introduction of independent 
variables of sight distance in relation to the required 
stopping sight distance. These two variables were the 
ratio of the available approach sight distance to the 
crossing to the desirable required stopping sight dis
tance and the ratio of the quadrant clear sight distance 
(the sight triangle of the approaching train measured 
along the road) to the desirable required stopping sight 
distance (3 ). The quadrant clear sight distance is 
similar to-that described by Schoppert and Hoyd (2) and 
is the distance from the tracks at which a line of sight 
to the approaching train would be obstructed. 

The data were partitioned into rural versus urban 
area crossings and also into active versus passive 
warning-device crossings to observe the effect of sight 
distance. Those crossings at which the warning de
vices were modified during the study period were elim
inated from the active versus passive partition. The 
approach sight distance variable was significant only 
for the urban partition with an F-value of 3 .8 (multiple 
R was O .46 ). In Florida, with its flat terrain, there 
are very few crossings with restricted approach sight 
distances, particularly if the stopping distances for 
dry pavement are used. The required stopping sight 
distance is based on a wet pavement condition. 

The effect of the clear sight distance variable on the 
partitioned models was significant. The F-values for 
the rural and passive partitions were 7.9 and 5.7 re
spectively (the multiple Rs were 0.40 and 0.51 re
spectively). The critical F-value at the 0.05 significance 
level was 3.84, whereas the F-values for the urban and 
active partitions were only 0.2 and 1.4 respectively. 
The low highway speeds in urban areas and the fact that 
most crossings in these areas have active (train
activated) warning devices mean that sight distances 
have minimum significance in urban areas or at cross-
:_,_,. .... :+\... ~ ... +.; .... ,., ••• ,..-...... .; ...... .,,. ~,... ..... .;,..,u:~ '11hnon ,......,...4,...1~ MiA nr1o+ 
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fully use the analyses of residuals or dummy variables. 
In retrospect, two mistakes were made in analyzing the 
sight-distance data. One was that dummy variables 
should have been used for the active versus passive con
dition. The other was that, since it was unusual for 
wet pavement to be a contributing factor in a train
vehicle collision, the required stopping distances for 
dry pavement should have been used (for study purposes 
only, not for design practices). Thus, if properly 
analyzed with the use of dry pavement conditions, the 
clear sight distance would be a significant variable, 
but, in Florida, the approach sight distance would not 
be significant. 

Of the 1140 grade crossings surveyed, 95 percent 
had at least one quadrant in which driver vision was 
obstructed, whereas the sight distance to the crossing 
itself was obstructed for only 9 percent of the cross
ings. These sight distances were calculated and sur
veyed by using the required stopping distance on wet 
pavements (plus a perception and reaction time of 
2.0 s) (3). 

The independent variable used to determine the 
significance of quadrant sight distance was 

ratio C = (minimum clear sight distance/ 
required stopping sight distance) x I 0 (2) 

For a dry pavement condition, not only is the denominator 
(the required stopping sight distance) reduced but also 
the hypotenuse and base of the sight triangle are sub
stantially reduced. The field survey was conducted by 
observing a point on the track that formed the angle of 
the base and hypotenuse of the sight triangle. The base 
distance along the track (the critical approach distance) 
is the distance a train travels at its maximum allowable 
speed during the time that it takes a passenger vehicle 
to stop. Thus, if the passenger-vehicle stopping time 
were reduced, the base distance along the track would 
also be reduced. Since the minimum clear sight distance 
is the distance along the highway from the track to a 
point where the driver cannot view a train at its critical 
approach distance, the number of crossings where the 
minimum clear sight distance equals the required 
stopping sight distance would be increased. 

Selection of Dummy Independent 
Variables 

To account for the effects of automatic train-warning 
devices on the other independent variables, categories 
of basic warning devices were established as shown be
low. 

Variable 

Flashing Advance Active-
Lights Gates Light Passive 

Category (PD211) (PD27) (PD29) Code 

Passive 0 0 0 A=O 
Active 1 (flashing lights) 1 0 0 A=1 
Active 7 (flashing lights 
and gates) 0 A= 1 

Active 9 (A7 plus traffic 
signal preempted) 0 A= 1 

Thus, PD211 (flashing lights) is nonzero only when 
there are active warning devices; PD27 (flashing lights 
and gates) is nonzero only when there is gate protection. 
The regression coefficients associated with these vari
ables indicate the additional reduction in ln(number of 
accidents + 0.04) when a particular automatic warning 
device is present (1). For example, the regression 
coefficient associated with PD2 ll estimated the addi
tional reduction in the dependent variable due to an active 
warning device. All three variables were included in 
a regression equation with coefficients b1, b1, and b" if 
active devices 1, 7, and 9 were present at this crossing. 
Thus, a priori, the coefficients are expected to be 
negative (warning devices should decrease the number 
of accidents), and b1 should be greater than b" since the 
most protection should produce the greatest decrease. 

One problem associated with the data was that the warning devices at 
some of the crossings were modified during the study period. The as
sumption was made that ... such modifications occurred at the midpoint 
of the year and the nominally 0-1 variables for these crossings were coded 
as follows: 

1(Active) 

1968 

7 
8 

Year of Modification 

1969 

5 
8 

1970 

3 
8 

1971 

1 
8 O(Passive) 

Thus, if a crossing were modified from passive (dummy code 0) to active 
(code 1) in the year 1970, it was assumed to be active for 3/8 of the 4-
year study and was coded with this value. 



Similar dummy variables were established for the 
rural versus urban categories. The 25 dummy vari-
ables listed in the table below were derived from the 
basic variables listed in Table 1. 

Variab le Description Variable Description Variable Description 

15 A x 1 24 RX 1 32 RX 13 
16 Ax 2 25 RX 2 33 Rx A x 1 
17 Ax 6 26 RX 4 34 R x A x 2 
18 A x 7 27 Rx 5 35 RX A x 9 
19 Ax 8 28 RX 9 36 RX A x 10 
20 Ax 9 29 R X 10 37 RX 
21 A x 10 30 RX 11 38 RX 
22 A x 11 31 RX 12 39 RX 
23 A x 12 

During the development of the regression model, 
considerable attention was given to the interactions 
among the independent variables. 

A x 11 
A x 12 
A x 13 

Variables can interact, that is, their joint effect on the dependent variable 
could be markedly different from the sum of their individual effects. For 
example, the effect on the accident rate of adding active warning devices 
... varies as the average daily traffic varies. To allow for this, additional 
independent variables were constructed by multiplying the active-passive 
dummy variable A (flashing lights and flash ing lights and gates) and the 
rural -urban dummy variable R by other independent variables. These 
variables are denoted by A x 1, A x 2, ... , R x 1, R x 2, etc. 

For example, Ax 1 is the interaction of a kind of auto
matic warning device with variable 1 (ln of maximum 
posted speed). The actual selection of the variables and 
the interactions entered into the program was often the 
result of knowledge of the grade-crossing environment 
and not necessarily the result of the stepwise regres -
sion procedure. Some variables, such as the crossing 
speed limit, can be altered, but others , e.g., the location 
of the crossing, cannot. In this kind of situation, it is 
not helpful to say that urbanization causes more acci
dents at grade crossings. 

Although certain interaction variables were forced 
into the regression program to observe their effect, 
they did not improve the final model. For example, 
when the variable A x 1 (ln of the posted maximum train 
speed) was forced into the model, it had an acceptable 
F-value, but another variable, A x 2 (ln of the number 
of trains per day) dropped out. 

Accident-Prediction Model 

The final stepwise regression analysis, after 20 analyses, 
involved the 39 independent variables listed above and in 
Table 1. The standard error of estimate for the final 
regression was 1. 52 and the multiple correlation was 
0.43. Eight independent variables, shown in Table 2, 
had F-ratios greater than 7. The critical F-value at 
the 0.05 significance level is 3.84; however, the in
crease in predictive variance precluded the addition of 
other predictor (independent) variables. The model 
selected was 

predicted ln(y + 0.04) = -8.0757 + 0.4368 [ln(ADT)J 
-0.1440[Ax ln(ADT)J 
+ 0.3178[ 1n(maximum train speed)] 
+ 0.4838[In(number of trains per day) J 
- 0.3 l 80[A x ln(number of t rains per day)] 
+ 0.3870[1n(crossing speed limit)] 
+ 0.2249(A x number of lanes) 
- 0.4662(PD27) (3) 

where y is the total number of accidents for 1968-1971 
(!), 

15 

Four of the eight variables are expected to be involved in any model for 
accident prediction at grade crossings: daily traffic volume, maximum 
train speed, number of trains per day and crossing speed limit. All of 
these independent variables have positive regression coefficients. 

Hence, they are positively correlated with the number 
of accidents at a grade crossing. 

The other four independent variables involve the nature 
of the warning device at a crossing. The first of these 
A x ln (ADT), i.e., the effect of an active rather than a 
passive warning device, varies with the level of the traf
fic volume. In particular, for crossings with passive 
signing, the predicted ln(y + 0.04) is increased by 
0.4368 for each unit increase in ln(ADT), whereas for 
crossings with active warning devices, the predicted 
ln(y + 0.04) is increased by (0.4368 - 0.1440) for each 
unit increase in ln(ADT). This is because the variable 
[A x ln(ADT)] is nonzero only for crossings with active 
warning devices. The interpretations for the other in
teractions are similar. 

Some of the active versus passive dummy variables 
are highly correlated, such as A x 10 (crossing speed 
limit) and A x 2 (number of trains per day) or A x 9 
(number of lanes) and could have been substituted for 
each other with little effect on the predictive accuracy 
of the fitted equation. 

Transforming the Accident Prediction 

The use of the logarithmic transformation for the de
pendent and independent variables gives a statistical 
model that more closely satisfies the least squares 
assumption. This model also provides a method for 
scheduling crossing improvements that is based on 
ace ident prediction on a logarithmic prediction scale . 
When the logarithmic form of the model (y = 0.04) was 
transformed to the original scale, a substantial nega
tive bias was introduced. To obtain an unbiased trans
formation, Beauchamp and Olsen @) used a com
plicated procedure to derive estimates for the mean 
of a lognormal variable that depends on a single in
dependent variable, but a simpler approach was used 
here. The objectives were that the sum of the pre 
dicted accident rates equal the sum of the actual 
number of accidents; that all predictions be nonnega
tive; and, subject to this, that the predictions should 
satisfy a least squares property. Thus, for i = 1, . . . , 
1140, x1 = 4-year total accidents at crossing i, y1 = 
least squares estimate of rate obtained from cross -
ing i [in the ln(x + 0.04) scale], and x1 = predicted x 1 
in the original scale. 

Let 

where we should obtain tx 1 = I:x1 • Let T = I:x1; then 

exp(a) = T/l:(exp/3y;) (5) 

so that the estimator now depends only on {3, i.e., 

x; = [T/ l:(exp/39;)] (exp/ly;) (6) 

A value of {3 is chosen to minimize S where 

{ • • }2 S = x; - [T/ ~(exp/3y;)] (ex p{3y;) (7) 

A computer program written to evaluate S gave values 
of a= 1.109 and {3 = 0.968 (!)· 
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Table 1. First-order variables used in stepwise regression analysis of 
accidents at crossings on state-maintained roads. 

Standard 
Variable Description Mean Deviation 

In of posted maximum train 
speed' 3.373 

2 tn of number of t raius per day" 1.482 
3 PD211 [ flashing li Rhts (warnlng 

device)] 0 ,504 
4 PD27 (flashing lights and gates) 0.127 
5 PD29 (flashing lights, gates, 

and preemption) 0.007 
6 Rural versus urban, category 2, 

small municipality 0.161 
7 Rural versus urban, category 3, 

urban characteristics 0.072 
8 Rural versus urban, category 1, 

rural 0.503 
9 Number of lanes 2.493 

10 In of crossing speed limit' 3.698 
11 In of average daily traffic' 7.715 
12 Ratio cs 2.733 
13 Ratio D' 9.592 
14 In of (total accidents - 0.04)' -2.120 

a Logarithms are to base e. 
b Ratio C = coefficient of impaired view of approaching train 

= 10 x minimum clear sight distance/required stopping sight distance. 
c Ratio D = coefficient of impaired view of a crossing protection device 

= 10 x minimum approach distance/required stopping sight distance, 

0.673 
0.891 

0.470 
0.323 

0.081 

0.386 

0.258 

0.500 
0.993 
0.332 
1.503 
2.645 
1.450 
1.677 

Table 2. Final stepwise regression analysis: variables retained, regression 
coefficients, and F-values (state-maintained roads only). 

Final R-
Regression F- Corre-

Step Variable Entered Description Coefficient Value lation 

l 11 ln(avg daily traffic)' 0.436 8 139.l 0.280 8 
2 22 A(active) x 11 (avg 

daily traffic) -0.144 0 16.9 0.343 0 
3 ln(maximum train 

speed)' 0.317 8 15.6 0.379 5 
4 2 ln(number of trains 

per day)' 0.483 8 30.1 0.395 1 
5 16 A x 2(number of 

trains per day) -0 .318 0 7.3 0.406 9 
6 10 Jn(IJ!ghway speed 

limit)• 0.387 0 7.8 0.415 7 
7 20 A(active) x 9 (A x 

number of lanes) 0.224 9 9.0 0.421 8 
8 4 PD27 (flashing lights 

and gates) -0.466 2 7.9 0.428 5 
intercept (bo) -8.075 71 

Notes : Dependent variable is ln(number of accidents+ 0 .04); multiple correlation R = 0.4285; 
standard error of estimate= 1.52; F-ratio = 31.793; and critical F-value = 3 .84 at 0.05 
confidence level. 

i Logarithms are to base e. 

MODIFICATION OF MODEL 

Modification of Regression 
Coefficients 

The regression model selected indicated that when the co
efficient for the number of lanes was entered into the model 
(0.225 x number of lanes) its effect offset the value of 
the gates (-0.466). From an engineering standpoint, 
it is obvious that gates of adequate length will dras -
tically reduce the sight restrictions at multilane roads, 
where a driver's view of signal lights, for example, 
could be obstructed by a truck in an adjacent lane. 
However, two-lane roads are the normal condition 
and should not increase the risk when active warning 
devices are present. Thus, the number of lanes was 
allowed to affect the model only when there were more 
than two lanes and to not affect the model when gates 
were present. To offset this change, the coefficient for 
gates was reduced from -0.466 to -0.233. 

Sight distances-the ability of the driver to view the 

approaching train and to see the warning signs or flash
ing lights-definitely are part of train-vehicle accident 
prediction and consequently are part of the accident
prevention environment, and these independent variables 
were significant when the data were partitioned into rural 
versus urban or active versus passive categories. 

The coefficients for C (clear sight distance) and D 
(approach sight distance) in the stepwise regression 
models apply only to passive signing for C, and only to 
crossings in urban areas for D. These coefficients were 
used as a guide to derive the following terms : 

C = 0.33 - (minimum clear sight distance/ 
required stopping sight distance) x IO x 0.123 

When C is less than zero, this term is not used. 

D = 0.28 - (minimum approach distance/ 
required-stopping sight distance) x IO x 0.028 

(8) 

(9) 

Examination of the clear sight distance term shows 
that it increases the accident prediction only when the 
distance from the track at which the driver can first 
view an approaching train is no more than one-fourth 
of the required stopping sight distance (3) on wet pave
ment. Of the 1140 grade crossings examined, 65 percent 
had at least one quadrant in which this occurred. How
ever, the minimum approach distance term increases the 
accident prediction whenever the approach (sight) distance 
(the ability to see the crossing) is less than the required 
stopping sight distance. But, only 9 percent of the cross
ings had any sight-distance restriction to the crossing. 

Calculations of the reduced clear sight-distance 
triangle made by using the stopping distance for dry 
pavement and assuming that the obstacle restricting the 
view of the approaching train was 4.6 m (15 ft) from the 
edge of the travelway showed that, if the minimum clear 
sight distance were three-fourths of the required stop
ping sight distance under wet pavement conditions, then 
there would be sufficient sight distance available for 
dry pavement conditions. Therefore, of the 1140 cross
ings examined, 60 had adequate clear sight distance on 
wet pavements and 125 had adequate clear sight distance 
on dry pavements. 

The variables for restricted approach sight distances 
(D) and the restricted clear (triangle) sight distances (C) 
were included so that, when the actual regression coef
fir:-ients were obtained ~-t a later date, new terms w,:,1_1lrl 
not have to be added to the existing computer programs. 
The final model used by FDOT later proved to be 
satisfactory, and the planned subsequent regression 
analysis was not W1dertaken. 

Accident-Prediction Equations 

By using the final stepwise regression model and the 
modifications discussed below, two equations were es
tablished. The first (Equation 10) calculates the acci
dent potential (t.) for 4 years at grade crossings with 
only passive signing. The second (Equation 11) calculates 
the accident potential (t.) for grade crossings with active 
warning devices. 

Ip= -8.075 + 0.318 lnS1 + 0.484 lnT + 0.437 lnA 
+ 0.387InVv + [0.28-0.28(MASD/RSSD)] 
+ [0.33 - l.23(MCSD/RSSD)] 
+ 0.15 (if no crossbucks) 

y = [exp(0.968tp + 1.109)]/4 

ta = -8.075 + 0.318 lnS1 + 0.166 lnT + 0.293 lnA 
+ 0.3871nV, + [0.28- 0.28(MAS0/RSSD)] 
+ 0 .225(L - 2) - 0.233 (if gates) 

(10) 

(10,i) 

( 11) 



y = [exp(0.968t, + 1.109)]/4 (I la) 

where 

A = vehicles per day or annual average daily 
traffic, 

L 
MASD 

= number of lanes, 
actual minimum stopping sight distance 
along roadway, 

MCSD clear sight distance (ability to see approach
ing train along the roadway, recorded for 
the four quadrants established by the inter
section of the railroad tracks and road), 

RSSD = required stopping sight distance on wet 
pavement, 

St maximum speed of the train, 
T = yearly average of the number of trains per 

day, 
t. = ln of the predicted number of accidents in the 

4-year period at crossings with active pro
tection, 

~ = ln of the predicted number of accidents in the 
4-year period at crossings with passive 
protection, 

Vv = posted vehicle speed limit unless geometrics 
dictate a lower speed, and 

y = predicted number of accidents per year at 
crossing. 

(The variable [0.33 - 1.23(MCSD/RSSD)J is omitted if the 
crossing is protected by flagmen or the calculation is 
lessthanzero,thevariable (0.28 - 0.28(MASD/ RSSD)J is 
omitted if sight restriction is due to a parallel road, and 
the variable (L - 2) is omitted when there are gates.) 

Adjustment for Accident History 

The stepwise regression model is a reasonable accident 
predictor for each grade crossing, which admittedly 
would be biased by the introduction of the accident history 
of a crossing. It is also possible that the phenomenon 
of regression toward the mean may mean that a crossing 
that has two or three accidents in 1 year may not have any 
more until it reaches its actual predicted accident rate. 
However, the accident history can be used as an adjust
ment to compensate for some of the failings of the acci
dent predictor. The need for an accident-history adjust
ment was based on the following: 

1. The present stepwise regression model explains 
only 18 percent of the accidents that occur (the multiple 
correlation R was 0.43) because human failure is in
volved in over 90 percent of them. Although it would be 
possible to increase the multiple correlation by taking 
into account different driver profiles at various cross -
ings, it would be impossible to collect such data. 

2. Accident histories are used by engineers to identify 
deficientsystems, and inthe event ofa lawsuit, it would 
be difficult to explain in court why the accident history 
at a particular location had been ignored, 

Thus, an accident-history adjustment equation that 
would increase but never decrease the accident predictor 
was used. This adjustment for accident history is calcu
lated only when the accident history is greater than the 
accident prediction. 

y '= y(H/yP)" 

where 

y = accident prediction based on the regression 
model, 

(12) 
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y' = accident prediction adjusted for accident history, 
H number of accidents for a 6-year history or 

since the year of the last improvement, and 
P number of years of the accident-history period. 

The accident-history adjustment has not been a major 
factor in determining the most hazardous grade crossings. 
Of the 98 crossings with the highest accident prediction, 
61 were not affected by the accident history. The use of 
accident history has, however, helped to identify grade 
crossings with unique problems that were not identified 
in the accident-prediction model. 

USE OF ACCIDENT-PREDICTION 
EQUATIONS 

Selection of Grade-Crossing 
Improvement Projects 

A simple method of rating each grade crossing from 0 
to 90 was derived from the accident-prediction model. 
This method, entitled the safety index, was used to rank 
each grade crossing. A safety index of 70 is considered 
safe (no further improvement is necessary): A grade 
crossing with an accident prediction of 0.05 or one acci
dent every 20 years would have a safety index of 70. It 
is not economical to provide active warning devices at 
grade crossings having lower accident-prediction in
dexes. A safety index of 60, or one accident every 9 
years, would be considered marginal. 

Each grade crossing is assigned a statewide priority 
number based on the safety index, i.e., the grade cross
ing with the lowest safety index would be assigned 
priority one. If there were no fund limitations, the 
selection of grade crossings for an improvement 
program would be simplified. However, the funds for 
the program, which are received primarily from the 1973 
and 1976 Highway Safety Acts, are divided between 
Federal-Aid routes and off-system routes. Since these 
funds have become available, FDOT has scheduled 
125 grade crossings on Federal-Aid routes for im
provement at a cost of $5.8 million. As of June 1, 1977, 
90 of them had been completed. When the total 125 are 
completed (this does not include the 330 urban streets 
that were recently added to the Federal-Aid system), all 
grade crossings on Federal-Aid routes that had a safety 
index of less than 70 will have automatic warning devices. 

However, there will still be the major problem of the 
4460 grade crossings on off-system routes. At the begin
ning of the program, 4150 of these had only passive 
warning signs; 400 did not even have crossbucks. 
FDOT has scheduled 130 of them for improvement, and 
as of June 1, 1977, 80 had been completed. 

Reduction of High-Accident Sections 

The regression analysis showed that reducing train 
or vehicle speeds or both reduces the probability of 
accidents. Also, since the accident prediction in
creases the logarithm of the number of vehicles, 
the same number of vehicles using fewer grade cross
ings will reduce the probability of accidents. Thus, 
the closing of any grade crossing will decrease the 
ace ident probability; i.e., the ace ident prediction for the 
one crossing with the combined traffic will be less than the 
sum ofthe accidentpredictionfor thetwo crossings. Of 
course, ifthetrafficfromaclosedcrossing is diverted to 
a grade crossing with automatic warningdevices, the 
probability of an accident will be reduced even more. 

A computer program that compares the sum of the 
accident predictions on each track to a statewide average 
for a particular category of track was developed, Each 
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combi,nation of urban versus rural and type of train is 
a different category. For example, if the track is in a 
small municipality and both freight and passenger trains 
use it, the category will be town and passenger. The 
formula used to select a high-accident (abnormal track 
section is 

Ap =Xe+ K(Xc/T)y, - YiT 

where 

>..p critical accident potential per mile of track, 
>..c average accident potential per mile for the 

category of track being tested, 
T natural logarithm of the average number of 

trains per day, and 
K = constant. 

(13) 

The magnitude of K determines the level of statistical 
significance and controls the number of track sections 
that should be investigated. The K-value is 2.567, which 
means that the probability of the accident prediction on 
the track section selected being abnormal is 99 percent. 

Any section of track where the sum of the accident 
predictions is higher than >..p should be examined to 
reduce the accident prediction. Any of the following 
actions can be taken: (a) close unnecessary crossings, 
(b) install automatic warning devices, (c) reduce train 
speeds, (d) reduce highway speeds, and (e) construct 
grade separations. The action(s) taken should depend 
on the feasibility and benefit-cost studies. The reduc
tion of accidents as one of the benefits is based on the 
reduced accident predictions for the crossings affected. 

Effects of Grade-Crossing Improvements 
on Accident Reduction 

In 1974, Governor Reubin Askew committed FDOT 
to a massive railroad-highway grade-crossing improve
ment program. The goal was to reduce fatalities by 50 
percent (from 90 to 45) by improving 20 percent (1200) 
of the 6000 grade crossings in the state in 6 years. The 
improvement of the grade crossings on the primary 
highway system had been under way, and this was in
creased by the use of Emergency Highway Safety Funds. 
In 1974, after the implementation of the Highway Safety 
Act of 1973, the rate of grade-crossing improvements 
was doubled to 120/ year, and many grade crossings not 
on the system were included. 

The analysis of the effect of the crossing improve
ments on the 1974 and 1975 accident rate is complicated 
by concurrent events, such as the late 1973 oil embargo, 
the 88.5-km/ h (55-mph) speed limit, and a decrease in 
the 1974 vehicle operating speed. (In 1975, vehicle 
operating speeds increased but remained below 1973 
operating speeds.) Also, the number of vehicle
kilometers traveled varied from 94 800 million in 1973 
to 98 000 million in 1974 to 106 000 million in 1975 
(53 300 million, 61 900 million, and 62 200 million 
vehicle-miles traveled respectively), and the number 
of train movements decreased approximately 10 per -
cent. However, some interesting comparisons still 
can be made. 

Three groups of grade crossings that had no signal 
improvements in 1974 and 1975 were analyzed. Ac
cording to the accident-prediction model, these cross
ings had the highest potential for accidents. The re
sults of the analysis are shown below. 

Number 
Without 

Number Accidents First 
in Accident 1975 (1969 to Accident 

Group Group Prediction Accidents 1974) in 1975 

Highest 98 46.5 34 26 9 
Second 

highest 99 36.9 24 38 5 
Third 

highest 100 25.4 18 35 2 

The broad rankings produced by the accident-prediction 
model are borne out by the 1975 accident experience. 
For the three groups, the accident experience ranged 
from 6 5 to 73 percent (average 70 percent) of the acci
dent prediction. The prediction model is based on the 
1968 to 1972 accident (preenergy crisis) data and 1973 
vehicle speed limits (maintained for accident predic
tions), which may be one of the explanations as to why 
the predictions are higher than the 1975 experience. 
Only 25 percent of those accident predictions were af
fected by the accident history. 

An examination of the statewide accident trends shows 
that the number of train-vehicle collisions decreased 
from 498 in 1974 to 390 in 1975 (22 percent), although 
the total number of accidents remained unchanged. 
Among the 108 train-vehicle accident decrease, only 
13 can be attributed directly to the installation of auto
matic warning devices. This leaves a 19 percent de
crease in accidents from 1974 that is still unexplained. 
In 1976, train-vehicle collisions were reduced another 
15 percent to 330 (the total number of accidents de
creased 4 percent). From 1974 to 1976, the number of 
fatalities due to train-vehicle collisions decreased from 
75 to 55 (25 percent). 

These statistics indicate that those crossings having 
higher accident predictions experienced the most acci
dents. The accident experience of those crossings with
out previous accident experience also was proportional 
to their accident predictions. Also, the accident
prediction model was within 15 to 30 percent of the 
actual accident experience even with the current down
ward trend in train-vehicle collisions. 

The effect of the installation of automatic warning 
devices on the number of subsequent accidents was fur
ther analyzed. Of those grade crossings modified be
tween July 1, 1974, and October 30, 1975, only 30 were 
baRP.d on thP. lH~C'.irlP.nt-pr<>rHrtinn rr,nr'l<>l. (JJ.11 hnt ~ ,..f 

these were installed after July 1, 1975.) However, even 
these limited results are encouraging. The following 
results were achieved from the analysis of two groups 
of 100 g1·ade crossings each. 

Accident Prediction 

Without Modif ication With Modification 

One Post Post 1975 
Crossings Year I nsta 11 atio n Installation Accidents 

Modif ied 24 17 5 4 
Unmodified 25 18 

Since the 100 modified grade crossings included those 
that were modified during 1975, the accident prediction 
was adjusted downward to include only the time period 
after the installation of the crossing warning devices. 
Only those accidents that occurred after the installation 
were counted. During this period, 5 accidents were ex
pected, but only 4 occurred, which agrees with the con
trol gr oup of unmodified cros s ings that experienced only 
72 percent of their predicted number of accidents. 

Thus it appears that the accident-prediction model 
consistently predicts accidents to within 15 to 30 percent 



of their actual occurrence, and the reduction in ac
e idents after the installation of automatic warning de -
vices is as expected. The grade crossings that are 
modified in fiscal year 1976 will provide better data, 
since three-fourths of them were selected on the basis 
of the accident-prediction model. During this period, 
43 of the 100 most hazardous grade crossings will be 
modified. 

CONCLUSION 

The accident-prediction model can be effectively used 
to develop a grade-crossing improvement program. It 
identifies groupings of crossings (with or without the 
accident-history adjustment) that can be expected to ex
perience the most accidents if they are not modified, 
and the accident experience after modification has been 
in reasonable agreement with that predicted. 
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Visual Performance of Drivers During 
Rainfall 
Ron S. Morris, John M. Mounce, Joe W. Button, and Ned E. Walton, Texas 

Transportation Institute, Texas A&M University 

This paper reports an investigation of the effect of rain on the visual per
formance of drivers. The degradation of static visual acuity in terms of 
visual angle, detection probability, and legibility as a function of rain in
tensity was determined by experiments that used a rainfall simulator 
that produced artificial rain. The significant findings include the follow
ing: (a) Water on the windshield is the primary factor accounting for re
duced visual performance, (b) visual degradation in the daytime with 
windshield wipers in operation appears to be a linear function of the 
rain rate with normal drop sizes, (c) during nighttime conditions, drop 
size is a significant factor in reducing visual performance (smaller drops 
are a more serious problem than is the rain rate). (d) wiper speeds above 
50 CPM do not improve visual performance, (e) without windshield 
wipers, visual performance is reduced to levels that are unacceptable 
for driving (equivalent to visual acuity greater than 20/200) at rain rates 
greater than 2.5 cm/h (1 in/h), and (fl the effective rain rate can be 
determined from the vehicle velocity, the terminal velocity of the drop, 
the rake angle of the windshield, and the actual rain rate. 

The factor of visibility during adverse weather has been 
largely neglected by the highway transportation industry. 
There are at least two reasons for this: These are that 

the problems associated with driver visibility have been 
underestimated and that objective measurements of the 
effects of wet weather on the visual performance of 
drivers are difficult to obtain. Thtis, there have been 
very few developments designed specifically to assist 
the automobile driver in the performance of visual tasks 
during adverse weather (_!_). 

EQUIPMENT AND METHODOLOGY 

The objective tests used in this research determined the 
effects of selected, controlled intensities of artificial 
(simulated) rainfall on the visual performance of drivers 
relative to visual acuity, target detection; recognition, 
and legibility. These tests were also designed to assess 
the improvement to driver visibility afforded by wind
shield wipers at various cyclic rates. All of the tests 
were conducted on overcast days to more closely simu -
late actual rain conditions. To eliminate the effects of 
wind on the paths of the falling drops, the tests were 




