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An Application of D iagnostic 
Tests for the Independence From 
Irrelevant Alternatives Property of 
the Multinomial Logit M odel 
Daniel McFadden and Kenneth Train, University of California, Berkeley 
William B. Tye, Charles River Associates, Inc., Cambridge, Massachusetts 

Statistical tests are proposed to diagnose the validity of the indepen­
dence from (of) irrelevant alternatives property of the multinomial log it 
model. Application of the tests is illustrated by the use of actual travel 
data representing urban modal choice in the San Francisco area. The 
property as it applies to travel demand forecasting is discussed, and the 
common misconception that the property holds for market shares in 
heterogeneous populations is shown by examples to be incorrect. The 
relation of the property to the basic assumptions of the model is de­
scribed, and it is shown that the validity of the property in disaggregate 
modeling is an empirical issue that depends on the model specification 
and data in a particular application. A series of diagnostic tests for the 
property are developed and applied to actual travel data. 

The most widely used functional form for choice prob­
abilities in disaggregated transportation-demand anal­
ysis is the multinomial logit (MNL) model, 

P(i IC) = exp V(x;, s)/ ~exp V(xj, s) 
/ jcC 

where 

C = finite choice set, 
P(i IC) =choice probability for alternative i £ C, 

x1 =vector of the observed characteristics of 
alternative i, and 

(!) 

s = vector of the observed characteristics of 
the decision maker and the choice environ­
ment. 

The scale function V(x1
, s) may be interpreted as the 

representative utility of alternative i and is normally 
assumed to be linear in the parameters. The MNL 
model has significant advantages over the available 
alternatives in terms of flexibility and computational 
efficiency and permits a simple behavioral interpreta­
tion of the parameters of the scale function. 

The MNL model also has the property that the ratio 
of the probabilities of choosing any two alternatives 

PC ii C)/PCkl C) =exp V(x;, s)/exp V(xk, s) (2) 

is independent of the attributes or the availability of a 
third alternative (j), which is termed the independence 
from (of) irrelevant alternatives (IIA) property. This 
property greatly reduces the complexity of estimation 
and forecasting and in this respect is quite useful. 
However, it imposes restrictions on the structure of 
choice probabilities and cross elasticities; these re­
strictions may be invalid in some applications. Hence, 
tests of the validity of the IIA property should be made 
whenever a violation of the assumption is suspected. 

This paper analyzes the IIA property and discusses 



40 

several diagnostic tests. Complete descriptions of the 
tests and thorough instructions for construction of the 
test statistics can be found in a National Cooperative 
Highway Research Program (NCHRP) report (1) and 
McFadden, Tye, and Train (~). -

INDEPENDENCE FROM IRRELEVANT 
ALTERNATIVES PROPERTY OF THE 
MULTINOMIAL LOGIT MODEL 

In applications of the MNL model to individual modal 
choice, the IIA property (Equation 2) requires that if 
two modes are available and a new mode is introduced, 
the ratio of the probabilities of the two preexisting 
modes will be unchanged regardless of the probability 
of choice for the new mode. For example, if the new 
mode will be chosen with a probability of 0 .10 and each 
preexisting mode had a 0. 50 probability before the in-: 
troduction of the new mode, the probability of each of 
the preexisting modes will be 0.45 after the new mode 
is introduced, thus preserving the one-to-one ratio of 
probabilities of the preexisting modes. 

The HA property also greatly facilitates the fore­
casting problems associated with new modal-choice 
predictions. If 100 persons have the same observed 
characteristics of alternatives, the same observed 
characteristics of the decision maker, and the same 
choice set, i.e., they have the same V(x1

, s)'s, the 
demand for a new mode can be calculated by adding 
another term to the denominator of Equation 1 and 
recomputing all choice probabilities. The new prob­
abilities can then be multiplied by 100 to estimate the 
demand for each mode. If the old modes formerly 
shared the market equally and the probability of the 
new mode is 0.10 for each individual, the predicted 
modal demands will be 45, 45, and 10. 

An example of a choice setting in which the IIA 
property is inappropriate is the classic blue automobile 
versus red automobile case. Assume that the bus mode 
and the blue automobile each capture 50 percent of a 
given travel market as shown in the first column of 
the table below. 

Modal Choice (%) 

True and MNL Predicted MNL True 
Mode (binary choice) (3 modes) (3 modes) 

Bus 50 33.3 50 
Blue automobile 50 33.3 25 
Red automobile 0 33.3 25 
Total 100 100 100 

Assume then that a new automobile mode is introduced 
with exactly the same service attributes as the blue 
automobile mode except that the automobile is painted 
a different color, e.g., red (patrons are assumed to be 
indifferent to color). Assume also that the red auto­
mobile is leased for this trip only, to remove questions 
of automobile ownership and competing demands for 
the automobile. The true modal shares will now be 50, 
25, and 25 percent, for bus, blue automobile, and red 
automobile respectively; i.e., no bus users will switch 
to the new mode and automobile users will split evenly 
between the two automobile modes. However, the MNL 
model will forecast that each of the three modes 
captures one-third of the market, as shown by the 
second column of the table above, because the IIA 
property requires that the ratio of the bus share to the 
blue automobile share be unaffected by the introduction 
of the red automobile. In this example, the ratio is 
1.0: When the red automobile is introduced, the ratio 
of the blue automobile share to the red automobile share 

is 1.0 (because patrons are assumed indifferent to 
color). The only shares that allow both the ratio of bus 
share to blue automobile share and the ratio of blue 
automobile share to red automobile share to equal one 
are one-third shares for each mode. Thus, the MNL 
model predictA AhareA of :rn, 33, and 33 percent when 
the actual shares are 50, 25, and 25 percent for bus, 
blue automobile, and red automobile, respectively. 

If the probfom were confined to this simple example, 
it would be trivial. The new automobile mode is clearly 
irrelevant and should not be introduced as a mode. How­
ever, this extreme case points to a gray area, where the 
demand forecast for a new mode could be seriously 
compromised by incorrectly applying the IIA property. 

In the MNL model, the IIA is a property of individual 
probabilities and market shares in homogeneous popula­
tions, but not a property of market shares in heteroge ­
neous populations. Much unwarranted criticism of the 
MNL model has been based on the erroneous application 
of the IIA property to market shares in heterogeneous 
populations. It should be emphasized that the MNL 
model does not predict that the ratio of market shares 
in a heterogeneous population will be invariant with the 
introduction of a new alternative. 

To take a specific example, the MNL model does not 
in general predict that, if a new mode is introduced to 
a population composed of different market segments 
that have different observed socioeconomic characteris­
tics and level-of-service attributes [different V(x1, s)'s 
for the individuals], the percentage of automobile drivers 
who will use the new mode is equal to the percentage of 
transit users who will shift. 

This principle may be illustrated by an example. 
Table 1 presents the case of a population composed of 
two market segments of 100 persons each. Each seg­
ment is composed of homogeneous individuals; i.e., 
each person in the segment assigns the same representa­
tive utility to each alternative. Assume that the choice 
environment of observed attributes is identical for all 
persons within each segment and that it differs sig­
nificantly between the two market segments. Segment 1 
is automobile oriented, splitting 90 to 10 in favor of the 
automobile, and segment 2 is transit oriented, splitting 
90 to 10 in favor of transit. 

A new mode-dial-a-bus-is introduced. The MNL 
model predicts that it wm capture 5 percent of segment 
1 and 15 percent of segment 2. As L11dicated Ln. Table 1, 
the ratio of the automobile market share to the bus 
market share is preserved within each homogeneous 
market segment. However, the ratio of the bus modal 
share to the automobile modal share is not constant 
after the new bus mode is introduced, but decreases 
from 1.0 to 0.91 for the entire population (86 + 94 
0.91). 

Although the percentage diversions from the bus and 
the automobile to the dial-a-bus are the same within 
each homogeneous market segment (e.g., in segment 1, 

Table 1. Effect of 11 A property on a forecast of behavior in a 
population of heterogeneous market segments. 

Modal Share 

MNL (binary choice) Predicted MNL (3 modes) 

Market Ma rket Total Market Market Total 
Segment Segment Mar- Segment Segment Mar-

Mode 1 2 ket I 2 ket 

Bus 10 90 100 9. 5 76.5 86 .0 
Automobile 

driver 90 10 100 85.5 8.5 94.0 
Dial-a -bus 0 0 0 5.0 15.0 20.0 



5 percent of both bus and automobile patrons switch), 
the predicted diversions from the automobile and the 
bus are not the same for the population as a whole. Of 
the 100 total bus patrons in the binary-choice situation, 
14 percent (100 - 86) were predicted to switch to the 
dial-a-bus, but only 6 percent of the total automobile 
users were predicted to switch to the dial-a-bus. 

The IIA property is obviously a key assumption of 
the MNL model. Previous studies of it have tended to 
discuss its reasonableness or unreasonableness on 
logical grounds. This paper argues that the issues 
raised by the property are essentially empirical. The 
convenience of the IlA property in estimating and fore­
casting makes it extremely attractive to use when it is 
valid. But the undesirable consequences of assuming 
the IIA property when it is invalid are reason for cau­
tion in applying the MNL model without assurances of 
the reasonableness of the IIA property. 

This dilemma is addressed here by the development 
of statistical tests that can identify whether or not the 
IIA property is reasonable in the particular circum­
stances. These tests are comparable to the standard 
statistics that are routinely calculated as part of re­
gTession programs to identify whether or not the as­
sumptions of the least-squares model are reasonable. 

SOURCES OF VIOLATION OF THE 
INDEPENDENCE OF IRRELEVANT 
ALTERNATIVES PROPERTY 

In developing statistical tests to determine the validity 
of the IIA property it is useful to consider the basic as­
sumptions of the MNL model and the ways in which they 
might be violated. The utility for the individual of the 
i th alternative is assumed to be a function of the ob­
served characteristics of that alternative, the observed 
characteristics of the decision maker and choice en­
vironment, and an unobserved component that repre­
sents the effects of omitted random taste variations, 
choice attributes, and socioeconomic variables. 

where 

U1 = utility of the i th alternative, 
x1 = vector of observed characteristics of the i th 

alternative, (x1p ... , X1N), 

(3) 

s = vector of obsertred characteristics of the decision 
maker, and 

µ 1 =vector of unobserved characteristics of the de­
e is ion maker and the i th alternative. 

Without loss of generality, U1 can be separated into 
two parts: V (x1, s ), a function of the observed data, 
and E: 1, a random component that is not observed; i.e., 

U1 = V(x1, s) + E1 (4) 

The nonstochastic term is called the representative 
utility and is specified to be linear in the parameters : 

V(x1, s) = {1Z(x0, s) 

where Z = vector -valued function of x1 and s and f3 = 
vector of the parameters. 

Assume that alternative i is chosen if, and only if, 

(5) 

it has greater utility than any other alternative; i.e., if 
U1 >Uk for all k f i. Because the £ 1 are random vari­
ables, the event U1 >Uk for all k I i is also random. The 
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probability that the ith alternative is chosen is given by 

POIC) = P(U1 >Uk) (kt= i) (6) 

and, from Equation 4, 

(7) 

To determine the probability that U1 satisfies Equa­
tion 7, we must know the probability distribution of£ 1 • 

Assume that £1 has a reciprocal exponential {Weibull) 
distribution, distributed identically and independently 
across all alternatives; i.e., 

P(E1 "" t) = exp(-e-1) (8) 

Given this assumption, it is possible to derive the MNL 
model (Equation l)andthe IlA property (Equation 2) (.:!, !, ~). 

Any significant violation of the assumptions of the 
MNL model will usually cause the IlA property to fail 
to be valid. Generally, the violations may be traced to 
the MNL assumption that the unobserved-utility com­
ponent is independent across alternatives and indepen­
dent of the observed attributes (1, 2). 

Because the unobserved terms are defined simply as 
the difference between the true utility and the repre­
sentative utility, the independence or nonindependence 
of the £1 's depends on the specifications of the repre­
sentative utility. In a given choice situation, two dif­
ferent specifications of representative utility will re­
sult in two different sets of E: 1's. One set of E: 1's might 
be independent, while the other might not. Thus, the 
IIA property might be valid for one specification of 
representative utility and not for another, even though 
both specifications relate to the same choice situation. 
This means that the IlA property is or is not valid for 
a particular specification of representative utility in a 
logit model of a particular choice situation, not for the 
choice situation itself. Consequently, it is meaningless 
to say, for example, that the IIA property is or is not 
valid for a traveler's choice of mode. It is only possible 
to state that the IlA property is or is not valid for a 
particular specification of the representative utility of 
the various modes. 

Intuitively, the IIA property plays a role in the MNL 
model that is analogous to the assumption of independent­
error terms in least-squares regression. The IlA 
property implies that the factors omitted from the analysis 
(the £ 1 's) are independent random variables. 

APPLICATION OF DIAGNOSTIC TESTS 
FOR THE INDEPENDENCE OF 
IRRELEVANT ALTERNATIVES 
PROPERTY 

Suppose a set of qualitative choice data is hypothesized 
to satisfy a particular specification of an MNL form. 
If the hypothesis is valid, the data and fitted models 
should have internal consistency properties; these can 
form the basis for diagnostic tests of the IIA property. 

Model Specification 

Table 2 presents an MNL model of the choice of mode 
for the work trip. The estimation was performed by 
the maximum likelihood method described by McFadden 
(5) on a sample of 641 workers in the San Francisco­
Oakland Bay Area. 
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The model considers seven alternative modes: two 
automobile modes (automobile alone and car pool), two 
bus modes (one with walk access to bus and the other 
with automobile access), and three Bay Area Rapid 
Transit (BART) modes (with walk, bus, and automobile 
access). Most of the independent variables are self­
explanatory, and their coefficients are readily inter­
preted. For example, the negative coefficient of on­
vehicle time indicates that, when time spent in the 
vehicle for a particular mode increases, the probability 
of that mode being chosen decreases, all else being 
constant. Since the ratio of the on-vehicle time coef­
ficient to the cost divided by wage coefficient is 0.43, 
the estimated value of on-vehicle time is 43 percent of 
the wage. Three income variables are included to allow 
for a nonlinear relation between income and the repre -
sentative utility of the automobile-alone alternative. 
[These variables can be understood most readily by 
reference to Train (8).] 

The model given In Table 2 seems particularly ap­
propriate for testing violations of the IIA property. 
Decause some of the alternative modcc a.re aimilo.r, 
unobserved attributes of each mode may be correlated 
across modes. For example, the comfort on on-vehicle 
travel is similar for bus with walk access and bus with 
automobile access, and yet no comfort variable is in­
cluded in the model. Failure of the IIA property could 
also result from the attributes of the alternatives not 
being exogenous. If the choice of how many automobiles 
to own is related to the work-trip modal choice, then the 
automobiles per driver variables are endogenous, and 
if the choice of where to live is related to the work-
trip modal choice, then the cost and time variables are 
also endogenous. 

Universal Logit Method 

The universal logit (UL) model is a more general model 
than is the MNL model; it takes advantage of the fact 
that every choice model with positive probabilities can 
be written in apparent MNL form, except that the scale 
function of alternative i will depend on attributes of 
other alternatives. 

To use the universal logit method, a model is speci­
fied that includes all the variables in Table 2 plus some 
variables that are defined so that the attributes of one 
alternative are allowed to enter the representative 
utility of another. The hypothesis that the coefficients 
of all of the extra variables are zero is tested. If the 
hypothesis of zero coefficients is rejected, then the 
joint hypothesis of the MNL form and the specification 
in Table 2 is rejected. 

The more general model includes the variables given 
in Table 2 and the following others: 

1. Cost divided by posttax wage of automobile alone, 
with bus-with-walk-access and BART-with-walk-access 
alternatives having the values given in Table 2 and other 
alternatives having the value O; 

2. Cost divided by posttax wage of bus with walk 
access with automobile-alone and BART-with-walk­
access alternatives having the values given in Table 2 
and other alternatives having the value O; 

3. Cost divided by posttax wage of BART with walk 
access wage, with automobile-alone and bus-with-walk­
access alternatives having the values given in Table 2 
and other alternatives having the value O; 

4. Total weighted time (sum of on-vehicle time, 2.5 
times walk time, 1.25 times transfer-wait time, and 
1,25 times first headway) of automobile alone, with bus­
with-walk-access and BART-with-walk-access alterna­
tives having the values given in Table 2 and other alter-

Table 2 . Work·trip modal·choice model . 

Independent Variable 

Cost divided by posttax wage, ¢ + ¢/min 
On-vehicle time, min 
Walk time,• min 
Transfer-wait time,"" min 
Headway of first bus, " min 
AutomobJlcs 11or driver (cail!ng o ono)' 
AutomobJles pcr drlv r (cclUng or one) ' 
Dummy ii person Is IK'<ld or housoJ1old' 
Number of porsons in Ju:rusehol.d who en ' driveb 
Number or pe r sons in household who en drive' 
Family Income (oel l lll{l or 7fi00),' $/yMr 
Family income minus $7500 (floor of $0 and 

ceilini: of $3000),' $/ v<'. r 
Family income minus $10 500 (floor of $0 and 

ceiling of $5000),' $/year 
Automobile-alone clummy.i 
Bus-with-automobile-access dummy~ 
BART-with-walk-access dummy' 
BART-with-bus-access dummy' 
BART-with-automobile-access dummyh 
Car-pool dummy' 

Estimated 
Coefficient I-Statistic 

-0.0380 6.83 
-0.0162 1.91 
-0.1006 4.25 
-0.0122 0.923 
-0.0341 3.51 
2 .38 6.16 
1.48 1.92 
0.494 2.62 
0.5242 4.18 
0. 7567 3.82 
-0.000 308 2. 18 

0.000 139 1.05 

-0.000 096 6 1.78 
-1.84 1. 74 
-5.38 5.69 
1.94 3.18 
-0.159 0.285 
-4.06 4.38 
-2 .39 5.28 

Notes: Likelihood ratio index= 0._4119; log likelihood at zero= -982.6; log likelihood at con 
vergence • -577.9; degrees or f1eedom "' 24GO; percent co11ectly predicted• 64 27; 
values of time saved as a percentage of wage: on vehicle time= 43, walk time= 265, 
Jnd tr::iri~rc~ •.•,r:iit tiIT'c - 32 rc~p<!O:!iveoli,r 

All cost and time variables calculated for round trip. Dependent variable is alternative 
choice (1 for chosen alternative, 0 otherwise) 

Sample size = 641 

a Variable is 0 tor automobile alone and car· pool alternatives and takes dummy value for other 
alternatives -

"Variable 1akes dummy value for automobile-alone alternative and is 0 otherwise 
c Variable lakes dummy value for bus with automobile-access and BART-with automobile-access 

alternatives and is 0 otherwise 
11 Variable is 1 for automobile-alone alternative an<J 0 olherwise. 
"' Variable is 1 for bus with aulomobile-access altcrnalive and 0 otherwise. 
1 Variable is 1 for BART-with-walk access alternative and 0 otherwise 
'.I Variable is 1 for BART with·bus-access alternative and 0 otherwise 
"Variable is 1 for BART with automobile access alternative and 0 otherwise . 
' Variable is 1 for car-pool alternative and 0 otherwise 

natives having the value O; 
5. Total weighted time of bus with walk access, 

with automobile-alone and BART-with-walk-access al­
ternatives having the values given in Table 2 and other 
alternatives having the value O; and 

6. Total weighted time of BART-with-walk-access, 
with automobile-alone and bus-with-walk-access alter­
natives having the values given in Table 2 and other al­
ternatives having the value 0. 

The null hypothesis that the interaction effects are 
zero (i.e., the MNL model and the IIA are true) can be 
tested by using the likelihood ratio; when the MNL model 
and the UL model are fitted by maximum likelihood esti­
mation, the likelihood-ratio statistic 

X2 
= 2(log likelihood of UL model - log likelihood of MNL model) (9) 

is asymptotically distributed chi square (X2
) with degrees 

of freedom (df) equal to the number oi parameter re­
strictions imposed by the null hypothesis. [This has 
boon discussed in the NCHRP report (1) (Vol. 2, pp. 
C-172-175)]. -

The log likelihood at convergence for the more gen­
eral model is -567.6. The log likelihood at convergence 
for the model in Table 2 is -577 .9. Therefore, the test 
statistic (from Equation 9) is 20.6. The critical (0.05-
level) value of x2 with six df is 12.6. The joint hypoth­
esis that the MNL form and the specification of Table 2 
are correct is rejected. 

The signs of the coefficients of the extra variables 
are consistent with the hypothesis that the value of 
automobile on-vehicle time is higher than that of transit 
on-vehicle time. Variables 5 and 6 entered with negative 
signs (the latter with at-statistic of 3.0), and the coef­
ficient of variable 4 was estimated to be positive. Train 
(~) found the value of automobile on-vehicle time to 



Table 3. Tests 
based on 
conditional choice. 

Statistic 

Log likelihood at convergence for 
subsample choosing an alternative 
within subset of alternatives 

Log likelihood with coefficients re-
stricted to values given in Table 2 

test 
df 
Critical (0.05 level) value of x' with 

appropriate di 

Table 4. Tests of association. 

Alternative 

Automobile Alone Car Pool 

No. of Residuals Avg No, of Residuals 
Probability 

Alternatives Included in Subset 

All Except Bus and BART-
All Except All Except With-Automobile-Access All Except BART-With-
BART Modes Bus Modes Modes Walk-Access Mode 

-452.6 -400.1 -452.3 -557.8 

-454 ,6 -403.3 -455.0 -557,9 
4,0 6.4 5.4 0.2 

16 17 17 18 

26 .3 27.6 27.6 28.9 

43 

All Except 
Car-Pool Mode 

-230. 7 

-247 .3 
33.2 
18 

28.9 

Bus With Walk Access Bus With Automobile Access 

Avg No. of Residuals Avg No. of Residuals Avg 
Probability Probability Probability 

Cell Positive Negative for Cell Positive Negative for Cell Positive Negative for Cell Positive Negative for Cell 

1 17 5 0.93 6 16 0.060 14 3 0 .66 1 16 0.090 
2 21 1 0.89 9 13 0.055 10 7 0.52 0 17 0.053 
3 17 5 0.87 II 11 0.050 7 10 0.43 2 15 0.045 
4 20 2 0.85 8 14 0.046 7 10 0.37 2 15 0.038 
5 16 6 0.82 8 16 0.042 4 13 0.31 2 15 0.034 
6 17 5 0.81 0 16 0.038 7 10 0.26 0 17 0.030 
7 20 2 0.80 •l 18 0.034 1 16 0.22 0 17 0.028 
8 19 3 0.78 18 0.030 3 14 0.19 1 16 0.025 
9 17 5 o. 77 5 17 0.028 2 15 0.17 0 17 0.022 

10 18 4 0.75 6 16 0.025 2 15 0.15 0 17 0.020 
11 14 8 0.74 •I 18 0.021 3 14 0.13 1 16 0.018 
12 19 2 0.72 z 19 0.018 1 16 0.11 0 17 0.016 
13 14 7 0.69 5 16 0.015 3 14 0.10 0 17 0.014 
14 18 3 0.67 6 15 0.010 2 15 0.085 0 17 0.013 
15 13 8 0.65 2 19 0.004 0 17 0.072 0 17 0.012 
16 14 7 0.63 5 16 0.17 2. 15 0.059 0 17 0.011 
17 12 9 0.62 6 15 0.164 0 17 0.051 0 17 0.009 
18 12 9 0.60 1 14 0.158 0 17 0.044 0 17 0.008 
19 14 7 0.57 I 20 0.154 1 16 0.038 0 17 0,008 
20 11 10 0.53 l 20 0.147 0 17 0.034 0 17 0.007 
21 11 10 0.49 4 17 0.141 1 16 0.028 0 17 0.006 
22 7 14 0.47 4 17 0.135 0 17 0.022 0 17 0.005 
23 10 11 0.42 6 15 0.129 0 17 0.019 0 17 0.005 
24 11 10 0.38 3 18 0.122 0 17 0.015 0 17 0.004 
25 3 18 0.35 ,I 20 0.116 0 17 0.013 0 17 0.003 
26 5 16 0.32 5 16 0.110 0 17 0.010 0 17 0.003 
27 5 19 0.27 4 17 0.104 0 17 0.008 0 17 0.002 
28 5 19 0.20 2· 19 0.085 0 16 0.006 0 16 0.001 
29 4 17 0.13 0 21 0.080 0 16 0.004 0 16 0.001 
30 3 18 0.05 17 0.054 0 16 0.001 0 16 0.000 

Table 5. Tests of 
association (con- Alternative 

tinued). BART With Walk Access BART With Automobile Access BART With Bus Access 

No. of Residuals No. of Residuals No. of Residuals 
Avg Probability Avg Probability Avg Probability 

Cell Positive Negative for Cell Positive Negative for Cell Positive Negative for Cell 

0 12 0.057 6 6 0,390 1 4 0.266 
0 12 0.037 4 8 0.289 1 4 0.148 

2 1 11 0.029 2 10 0.222 1 4 0.119 
3 0 12 0.025 5 7 0.195 1 4 0.103 
4 1 11 0.021 3 9 0.177 1 4 0.088 
5 0 12 0.019 1 11 0.160 0 5 0.080 
6 0 12 0.017 2 10 0.138 0 5 0.067 
7 1 11 0.016 2 10 0.124 1 4 0.060 
8 0 12 0.014 1 11 0.113 0 4 0.052 
9 0 12 0.012 0 12 0.103 0 4 0.044 

10 1 11 0.011 2 10 0.093 0 4 0.034 
11 0 12 0.010 1 11 0.086 0 4 0.031 
12 0 12 0.008 1 11 0.077 0 4 0.027 
13 0 12 0.007 2 10 0,069 0 4 0.023 
14 0 12 0.007 1 11 0.065 0 4 0.018 
15 0 12 0.006 0 12 0.060 0 4 0.016 
16 0 12 0.005 0 12 0.055 0 4 0.014 
17 0 12 0.005 0 12 0.050 0 4 0.014 
18 0 11 0.005 0 11 0.046 0 4 0.012 
19 0 11 0.004 0 11 0.042 0 4 0.010 
20 0 11 0.004 0 11 0.038 0 4 0.008 
21 0 11 0.003 0 11 0.034 0 4 0.007 
22 0 11 0.003 0 11 0.030 0 4 0.006 
23 0 11 0.002 0 11 0.028 0 4 0.005 
24 0 11 0.002 0 11 0.025 0 4 0.005 
25 0 11 0.002 0 11 0.021 0 4 0.004 
26 0 11 0.001 0 11 0.018 0 4 0.003 
27 0 11 0.001 0 11 0.015 0 4 0.002 
28 0 11 0.001 0 11 0.010 0 4 0.001 
29 0 11 0.000 0 11 0.004 0 4 0.000 
30 0 11 
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be higher than that of bus on-vehicle time and gave the 
explanation that, while automobiles are more comfort­
able than transit, the difficulty of driving an automobile 
during rush-hour congestion makes automobile on-vehicle 
time more onerous than transit on-vehicle time. The 
~odel of Table 2 requires that automobile and bus times 
be valued equally; this constraint may contribute to the 
failure of the model of Table 2 in the test against the 
more general model. 

Tests Based on Conditional Choice 

If two dependent modes are included in the calibration 
sample, a different set of model coefficients will be 
generated than those generated from a model in which 
one of the the dependent modes is eliminated; i.e ., 
violation of the IIA property will cause the maximum­
likelihood parameter estimates to be biased. If the IIA 
property is valid, however, the coefficients estimated 
from the full choice set will coincide with the coef­
ficients for a smaller choice set. An obvious test of 
the validity oi the IIA property is whether or not the 
coefficients estimated from a reduced choice set are 
statistically different from those estimated from the 
full choice set. 

In applying this test, the estimation is performed 
on the subsample of individuals who chose an alterna­
tive in the subset of alternatives to be tested for de­
pendence. The coefficients of representative utility 
are estimated on the subsample and the log likelihood 
at convergence is calculated; the log likelihood is also 
calculated on the subsample with the coefficients re­
stricted to the values given in Table 2. By using the 
likelihood-ratio test statistic analogous to that applied 
to the UL model test (Equation 9), the hypothesis that 
the coefficients estimated on the subsample are the 
same as those given in Table 2 is tested. The re­
sults of the tests for various subsets of alternatives 
are given in Table 3. The subsets chosen for testing 
were those that seemed most probable to cause re -
jection of the hypothesis of equal coefficients. For 
example, models similar to that of Table 2 esti­
mated on a sample taken before BART was providing 
service greatly overpredict the use of BART with 
walk access; hence , the subset consisting of all al­
ternatives except BART with walk access seemed 
particularly relevant for testing models based on 
conditional choice. 

The hypothesis that the coefficients estimated on the 
subsample are the same as those of Table 2 (the hy­
pothesis that the property IIA is valid) is accepted for 
each subset of alternatives except the subset that in­
cludes all alternatives except cir pool. The failure of 
this test for this subset is probably the result of mea­
surement errors in the obs-erved attributes of the car­
pool alternative. The exact attributes of the car-pool 
mode depend on such factors as the number of persons 
in the car pool, each person's home and work locations, 
and the allocations of costs among car-pool members. 
Because these variables cannot be determined for per­
sons who do not choose car pool, crude estimates were 
used in calculating car-pool attributes. 

Residuals Tests 

Violations of the IIA property will cause systematic 
errors in the predicted choice probabilities. The dif­
ference between the observed choices and the predicted 
choice frequencies (the residuals) will therefore depend 
on whether the IIA property is valid or not (!). 

To illustrate the way in which the residuals may be 
used to test the validity of the IIA property, suppose 

that an MNL model is estimated. Then the residuals 

(10) 

can be defined, where 

n = 1, ... , N is a sample, 
PJn = P(j IC, x., s.) for jEC is the estimated choice 

probability, 
R. = number of repetitions (possibly one) of sample 

point n , and 
8Jn = number of r.hoicP.R j. 

To avoid statistical dependence in the above residuals, 
it is sometimes more convenient to work with the trans­
formed residuals , 

(11) 

where IEC is a fixed alternative and j =/ 1. Under the 
hypothesis that the estimated model is correct, the 
residuals DJ• have, as ymptotically,. zero mean, unit 
variance , and covar iance , ED1.DJn = -(P1nPJnlY2 : The 
residuals YJn are asymptotically independent and have 
zero mean and unit variance. Further discussion of 
these residuals and their properties has been given by 
McFadden (5). 

Tables 4and 5 present tests of association of the 
residuals and estimated probabilities of the model in 
Table 2. For each alternative, a contingency table is 
constructed as described by McFadden, Tye, and Train 
(2): The estimated probabilities for the alternative are 
ranked and classified into 30 cells, with each cell con­
taining approximately the same number of cases, and 
the numbers of positive and negative residuals associated 
with the probabilities in a cell are counted. (The num­
ber of positive and negative residuals summed over all 
cells for a particular alternative is different for dif­
ferent alternatives because the number of persons in 
the sample who have a given alternative available varies 
among alternatives.) 

If the MNL form and the specification of Table 2 are 
accurate, then the number of positive residuals is ex­
pected to be higher for low-number ed ce Us than for 
high-numbered cells (a positive residual is generated if 
the alternative was actually chosen). This pattern 
emerges for each alternative. 

The goodness -of-fit test 

"' x2 = ~ CSm -NmPim)2 /NmPJn 
m=l 

where 

m = index of cell, 
M = total number of cells, 
s. = number of positive residuals in cell, 
N. = total number of observations in cell, 

(12) 

PJ• average probability for alternative j in cell m, 
and 

PJn average probability of alternative j for total 
sample, 

has an asymptotic distribution bounded by X2 distributions 
with M - 1 and M - K - 1 df, where K is the number of 
estimated parameters. These test statistics are not 
independent across alternatives. 

The test statistic for each alternative is given below. 



Alternative 

Automobile alone 
Bus with walk access 
Bus with automobile access 
Car pool 
BART with automobile access 
BART with walk access 
BA RT with bus access 

Test Statistic 

17.51 
14.14 
15.75 
38.63 
13.81 
15.83 

5.32 

Since there are 30 cells and 19 parameters, the test 
statistic has an asymptotic distribution, under the hy­
pothesis that the MNL form and the specliication of 
Table 2 are correct , bounded by x2 distributions .with 
29 a nd 10 df. The critical (0.05-l eve l) value of X2 with 
29 df is 42.56; that with 10 df is 18.31. The values of 
the test statistic for all alternatives except car pool are 
below the lower of the two bounding critical values, and 
therefore the hypothesis is accepted for those alterna­
tives. For the car-pool alternative, the test statistic 
falls between the two bounding critical values: The 
test is therefore inconclusive. As in the failure of 
the test based on conditional choice, measurement 
errors in the car-pool attributes are probably the 
reason that the car-pool alternative cannot pass the 
test of association unambiguously. 

Other Tests 

Other tests using the properties of residuals are the 
means test and the variance test . Other tests that may 
be used are the saturated model test, which was found 
not to be powerful, and tests using two data sets. Tests 
using two data sets were found to be particularly power­
ful in identifying violations of the IIA property (2). For 
example , a before-and-after data set involving the in­
troduction of a new mode offers a particularly powerful 
test of the independence of the mode . Both likelihood­
ratio and residuals tests can be used. Another alterna­
tive that deserves consideration is to test the MNL 
model against the multinomial probit model with an 
explicit structure of dependence of unobserved attri­
butes, which is practical if the number of choice alter­
natives is four or less (?_). 

Modifications of the Modal Choice Model 
to Correct for Violations of the Irrelevance 
of Inde pendent Alternatives Property 

The model given in Table 2 failed two of the tests of the 
IIA property. First, it failed the universal-logit test 
against a more general model with six extra cross­
alternative variables. The probable reason for this 
failure is that the model constrains the value of auto­
mobile and transit time to be equal. Second, it failed 
the test of equality of coefficients across choice sets 
when the car-pool alternative was eliminated. The 
probable reason for this failure is that the car-pool 
data were poor. 

A new model of work-trip modal choice has been 
given by Train (8). This model is more general than 
the model given Tn Table 2 in that, among some other 
generalizations , automobile and transit on-vehicle 
times are allowed to have different coefficients and 
socioeconomic variables are allowed to enter the car­
pool alternative. 

This more general model passed both of the diag­
nostic tests that the MNL model (Table 2) failed: 

1. The universal logit test-the log likelihood of 
Train's model is -519.9. The log likelihood of the more 
general model (which includes the six cross-alternative 
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vai·iables) is -515.5. Therefore, the test statistic is 8.8. 
T he critical (0.05-level) value of x2 with six df is 12 .6. 
The model passes the test. 

2. The test of equality of coefficients across choice 
sets-the log likelihood of Train's model with the car­
pool alternative removed is -191.0. The log likelihood 
of the model with the car-pool alternative removed 
and the parameters restricted to those obtained with 
all alter natives included is -199 .4. The test statis tic, 
ther efore, is 16 .8. T he critical (0.05-level) value of 
X2 with 23 degrees of freedom is a bout 35. The hy­
pothesis of equal parameters is accepted, and the 
model passes the test. 

These results illustrate that the pass ing or failing 
of the diagnostic tests depends on the specification 
of the model for a particular choice situation, not 
on the choice situation itself; i.e., the IIA property is 
or is not valid for a particular model, not for a 
particular choice situation. These results indicate 
the way in which the diagnostic tests can be used to 
find problems in the specification· of the model. The 
diagnostic tests applied to the model in Table 2 in­
dicated that there were problems in the on-vehicle­
time variable and the car-pool alternative ; these 
problems were corrected in Train's model. 
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Effects of Parking Costs on Urban 
Transport Modal Choice 
David W. Gillen, Department of Economics, University of Alberta, Edmonton 

The effects of parking costs on urban modal choice are investigated by 
using a standard binary-choice model and estimated by using the logit 
technique. Previous studies have misspecified the form of the parking­
cost variable and the model normally estimated. After estimating the 
traditional and correctly specified models, the claim that parking taxes 
are an effective substitute for roadway pricing in influencing congestion 
is only partially supported. Aggregate elasticities for four policy-oriented 
variables are calculated. The elasticities provide a measure of the bias 
from misspecification and indicate the most effective policy variable for 
the reduction of automobile use. 

This paper is concerned with estimating the effects of 
parking costs on individual choice of transportation 
mode for trips within urban areas. It has three basic 
objectives: 

1. The determination of how to characterize the 
parking variable and incorporate it into a model of 
modal choice, 

2. The calculation of the elasticity of modal choice 
with respect to parking costs, and 

3. The determination of the way in which changes in 
one of the characteristics that determine the modal 
choices of individuals will affect the expected proportion 
of individuals taking the choice being considered. 

(The third objective is implemented by examining the 
,u!:lu in 111hir-h f'lh':lnO'AC! in inrlhrirl11!:1l f'lh!:il"'!:lf'ltA'f"iC!tiPC! !:If-
•• -J -·· ,, .... - .......... _ .............. o ....... -· ........... - ..... ---.......... _ .............. ----- ....... - ............. --

feet the mean of the distribution of population probabili­
ties [cf. WestL'1 (11)] }. 

The first section introduces a model of individual 
choice of transportation alternatives that treats parking 
as a commodity, the demand for which is derived from 
the choice of the automobile as the transit mode, The 
second section describes the data and the implications 
of this model for the structural forms of the estimating 
equations. The third section presents the empirical 
results for an application of this model to data for 
Toronto. The fourth section presents the derivation of 
the elasticity of modal choice with respect to instrumental 
variables and empirical results for aggregate and in­
dividual elasticities. 

BASIC MODEL 

The variable to be explained is the individual's choice 
of transportation mode (automobile versus public transit). 
The econometric model used in this paper to represent 

this binary-choice problem is derived from a choice­
theoretic framework, based on a microeconomic be­
havioral model developed by DeSerpa (2), in which in­
dividuals maximize utility in choosing among alternative 
goods and the times allocated to them, subject to income 
and time-resource constraints. In this model, the 
choice of any amount (X1) of commodity i places only a 
lower bound on the amount of time (T 1 ) the individual 
must use in consuming X1; a change in relative prices 
of either goods or times causes the individuals to sub­
stitute among goods of various time intersities and, 
therefore, to implicitly substitute among alternative 
uses of time. Others (~ ~. L ~ 10) have used similar 
theoretical approaches to demonstrate the relation be­
tween the microeconomics of choice behavior and binary­
choice economitric models. These models suggest, 
that modal choice is a function of two categories of vari­
ables, transportation-system characteristics that affect 
the money and time costs of travel and user characteris­
tics that serve as proxies for objective comfort char­
acteristics. 

Traditionally, modal-choice studies have simply added 
the costs of parking to the automobile running costs (L 
10). This procedure implicitly assumes that parking 
services and automobile use enter into the individual's 
production function in fixed proportions. It also implies 
that the decision about where to park is independent of 
rnnrl!:il ,-.hnif'P c;i,n th!:it n!:it"'kina-lnf'!:ltinn ilPPi!=:i.inn~ ~t'A ...... ._ ___ --·-----, -- ----- .r--------o ---------- ----------- --- -

unaffected by variations in time costs. 
In this paper, parking is defined as a commodity that 

is complementary to automobile trips. The individual 
is assumed to maximize a utility unction [U(C1)J, where 
C1 = F(Xi, T 1 ), subject to income and time-resource 
constraints. The explicit specification of the production 
functions that determine C1 is important for understand­
ing the role of parking use. For transit, the service 
consumed is generated by the production function 

Cy= Fy(Xy,Ty) (1) 

where Xr =transit service purchased and Tr =time spent 
in using Xr; for automobile use, the service consumed 
is generated by the function 

(2) 


