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Predicting Car-Pool Demand 

Ride Sharing to Work: An Attitudinal 
Analysis 
Abraham D. Horowitz, General Motors Research Laboratories 
Jagdish N. Sheth, University of Illinois 

A mathematical model of ride sharing was proposed and tested by 
using data collected in the Chicago area in 1975. The purpose of the 
model development was to determine how perceived advantages and 
disadvantages of ride sharing determine behavioral predispositions to­
ward it. The main conclusions are that (a) demographic and travel 
characteristics are poor indicators and predictors of the choice between 
driving alone and ride sharing; (b) the study of attitudes toward ride 
sharing and driving alone provides answers that are relevant to the ques­
tion of how to develop ride-sharing strategies; (c) with the exception 
of individuals having a relatively high socioeconomic status, appeals 
based on public-interest issues of energy, traffic, and air quality have 
little chance of changing attitudes toward ride sharing; (d) perceptions 
of drivers toward time loss and the characteristics of convenience and 
reliability of ride sharing would need to change before their travel be­
havior would change and perceptions of economic advantages have a 
minor role in the determination of behavioral predisposition toward 
ride sharing; and (e) to override negative perceptions about ride shar­
ing, campaigns should address its positive aspects related to the use of 
travel time and its convenience and reliability. 

The literature on ride sharing, which has developed 
mainly as a consequence of the energy shortage of 1973-
1974, is concerned with the travel characteristics of 
car poolers ( 10), with ride-sharing matching (_; ~ 15, 20), 
with the study of incentives for inducing people to share 
a ride (!, 16, 23), and with clinical-social aspects (!, !). 

Studies on ride-sharing matching and incentives a.re 
based on the presumptions that solo drivers can be in­
duced to car pool by offering them direct incentives (for 
example, parking and traffic pl'iorities) or that driving 
alone might be discouraged by, for example, increasing 
the cost of gasoline. Effective promotion of ride sharing 
requires a direct knowledge of how it is viewed both by 
commuters who drive alone and by those who share a 
ride to work. 

Attitudes toward i·ide s haring have been studied by 
Alan M. Voorhees and Associates (22), by Carnegie­
Mellon University ( 5), and by Dueker and Levin (8) . The 
Voorhees and Associates and Carnegie-Mellon studies 
showed that there are significant differences in attitudes 
toward ride sharing between solo drivers and car pool­
ers. However, the structure of attitudes was not studied 
in depth, nor was there any attempt to identify homoge­
neous subgroups that might differ in their attitudes. 
Dueker and Levin examined the way in which the desir­
ability of ride sharing varies as a function of the sex of 
a rider and whether or not the rider is a prior acquaint­
ance. 

Horowitz (11) has developed a theoretical framework 
for the measurement of attitudes toward ride sharing and 
driving alone and presented mathematical models re­
lating modal choice to the perceived advantages and dis­
advantages of ride sharing and to other attitudinal and 
socioeconomic characteristics. This paper reports the 
results of testing this framework by a marketing­
research survey. 

The survey was conducted in 1975 among residents 
of the Chicago metropolitan area who were contacted 

through their employers. The main resons for choosing 
Chicago as the site of the data collection was that it has 
a wide variety of businesses, both in terms of their type 
and size and in terms of their locations (city and sub­
urban), and a variety of public transit services. 

The personnel departments of 43 firms, chosen ran­
domly from a large list of companies that employ at 
leas t 100 people, were contacted. Cooperation was gqod, 
and 34 of the 43 (80 percent) agreed to participate in the 
survey. About 60 percent of these firms are manufac­
turing companies, and the others are distributors, in­
surance companies, and other types of organizations. 
The personnel departments were asked to contact approx­
imately equal numbers of car poolers, solo drivers, and 
public-transit users, and request them to answer a self­
administered mail-back questionnaire that was hand de­
livered. 'I\vo thousand questionnaires were distributed, 
and 1020 were returned. After eliminating those ques­
tionnaires having a large amount of missing data, 822 
questionnaires from 323 car poolers, 382 solo drivers, 
and 117 public transit users remained for analysis. 

Because, in this sample, almost all car poolers owned 
at least one automobile while 75 percent of transit users 
did not, it was assumed that automobile ownership is a 
necessary condition for sharing a ride to work. For this 
reason, only data relating to car poolers and solo drivers 
were analyzed. 

The method of contacting commuters through their 
employers, a method that is seldom used in transporta­
tion research, has certain advantages over traditional 
methods of data collection. The rate of return is rela­
tively high (about 50 percent) as compared to mail sur­
veys, and the cost for data collection is smaller than 
that required for home interviews. 

Throughout this paper, the two basic modes of travel 
to work will be called drive alone and ride sharing and 
the two types of commuters solo drivers and car poolers 
respectively. The concept of ride sharing is restricted 
in the present study to the use of privately owned auto­
mobiles. 

Three types of information were collected through the 
questionnaires: The first two are socioeconomic and 
travel characteristics, and the third is attitudinal data 
with respect to both ride sharing and driving alone. 

A few words are desirable to describe the theoretical 
approach that guided the formulation of the attitudinal 
questions. There is a consensus amollg attitude re­
searchers (9, 19, 21) th.:1.t attitudes consist of one or more 
of three elen1ents:(a) cognitive evaluations or beliefs, 
(b) affect llike-dislike emotive tendency), and (c) be­
havioral intention. 

1. Cognitive Evaluations: It is hypothesized that an 
individual has a set of evaluative beliefs about the ride­
sharing and drive-alone modes of travel to work with re­
spect to such factors as cost, time saving, and conve­
nience. Ten such ath·ibutes (expensive, comfortable, 
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pleasant, reliable, saves time, convenient, safe from 
c-rime, energy consuming, traffic problems, and pollu­
tion) were eliclted through info1·mal interviews conducted 
individually with a few car poolers and solo drivers. 
Cognitive evaluations of these attributes were measured 
on a seven-point scale from very low to very high. 

2. Affect: This represents the positive or negative 
emotional predisposition toward an object and is pre­
sumed to be unidimensional, although it is possible that 
there is a complex cognitive structure underlying it. A 
measure of the affect toward ride sharing was obtained 
from the replies to the question "All things considered, 
which 1:1laleu11ml best describes how you like the idea of 
you being a member of a car pool?'' The possible 
replies were like (ex1:1·emely, moderately, or slightly), 
neither like nor dislike, and dislike (slightly, moder­
ately, or extl'emely). 

3. !ntentio!!: Ride-sharin.~ intention refers to the 
stated plan of an individual to car pool and was measured 
by the replies to the question "How likely are you to 
join a car pool within the next two or three months?" 
The possible replies were definitely will, very likely, 
somewhat likely, cannot say, somewhat unlikely, very 
unlikely, and definitely will not. Intention is also hy­
pothesized to be related to the cognitive profile of evalu­
ations. It is a qualified expression of behavior: Given 
a span of time when behavior is likely to be manifested, 
the individual estimates at the beginnhig of the period of 
time whether or not he 01· she would behave in a certain 
manner. Because the shorter the period of time between 
intention and behavior, the more valicl is the .intention 
(21), the time span was limited to the next two or three 
months. (A theoretical structure of the relation between 
the cognitive evaluations, affect, and intention will be 
given later in this paper.) 

RESULTS 

Demographic and Travel Characteristics 

A multivariate analysis of variance (MANOVA) test using 
Wilks lambda c1·itcria (17) performed on 13 demographic 
variables showed that solo drivers diller significantly 
from car poolers [ F = 5.8, degrees of freedom (df) = 
13;691, p < 0.001, multivariate-explained variance = 
9.8 percent]. [Detailed univariate descriptions have been 
given by Ilorowitz and Sliet11 (12).) 

The socioeconomic variabiethat discriminates most 
strongly between the two groups is the size of the auto­
mobile owned: Car poolers own larger automobiles than 
do solo drivers. Other discriminant variables, although 
weaker, indicate that cai· poolers have worked longer at 
their present places of employment, are married rather 
than single, and have lived longer at their present resi­
dence. They are somewhat older and have larger fam­
ilies. The following variables do not discriminate be­
tween tl1e two groups : (a) number of pe1·sons in house­
hold with driver's license, (b) number of automobiles 
owned, (c) age of the automobile that is used for the 
work trip, (d) sex, (e) income, (f) professional status, 
and (g) education. 

Thus, when compared with those who drive alone in 
their private automobile, the typical car pooler in the 
Chicago area has a larger family and a larger car, has 
lived a longer time at his or her present residence, and 
has been working longer at the same place of employ­
ment. In short, the car pooler may be somewhat later 
in his or her life cycle than is the solo driver. 

A MANOVA test using Wilks lambda criteria per­
formed on seven travel characteristics, as reported by 
respondents in the survey, also showed that s olo drivers 
differ significantly from car poolers (F = 22.2, df = 

7;697, p < 0.001, multivariate-explained variance = 
13.5 percent). The trip-to-work characteristics that 
disc1·iminate between the two groups are (a) total travel 
cost for driving al.one, (b) gasoline cost for driving 
alone, (c) travel time, (ct) travel time of cru· _poolers if 
they drove alone, and (e) distance to work. While the car 
pooler driving alone to work would require an average 
of 32.3 min, the solo driver needs only 26.5 min. The 
corresponding average distances from home to work 
are 26.1and17.9 km (16.3 and 11.2 miles). A car pooler 
spends an average of 34.3 min traveling to work. The 
characteristics that do not discriminate between the 
two groups are (a) distance to the nearest public­
transportation station (5.9 km (3.7 miles)] and (b) 
walking time from parking area to work (approximately 
3 minL 

A few comments are in order: First, a discriminant 
n.nu.lysia pcrfvrmed ori both the dei11og1~aµhic auU irav~i 
characteristics showed that only 61. 7 percent of the 70 5 
commuters were correctly classified by the discriminant 
function. Since pure chance should give a correctly clas­
sified proportion of 50 percent, it follows that the demo­
graphic and travel cha.racteristics add in only 11. 7 per­
cent of the cases, whlch is a small and negligible pro-
po ·tion. In summary, the multivariate-explained vari­
ance and (not independently) the results of the discrimi­
nant analyses indicate that demographic and travel char­
acteristics are poor indicators of whether a commuter to 
work drives alone or shares a ride. 

Second, solo drivers and car-pooling groups are better 
distinguished from each other by travel characteristics 
than by socioeconomic characteristics. That the socio­
economic variable that best distinguishes between the 
two groups is automobile size is consistent with the de­
clining role of socioeconomic va1·iables in the explanation 
and prediction of consumer choice among the l'elatively 
affluent, middle-class population (14, 24). 

Finally, the results are partiallj111cOnsistent with the 
Voorhees and Associates study (22) of commuters on the 
Hollywood Freeway in the Los Angeles area. The only 
statistically significant discriminant variables the present 
study and the Voorhees study have in common are dis­
tance to work and travel time. The Voorhees study, in 
contrast to the present one, found that car poolers tend 
to be somewha younger than are solo drivers . This 
discrepancy between the two studies may be attributed 
to the small number of car poolers (108) in the Voorhees 
study and to the different locations of the two studies. 
(It will be shown later, however, that attitudinal differ­
ences between car poolers and solo drivers are similar 
in the two studies and are pe1·haps more universal than 
are demographic and travel characteristics.) 

Ride-Sharing Cognitive Profile 

Of the 10 attributes of the cognitive-evaluation profiles, 
only the safe-from-crime one was found not to differen­
tiate the two groups or to correlate with any of the other 
attributes. Figure 1 shows the means of the ride-snaring 
cognitive profile of the 9 remaining attributes for solo 
drivers and car poolers. Each attribute was rated on a 
semantic scale from one to seven where one meant very 
low, seven ve1·y high, and four was the neutral ground. 
A multivariate test performed on the whole vector of 9 
attributes showed that the two groups of respondents dif­
fer significantly (F "' 30.6, df = 9;695, p s 0.001, 
multivariate-explained va1·iance : 28.4 percent). 

The univariate tests lead to the following observations: 
First, solo drivers differ significantly from car poolers 
in their evaluation of ride sharing with respect to con­
venience, reliability, pleasure, comfort, a11d lime (for 
each of these attributes, p < 0 .001), but do not differ in 



their evaluation of ride sharing with respect to cost, 
energy, traffic problems, and air pollution. 

Regardless of whether the differences between the 
two ride-s haring attitudi nal profiles r eflect the cause of 
commuting behavior or the result of it (dissonance phe­
nomena l, the results s how the importance of the soft 
variables, such as convenience and reliability, and the 
perception of value of time in the perception of driving 
alone and car pooling. 

Second, on the average, solo drivers tend to evaluate 
car pooling on all nine attributes at or just below the 
middle ground. This implies that solo drivers have a 
neutral position of ride sharing and a slight tendency to 
perceive it as inconvenient or not reliable. If solo driv­
ers had a clearly negative attribute profile toward ride 
sharing, it might not be easy to change their position but, 
from a generally neutral position, a change in attitude 
might be achieved by advertisement and promotional 
means. [For a discussion of the relation between neu­
tral attitudes and attitudinal change, see Howard and 
Sheth (13) .] 

Third, on the average, car poolers evaluate ride 
sharing as being clearly convenient, reliable, pleasant, 
comforatble, and economical. To a lesser extent, they 
perceive ride sharing as time saving and low in creating 
traffic problems and pollution. In this context, the ride­
sharing cognitions of car poolers and solo drivers mea­
sured by Voor hees and Associates (22, Figure 12), were 
compatible with those obtained here despite the differ­
ences between the scales used in the two studies. The 
largest differences between car poolers and solo drivers 
were found by Voorhees in two semantic scales related 
to dependence on others. 

An additional measure of attitudinal differences be­
tween the two groups of respondents based on the car 
pooling attributes has been obtained through a discrimi­
nant analysis. The discriminant function correctly 
classified 73.6 percent of the respondents; i.e., 23.6 
percent in addition to the 50 percent that would be ex­
pected to be classified correctly by random assignments 
to groups, or about twice the discrimination beyond ran­
dom that was achieved by the socioeconomic and travel 
characteristics. 

Drive-Alone Cognitive Profile 

The same nine attributes were also rated in the context 
of the drive-alone mode. The raw means are shown in 
Figure 2. A multivariate test performed on the vector 
of nine attributes showed that the two groups differ sig­
nificantly, but to a lesser degree than in the case of the 
ride-sharing evaluation (F = 10.4, df = 9;695, ~ ,;; 0,001, 
multivariate-explained variance = 11.8 percent}. 

An inspection of the individual means and the univari­
ate tests leads to two principal observations. First, 
both groups of commuters perceive the drive-alone-to­
work mode as being high on the qualitative attributes of 
convenience, reliability, comfort, and time saving. 
Second, solo drivers are more positive toward their 
own mode of transportation than car poolers are toward 
driving alone. This difference is statistically significant 
for all attributes (p < 0.001), with the exception of t he 
public-cost attributes of energy, traffic, and air pollution. 

These results suggest that, regardless of whether 
attitudes determine behavior or vice versa, cost is re­
lated to the choice between driving alone and ride shar­
ing, but conside rations of energy use, traffic, and pol­
lution are uot. (Attention will be given later to the ques ­
tion of how cost considerations differ from considera­
tions of time, convenience , and such, in the determina­
tion of the choice between the modes .l 

Affect Towar d Ride Sharing a nd Intention 
to Share a Ride 

3 

Figure 3 shows the distribution of affect toward ride shar­
ing for the solo drivers and the car poolers. 

There is no need for statistical tests to show that the 
two groups are significantly differentiated by the affect 
measure. Solo drivers are divided along the continuum 
from like extremely to dislike extremely, with about 20 
percent being neutral, but almost all car poolers are 
positive toward ride sharing. 

Figure 4 shows the car-pooling-intention distribution 
for solo drivers. About 9 percent of the 376 solo drivers 
who answered the question stated a positive intention. 
Intention is a noncommitment behavior and may be grossly 
exaggerated, and so it can be assumed that less than 9 per­
cent of the solo drivers surveyed intend to car pool regu­
larly. However, the relation between the affect and in­
tention measures and those of the cognitive perceptions 
could contribute to understanding the process through 
which modal choice is determined. 

Differences Between Ride-Sharing and 
Drive-Alone Cognitive Profiles 

The attribute evaluations were measured with respect to 
ride sharing and separately for the drive-alone mode. 
To obtain a more comprehensive grasp of the ride­
sharing cognition and to relate it to both the affective 
and the intentional components when the drive-alone 
mode serves as a baseline, the difference between the 
drive-alone and ride-sharing evaluations was used as a 
measure of evaluation on each attribute. This difference 
was computed by subtracting the individual measures 
shown in Figure 1 from those in Figure 2 and will be de­
noted by 61, i = 1, ... ' 9' where 61 = xi,drive-alonc - xi,ridcsharing 
and x1 mode is the evaluation of the attribute i on the cor­
responding mode. The null hypothesis that the 51 values 
are not different from zero has been rejected for both 
solo drivers and car poolers for all attributes (p < 0.001) 
with the exception of pleasant in the car-poolers group. 

The 61 values were, on the average, positive. That 
is, driving alone is perceived by a commuter, regardless 
of his or her actual mode of travel, as being more con­
venient, reliable, ... , expensive, energy consuming, 
and such, than is ride sharing. This result warrants 
classification of 'the attributes into two groups: negative 
ride-sharing cognitions (51' i = 1, ... , 5 for convenient, 
r eliable, pleasant , comt:o1·table and saves time respec­
tively) and positive ride-sha r ing cognitions (51' i = 6, 
... , 9 for expensive, energy consmitlng, traffic prob­
lems, and pollution respectively). The pr ofiles that de­
termine the 61 values, which are extracted from Figures 
1 and 2, are shown in Figures 5 and 6 for solo drivers 
and car poolers respectively. 

Another reason for the organization of the attributes 
into two groups arises from the results of factor analy­
ses performed on the 61 , i = 1, ... , 9 measures for each 
group of commuters. These analyses showed that two 
factors emerged and that they match the negative and 
positive cognitions. The factor that included the negative 
cognitions was labeled time-convenience and denoted T, 
and the factor that included the positive cognitions was 
labeled private and public cost and denoted C. These 
factors are summarized below. 

Factor Attribute 

T (time-convenience) 1 Convenient 
2 Reliable 
3 Pleasant 
4 Comfortable 
5 Saves time 
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Factor Attribute 

C (private and public costs) 6 Expensive 
7 Energy consuming 
8 Traffic problems 
9 Pollution 

Figure 1. Cognitive evaluations of ride sharing. 
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The output from the factor analyses are two factor scores 
for each individual, one for each factor. A factor score 
is a weighted average of the 01-measures of the corre­
sponding factor. 

MODELS RELATING COGNITION 
FACTORS TO AFFECT AND 
INTENTION 

Research in both social psychology and consumer psy­
chology has indicated that there is a linear additive re­
lation between evaluations (cognition) and affect and in­
tention (9, 21). This implies that positive and negative 
evaluationscompensate for one another. Recently, how­
ever, several workers have expressed concern that a 
linear additive pr esumption may be a serious limitation 
to understanding attitudinal structure (7, 18). 

Horowitz (11) has suggested an attitudinal ride-sharing 
model that allows for a noncompensatory relation: "Is it 
possible that evaluations interact among themselves so 
that a negative evaluation can reduce the intention to car 
pool regardless of the magnitude of the positive evalu­
ation?" 

To describe the model, assume that each individual 
is rated as either high or low on each of the two factors, 
according to whether his or her respective factor scores 
are higher or lower than the average score. The con­
tinuum could be divided into more than two parts, but 
this is sufficient for model testing. Then, each group 
(car poolers and solo drivers) will be segmented into 
four subgroups according to the combination of the two 
factors, as shown in Figure 7. 

Consideration of the meaning of the two factors in re­
lation to ride sharing and solo driving leads to the follow­
ing interpretation of the cells. Cell [ 1, 2) includes those 
individuals who are more positive than the average 
toward ride sharing along both factors, cell [2, 1) in­
cludes those individuals who are negative toward ride 
sharing on both factors, and the other two cells include 
the obvious combinations of positive and negative factors 
scores. 

By following the notation introduced above and taking 
the position that affect is determined by the factors T 
and C, a linear-interactive model for affect is 
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Figure 3. Affect toward ride sharing. 
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Figure 4. Intention to car pool for solo drivers. 
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µ =mean affect over all four cells, 
T1 = contribution of factor T to affect at level i, 
CJ = contribution of factor C to affect at level j, 

'YIJ =interaction between T1 and CJ levels, and 
fiJk =individual k's error in cell [i, j]. 

An ordinary 2 x 2 analysis of variance (ANOV A) can 
be used to test the model. The use of the ANOVA de­
pends on the statistical assumption that the fiJk are in­
dependent random variables normally distributed with 
constant variance. In the present application of ANOVA, 
these statistical assumptions are not a problem because 
the number of observations is relatively large. Use of 
the ANOVA requires independence between observations. 
Hence, it is necessary that different individuals belong in 
different cells. This assumption is clearly satisfied in 
the present design. The ANOVA allows simple, powerful 
tests for each of the T1 , CJ, and YtJ terms separately. 

A similar model can be written for intention, i.e., 

(2) 

5 

where 11 Jk denotes individual k's intention to share a ride 
and the other terms are analogous to those in the affect 
model but refer to intention. 

Test of Affect Model 

Each respondent of the survey was assigned to one of the 
four cells according to his or her T and C-factor scores. 

Figure 8 shows the affect means for each cell for solo 
drivers and car poolers separately and has two main re­
sults. First, the time-convenience factor, i.e, whether 
a respondent is categorized as low or high on T, is re­
lated to his or her affect to a larger extent than is the C­
factor. This is seen by a comparison of the slopes of the 
lines and the distances between the lines for the car pool­
ers and solo drivers. Second, that the lines are non­
parallel suggests an interaction between the factors, es­
pecially for solo drivers. 

Table 1 summarizes the test of the ANOVA model. 
The contributions of T and C are significant for both 
grol-1.ps, but the F-1·atios for Tare markedly higher than 
those for C. The internction term (T x C) is significant 
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for the solo drivers, but not for the car poolers. The 
interpretation of the significant interaction is that tllose 
solo drivers who are high on T (a relatively large per­
ceived difference in the time-convenience attributes be­
tween the two modes) have average affect toward ride 
sharing (dislike slightly), regardless of their percep­
tion of the private and public costs of the two modes. 
An interaction suggests a noncompensatory model. The 
parameters of the model for solo drivers are obtained 
directly from the cell means and areµ = 3.8, T1 = 0.8, 
T2 = -0.8, C1 = -0.2, C2 = 0.2, y11 = y22 = -0.2, and 

Figure 7. Segmentation 
based on cognitive 
differences. 
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Table 1. ANOVA test results. 

ANOVA Test 

Sum of Mean 
Model Factor Squares di Squa re F-Ratio Prob :i 

Affect T 224.3 I 22 4.3 72.3 0.001 
(solo drivers) c 12.3 1 12.3 3.9 0.05 

T x C 12.1 1 12.1 3.9 0.05 
Error 1171.8 37B 3.1 

Total 1420.5 381 

Intention T 40.8 1 40.8 26.9 0.001 
(solo drivers) c 10.2 1 10.2 6.7 0.01 

T xC 0.1 1 0.1 0.0 N.S. 
Error 574.6 378 1.5 

Total 625.7 381 

Affect T 78.7 1 78.7 56,8 0.001 
(car poolers) c 8.3 1 8.3 6. 0 0.015 

T x c 2.2 1 2.2 1 .6 N.S. 
Error 442 .0 1!.ll_ 1.4 

Total 531.2 322 

'}'12 = y21 = 0.2. For carpoolers, the parameters are 
µ = 6.0, T1 = 0.5, T2 = -0.5, C1 = -0.2, C2 = 0.2, yu = 
Y22 = 0.1, and Y12 = y21 = 0.1. 

The ratios between the absolute values of T and C are 
4.0 and 2. 5 for solo drivers and car poolers respectively. 
Since these ratios are larger than 1.0, it follows that the 
perceptions of ride-sharing disadvantages are more im­
portant, especially for solo drivers, than are the advan­
tages in the determination of their attitude (affect) 
toward ride sharing to work. 

Test of Intention Model 

Despite the very skewed distribution of the intention-to­
car- pool variable toward ve1·y unlikely, as shown in Fig­
ui·e 4, au additive compensatory model (Figure 9 and 
Table 1) was developed. The two lines ru·e pa1·allel, 
which suggests that there is no interaction. The factors 
T and C, however, significantly determine the intention, 
with factor T having a larger influence than C. The val­
ues of the parameters of the model are µ = 2.3, T1 = 0.3, 
T2 = -0.3, C1 = -0.2, C2 = 0.2, and yu = y12 = y21 = Y22 = 0. 

Market-Segmentation Technique 

An aspect of enormous interest in the promotion of ride 
sharing is the identification of homogeneous market seg­
ments among solo drivers for whom different promotional 
methods will be desirable. Specifically, which socio­
economic variables are characteristic of solo drivers 
whose cognitive perceptions of ride sharing are maximum 
alo1ig its ~ldvantages {factor C) and minimum ·~vith respect 
to its disadvantages (factor T), i.e., those who are as­
signed to cell [ 1, 2] of the cognitive factorial design? 
Recall that among the four cells of the design, cell [ 1, 2] 
includes those respondents with the highest positive at­
titudes toward ride sharing with respect to affect and in­
tention. 

To answer this question, the univariate version of the 
MANOVA program was used with the same 2 x 2 factorial 
design as above, with the socioeconomic variables (in­
cluding the distance to work) serving as the dependent 
val'iables (one variable was used for each analysis). All 
socioeconomic variables and the distance variable were 
tested. 

The results showed that there are significant socio­
economic differences among the four cells. First, solo 
drivers who are more positive toward ride sharing than 
the average with respect to factor T (cells [ 1, 1] and 
[1, 2J) are Irom lai·ger households, have worked a 
shorter time at their last place of employment, and 
have lived at their present residence a shorter time than 

Figure 9. Intention to car pool versus cognitive factors. 
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the other solo drivers. Second, those solo drivers who 
are more positive toward ride sharing with respect to 
factor C (cells [l, 2) and [2, 2J) typically live farther 
from their work, are males from households with more 
driver's licenses, and have higher educations, incomes, 
and occu1>ation levels than the other solo drivers. 

The picture of the ride-sharing ta1·get market, i.e., 
cell [ 1, 2), that emerges is one that includes employed 
individuals who have high socioeconomic status, as mea­
sured by education, income, and occupation; are from 
relatively large households; and have worked and lived 
at their last places of employment and residence respec­
tively for a shorter time than the other solo drivers. 
These types of individuals are sensitive to the private 
and public costs of solo driving. A ride-sha1•ing pro­
motional campaign could address this segment of the 
population with issues related to both factors T and C, 
but the optimal strategy toward other types of com­
muters, the large majority of solo d1·ivers, should be 
concentrated on issues related to the time-convenience 
factor. 

CONCLUSIONS 

1. For individuals who travel to work by private 
automobile, demographic and travel characteristics are 
poor indicators and predictors of the choice between 
driving alone and ride sharing. 

2. The study of attitudes toward ride sharing and 
driving alone can provide results that relate to the ques­
tion of how to develop ride-sharing strategies. 

3. Solo drivers generally have a neutral attitude 
toward ride sharing, and a change in attitude might be 
achieved by proper promotional techniques. 

4. With the exception of individuals having a rela­
tively high socioeconomic status, appeals based on 
public-interest issues of energy, traffic, and air quality 
have little chance of changing attitudes toward ride sharing. 

5. The perce1>tion of drivers toward time loss and 
the characteristics of convenience and reliability about 
ride sharing would have to change before their travel 
behavior would change. Perceptions of economic ad­
vantages have only minor roles in the determination of 
behavioral predispositions toward ride sharing. 

6. To override negative perceptions toward time 
loss, convenience, and reliability about ride sharing, 
campaigns should emphasize positive aspects related to 
those characteristics that are unknown to the general 
public: The time spent for travel t o work in a car pool 
as a passenger can be used for l'eading, sleeping, re­
laxing, or any other i·ecreational activity that does not 
requil'e much space and equipment. This type of ap­
proach towa1·d the use of travel time has a good chance 
of success because of the increasing public awareness 
of the benefits of relaxation. Careful study is required 
to find ways to promote these ideas among both solo 
drivers and car poolers. A major component in the per­
ceived inconvenience of car pooling is the difficulty of 
establishing contact with potential pool mates. These 
difficulties could be overcome by assistance in taking 
the initiative to form car pools and organization of car 
poolers on a face-to-face basis at U1e place of work. 
Ride-sharing promotion could use information about the 
longevity of car pools and the satisfaction of car poolers 
with the punctuality (reliability) of their pool mates. 
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Priority Lanes on Urban Radial Freeways: 
An Economic-Simulation Model 
Kenneth A. Small, Department of Economics and Transportation Program, 

Princeton University 

A simulation of the effects of opening a priority lane on a commuter­
oriented freeway is carried out by combining a simple deterministic 
queuing model of traffic flow with a disaggregate model of modal 
choice. This pennits i'teretive determination of a supply-demand equi­
libri1Jm and a precise definition of the resulting benefi ts within the 
framework of cost-benefit analysis. By varying the assumptions para· 
metrically , illustrative results for a wide variety of cases are obtained. 
The benefits are substantial for those cases where initial congestion is 
heavy. Th& combination of the rigorously letived o!Jje1:tive lu11ct ion 
and the model of modal choice constitutes a proposed methodology 
for analyzing highway management policies that could be adapted for 
use in more detailed engineering studies of particular facilities. The re­
sults given here, although derived from a highly simplified model of 
traffic flow over a peak period, suggest the results that can be ex­
pected from such applications. 

Our understanding of priority-lane operations and car­
pooling behavior has grown rapidly in recent years be­
cause of the urgent need for public-policy guidelines . 
Sop his ticated h'affic-flow models (10, 13 14) 11ow pern1it 
detailed investigation of patterns oITr fili.c f low under 
various circumstances. A flurry of activity among de­
mand modelers has produced a number of disaggregate 
modal-choice models that predict the response of vol­
untary car pooling to various incentives (Ben-Akiva and 
Atherton, in a paper in this Record). 

Each of these sides of the analysis depends on the 
other: Traffic-flow models make predictions that are 
contingent on the volume and mix of traffic, and fore­
casts from demand models must take as given the costs 
and levels of service encountered by the users of each 
mode. The use of either procedure alone may be valid 
only within an unknown and possibly narrow range of 
conditions. 

Therefore, the need is for an integrated model that 
determines levels of service and levels of demand simul­
taneously. Such a model consists conceptually of nothing 
more than that most basic tool of microeconomic analy­
sis, the supply-demand equilibrium. The demand side 
is provided by the demand-forecasting model, which pre­
dicts the quantities of var ious types of highway s ervices 
that individuals will choose, given their prices in terms 
of monetary cost and level of service. The traffic-flow 
model and the cost information determine the price that 
must be paid by us ers to obtain a certain volume of peak­
hour highway services and tbus constitute the supply side 
of the equilibrium. 

This paper describes such a model and demonstrates 
its usefulness by analyzing the impact of a priority lane 
on an idealized i·adial freeway subject to peak- period 
congestion by commuters. The model and res ults are 
described more fully by Small (12). 

A secondary pu1·pos e is to sliOW that the incorporation 
of a disaggregate de mand model fa cilitat es a clear and 
theoretically rigorous definition of user benefits that is 

consistent with accepted principles of cost-benefit analy­
sis and to calculate these benefits for the policies con­
sidered to form some generalizations about the desira­
bility of priority lanes as public policy. 

The model focuses on the supply of and demand for the 
services of a section of radial freeway during the morn­
ing and afternoon peak commuting periods. Congestion 
is explicitly modeled only on the freeway section itself. 
All characteristics of the access and distribution net­
works are assumed to remain constant and <inter the 
model as determinants of demand for the freeway study 
section. 

SUPPLY MODEL 

The idealized highway section to b e considered is a 10-km 
(6-mile) length of freeway with no e ntrance or exit ramps 
t hat is used only by commuter s . All access to t his line­
haul section is at one end and all egress is at the other, 
with the direction reversing from morning to evening. 
The collection of commuters at the access end and their 
distribution at the egress end take place on a variety of 
roads that may include extens ions of the st udy section. 
[Access and egress are described in a disaggregate man­
ner in the next section of the paper; this section describes 
traffic flow and cost assumptions for the 10-km (6-mile) 
section itself.) 

Traffic flow on this line-haul section is described by 
assuming a uniform speed of Sn km/ h (0.62S0 mph), ex­
cept for the delay caused by deterministic queuing behind a 
a single botUeneck of capacity C vehicles / h. That is, if 
t1 is the time of day at which traffic volwne [D(t)] enter­
ing the freeway first exceeds C, then travel time (T) (in 
minutes) over the section for a vehicle entering at a 
later time t, providing the queue does not dissipate prior 
to t, is 

T(t) = (600/S0 ) + (60/C) f t [D(t ') - C) dt ,, (1) 

In terms of queuing theory, the integral gives the queue 
length in vehicles, and (60 / C) is the service time in 
minutes. 

This model has been used by May and Keller (9) to 
analyze the San Francisco-Oakland Bay Bridge. To ap­
ply it to the typical radial freeway may seem a bit more 
tenuous, but it duplicates remarkably well the actual 
travel times observed during the aft er noon rush hour on 
an 18-km (11-mile) section of 1-80 on the eastern side of 
San Francisco Bay. This study used the results of an 
origin-destination study to compute net demands at 15-
min intervals for a particular three-lane subsection that 
appears to be the chief bottleneck (!_, pp. 8 and B-2). 



The parameters So and C were adjusted by tl·ial and er­
ror to obtain a satisfactory fit, which gave So = 89. 7 
km/h (53.8 mph) and C = 1770 automobile-equivalents/ 
h/lane. These values are retained for the present study, 
with a bus assumed to cause congestion equivalent to 1.6 
automobiles (3, p. 257). The institution of a priority 
lane is assumed to result in two sepru:ate traffic streams' 
each governed by this type of queuing analysis. 

The primary endogenous service-level variable is 
taken to be the average b:avel tlme (T), h1 minutes, 
over a peak period of duration (W) with uniform demand 
volume (D). This may be easily calculated from Equa­
tion 1 to be 

T=6.7 (D .; C) 

=6.7+[(D/C) -1](60W/2) (D > C) (2) 

The assumption that commuters ignore variations in 
queuing delay over the peak period probably does not af­
fect the results significantly, because in reality com­
muters tend to adjust their times of travel to minimize 
that variation. The assumption that the peak-period 
duration is fixed, however, is potentially important and 
will be discussed later. Also, the benefits of congestion­
reduciug policies will be somewhat underestimated be­
cause the effect on those individuals who arrive after 
the peak period but before the queue is dissipated is 
ignored. 

The cost of providing automobile or bus service over 
the line-haul section are estimated as realistically as 
possible as a function of T, by relying on methodology de­
veloped by Keeler and others (4) and Small (12). All costs 
are given iu 1972 prices and tlierefore precede the rapid 
increases in gasoline and labor costs of the past 4 years. 

Costs of automobile travel are assumed to include 
only the maintenance and operating costs for a compact 
automobile and to vary with average speed proportionally 
to fuel consumption. This gives a relation that shows 
costs per vehicle to be approximately constant at 2.3 
cents/km (3.8 cents/mile) for freeway speeds between 
67 and 100 km/h (41 and 62 mph), and to rise fairly 
rapidly outside that range. (This fuel-economy relation 
was measured under actual freeway conditions and hence 
reflects the increased congestion that causes lower av­
erage speeds.) 

To adequately describe the changes in bus service re­
sulting from changes in freeway speeds and aggregate 
ridership levels would l'equire a model of bus operational 
policy that predicts route density, headway, and fa1·e. 
Such models have been developed by assuming either 
some kind of social optimization {4) or a profit maxi­
mization subject to fixed fare (5), but it is not clear that 
either assumption characterizes actual bus age11cies. 
Instead, it is assumed here that buses ue added to ex­
isting .routes in such a way that occupancy and waiting 
time remain constant, but that fares are adjusted for any 
cost changes due to changes in T. 

Studies of bus operations (4, 12) gave assumed agency 
costs of 11. 5 cents/ vehicle •km for maintenance and op­
eration, $15.52/vehicle •h for labor on peak-period runs, 
and $ 5898/vehicle •year for capital cost. Each daily 
peak-period run was then assumed to require a 20-km 
(12-mile) round trip with a revenue-haul taking time of 
T and an empty back-haul taking time of 6 min. Adding 
10 percent to these figures for miscellaneous extra 
running time, assuming a bus occupancy of 37, and dis­
triputiQg capital costs over 255 working d/year gives 
costs of (13 .18 + 1.056TI cents/one-way passenger trip. 

In summary, the supply model predicts, fora given total 
passenger volume and modal split, the line-haul travel 
times and costs faced by automobile and bus commute1·s 
using a given section of freeway. To complete the pie-
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ture requires a demand model that uses these times and 
costs to predict the modal volumes. 

DEMAND MODEL 

The demand for use of a section of radial freeway by com­
muters is modeled here as a problem of modal choice 
with a fixed number of total trips. The use of the disag­
gregate demand approach has two steps. The first is the 
specification and calibration on some survey sample of a 
behavioral modal-choice model. This will predict the 
probability that an individual with given observable socio­
economic characteristics and transportation opportunities 
will choose one of four modes: automobile noncar pool, 
car pool, bus with walk access, or bus with automobile 
access. 

The second step is a description of the distribution of 
these socioeconomic characteristics and transportation 
opportunities among the population of commuters who use 
the freeway section in question; this is done by a fore­
casting sample believed to be representative of such 
commuters. This step is absolutely essential for un­
biased forecasts from the disaggregate modal-split model 
(8); in the present context, it is here that the character­
istics of access to and egress from the freeway study 
section are accounted for. Also, although in the present 
pape1' they are overlapping subsets of a common data 
base, the forecasti.1,g and calibration samples may be 
enth'ely distinct; the Iormer must provide a representa­
tive selection of the underlying preferences of the popu­
lation whose behavior is in question, whereas the latter 
must be representative of their socioeconomic and loca­
tional situations. 

In this paper, both the calibration and forecasting 
samples are subsets of a sample of 213 commuters in the 
San Francisco Bay Area, who were surveyed in 1972 as 
part of the project repo1·tecl by McFadden (7, pp. 315-319). 
The project staff combined the survey information with 
extensive highway and bus transit data to obtain a com­
plete description of the sample individuals in terms of 
socioeconomic and transportation variables. 

For the calibration sample, the full sample was nar­
rowed to 161 by excluding individuals who walked or bi­
cycled to work or who were captive automobile users be­
cause of regular use of the household automobile at work 
or no feasible bus service available. For the forecasting 
sample, on the other hand, the cleslre was to find a sam­
ple representative of the users of a typical 10-k.m (6-
mile) length of radial freeway. Since it happened that 
the original sample of 213 was drawn primarily from po­
tential users of major freeway routes, the present pur­
poses were served simply by narrowing it to those whose 
trips, if taken by automobile, would involve a substan­
tial length of freeway. There was no requirement that 
actual express bus service on the freeway be available 
to the individual· in the absence of such service the fore­
cast uses existing local service as the basis for the as­
sumed travel time and fare at which express service 
could be instituted. The resulting sample, after elim­
inating· a few for whom no bus service of any kind ex­
isted, had 118 individuals. 

Calibration of Behavioral Modal-Choice 
Model 

The theory behind the behavioral model of modal choice 
used here is that the i th individual perceives a utility 
from a trip on the m th mode of 

(3) 

where w. are universal functions of the socioeconomic 
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characteristics S1 and the ti·ansportation variables x!, and 
where €! expl'ess the unobservable idiosyncratic tastes of 
iudlvtdual i. McFadden (2, 6) has shown that, il €! is as­
sumed to have a Weibull population distribution indepen­
dent of m, then the p1·obability that an individual will 
choose mode m, given his observable characteristics s• 
and X:,, is given by the logit formula: 

(4) 

where W! = W.(s 1
1 x!). Given observations on 81 and X,: 

for a sample of individuals and on their actual modal 
choices, the maximum-likelihood procedltre described by 
McFadden (6) may be used to estimate the parameters of 
the !unctions w a . 

The functional form of W. must be specified in ad­
vance, which involves a number of complex issues (12, 
Hi) who1:rn resoiution is oniy summarized here. Socio­
economic variables are included only insofar as there is 
a priori reason to believe that they serve prima1·ily as 
indicators of tastes and are exogenous over a time span 
of several years. Costs axe entered as a fra.ction of the 
marginal posttax wage rate, given by w = w0(1 - r), 
where wo is the actual wage i·ate and r is the tax rate of 
the income tax bracket deter milled l>y Uie total income of 
the family. The model therefore implicitly estimates 
values of time as fractions of this wage . Separate 
travel-time components are distinguished insofar as the 
sample size and the quality of the data permit. 

The car-pool mode is defined as participation (either 
as driver 01· passenger) in a trip by automobile c: nta · n­
lng three or mo1·e people. Rather than adding an arbi­
trary amount of time to the car-pool trip to account fol' 
the extra driving, loading, and unloading, a single car­
pool dummy variable permits the calibration p1·ocedure 
itself to estimate an implicit time pe11alty, which includes 
both actual extra time a nd a penalty in time-equivalents 
for whatever other undesil'able features, such as sched­
uling inconveniences and personal incompatibility, that 
car pooling may have. 

The estimated coefficients are shown in Table 1. Their 
magnitudes and signs agree with intuition and with other 
results, except for the first-wait time, which has an ex­
cessively high value (469 pe1·cent or the marginal posttax 
wa.ge rate) that is partly responsible for the decision not 
to incorporate headway changes into the supply model. 
On-veJ1icle time is valued at 54 percent of the wage and 
walk time at 83 percent. A transfer (i.ncluding the time 
associated with it) is valued at 13.6 min of on-vehicle 
time, whereas the inconvenience of cai· pooling (relative 
to lower occupancy automobile) is, depending 011 age and 
the hours of work, as objectionable as 100 to 160 min of 
round-trip on-vehicle time! 

Such a large natural barrier to car pooling should not 
be construed as evidence of the hopelessness of incentive 
policies; indeed, it may suggest the presence of impor­
tant omitted determinants {e.g., advertising and com­
puter matching services) that ai·e subject to policy ma­
nipulation. Other variables tried as explanatory for the 
ca.r-pool versus non-car-pool automobile choice, but 
found to give statistically insignificant coefficients, were 
income, children, length of residence in the neighbor­
hood, and munber of workers in the family. 

Forecasting Aggregate Modal Split 

Turning now to the second step in the construction of de­
mand for the freeway study section, Table 2 shows the 
main features of t11e forecasting sample. A typical one­
way trip by auto.mobile is 28.4 km (17. 5 miles) long and 
takes 31.5 min; by bus, the same trip takes 49 min of 

on-vehicle time, one transfer, and (for tlie morning trip) 
a 19-min initial headway. As expected from the rela­
tively high incomes l'epresented, this largely suburban 
sample generates modal-split forecasts that are heavily 
biased toward the automobile. 

To forecast modal Rplit as a function of line-haul 
times and costs for the vai·ious modes, the utilities (W!) 
are first computed from Equation 5 for each forecasting 
sample member. The travel times and costs assigned 
to him or her in the forecasting sample are assumed to 
include (whatever the mode) the equivalent of a 10-kro 
(6-mUe) line-haul trip at 67 km/h (40 mph), the apprnx­
imate average peak-hour speed observed on majer Bay 
Area radial freeways in 1972. W! is then modified for 
differences in the line-haul times and costs from this 
base condition, and the individual modal-choice prnba­
bilities are calculated from the logit equ3tion 4. These 
probabilities are then averaged over the forecasting 
sample and adjusted to account for the captive automobile 
commuters, who were excluded from the calibration 
sample, to obtain agg1·egate modal-choice probabilities, 
whicl1 are now a function solely of the line-.haul times 
and costs. 

The resulting modal-split functions are fairly insen­
sitive to line-haul times and costs. Under 1972 base 
conditions, 7 5 percent chose one of the automobile 
modes. Increasing one-way automobile times by 24 min 
reduces this to 65 percent; alternatively, the same re­
duction could be achieved by a one-way toll of $1/auto­
mobile. 

EQUILIBRIUM RESULTS 

The supply and demand models described in the previous 
sections were computerized, and an iterating algorithm 
was written to determine the equilibrium values of modal­
split and line-haul times and costs for a given total pas­
senger volun1e. Some results are given in Table 3 for 
three values of passenger volume, chosen to be repl·e­
sentative of conditions that lead under base conditions 
(no priority lane) to moderate, heavy, and ve1·y heavy 
congestion (defined respectively as one-way delays of 
6.8, 15.6, and 24.0 min). 

Except at conditions of very heavy initial congestion, 
a bus-ancl-car-pool lane increases the queuing in the 
other lanes, in spite of a substa11tial decrease in traific 
due to induced modal shift. A bus-only lane is; of 
course, even worse in this respect. To evaluate the ef­
fect of divisible lanes, the model was run with the as­
sumption that the total capacity could be divided into any 
fraction desired, that fraction being set so as to just 
avoid queuing among priority vehicles. Tbe i·esults in­
dicated that nonpriority queuing is much less severe and 
that ideally only 8 to 12 percent of total capacity should 
be allocated to priority vehicles. 

BENEFITS 

The claim that the incorporation of a behavioral demand 
model permits the definition and computation or rigorous 
measure of benefits is based on t11e theory of cost-benefit 
analysis, in which benefits are defined as the sum over 
all individuals of the amounts of money each would be 
willing to pay for the change plus the identifiable money 
flows to relevantparties, e.g., government tax collections. 

To define the willine-ness of an individual to pay for a 
change in the tl·ansportation environment facing him or 
her, let v•* rep1·esent the utility actually achieved by 
choosing the best mode. From Equation 3 

y;• =max v:., = max(W:., + E:.,) (5) 
m m 



It is assumed that the marginal utility of money (x 1) is 
given by the coefficient of travel cost in the behavioral 
dema nd model, which is equal to the estimated coeffi­
cient divided by the individua l's wage (w 1

). The incre­
mental willingness to pay for a change that alters the 
utilities (W!) is then 

(6) 

where k is the mode actually chosen. 
Everything in Equation 6 except k is observable for 

an individual in the forecasting sample. The nature of 
this stochastic utility model is such that the mode an 
individual will choose cannot be predicted with certainty, 
and thus his or her benefits from changes that affect 
modes differentially cannot be predicted. However, for 
aggregate purposes, it is sufficient to know the expecta­
tion of benefits: 

Table 1. Modal-choice models: estimated coefficients. 

Independent Variable (round trip ) 

Cost• + marginal posttax wage, ¢/ min 
On-vehicle time, min 
Walk time, min 
First-wait time, min 
Number of transfers 
Mode 3 dummy 
AutQm oblle dummy' 
Family income•, $000s (ceiling of 10) 
Children under 18 living at home (dummy)' 
Length of r esidence in neighborhood', years 
Respondent's age < 45 (dummy)' 
Car-pool dummy• 
Respondent's age < 45 (dummy)' 
Respondent works standard hours (dummy )' ·' 
Likelihood ratio index' 
Percentage correctly predicted' 

Notes: Sample size= 161. 

CoeCCicient 

-0.0413 
-0 .0224 
-0.0343 
-0.1938 
-0.3043 
-1.25 
-5 .23 
0.310 

-0.645 
0.119 

-0.660 
-2.44 
-1.138 

0.09 8 
0.448 

71.4 

(7) 

Standard 
Error 

0.0116 
0.0120 
0.01 62 
0.0600 
0.1982 
0.48 
1.39 
0.112 
0.540 
0.042 
0.574 
0.54 
0.691 
0.302 

Mode 1 = automobile with < 3 occupants; mode 2 =bus with walk access; mode 3 = bus 
with automob il e access; mode 4 =car pool with ;;. 3 occupants. 

8 Cost for the automobi le modes consists of maintenance and operating costs [at 3 ,3d/km 
(5.3d/mile)] plus tol ls and parki ng, all multiplied by an expected share of 1/1.11 for mode 1 or 
1/3.52 fo r mode 4. 

bThe variable is as described on modes 1 and 4, zero on other modes. 
cThe variable is as described on mode 4, zero on other modes. 
d If official work start t ime is 7:45 to 9: 15 a.m. and quit ti me is 4: 15 to 5: 45 p.m., this variable 

is 2. If one of the above holds, it is 1. If neither holds or there are no official times, it is 0, 
eThe likelihood ratio index is the percentage increase in the log likelihood when maximized 

over its value with all coefficients 0. 
1 A case is correctly predicted if the mode actually chosen is the one with the highest predicted 
probabi lity. 

Table 3. Equilibrium results. 

Fraction 
Total of Total 
Passenger Capacity One-Way Queuing 
Volume Used for Delay (min) 
per Hour Priority 

Policy per Lane Lane Automobile Bus 

Base case: no priority 
Moderate congestion 3160 0.33 6.8 6.8 
Heavy congestion 3580 0.33 15. 6 15.6 
Very heavy congestion 4000 0.33 24.0 24.0 

Bus priority 
Moderate congestion 3160 0.33 20.0 0.0 
Heavy congestion 3580 0.33 25.2 o.o 
Very heavy congestion 4000 0.33 29 .7 0.0 

Bue and car-pool priority 
Mode rate congestion 3160 0.33 15.6 0.0 
Heavy congestion 3580 0.33 19 .8 0.0 
Very heavy congestion 4000 0.33 23.7 0.0 

Bus and car-pool priority; 
di visible lanes 

Moderate congestion 3160 0.08 4.3 o.o 
Heavy congestion 3580 0.10 9.4 0.0 
Very heavy congestion 4000 0.12 14.2 0.0 

11 

where P! is given by the logit formula (Equation 4). In­
tegration of Equation 7 gives the following index of 
direct benefits: 

(8) 

In the course of computing the modal-choice proba­
bilities for each individual in the forecasting sample, it 
is simple to compute this benefit index and aggregate it 
over the sample. To this value, must be added the bene­
fits accruing to captive automobile users, which are cal­
culated directly from Equation 6 by assuming that the 
mode chosen is non-car-pool automobile. Finally, the 
changes in gasoline tax revenues are added to obtain the 
direct benefits given in Table 3. 

This measure of social benefits is termed direct be­
cause it excludes a number of potentially quantifiable ef­
fects that are external to the present model, but that may 
be quite important for actual policy purposes. These in­
clude parking subsidies, subsidies to bus feeder routes, 
congestion costs outside the central business district, 
changes in bus headways or route densities, automobile 
capital and accident costs, and air pollution. Estimates 
of these indirect benefits (12, pp. 218-224) indicate that 
including them would greatly reinforce the case for any 
policy that reduces automobile traffic. 

The results for the bus-and-car-pool lane in Table 3 

Table 2. Forecasting-sample summary statistics. 

Variable 

Automobile round trip 
Distance, km 
On-vehicle time, min 
Parking cost, ¢/vehicle/ d 

All trips 
Excluding free parkers 

Bus r ound trip 
On-vehicle time, min 
Walk time, min 
Number of transfers 
Fare, ¢ 

Other 
First bus headway home to work, min 
Family income, $000s / yea r 
Marginal posttax wage, $/h 

Note: 1 km = 0.62 mile. 

Modal Split (~) 

Automobile Automobile 
Noncar Pool Car Pool Bus 

65 10 25 
64 11 25 
64 12 24 

53 8 39 
50 7 43 
47 7 46 

52 14 34 
49 16 36 
46 17 37 

62 11 28 
57 12 30 
53 14 33 

Mean 

58 
63 

4i 
134 

98 
28 
2.1 
142 

19 
14.8 
4.21 

Priority 
Lane 
Capacity 
Use 
(~) 

9 
11 
14 

29 
36 
44 

100 
100 
100 

Standard 
Deviation 

20 
26 

77 
84 

30 
19 
1.4 
64 

16 
7.0 
1.94 

Direct Benefits 
Relative to 
Base Case 
(¢/passenger/d) 

-65 
-13 

43 

-28 
32 
94 

37 
89 

143 
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range from direct benefits of -28 to +94 cents / commuter/ 
d, depending on the degree of initial congestion. The 
benefits could be much greater, though the induced modal 
shift would be smaller, if lanes were perfectly divisible, 
so as to eliminate the waste of capacity in the underused 
priority lane. There is a large potential payoff for the 
development of methods to allow a pr iority queue to by­
pass without using an entire lane, and substantially more 
engineering effort should be devoted to this aspect of the 
pr oblem. Some tentative suggestions have been made by 
Small (12, pp. 76-82). 

It must not be thought, however, that either full use 
of the priority lane or an absence of increased queuing 
is a prerequisite for positive benefits from a priority­
lane operation. For example, under initially heavy con­
gestion, a bus-and-car-pool lane carries traffic equal to 
only 36 percent of its assumed bottleneck capacity and 
increases the one-way queuing delay for nonpriority ve­
hidi::is by 4.2 min, yet the direct benefits are positive. 
This is because the queuing delays are reassigned to 
different vehicles in an economically efficient manner: 
Those vehicles whose occupants in aggregate possess a 
highel' value of time (per unit of road capacity used) are 
permitted to go faster at the expense of others because 
the benefits to the former outweigh the disbenefits to the 
latter in the impersonal scales of cost-benefit analysis. 

SOME PERSPECTIVES ON RESULTS 

Several points may be made in interpreting the useful­
ness of the model and results presented here. 

First, are the potential benefits from prioritv lanes 
large? Consider the case of a bus-and-car-pooi lane 
for a six-lane facility initially subjected to heavy con­
gestion. If 255 working d/year are assumed, the esti­
mated direct benefits of 32 cents / passenger/ct equal 
$ 1.75 million/year. Compa1·ed to the total round- trip 
costs of commuting, benefits of 32 cents / passenger 
would appear to be significant, although far from over­
whelming. Compared to implementation cost s, $ 1.75 
million/ year appears ver y large. The VOOl'hees and 
Associates s tudy (.!_Q, p . 25) estimated signing costs for 
a 19-km (12-ntlle ) priority lane on each side of the I-90 
Memorial Shoreway in Cleveland at $235 000 capital ex­
llens es plus annual maintenance and oper ating costs of 
$14 000. Even if special entr ance ra lps of the type built 
for a contraflow lane on I-495 i n New Jer s ey (.!.!_, p. 23) 
ru·e added on each side, the capital costs are only about 
$ 500 000. If t his is annualized liber ally with a capita l­
recovery factor at a 10 percent interest rate and a 15-
year lifetime, the total annual costs are $80 000, which 
is an order of magnitude below the potential benefits. 

Second, the present model understates the benefits of 
reducing automobile traffic. Furthermore, the conven­
tional priority lane analyzed here is not necessarily the 
most favorable configuration for all situations. Other 
alternatives include contraflow lanes, extra lanes in a 
median strip, and priority metering at entrance rnmps . 
All of these require greater i11it ial expense, but I.hey may 
provide considerably greater benefits because they cause 
less disruption to nonpriority flow. With some modifica­
tion, the model could be applied to the analysis of such 
policies. 

Another alternative is congestion pricing, in which a 
peak-period toll, equal to the marginal cost that each 
vehicle inflicts on all other users through increasing 
congestion, is charged. In the present model, this 
marginal cost is the value of the additional travel time 
and running cost imposed by a user on all those behind 
him or her in the queue. This alternative was analyzed 
by using the model and had benefits that exceeded those 
of a priority lane by about $1/passenger /d. For the 

heavy-congestion case, a round-trip toll of $2.22/auto­
mobile eliminated queuing delays entirely and resulted 
in increases of 13 and 1. 5 percent in bus and car-pooling 
frequencies respectively. 

Finally, the effects of some of the simplifying assump­
tions of the model s hould be explored. Ffrst, the neglect 
of the speed versus flow relation on those parts of the 
freeway not affected by queuing appears to affect the re­
sults very little, because the overall travel time is much 
more sensitive to queuing than to nonsaturated speed re­
ductions. Second, the model overstates the changes in 
congestion levels during the peak period by not allowing 
for alternative routes and times of day. Third, by ex­
cluding nonwork travel, the model probably overstates 
the modal shifts induced. 

CONCLUSIONS 

This paper is in large part intended as a contribution to 
the development of methodologies for evaluating urban­
highway operating policies. It appears both desirable and 
feasible to analyze such policies in an equilibrium con­
text, in which the interaction between traffic-flow rela­
tions and demand charactel'istics is explicitly recognized 
and in which the benefits to individuals can be defined 
and evaluated in a rigorous way. TI1e particular model 
described here is one way to approach this goal, and the 
results suggest what may be expected from more detailed 
applications. Either the supply or demand sides of the 
model can be made more complex and case specific. 

Other limitations of the model can be removed only 
with greater difficulty. To incorporate nonwork trips 
would require more complex demand modeling. To 
eliminate the assumption of a fixed-duration peak period 
would require some behavioral description of individual 
decisions on the timing of their trips. Finally, the as­
sumption of a fixed number and location of commuters 
prohibits consideration of the longer range effects of 
various policies on the shape of an urban area. The 
further development of the present model on these lines 
would be both challenging and rewarding. 
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Choice-Model Predictions of Car-Pool 
Demand: Methods and Results 
Moshe Ben-Akiva, Center for Transportation Studies and Department of 

Civil Engineering, Massachusetts Institute of Technology 
Terry J. Atherton, Cambridge Systematics, Inc., Cambridge, 

Massachusetts 

The results of a number of car-pool strategies were predicted by using 
disaggregate choice models. Car pooling is explicitly considered as an 
alternative mode only for work trips. However, the effects of car­
pooling incentives on interdependent travel choices and vice versa are 
also predicted. Forecasts are made by applying the models to each 
household individually, using revised values of the appropriate indepen­
dent variables to simulate the particular transportation alternative being 
analyzed. These household predictions are then summed to represent 
predicted areawide changes in travel behavior. Before and after data 
from the implementation of car-pooling incentives and transit-service 
improvements were used to test the validity of the model's forecasts. 
Three such tests are reported. The results indicate that the work-trip 
modal-choice model successfully captures the effects of changes in level 
of service on modal choice. The predicted effects of several significant 
car-pooling strategies are presented. In general, traveler response to 
many car-pooling incentives is small. The most significant changes in 
travel behavior are predicted for those parking-related policies that com­
bine disincentives for driving alone with incentives for car pooling. 

Various strategies designed to increase ride sharing have 
been proposed and several have already been imple­
mented. For example, strategies such as preferential 
lanes for high-occupancy vehicles, car-pool-matching 
and promotion programs (both areawide and employer­
based), and preferential parking for car pools have ex­
isted for several years. This paper applies a method­
ology based on disaggregate travel:-demand models to 
predictions of changes in travel patterns that will result 
from car-pooling incentives and from short-range trans­
portation options in general. 

The methodology is described briefly, and a number 
of validation tests that use before-and-after data are 
presented. Prediction results from case study applica­
tions of the methodology to various car-pooling-related 
policies are discussed. The paper concludes with a sum­
mary of major findings. [Both the methodology used and 

the analysis of prediction results by market segments are 
discussed in greater detail by Ben-Akiva and Atherton(.!_).] 

METHODOLOGY FOR SHORT-RANGE 
TRAVEL-DEMAND PREDICTIONS 

The methodology for predicting the changes in travel pat­
terns that will result from short-range transportation 
options (including car-pooling incentives) is based on the 
application of disaggregate travel-demand models. These 
models are based on the multinomial logit, probabilistic 
choice model, which has been discussed by Domencich 
and McFadden (5) and Richards and Ben-Akiva (7). The 
data used to estimate the coefficients of these models are 
taken from home-interview surveys and represent a 
cross section of households. The dependent variables 
of the models are the reported travel choices made; the 
independent variables are the reported socioeconomic 
characteristics, engineering measures of travel times 
and costs, and survey estimates of employment and land­
use characteristics in the urban area. 

The models consider residential locations and work 
places as being fixed and predict automobile ownership, 
choice of mode for the work trip, and frequency, destina­
tion, and mode for nonwork travel. Car pooling is ex­
plicitly considered as an alternative mode only for work 
trips. However, the effects of car-pooling incentives on 
interdependent travel choices and vice versa are also 
predicted. 

To apply these models to the forecasting of changes in 
travel behavior that will result from alternative car­
pooling incentives, a sample enumeration technique is 
used. In this procedure, a randomly selected sample of 
households is used to represent the entire population of 
an urban area. Forecasts are made by applying the 
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models to each household individually, using revised 
values of the appropriate independent variables to simu­
late the particular policy being modeled. These house­
hold p1·edictions are then summed to represent predicted 
areawide changes in travel behavior. 

VALIDATION WITH ACTUAL CAR­
POOLING EXPERIENCE 

The most significant test of the validity of a predictive 
model is a comparison of the changes predicted with the 
actual observations made before and after a change in 
transportation service. Several such tests of the work­
trip modal-choice model a re repor ted by Cambridge 
Systematics (3). Three r elevant test having reliable 
before- and-after data a r e presented her e . These are 
the Shirley Highway preferential-lane project, the Santa 
Monica Freeway diamond-lane project, and the Minne­
apolis bus-on-metered-freeway project . In each of these 
examples no disaggregate sample was available, and the 
model was applied by using average values for selected 
market segments. 

'I11e tests wer e conducted by us ing the i ncl'emental 
form of the logit model (1). This Conn predicts r evis ed 
travel behavior that is based on existing travel behavior 
and changes in level of service, rather than using the 
full model to recalculate choice probabilities that are 
based on the full set of independent variables. Data re­
quirements are gr eatly reduced by using such an ap­
proach; no knowledge of detailed socioeconomic and 
level-of-service data is required. Only existing shares 
and proposed changes in level of service are necessary. 
The incremental form of the logit model for a specific 
market segment is given by Equation 1. 

P'(ilA) = [P(i lA)exp(LW;) J/ IPUIA)exp(1Wi) 
jeA 

(I) 

where 

t. V1 = change in utility for alternative i = !:6iAX1k, 

ek = coefficient of the k th variable, 
AX1k =change in the kth independent variable for 

alternative i, 
P(i I A) = probability of choosing alternative i before 

ohanga, and 
P'(i I A) =the pr edicted probability of choo~ing alteJ:"­

native i after the change. 

The first test of the work-trip modal-choice model 
was conducted for the construction of new preferential 
lanes on Shirley Highway, which extends to the southwest 
from the center of Was hington, D.C. In 1971, express 
bus service began on these lanes; bus level of service 
was further improved by increasing coverage and adding 
new buses designed for greater passenger comfort. In 
late 1973, car pools with four or more occupants were 
also permitted to use the preferential lanes. In addition 
to the improved bus service and the car-pool preferen­
tial lanes, there were other factors that affected the 
modal choices of commuters between 1970 and 1974 
(e .g., increas es in tile price of gasoline). All of these 
factors were expressed in terms of changes in the level­
of-service attributes and int roduced into the work-trip 
modal-choice model to predict changes in corridor modal 
shares from 1970 to 1974. The results are given in 
Table 1. The error in the predicted bus ridership in 
the corridor is -2 .9 pe1·cent, and the error in predicting 
the change in bus ridership is -12.9 percent. These re­
sults indicate that the model captured the changes in 
modal-choice behavior due to changes in the level-of­
service attributes. 

The second test of the work-trip modal-choice model 
was undertaken for the Santa Monica Freeway diamond­
lane project, which was implemented on March 15, 1976, 
and discontinued on Augus t 13, 1976. When this project 
began, the use of the median lane was rese1·ved for buses 
and cal'.' pools with three or more persons . Initially, this 
resulted in severe congestion in the nonpr eferential lanes 
and on alternate parallel arterials in the corridor and 
long delays at entrance ramps, while the preferential 
lane was sparsely used . However, by the tenth week of 
the project, which is the point in time for which the model 
was applied, conditions had changed considerably. Travel 
times in the nonpreferential lanes had decreased to their 
preproject level and the ramp delays had decreased 
somewhat, but preferential vehicles still enjoyed a 24 
to 32- km / h ( 15 to 20-mph) s11eed differential. 

At the same time that the preferential lane was imple­
mented, significant improvements were made to trans it 
service in the corridor . The improvements included ex­
press bus sei-vice to the Los Angeles central business 
district (CBD), improved distribution and feeder s ervice, 
park-and-ride lots, and extended route coverage. Ap­
proximately 50 new buses were put into service to effect 
these improvements. Each of these factors was ex­
pressed in terms of changes in the level-of-service at­
tributes and introduced into the model. In addition, a 
dummy variable that captures the promotional and aware­
ness aspects of car-pooling programs was set equal to 
one. The predicted and observed corridor modal shares_ 
for the tenth week of the project are given in Table 1. 
Although the predictions for the transit modal share are 
accurate, thG predicted changes in the two-person and 
three-or-more-person car-pool shares overestimate 
those observed. One probable reason for this is be­
cause only 10 weeks had elapsed at the time the after 
data were recorded, travel in the corridor had not yet 
passed the transition period. It is also possible that 
seasonal effects, which are not accounted for in the 
analysis, may have had a significant impact on the ob­
served changes in travel behavior. 

The final test presented here was conducted on before­
and- af.ter data fr om the Minneapolis expl'ess-bus -on­
metered-freeway (I- 35) project that was implemented in 
1972. In t his project, buses are given priority a ccess 
to the freeway by express bus ramps. At the same time, 
automobiles are metered onto the freeway so that traffic 
volumes allow a desired level of service. In addition, 
express bus service on I-35 to the CBD was gradually 
improved from 36 trips to 118 trips during the morning 
peak period over a 2-year period. 

Each of these factors was expressed in terms of 
changes in level-of-service attributes and introduced 
into the model to predict changes in modal shares from 
1972 to 1974. The results of this model applicat ion are 
also given in Table 1. Here again, the r elatively s mall 
prediction errors suggest that the model has successfully 
captured the effects of changes in level of service on 
modal choice. 

RESULTS 

The base values for Washington, D.C.; Birmingham, Ala­
bama; and Denver used in the model are given in Table 2. 

The model was used to analyze the effectiveness of a 
number of car-pooling policies. These include 

1. Employer-based actions (e.g., car-pool matching 
and promotion), 

2. Par k.lng availability and cost (e.g., preferential 
parking measures), 

3. Traffic regulation and control (e.g., preferential 
traffic control), and 
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4. Travel cost (e.g., fuel-price increases). 

The predicted impacts of these policies for the Wash­
ington, D. C., metropolitan area are summarized in 
Table 3. For each policy, the predicted percentage 
changes from base values are given for work-trip modal 
shares (drive alone, shared ride, and transit), work-

trip automobile occupancy, vehicle kilometers traveled 
(VKT) (fo1· work, nonwork, and total), and fuel consump­
tion. (These percentage changes represent the areawide 
percentage changes that will result from a policy regard­
less of the actual proportion of the areawide population 
affected by that policy.) The predicted impacts for a 
limited number of these policies for Birmingham and 

Table 1. Before·and-after validation tests for corridor modal shares. 

Predicted Error In 
Base Modal Actual Modal Modal Share Actual Predicted Error In Predicted 

Example Mode Share (before) Share (after) (after) Change Change Prediction" (%) Change'(%) 

Shirley Highway Automobile 67.8 57 .3 58 .5 -10.5 -9.3 2.0 -12 .9 
Bus 32.2 42.7 41.5 10.5 9.3 -2.9 -12.9 

Santa Monica Freeway Drive alone 70.1 66.6 66.7 -3.5 -3.4 0.1 -19.9 
2-person 

car pool 22 .3 22.2 21.3 -0.1 -1.0 -4.2 90.0 
>3-person 

car pool 6.0 7 .6 8.4 1.6 2.4 9.5 33.3 
Bus 1.6 3.6 3.5 2.0 1.9 -2.9 -5.3 

Minneapolis bus project Drive alone 47 .2 43.0 42.0 -4.2 -5.2 -2.4 19.2 
Car pool 19 .8 18.0 18 .0 -1.8 -1.8 0.0 0.0 
Transit 33.0 39.0 40.0 6.0 7.0 2.5 14.3 

11 Given by (predicted - actua l)/pred icted. b Given by [I predicted - base I - l actual - base I] /I predicted - base L. 

Table 2. Base va I ues. 

VKT (km/d) 
Work-Trip Modal Shares Work-Trip 

Automobile Work Nonwork (per Total {per Fuel Consumption 
Location Drive Alone Shared Ride Transit Occupancy {per worker) household) household) (L/d/household) 

Washington, D.C. (exclud-
Ing weekend travel) 0.53 0.25 0.16 1.24 17 .7 24.1 41.8 10.6 

Washington, D.C. (includ-
Ing weekend travel) 0.53 0.25 0.16 1.24 17. 7 40.2 57 .9 14.8 

Birmingham, Ala. (ex-
eluding weekend travel) 0.68 0.24 0.08 12 .9 22.5 35.4 8.9 

Birmingham, Ala. (includ-
ing weekend travel) 0.68 0.24 0.08 12.9 37.0 49 .9 12.7 

Denver (including weekend 
travel) 0.78 0.19 0.03 20.9 30.6 49.9 10.0 

Note : 1 km = 0.62 mile; 1 L = 0.26 gal. 

Table 3. Predicted areawide impacts. 

Percent Change From Base Value 

VKT (km/ d) 
Work-Trip Modal Shares Work-Trip 

Automobile Work {per Nonwork {per Total {per Fuel Consumption 
Policy Drive Alone Shared Ride Transit Occupancy worker) household) household) (L/ d/ household) 

Employee incentives 
Washington" -1.4 4.4 -2.l I.I -0.62 0.17 -0 .15 -0.11 
Birmingham (all workers 

regardless of employer 
sizer -4.4 16.1 -9.9 -2.1 0.08 -0.3 -0.2 

Denver (employer size 
>50)" -2.9 13.0 -10.0 -1.4 -1.4' -1.2' 

Preferential parking 
Washington" -2.7 8.2 -3.6 1.9 -0.74 -0.24 -0.16 -0.13 
Denver (including subs!-

dized car pools) -3.44 15.4 -10.8 -1.7 -1.7' -1.5' 

Preferential parking with 
pricing disincentives 

Washington" -8.6 17.7 1.4 4.8 -4 .1 0.88 -1.1 -0.97 

Preferential lanes 
Washington• -1.7 2.9 1.1 0.9 -1.3 0.22 -0.39 -0.32 

Fuel price doubled 
Washington' -1.8 1.9 2.9 0.8 -1.6 -8.0 -6 .1 -5.7 
Birmingham' -1.0 1.6 4.1 -1.2 -6.7 -5 .6 -4.8 
Denver• -0.92 2.6 3.6 -0.77 -16 .o -10.0 -10.0 

Fuel price tripled 
Washington' -3.6 4.0 6.0 1.6 -3.3 -14.9 -11.5 -10.7 

11 Using base value excluding weekend travel. b Valuei for work trips only. c Using base value including weekend travel. 
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Denver are also given in Table 3. 

Employer-Based Matching and Promotion 

This policy represents the implementation of employer­
related car-pool incentive programs, such as intra­
company advertising, car-pool-matching assistance, and 
promotion. Incentives such as these cannot be readily 
quantified in terms of travel time and travel cost. This 
makes their representation somewhat of a problem, 
which is solved here by the use of a dummy variable. 

Since car-pooling incentives such as these are feas­
ible only for organizations with a relatively large number 
of employees, the most logical criterion for determining 
the availability of such incentives to an individual worker 
is employer size. For this particular policy, a lower 
bound of 100 employees was used to differentiate between 
large and small employers in Washington. This dummy 
variable was set equal to one for those workers employed 
by organizations with at least 100 employees and zero 
otherwise. For Birmingham, however, employer-size 
data were not available, and this dummy variable was 
set equal to one for all workers. In Denver, a lower 
bound of 50 employees was used. As shown in Table 3, 
the implementation of car-pool-matching assistance and 
promotion programs by large employers in Washington 
resulted in a 4.4 percent areawide increase in the num­
ber of workers in car pools. However, while the work­
trip VKT we1·e reduced by 0.62 percent, the increased 
number of automobiles remaining at home (and therefore 
available for use by other family membe1·s for other trip 
purposes) resulted in a 0.17 percent increase in nonwork­
trip VKTs, which offset 36 percent of the work-trip 
VKTs savings. 

The potential areawide effectiveness of this policy is 
muted somewhat by two conditions existing in the Wash­
ington area. These are that 

1. By restricting the availability of car-pool incen­
tives to those workers employed by large employers, 
only 68 percent of the work force is affected and 

2. Forty-four percent of the work force already has 
these incentives available. 

The result is that only 24 percent of the working pop­
uiation is affected by this poiicy. In other urban areas, 
where the initial level of employer-based car-pool in­
centives is lower or a greater proportion of the work 
force is employed by large employers, this policy would 
be more effective in terms of increased car pooling and 
VKT reduction. In Birmingham, for example, the ini­
tial level of employer-based car-pool incentives was as­
sumed to be zero and thus, the entire work force was 
affected by the policy. As shown in Table 3, the per­
centage increase in shared ride was almost four times 
that in Washington. The initial level of employer-based 
incentives was assumed to be zero in Denver also. In 
this case, however, the lower bound was 50 employees, 
which resulted in a percentage increase in shared ride 
approximately three times that in Washington (Table 3). 

Preferential Parking Measures 

Two sets of preferential parking measures were analyzed 
for Washington. These were 

1. A program implemented by large employers (i.e., 
those with more than 100 employees), who gave subsi­
dized, preferential parking locations to car-pool ve­
hicles and 

2. Car-poolincentives coupled with areawide parking­
price disincentives aimed at single-occupant vehicles. 

The first set of measures is represented in the model 
by setting parking cost equal to zero and decreasing 
walking time from parking location to final destination 
for the shared-ride alternative and by increasing walking 
time for the drive-alone alternative for those workers 
employed by large employers. The magnitude of these 
changes in round-trip walking times are -4.27 min for 
shared ride and +l.64 min for drive alone. These values 
were calculated on a basis of the cumulative walking­
time distribution for parked vehicles during the peak 
period in the Washington area and the percentage of all 
automobiles used for car pools. In addition to these 
employer-based, car-pool parking incentives, the second 
set of measures included minimum parking charges for 
the drive-alone alternative of $2.00 in the CED and $1.00 
elsewhere in the metropolitan area (for work trips only). 

The predicted results of these two parking policies are 
given in Table 3. For the first policy, the shared-ride 
share increases significantly, and the shares of both 
drive alone and transit decrease. For the second policy, 
an even greater increase in shared ride is predicted. In 
this case, however, while the drive-alone share drops 
markedly, the transit share shows a slight increase. 
This occurs because the first policy consists primarily 
of car-pool incentives, and therefore shared ride will 
draw from both drive alone and transit. In the second 
policy, however, the drive-alone disincentive dominates, 
and more commuters will shift from drive alone to tran­
sit than from transit to shared ride. 

A preferential parking measure similar to the first 
one discussed for Washington was analyzed in Denver. 
Here, however, parking costs wer e ass umed to be sub­
sidized by the employer (essentially, this affeets only 
CBD workers) and the lower bound for employer size was 
set at 50 employees rather than 100. The i·esults (based 
on the analysis of work trips only) given in Table 3 show 
a percentage increase in ride sharing that is almost 
double that in Washington. 

Preferential Traffic Control 

This policy was analyzed only in Washington and con­
sisted of preferential lanes for multiple-occupancy ve­
hicles. It was analyzed on an areawide basis by identi­
fying those trips that would use facilities for which a 
preferential-lane policy wouid be feasible. This ap­
proach; rather than one of analyzing one specific facility; 
was taken because of the relatively small s ample us.ad in 
forecasting (i.e., 800 households for the entire Washing­
ton metropolitan area), which results in an extremely 
small and statistically unreliable subsample of observed 
work trips on any given facility. 

After potential locations of preferential lane and ramp 
treatments were identified, differential time savings 
were estimated as follows for three broad categories of 
work trips. For trips from outside the beltway to the 
inner core, a differential of 16 min was used (8 percent 
of the sample). For trips (a) from outside to inside the 
beltway, (b) along the beltway, or (c) from inside the 
beltway to the inner core, a differential of 8 min was 
used (31 percent of the sample). For all other trips, 
e.g., outbound commute or circumferential within the 
beltway, no time savings were assumed (61 percent of 
the sample). No time savings were assumed for nonwork 
trips. Thes·e travel time differentials were based on the 
following assumptions: (a) an average bas e speed of 56 
km/ h (35 mph) on all facilities, (b) an average prefer­
ential lane speed .of 81 km/h (50 mph), (c) an average 
nonpreferential lane speed of 48 km/ h (30 mph), and (d) 
ave1·age preferential-lane lengths of 16 and 8 km (10 and 
5 miles) respectively for the first two categories ol work 
trips described above. 
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The predicted impacts of this preferential lane policy 

are given in Table 8. The shared-ride modal share in­
creased 2.9 percent, while that of transit increased by 
only 1.1 percent. The reason for this difference be­
comes evident if one looks at the results for workers re­
siding in suburban areas. Here, the difference is even 
greater, which suggests that for those wo1·kers for whom 
preferential lanes are most ath-active, transit availa­
bility is somewhat limited. Here again, the decrease 
in work-trip VKT is partially offset by increased non­
work travel. 

Fuel Price Increases 

Two policies in which the price of gasoline was increased 
were analyzed for Washington. In one case, the base 
price was doubled, and in the other, the base price was 
tripled. Unlike the p1·eceeding policies, these policies 
are directed not only towards work trips, but also di­
rectly affect weekday and weekend nonwork travel. 

These policies are represented in the model by in­
creasing the portion of automobile-travel cost that is 
represented by fuel costs. In this case, fuel costs rep­
resent 70 pe1·cent of automobile-operating costs: On the 
average, automobile-operating costs represent 50 per­
cent of automobile-travel costs, the remainder being 
parking costs. Therefore, doubling the price of gaso­
line, for example, would result in an approximate 35 
percent increase in out-of-pocket travel costs. 

The impacts predicted for these policies are given in 
Table 3. In both cases, the reduction in nonwork travel 
is greater than that predicted for work trips despite the 
increased automobile availability for nonwork trips. 
This agrees with the idea that nonwork trips, being more 
discretionary in nature, are more sensitive (more elas­
tic) to changes in travel costs. While travel costs will 
increase by the same amount for both drive-alone and 
shared-ride vehicles, the assumption that costs are 
borne equally among car-pool members results in a sig­
nificantly smaller cost increase per person for shared 
ride. Because of this, the shared-ride modal share in­
creases, although transit shows the larger gain in modal 
share. 

Similar impacts are predicted for Birmingham and 
Denver for the policy of doubling the price of gasoline, 
although in Denver the much higher sensitivity of non­
work travel to fuel-price increases relative to the other 
two cities results in a significantly larger decrease in 
total fuel consumption. 

Summary 

In addition to the results tabulated here, strategies have 
been analyzed for both Washington and Birmingham by 
using an earlier version of the model system (2). Similar 
studies evaluating the effectiveness of alternative car­
pooling policies have also been conducted by others (!, ~· 
While a direct comparison of the results from these 
studies is difficult because of the differences in data 
used and policy definitions, it appears that the results 
reported here are mo1·e conservative than others. 

CONCLUSION 

The use of the methodology developed in this study was 
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demonstrated by an analysis of car-pooling strategies, 
but the methodology can also be used to analyze a wide 
variety of short-range transportation alternatives. 
Before-and-after tests have shown the validity of apply­
ing the work-trip modal-choice model to the prediction 
of impacts of short-range transportation policies on 
travel behavior in several urban areas. 

Several car-pooling strategies were analyzed. A 
specific car-pool strategy would be either an incentive, 
i.e., a direct inducement to workers to share rides by 
improving the level-of-service attributes available to 
car pools, or a disincentive, i.e., an indirect induce­
ment for car pooling by worsening the level-of-se1·vice 
that attributes for solo drivers. The major conclusions are 

1. Car-pooling incentives will attract transit as well 
as drive-alone commuters and, because the potential 
areawide increase in ride sharing is small, the decrease 
in VKTs will be small; 

2. Automobile disincentives are much more effective 
than car-pooling incentives in increasing ride sharing and 
transit use, but these policies are less acceptable to the 
public and therefore less likely to be implemented; 

3. A coordinated program of both incentives and dis­
incentives could effectively increase car pooling and re­
duce congestion, VKT, and fuel consumption, and signifi­
cant parking incentives and disincentives appear to be the 
most effective ways to increase car pooling; 

4. Car-pooling strategies directed at work trips re­
sult in increased automobile travel for nonwork purposes 
because of increased automobile availability during work 
hours for nonworking members of a household, and the 
increased nonwork VKTs offset by approximately one­
third the reduction in work VKTs; and 

5. The effectiveness of a particular car-pooling stra­
tegy will vary significantly among urban areas because 
of differing base conditions. 
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Discussions 
David S. Gendell, Office of Highway Planning, Federal Highway Administration 

In the past several years, we have seen a change in em­
phasis in transportation planning from long-range to a 
shorter time frame and a corresponding change in the 
alternatives being analyzed from capital-intensive fixed­
guideway systems to those having a more operational 
character. An implication of this is that transportation 
modelers may be no longer needed because these newer 
alternatives might best be evaluated through intuitive 
procedures. I think the papers presented here give us 
a clear indication that technical analysis or modeling is 
very much a part of planning in this era of transportation­
system management. 

Horowitz and Sheth have demonstrated that psycholog­
ical scaling techniques can be meaningfully applied to the 
detern1inatiui1 of the at'"l.ritute8 oi Li·autJpuJ.·lation suppiy 
that have an impact on travel behavior. They success­
fully use these techniques to develop initiatives to en­
courage ride sharing and show why several previous 
promotional techniques have had minimal success. 

Small presents the results of a pioneering effort to 
bring together modeling techniques in the areas of 
traffic-flow and travel-demand analysis. Previous 
works dealing with the effects of priority-lane alloca­
tion on traffic flow have suffered from the lack of ac­
knowledgment of the effects that changes in performance 
level have on travel demand. At the same time, previous 
travel-demand models have typically begun with some 
assumed change in system performance in determining 
the effect of priority lanes on modal use. Small has 
demonstrated that these disciplines can be brought to­
gether to analyze the desirability of priority-lane allo­
cation. This is clearly a worthwhile activity in planning 
for such facilities. Small also develops the concept of 
benefit versus cost, which is a commendable addition to 
transportation-system-management planning procedures. 

Ben-Akiva and Atherton apply an advanced model sys­
tem to the evaluation of a wide range of strategies aimed 
at encouraging increased ride sharing. They skillfully 
model a number of behavioral effects that are often ig­
nored in work of th.is nature . Their paper will be useful 
to policy officials because it illustrates the comparative 
effectiveness of various strategies in reducing travel and 
fuel consumption. They have also contributed to 
transportation-system - management planning method­
ology by demonstrating the use of sample-by-sample 
enumeration techniques in quantifying the impacts of 
various strategies on different geographic areas and in­
come groups. Also, the planning practitioner will bene­
fit from learning about the incremental form of the logit 
model, which should facilitate policy analysis in areas 
where the enumeration approach is not practical. 

While I am pleased by the research represented here, 
I do have some concerns. The data used by Horowitz 
and Sheth were not based on a random sample, but on an 
uncorrected choice-based sampling procedure in which 
a roughly equal number of car-pool and single-occupant 
automobile commuters were surveyed at their places of 
employment. This resulted in a biased sample that may 
have influenced their results. For example, the aver­
age trip distance for car-pool commuters was 26.2 km 
(16.3 miles), while that for single-occupant automobile 
commuters was 17.8 km (11.2 miles). Thus, the re­
spondents are not from the same sampling frame and 
are not thinking of the same trip when responding to the 
questionnal,re. For example, when a single-occupant 
automobile respondent views a car pool as inconvenient, 
he 01· she is doing so foi- an 17 .8-km (11.2-mile) trip. 
He or she would probably view it as less inconvenient for 

the 26.2-km (16.3-mile) trip evaluated by the average car 
pool er. Thus the differences between the means of the 
various variables thought to explain behavior in part re­
flect the difference in sampling frames. 

The papers by Small and by Ben-Akiva and Atherton 
use logit-model formulations that contain demographic, 
travel-time, and travel-cost measures. Both resulted 
in relatively large negative car-pool bias coefficients, 
indicating that there are probably important behavioral 
variables that are not included in the model specUications. 
Perhaps incorporation of some of the softer attl'ibutes 
studied by Horowitz would reduce the size of these coef­
ficients and lead to additional policy sensitivity. 

All of the papers interpreted the policy implications 
oi their findings well, although 1 believe that Small might 
have gone further in testing a range of occupancies qual­
ifying for use of the priority lanes. The paper would also 
have been improved by a case-study application of the 
techniques to an operational priority lane to demonstrate 
their ability to repr-oduce an observed response. 

Of the strategies tested by Ben-Akiva and Atherton, 
tl1e doubling and tripling or the price of fuel had the 
greatest effect on travel and fuel consumption. The re­
sults of these particular tests should probably be inter­
preted with caution because, as the authors point out, the 
models do not predict the probable shift in automobile­
size distribution that would result. Perhaps more mod­
erate tests would have been advisable with the current 
formulation. 

While I have discussed several areas in which the re­
search reported in these papers might have been im­
proved, I would like to conclude by noting that these 
papers represent a significant contribution to the knowl­
edge of the effects of a wide range of strategies on car­
pool demand. In addition, they demonstrate the effective 
application of analytical planning procedures to evaluating 
transportation-system-management strategies. As such, 
they represent an area of research that should assist the 
practicing planner. 

Daniel Brand, Massachusetts Executive Office of Trans­
portation and Construction 

These papers by Horowitz and Sheth, Small, and Ben­
Akiva and Atherton improve our ability to predict both 
car-pool demand and demand for travel by all other 
modes. Forecasts of impacts of policies to promote car 
pooling are of little use if they do not include impacts on 
other travel modes and their associated effects on such 
factors as energy consumption, traffic congestion, and 
air quality. 

I would like to congratulate Horowitz and Sheth for a 
well written and neatly packaged piece of work. Their 
paper introduces some complicated concepts in simple 
and easily understood fashion. However, they have used 
data on stated general intentions to change from solo 
driving to car pooling rather than behavioral data on 
persons who actually changed modes in reaction to a 
change in a choice situation that they confront; for ex­
ample, a new preferential lane for car pools or an 
employer-based car-pool-matching program. In addi­
tion, the attitudinal data on intentions simply asked how 
likely it was that the respondent would join a car pool 
within the next two or three months. I would much rather 



see them gather policy-related attitudinal responses to 
such questions as "How likely are you to join a car pool 
if you were offered a list of fellow employees who live 
near you to car pool with?" Data on such attitudes could 
help isolate promising markets for car-pool-matching 
programs and other car-pool-promoting policies. A 
useful extension of this paper would include behavioral 
data, not only for what it would tell us about car-pooling 
behavior, but also for investigating the relations between 
stated intentions or attitudes and actual behavior. At­
titudinal data are, of course, usually much easier to col­
lect than behavioral data. 

The first conclusion of the paper, namely that "demo­
graphic and travel characteristics are poor indicators 
and predictors of the choice between driving alone and 
ride sharing" is subject to misinterpretation and needs 
restatement. This conclusion can be taken to mean that 
similar ti·avel patterns (same origins and destinations 
as produced in a car-pool-matching program) do not 
lead to car-pool formation. That is not what is meant 
at all, and the authors might be more specific. 

Examination of the cognitive profiles presented in the 
paper for actual car poolers and solo drivers in terms 
of attribute-by-attribute evaluations of ride sharing and 
solo driving is quite fascinating. Our objective in pro­
moting car pooling is to change people's evaluations of 
car pooling by promotional campaigns that have the ef­
fect of bringing these attribute-evaluation profiles closer 
together in the belief that this will bring about actual 
car-pooling behavior. Generally, car pooling is re­
garded by solo drivers as less convenient than solo driv­
ing, but not substantially cheaper or less energy con­
suming or air polluting. The conclusion one draws from 
these data is that we ought to be promoting car pooling as 
a convenience, rather than as being cost saving. This 
is, I think, a very significant finding. It is a sobering 
conclusion, but consistent with the results of transit 
travel forecasting that transit use is less likely to grow 
from fare decreases than from making use of the private 
automobile less convenient. 

Finally, Horowitz and Sheth reach some interesting 
conclusions about the identity of groups most likely to 
car pool. They identify employees of high socioeconomic 
status and those from large households who have rela­
tively recently moved their places of residence or em­
ployment as being the most likely persons to change to 
car pooling on the basis of their attribute-evaluation 
profiles. This contrasts with their findings that actual 
car poolers have been at their prese.nt residences and 
employment locations longer than solo drivers. This 
disparity between attitude and behavior is again an indi­
cation of the usefulness of before-and-after behavioral 
data as opposed to data about general attitudes and inten­
tions. The persons who finally begin to car pool in re­
sponse to a multitude of factors may not be the persons 
who state that they are likely to car pool. 

Small's paper is a neatly done equilibrium analysis 
of the consequences for bus, private automobile, and 
car-pool use and users of reserving a freeway lane for 
buses or for buses and car pools. Varying the number 
of freeway lanes and the before conditions on degree of 
congestion with no reserved lanes are added features of 
this paper. 

In general, this paper shows that congestion relief on 
the general-purpose (unreserved) lanes actually occurs 
when a lane is reserved for buses and three-or-more­
occupant car pools when the before conditions are char­
acterized by heavy and very heavy congestion. This is 
truer when one lane is taken from a five or four-lane 
facility rather than from a three-lane faclllty. That is, 
in the case of a three-lane facility, (slight) congestion 
relief occurs on the two unreserved lanes only when the 
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before conditions are characterized by very heavy con­
gestion. These conclusions are consistent with calcula­
tions done in Massachusetts in preparation for the spring 
1977 opening of a reserved lane for buses and three-or­
more-occupant car pools on the heavily congested four­
lane (each way) Southeast Exptessway in Boston. In the 
Boston calculations, it was predicted that congestion on 
the unreserved three lanes would not significantly in­
crease with the reservation of a bus and car-pool lane 
and, of course, delays to buses and car pools would be 
eliminated. 

The third and final paper discussed here is Ben-Akiva 
and Atherton's excellent and comprehensive set of pre­
dictions of the use of several modes, including car pool­
ing, that will result from many proposed alternatives for 
increasing car pooling. The authors use their multi­
nomial logit, disaggregate, demand forecasting model, 
which was estimated and tested by using data from sev­
eral urban areas in different parts of the country. The 
model provides quite reasonable forecasts of the conse­
quences of the specific policies tested and documented in 
the paper. The conclusions of the paper on the impacts 
of various car-pooling strategies appear consistent with 
the results of previous studies. However, the use of a 
demand-model system that includes work and non-work­
trip models enables the authors to go beyond previous 
findings in certain ways; e.g., leaving a car home and 
car pooling to work results in increased nonwork vehicle 
kilomete1·s of travel (VKT) by nonworking members of 
the household that offsets by approximately one-third the 
reduction in work-trip VKT from car pooling. 

All three specific comments on the paper relate to the 
details of the way in which the authors have modeled car­
pooling behavior. The first comment relates to a pos­
sible difficulty in forecasting car-pool use resulting from 
preferential lane strategies by the use of a model esti­
mated using cross-sectional data. That is, longer trips 
tend to exhibit a higher car-pooling modal split. If this 
bivariate cross-sectional relation is reflected in the 
multinomial-logit model, car-pooling use in response to 
preferential lanes that reduce car-pool travel times may 
tend to be underestimated. The model used in the paper 
did underestimate the car-pool formation that resulted 
from the Santa Monica Freeway reserved (diamond) lane. 
Can this effect be the explanation for this underestimation? 

My second comment on the model relates to the way 
in which employer-based car-pool-matching and promo­
tion programs are represented. Such employer-based 
car-pool programs are certainly the most widely applied 
car-pool-promotion strategies at the present time. The 
authors indicate that car-pool-promotion programs are 
represented in the work-trip modal-choice model by a 
dummy variable that picks up the effects of employer­
based car-pool programs. It is not stated whether the 
data used to estimate the model included an indication of 
the presence or absence of an employer car-pool program 
at the place of work for each work-trip observation. If 
these data are available, they represent a substantially 
improved data base over that normally available. 

My third and final comment relates to the property of 
the logit model by which users of a new mode (e.g., car 
pooling) are drawn from the existing modes in p1'0portion 
to their existing modal shares. Is this property opera­
tive in the forecasts being made in this paper, and if so, 
do the autho1·s think that this (separability) property is 
reasonable? The issue is very important to transit of­
ficials who are concerned that car-pool-promotion pro­
grams may divert transit users into car pools, particu­
larly in areas that have very high transit use. Putting 
their minds at ease would help to generate support for 
car-pool programs. 
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Authors' Closures 
Abraham D. Horowitz and Jagdish N. Sheth 

We thank Gendell and Brand for their excellent analyses 
and insir;htful comments and appreciate the many positive 
comments they have made. 

We shall concentrate here on their criticisms and 
methodological questions. At issue, it seems, there 
are the following three main points. 

1. The nonrandom sampling procedure, especially 
the oversampling of car poolers, has resulted in 
biased data, such as significant differences in the aver­
age trip distance between solo drivers [ 17 .8 km (11.2 
miles)] and car poolers [26.2 km (16.3 miles)]. This 
may explain differences in car-pooling attitudes between 
solo drivers and car poolers rather than any fundamental 
psychological differences. 

The answer to this criticism is relatively simple and 
straightforward. First, there are two different and in­
dependent populations, those who car pool and those who 
drive to work. Over or undersampUng a particular pop­
ulation cannot affect the parameter (average trip dis­
tance) of anothe1· population. Second, given the budget 
constraints, a simple random-probability sample would 
have produced very few car poolers. A smaller sample 
size based on random probability would have resulted in 
an estimator with a higher variance. It was necessary 
to oversample car poolers precisely to reduce the vari­
ance of the estimator. Finally, the shorter trip distance 
among solo drivers, coupled with their attitude that car 
pooling is more inconvenient, indicates that it is not the 
trip distance, but some other psychological factor that 
produces a greater negative attitude toward car pooling. 
Otherwise, we should expect just the opposite. 

2. It is much better to conduct an experiment and 
measure its impact by before-and-after changes in the 
actual behavior of solo drivers rather than collect survey 
data and stated general intentions and preferences. 

We agree with this comment in principle, but not in 
practice. First, experiments are extremely difficult to 
carry out in the area of public services because of the 
large numbers of legal and political constraints. Second 
and more importantly, to design experiments one needs 
very good hYPotheses and theories, which we simply do 
not as yet have in the area of urban transpo1~tation. It 
is still a matter of learning more about the realities of 
urban transportation. Otherwise, the experiments will 
be carried out on wrong policy variables and result in 
no main effects and numerous side effects. 

We think that it is a better strategy to first conduct a 
survey and identify potential areas of policy variables 
and then design proper experiments to measure their be­
havioral impacts. For example, our study clearly indi­
cates that experiments based on economic incentives 
would fail to motivate solo drivers to switch to car 
pooling. 

3. It is much better to ask the respondent whether 
he or she will join a car pool if a certain situation arises 
than to ask about general intentions to join a car pool 
within the next two or three months. 

This is a very good criticism and we fully agree with 
it. In fact, it is a major weakness of all attitudinal re­
search that specific situational aspects are not taken 
into consideration (21). We have collected data on sev­
eral if-and-what scenarios, such as increased gasoline 
prices, parking restrictions, and environmental pollu­
tion. Unfortunately, we did not have the space to analyze 
and report the situation-bound intentions in this report. 

Kenneth A. Small 

The thorough and perceptive comments by the discussants 
of these papers leave little to explain or refute. At the 
same time, they raise some important points that are 
shared by my own paper and that of Ben-Akiva and 
Atherton. 

The two papers contain some basic similarities in 
both methodology and results. Both use disaggregate 
models and a sample-enumeration (forecasting-sample) 
procedure. Both find that traveler response to tYPical 
policies is rather moderate, that disincentives to low­
occupancy automobiles are more powerful than incentives 
to car pools or transit, and that the overall effect of car­
pooling incentives is muted by their tendency to divert 
transit riders to car pools in significant numbers. 

Furthermore, as Gendell notes, the calibration of our 
modal-split models results in a large nure-mode bias 
against car pooling. Why? I believe the results are 
correct; i.e., given equal values of those time, cost, and 
socioeconomic variables that we have identified as influ­
encing travel behavior, car pooling is perceived as much 
less desirable than lower-occupancy automobile. But 
this opens to consideration two possibilities: Perhaps 
this bias can be altered by such policies as matching 
services and promotional campaigns, and perhaps it can 
be explained by including such additional variables as at­
titudinal measures. The latter would be most helpful in 
directing the policies undertaken with regard to the 
former, and it is here that a synthesis with the attitudinal 
approach exemplified by Horowitz and Sheth would appear 
especially producti·v·e. 

Moshe Ben-Akiva and Terry J. Atherton 

Gendell and Brand have provided very useful discussions 
that raise several important concerns. 

1. The magnitude of alternative specific constants: 
Gendell is concerned with the large negative constant in 
the car-pool utility function of the modal-choice model 
used in our study. He states that the existence of a large 
negative car-pooi constant indicates that important be­
havior;iJ variables were omitted from the model. There­
fore, he suggests that some of the softer attributes 
studied by Horowitz and Sheth be included in the model. 

The existence of an alternative specific constant is 
due to omitted variables, but is also influenced by the 
definition of alternative choices (e.g., modes) that is 
used in the estimation and application of a choice model. 
This is demonstrated below for the logit model. 

Consider a logit model with no alternative specific 
constants as follows: 

P(ilC) =exp Vi/rexp Vj 
jeC 

(2) 

where P(i \ C) is the choice probability of alternative i, 
given choice set (C), and V1 is the systematic utility of 
alternative i. Suppose that some of the alternatives in 
C have identical systematic utilities and consequently 
equal choice probabilities. Partition C into nonover­
lapping subsets of alternatives with equal systematic 
utilities as follows: 

C = { 1, 2, .. . , i, .. . , J} = { A1, A1, ... , Ak , . .. , AL} (3a) 

and 



(3b) 

where 

J = number of elemental alternatives in the choice 
set, 

L = number of subsets of identical elemental alter-
natives (L ~ J), 

Ak =subset of identical alternatives, 
Vk = systematic utility of alternatives in Ai,, and 
nk =number of elemental alternatives in Ak. 

We can now rewrite the model as shown by Lerman (13): 

P(AklC) = nk exp vit n0 exp V0 

= exp(Vk +In nk it
1 

exp(V1 +In n1) (4) 

If I\ is not known, its natu1·al logarithm serves as an 
alternative specific constant. In this case, the constants 
result not from omission of attributes from the utilities 
but from lack of knowledge about the true elemental al­
ternatives in choice sets of individuals and the need to 
define aggregate or combined alternatives for practical 
purposes. 

There are a variety of car-pooling arrangements, 
such as with or without cost sharing and door-to-door 
collection and distribution versus common meeting point. 
All possible elemental cai·-pooling alternatives are rep­
resented in the modal-choice model by a single car-pool 
mode. Because it is impossible to collect sufficient in­
formation and model explicitly all possible car-pooling 
arrangements, the model must include a car-pool spe­
cific constant even if all of the relevant attributes are 
included. There is no unique natural count of the num­
ber of elemental car-pooling alternatives. 

The often used example of the red and blue bus alter­
natives is derived from the same problem of an arbitrary 
definition of alternatives. In this case, an individual can 
be expected to perceive one alternative bus mode and the 
analyst is assumed to specify two alternative bus modes . 
These are identical modes except for color, which is as­
sumed to have no effect on the choice of mode. Thus, 
if the true model without mode-specific constants is ex­
pressed as 

P(bus) : exp Vbus/(exp Vbus +exp Yautomobile) (5) 

then the definition of two identical bus modes implies a 
model with constants as follows: 

P(red bus): exp(V bus+ In 0.5)/[exp(Vbus +In 0.5) 

+ exp(Vbus +In 0.5) +exp Yautomobilel (6) 

These constants are set such that the sum of the red and 
blue bus probabilities is the same as the bus probability 
in the true model. 

Howeve1-, evidence in the fo1·m of large constants is 
not requiJ:ed to observe that important attributes that in­
fluence modal choice are missing from the existing 
models. Attributes, such as comfort, reliability, and 
safety, cannot easily be measured and because of the 
lack of data are omitted from the existing models. This 
problem, however, cannot be solved by a direct substi­
tution of reported attitudinal data into the existing choice 
models. 

Choice behavior is determined by perceptions and at­
titudes. These, in tu.rn1 are determined by physical 
characteristics and past and present behavior. The ex­
istence of this reverse causal link from behavior to at-
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titudes and beliefs (the phenomenon of cognitive dis­
sonance) was noted in the context of travel decisions re­
cently by Golob and otl1ers (11) and by Brown (9). For 
policy analysis, in whic.h theconsequences of changes in 
policy variables and physical attributes need to be pre­
dicted, this second relation must also be modeled. Thus, 
the incorporation of softer attributes requires more com­
plex models that have not yet been studied. Models ex­
plaining behavior in terms of attitudes and beliefs have 
been estimated, but have not been used effectively in 
transportation analyses because models predicting per­
ceptions and attitudes in terms of physical characteris­
tics and previous behavior have not been developed. Such 
demand models involving simultaneous equations or a dy­
namic structure with an explicit history of behavior 
should be the subject of future research to find ways in 
which softer variables could be incorporated. 

2. Automobile-tYPe choices: Gendell points out that 
models predicting probable shifts in automobile-size dis­
tribution were not included in our analysis, and there­
fore our tests of the effects of large fuel-price increases 
should be interpreted with caution. The reported results 
should be interpreted only as a short-run trend under the 
present average fuel economy. 

An automobile-type choice model was not available 
when the study was conducted. Recent work by Lave and 
Train (12) and an ongoing project at Cambridge System­
atics are directed toward the development of disaggregate 
automobile-tYPe choice models that could be added to the 
model in future applications. 

In the course of the study, we did use an aggregate­
-automobile-tYPe model developed by Chambe1·lain (10) in 
some of the tests . This model is sensitive to aggregate 
economic variables and fuel price and was used to predict 
the bigher average fuel economy that would be caused by 
a fuel-price increase. When this predicted change in 
average fuel economy is used, the predicted travel­
demand changes are markedly different from those re­
ported in the paper. There was less mode changing and, 
as a result, a significantly smaller decrease in work­
trip and nonwo1·k vehicle kilometers of travel was pre­
dicted to result from a fuel-price increase. However, 
a significantly larger decrease in fuel consumption was 
also predicted. For the policy of doubling the fuel price, 
a reduction in the range of three to four times greater 
than that reported in the paper was predicted. Thus, it 
is obvious that automobile-tYPe choice is highly sensitive 
to fuel price and should be explicitly included in such an 
analysis. 

3. Downward-biased travel-time coefficient: Brand 
comments that the predicted increase in car pooling due 
to redliced car-pool travel times may be underestimated. 
It is always possible that the model will be misspecified 
such that the coefficient of travel time will be biased. If 
the coefficient is biased toward zero, a change in travel 
time will be predicted to have a smaller effect than would 
actually occur. Brand sup1,orts this possibility by the 
existence of a positive correlation in cross-sectional data 
between trip length and car pooling and by the under­
estimation of car pooling in the Santa Monica Freeway 
before-and-after test. 

However, there could be other reasons why the car­
pooling predictions are downwardly biased. There could 
be simultaneous changes in factors othe1· than travel time 
that affected modal choice, but they were not considered in 
predictions. One such factor in the case of tbe Santa 
Monica Freeway preferential lanes was the added car­
pooling publicity and promotion during the first weeks of 
operation. Repeating the Santa Monica predictions, but 
including this effect by the use of the car-pool-prornotion­
and-awareness dwnmy variable, we obtained an almost 
perfect prediction of the increased car pooling. This, 
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of course, could be a coincidence. Nevertheless, it 
p1·ovides a plausible explanation to the initial car-pool 
underprediction that is not based on a downwardly biased 
travel-time coefficient, as suggested by Brand. 

The coefficient of the car-pool-promotion-and­
awareness dummy variable in the modal-choice model 
was estimated by using data taken from a home-interview 
survey of the Metropolitan Washington Council of Govern­
ments in 1968. These data are less than ideal, but they 
are among the best available. In particular, this dummy 
variable was defined on a basis of the limited ca1·-pooling 
promotion and matching available at that time to em­
ployees in the large federal office buildings. 

4. Unifonil cross elasticities: Brand's final com­
ment is directed to the logit model's property of uniform 
cross elasticities. Car-pooling incentives will cause the 
choice probabilities of all other mode to decrease by 
the same proportion. Howeve1·, this property is valid 
only for disaggregate preclictious. It is not valid Io1· ag­
gregate predictions, as the results reported in the paper 
demonstrate. [The difference between disaggregate and 
aggl·egate elasticities has been shown by Ben-Akiva (8).J 
It is an um·easonable property for aggregate l?redictions, 
but there is no empirical evidence to reject it, if the 
model is otherwise well specified, for the disaggregate 
predictions. 

Thus, given the successful before-and-after tests of 
the modal-choice model, there is no apparent reason to 
suspect the validity of the predicted diversions from 
transit to car pools. The only way to avoid a shift from 
transit to car pools is to accompany car-pooling incen­
tives with transit-service imp1•ovements in areas having 

heavily used transit services. 
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Analysis and Prediction of N onwork 
Travel Patterns of the Elderly and 
Handicapped 
David T. Hartgen, Planning Research Unit, New York State Department of 

Transportation 
Stephen M. Howe,* North-Central Texas Council of Governments 
Mark Pasko,* Lancaster County Planning Commission 

This paper summarizes a recent survey of 165 randomly selected elderly 
and handicapped persons in the Albany, New York, standard metropoli· 
tan statistical area . The respondents were administered a 6·min question· 
naire on nonwork travel habits, perceived barriers to travel, and intended 
travel if barriers were removed. Four disaggregate models were con· 
structed relating total travel and modal choice to system, demographic, 
mode availability, and physical handicap factors. The results show that, 
contrary to present thinking , the elderly and handicapped vary widely in 
!nobility problems and travel patterns and there is no homogeneity within 
each group; tl'Bvel mobility is primarily a 'function of physical disability, 
availability of an automobile, and tho individual's ability to use it; spe· 
cific bus-service improvements wi ll not materially affect transit demand, 
but will ease the travel burden; and improvements concentrating on ser­
vice availability and direct pickup appear to be the most promising. 

In recent years, public transportation systems have 
been encouraged (and mandated) to give special attention 
to the services provided to the elderly and handicapped. 
Off-peak ti·ansit fares for these pe1·sons are now required 
as a condition for federal transit-operating assistance 

under section 5 of the Urban Mass Transportation Act of 
1974; federal regulations also require full consideration 
of these persons in transit system design and operation. 
The unified work progi·ams prepared annually by metro­
politan planning organizations also include similar re­
quirements. These activities are generally consistent 
with the attitudes of the citizens of New York, 85 pe1·cent 
of whom support reduced fares and special services for 
the elderly and handicapped (1). 

The study discussed here was undertaken in the Albany, 
New York, staJidru'd metropolitan statistical area (SMSA) 
to determine the factors influencing nonwork travel de­
mand by the elde1·1y and handicapped and to develop a 
method of estimating their nonwork travel demand. Fur­
ther results are given by Hartgen and others (~). 

DATA 

Numerous studies, as well as common sense, suggest 



that nonwork travel by the elderly and handicapped 
will probably depend on a number of basic factors. 
It is hypothesized that, in addttion to the traditional 
socioeconomic factors, such as income and auto­
mobile ownership, travel by these special groups (both 
the number of u·ips and the mode chosen), is affected 
by the characteristics of the individual's disability, 
the characteristics of buildings and other potential 
destinations , and features of the various means of 
transportation (e.g., barriers) . 

ln this study, cost a nd time considerations dic­
tated a small-sample daytime telephone survey. Be­
cause some handicapped and elderly persons work, 
such a sample will not include many of these. Hence 
the study is essentially limited to the nonwork travel 
patterns of those elderly and handicapped who do not 
work. Two groups were studied: 

1. The transportation handicapped (self definition), 
which includes some elderly persons, and 

2. The elderly (age 2: 65) who are not handi­
capped. 

To calibrate disaggregate models for these groups, 
sample sizes of at least 30 to 50 individuals are 
required. The handicapped are the rarer group: 
about 4. 7 percent of all persons in the large me­
t r opolitan areas of New York State have a physical 
handicap that inhibits tr avel (1). T herefore, this 
group controlled the sample de sign: About 150 to 200 
households would be needed to yield 30 to 50 house­
holds with a handicapped person and 120 to 150 
households with one or more elderly persons. 

The sample was drawn in March and April 1976 
from Albany, Schenectady, Rensselaer, and a part of 
Saratoga counties by using the Albany and Re r:isselaer 
Metropolitan Telephone Book (1976). A systematic 
sampling strategy with a random starting point was 
used. Of 743 residences contacted, 578 had neither an 
elderly nor a handicapped person. The remaining 165 
residences constitute the sample and are distributed 
as shown below. 

Number of Respondents 
Percentage 

Control Modeling of 
Category Group Group Total Contacts 

Handicapped (includes 
some elderly) 6 29 35 4.7 

Elderly (not 
handicapped) 15 115 130 17.5 

Total 21 144 165 

A 6-min questionnaire (2) was administered to these 
respondents about their Travel patterns, perceptions 
of barriers, and travel characteristics. 

TRAVEL CHARACTERISTICS 

This section describes the travel habits and patterns 
of the elderly and handicapped respondents of the 
survey. The analysis also shows comparison statis­
tics from other major studies, where possible. The 
major source of comparison statistics is the National 
Health Survey (NHS) (3). However, such comparisons 
can only be rough, because the NHS report sum­
marizes only chronically disabled persons and uses 
slightly different question formats. 

Table 1 shows the demographic data of the hand­
icapped sample. The results show that the handi-
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capped population is about equally divided into elderly 
and nonelderly groups and between those who require 
aid and those who do not. The sample also agrees 
well with the NHS data. Their physical problems are 
reflected directly in the mobility levels of the hand­
icapped: Seventy-seven percent of the sample has at 
least some difficulty in getting about outside the home. 
Physical handicaps clearly imply special problems in 
transportation mobility as well. But at the same time, 
the handicapped as a group are not homogeneous; 
there exist wide differences in disability and extent 
of mobility within the group, which leads to quite 
different transportation problems and he nce (probably) 
different solutions. 

The sample screening procedure is such that persons 
interviewed as elderly are not also handicapped. Table 2 
summarizes the demographic data of the elderly non­
handicapped and handicapped per s ons. The sample 
overestimates the younger elderly (65 to 70 years) and 
women. These discrepancies are probably due to the 
daytime telephone-interviewing procedure. However, 
the sample is generally consistent with the conventional 
wisdom in that women make up i higher proportion 
of the elderly than do men and that the incidence of 
physical handicaps generally increases with age. 
Table 3 summarizes the family sizes of the elderly 
and handicapped and the automobile-ownership char­
acteristics of these families. The sample clearly 
demonstrates a smaller than average family size for 
the elderly and handicapped than for the general 
population. But, while the elderly and handicapped 
have mobility problems related to their physical 
situations, apparently they nevertheless have auto­
mobiles available through other members of their 
families. 

As expected, travel by the elderly and handicapped 
is primarily nonwork oriented. Table 4 shows the fre­
quency of ti·avel for nonwor k purposes . The e lde1·ly and 
handicapped make about 7.0 and 5.3 nonwor k tr ips/ week 
respectively . Work tr ips account for an additional 17 
percent of their trips (Table 5). Only 11 percent of the 
r espondents use transit for nonwork ti·avel; however, 
trans it-use rates range from 1 to 11 trips/ week. Reli­
ance on the automobile is heavy. However, as shown 
below, the handicapped are far more reliant on auto­
mobiles driven by others than are the elderly: Two-thirds 
of all nonwork trips by the handicapped are as auto­
mobile passengers, but only one-third of such trips by the 
elderly are as automobile passengers. 

Percentage of Trips 

Mode Used Elderly Handicapped 

Automobile driver 60 
Automobile passenger 26 
Bus 12 
Taxi, wal k, or other 2 

30 
52 
15 
3 

Further, as Table 6 shows, the private automobile is 
generally available to the elderly and handicapped, and 
most individuals can either drive or be driven in auto­
mobiles. For transit services, however, the picture 
is uneven. Regular bus service is generally perceived 
to be ava ilable, but special (e .g., client-agency) bus 
service is not. The limited awareness of special bus 
service also reduces its effectiveness. 

The survey also asked respondents to identify any 
problems or barriers encountered in using bus service. 
Table 7 summarizes the responses and shows that many 
respondents were unable to identify any particular prob­
lem of a typical bus trip. These ldw numbers reflect 
the voluntary nature of the response: In most barrier 
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studies, respondents are given a list of barriers and are 
asked to respond, so that their responses include yea­
and-nay effects. While the handicapped generally perceive 
more barriers and view them as more severe, both groups 
generally stress the same items: climbing bus steps lack 
of handrails, crossing streets and curbs, and seat comfort. 
The picture, then, is one of a wide range of perceptions of 
transportation barriers, with only a few such barriers 
being perceived as important by the group as a whole. 
Thus, specific improvements to the transportation sys­
tem will probably not significantly reduce barriers for 
most travelers, and their effect on travel demand will 
probably be small. Further analysis shows that, if all 
transportatio11 bai-riers were removed, the percentage 
of the elde1·ly and handicapped who use the bus for at 
least 1 trip/ week would increase from 11 to 21 if regular 

bus service were improved and to 27 if special bus ser­
vice were improved. However, this is a noncommit­
ment response; experience shows that actual increases 
would be only one-half to one-third as much. 

MODE IS OF TRAVEL 

Four linear disaggregate models to estimate total non­
work trips and transit use were constructed from the 
data base. These were 

1. Handicapped: total nonwork trips per week, 
2. Handicapped: percentage of nonwork trips via 

transit, 
3. Elderly: total nonwork trips per week, and 
4. Elderly: percentage of nonwork trips via transit. 

Percentage Percentage Table 1. Comparative data for the 
handicapped. Percentage of NHS Percentage of NHS 

Table 2. Comparative data for the elderly . 

Table 3. Size and automobile-ownership 
characteristics of families having elderly 
and handicapped members. 

Table 4. Nonwork trip frequency. 

Descriptor of Sample Survey 

Sex 
Female 
Male 

Speciai aid 
Needed 
Not needed' 

59 
41 

49 
51 

8 Includes those confined to house. 

Sample 

Nonhandi-
Descriptor capped 

Sex 
Female 89 
Male 39 

Age, years 
65 to 70 59 
71 to 75 35 
76 to 80 13 
>80 21 

Total 128 

Sai"1'lptc; 

Descriptor No. % 

Family size 
1 43 27 
2 59 37 
3 25 16 
4 17 11 
25 15 9 

Total 159 100 

56 
44 

51 
49 

Handicapped 

No. % 

11 11 
8 17 

5 8 
5 13 
5 28 
4 16 

19 147 

Alllall}' SMSA , ..... ....... , 
\.l_, IV/ 

No. % 

45 120 20 
67 504 29 
39 113 17 
33 852 15 
44 895 19 

230 484 100 

Total 

100 
47 

64 
40 
18 
25 

13 

Descriptor 

Age, years 
265 (eldel'!y) 
45 to 64 
17 to 44 
<17 

% of 
Total 
Sample 

68 
32 

44 
27 
12 
17 

100 

Descriptor 

Automobile 
ownership 

0 
1 

,3 

Total 

of Sample Survey 

49 
33 
18 
0 

54 
32 
11 

3 

Albany SMSA (1970) 

No. 

"' 
48 497 60 
32 389 40 

26 502 33 
22 058 27 
16 119 20 
16 207 20 

80 886 100 

% Handicapped 
in NHS Survey 
(1972) 

18.5 
16.2 

17.6 

Albany SMSA 
::iample \19701 

No. % No. % 

38 24 41 392 18 
80 50 123 389 54 
33 20 57 336 25 
9 8 377 4 

160 100 230 484 100 

Note: Th11: following mean V01luos war*3 obtained: for 1ho sample population-family size of elderly= 2.49, family size of handi-
capped • 2.75, a"d automobfle o\vnership = 1.08/lamily; for the Albany SMSA population-family s1ze • 3 .22 and auio· 
mobile ownership • 1. 14/ filrnilv 

Nonwork Trips 
Transit Use 

Average 
Category n Trip Rate S.D. n Average (%) S.D. 

H•mdlcapped 29 5.34 4.21 27 0.145 0.34 
Elderly (nonhandicapped) 

Urban 60 6.73 4.12 0.21 
Suburban 41 7.29 5.60 0.03 
Rural 14 7.00 5.07 0 

Total 115 6.96 4.79 110 0.13 0.32 
Total complete samples 144 6.63 137 0 .13 
Total sample 165 5.80 



The data for these models were analyzed separately 
by using stepwise linear regression methods and as­
suming the following general structures: 

where 

T 1 = trips per week (non work for person i), 
%Tr 1 =percentage of trips via transit for 

person i, 
X1, X2, ... , x. = independent variables, 
b1, b2, ... , b. =coefficients, and 

Table 5. Detailed travel data. 

Item For Work(%) For Nonwork (%} 

No. of one-way trips per week 
0 88 9 
1 to 3 1 18 
4 to 7 2 43 
8 to 11 8 17 
12 to 15 1 12 
:.16 0 1 

Mean 1.06 5.80 

Mode used 
Automobile driver 79 53 
Automobile passenger 11 32 
Bus 5 11 
Taxi, walk, or other 5 4 

Frequency of bus use, trips per week 
0 90 83 
1 to 3 5 6 
4 to 7 5 9 
8 to 11 0 2 

Table 7. Barriers to using bus service. 

Barrier 

Transportation 
Reading schedules 
Reading maps 
Getting information 

over telephone 
Uneven ground and slopes 
Street crossings and curbs 
Bad weather 
Fear of crime 
Distance to vehicle 
No shelter 
Walt too long 
Clim bing steps 
No handrails 
Crowding or rushing 
Handling change or tokens 
Cost 
Not enough time to sit down 
Getting to seat near back 
No space for wheelchair, 

crutches, or such 
Seats not right 
Lack of comfort 
Swaying and lurching 
Travel time too long 
Pull cord 
Pushing door open 

Place 
Uneven ground and slopes 
street crossings and curbs 
Climbing steps 
Opening doors 
Unfamiliar areas 
Cannot go very far or fast 
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c ,, c2, ... , c. = coefficients. 

Nonlinear (e.g., logit) models were not attempted, but 
are a possibility for later analysis. Table 8 shows the 
variables available for input to each model. 

The results of this analysis are shown in Table 9 and 
the statistical indexes of the values developed are shown in 
Table 10. Although numerous variables were available 

Table 6. Availability to elderly and handicapped of 
modes. 

Item No. % 

Availability of automobile 
Always 112 71 
Most of the time 15 10 
Occasionally 11 7 
Never 19 12 

Total 157 100 

Ability to use automobile 
Drive with no difficulty 65 55 
Drive with some difficulty 6 4 
Ride only, but no difficulty 46 30 
Ride only, with some difficulty 11 7 
Ride only and need help 5 3 

Total 153 100 

Availability of regular bus service 
Nearby and frequent 77 48 
Nearby but infrequent 25 16 
None nearby 50 31 
Don't know 7 4 

Total 159 100 

Availability of special bus service 
Yes 16 10 
No 62 39 
Don't know 61 51 

Total 159 100 

Handicapped Nonhandicapped El?erly 

Percentage Avg Percentage Avg 
Per Barrier Barrier Per Barrier Barrier 
Perceiving• Level' Indexc Perceiving• Level' Indexc 

18.5 l .4 25.9 1.9 1.0 1.9 
22.2 1.5 33.3 2.8 1.0 2.8 

18.5 1.4 25.9 4,7 1.0 4.7 
40.7 1.27 51. 7 8.5 1.11 9.4 
40.7 1.18 48.0 8.5 1.0 8. 5 
33.3 1.44 48.0 14.2 1.07 15.2 
14.8 1.25 18.5 3.8 1.0 3.8 
29.6 1.25 33.0 6.6 1.43 9.4 
7.4 1.50 11.1 3.8 1.25 47 

25.9 1.29 33.4 4.7 1.2 56 
59,3 1.31 77.7 17 .o 1.11 18.9 
40 .7 1.27 51.7 9.4 1.10 10.3 
29.4 1.25 36.8 4.7 1.0 4.7 
14.8 1.25 18.5 0.9 1.0 0.9 

7.4 1.00 7.4 0.9 1.0 0.9 
37.0 1.20 44.4 6.6 1.14 0.75 
14.8 1.25 18.5 1.9 1.0 0.19 

20.2 1.40 28.3 0 0 
18 .5 1.0 18.5 7.3 1.38 1.01 
18 .5 1.0 18.5 1.9 1.00 0.19 

7.4 1.0 7.4 4.5 1.67 0.75 
11.1 1.0 11.1 0.4 1.14 0.73 
19.2 1.0 19.2 1.9 1.0 0.19 
23.1 1.0 23.1 4.7 1.0 0.47 

26.9 1.29 34.7 6.6 1.0 0.66 
30,8 1.13 34.8 6.6 1.0 0.66 
50.0 1.38 69.0 14.8 1.13 1.67 
30.8 1.13 34.8 3.6 1.0 0.36 
11.5 1.00 11.5 1.8 1.0 0.18 
38.5 1.20 46.2 9,4 1.1 1.03 

a Percentage of respondents mentioning a given barrier. 
b Average severity level (1 =some problem and 2 =severe problem) for those perceiving this barrier, 
c Percentage perceiving times average level. 



26 

Table 8. Variables used 
in model building. Variable Form 

Table 9. Summary of 
travel-demand models. 

Table 10. Statistical 
indexes of models. 

Table 11. Elasticities. 

Variable 

Family size 
Physical-aid index 
Ability to use 

automobile 
Automobile 

unavailability 
Bus unavailability 
Bus-steps barrier 

Personal 
Age 
Sex 
Disability 

Aid 

Extent of disability 

Family size 
Automobiles owned 

by family 

8 l ncreasing severity, 

Variable 

Constant 
Family size 
Physical-aid index 
Ability to use automobile 
Automobile unavailability 
Bus unavailability 
Bus-steps bar r ier 

Variable 

Statistical index 
R' 
Standar d error of 

estimate 
F-ratio 
n 

Means 
Constant 
Family size 
Physical-aid index 

In years 
Mor F 
Type of ailment 

( t t.n H "r~ J p ) • 
Type of nld used 

(1 to 6 scale)• 
Degree of disabledness 

(1 to 5 scale)• 
1, 2, ... 

o, 1, 2, . . . 

Handicapped 

Trip Generation 

Value !-Statistic 

5.07 
1.42 14.54 

-1.45 7.86 

Handicapped 

Tr ip Generation 

Value t-Statis tic 

0 .45 

3.32 
10 .71 
29 

5.34 4.21 
2. 75 1.64 

Ability to use automobile 2.51 1.18 
Automobile unayailabillty 
Bus unavailability 
Bus - step barrier 

Handicapped 
Nonhandicapped 
Elderly 

Trip 
Genera­
tion 

0.72 

- 0.68 

Modal 
Split 

-1. 56 

1. 53 

Trip 
Genera ­
tion 

0.56 

Modal 
Split 

-0 .22 2.56 
-0.33 -1 .12 
-0.43 

Note: Calculated at the mean. 

for entry into the models, only a few did so. These 
were primarily automobile and bus unavailability ability 
to use an automobile, physical disability (reflected in 
the aid index), and fanlily s ize. With one exception 
(elderly modal choice ), bar:r ier s did not enter the 
models. The influence of automobile availability is 
clear: increasing l evels of automobile availability in­
crease total nonwork travel, but decrease the propensity 

Variable 

Trip 
Mod e 
Travel time 
Trip length 
Automobile availability 
Ability to use 

automobile 
Regular bus 

availability 
Special bus availability 

Barriers listed in 
Table 7 

Modal Split 

Value t-Statistic 

0 .15 

-0. 11 5.84 

+0 . 15 6.82 

Modal Split 

Value t-Statistic 

0,39 

0.28 
7.61 
27 

0.145 0.34 

2.07 1.20 

1.48 0.9~ 

Form 

Transit or other 
Minutes perceived 
Miles perceived 
1 to 4 •cale' 

1 to 6 scale' 

1 to 3 scale' 
1 to 3 scale' 

0 to 2 scale ' 

Nonhandicapped Elde r ly 

Trip Generation 

Value ! -statistic 

10 .11 
+0.56 4.83 

-0.97 5.53 
- 1.24 8.36 
-3.41 13.6 

Nonhandicapped Elderly 

Trip Generation 

Value !-Statistic 

0.21 

4.33 
7.44 
115 

6,96 4.79 
2.49 1. 62 

1.60 1.02 
1.87 0.97 
0.20 0.44 

Modal Split 

Value t-statistlc 

-0.06 

+0.2 1 106.17 
- 0.079 12.83 

Modal Split 

Value t - Statistic 

0.57 

0.21 
70 .26 
110 

0. 13 0.32 

1. 59 1.01 
1.84 0.95 

to use transit. For the elderly, increasing levels of 
transit availability influence both total travel and modal 
choice. The effect of family size is to increase total 
travel by the e lderly and handica pped by providing other 
household member s as chauffe urs and increasing family 
ties for the e lderly or handicapped indiv idua l. T he 
absence of barriei·s in these models s uggests t hat , gen­
erally, t1·avel patterns of the e lderly and handicapped 
depend primarily on the availability of u:ansportation 
service and not on the degree to which s ucb s ervice, 
when available, Is barr ier fr ee . T hese findings con ­
firm the conclusions of othe1· s tudies [e .g., the Institute 
for P ublic Administration Planning Handbook (4 ) and 
Knighton and Hartgen (5)], which emphasize service 
rather than vehicle in transit s ystem des ign. The high 
modal-split elasticities for ser vice availability (Table 
11) underscore these results . 

DISCUSSION AND SUMMARY 

This r epo1·t describes a recent study in the Albany-
Sc henectady-Troy SMSA of nonworktravel habits of the el­
derly and handicapped. The study was based on a sample of 
165 elderly and handicapped persons, who were telephoned 
at random. The significant results of the study are that 



1. The elderly and handicapped are not a homoge -
neous group, either separately or together: There are 
wide variations in travel behavior and mobility problems 
within each group; 

2. The elderly and handicapped average about 7.0 and 
5,3 one-way nonwork trips/week respectively; 

3. Automobile availability to the elderly and hand­
icapped is not signficantly less than that to the general 
population; 

4. Travel of these groups is primarily by automobile, 
either as a passenger or a driver with bus travel con­
stituting only about 13 percent of their non work trips; 

5. For the handicapped, travel mobility is primarily 
a function of personal disability and the ability of the 
individual to use an automobile: Bus service improve­
ments would appear to change this picture only slightly; 

6. Specific barriers on the public bus system do not ma­
terially affect either total non work travel or modal split, 
but the availability of bus transportation affects both; 

7. Bus systems that emphasize availability (cover­
age and frequency) as well as direct pickup appear to 
be the most promising for increasing the mobility of 
the elderly and handicapped; and 

8. The widely divergent needs of these individuals 
imply that very specialized solutions will probably be 
required to solve their transportation problems. 

A set of small-sample disaggregate models was de­
veloped to enable prediction of elderly and handicapped 
nonwork travel and modal choice. The models are gen­
erally sensitive to aut.omobile and bus availability, 
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family size, and the level of disability of the individual. 
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Policy-Contingent Travel Forecasting 
With Market Segmentation 
Frederick C. Dunbar, Charles River Associates, Cambridge, Massachusetts 

Market segmentation of travel data gives a data base that is easy to use 
and interpret . This paper develops methods for tabulating travel data 
so that disaggregate travel-demand models can be applied to market seg­
ments. These methods result in improved accuracy of travel forecasts 
because aggregation bias is reduced. The approach also allows nearly 
immediate computation of demand elasticities. These procedures can 
be applied to most urban travel-data files by using cross-tabulation soft­
ware. To demonstrate the methods and their accuracy, the work-trip 
modal split is simulated on Nationwide Personal Transportation Survey 
data by using a disaggregate logit model. Travel demand is forecast 
under a variety of transportation policies that involve automobile con­
trols and transit level-of-service improvements. 

An approach to the use of market segments with existing 
disaggregate demand models has been developed. The 
advantages of such an approach include accurate travel­
demand forecasts with minimal data and computational 
resources, In the present case, the effects of a policy 
scenario can be calculated by most programmable cal­
culators or within a few hours by hand. 

The use of market segments is not a new technique. 
Usually, market segments are defined by the character­
istics of the trip maker rather than by those of the trip. 
However, travel data are sometimes cross tabulated by 
distance and time as well as the socioeconomic char­
acteristics of the trip makers. This format has been 

useful in segmenting the travel market so that the im­
pact of policies on particular socioeconomic groups can 
be emphasized (1). Market segmentation has the addi­
tional advantage -of reducing aggregation error when 
such data are analyzed with disaggregate logit models. 

The application of multinomial logit models to market 
segments is actually an extension of the early develop­
ment of logit analysis. Models of binary choice were 
originally developed from the application of statistical 
tools to contingency tables (2). These models gave the 
probability that a response to a stimulus would occur 
within a specified range. For a simple univariate model, 
a table giving the proportions of the sample that will 
respond at each level of stimulus will have sufficient 
information for the estimation of the model. Similarly, 
given a model such as an estimated logit equation, the 
proportion of a sample that will respond to stimuli 
within given ranges can be predicted. 

This approach can be generalized to the common 
specification of disaggregate modal-split models. If 
only two modes are considered, then the response will 
be the proportion of trips by a given mode, for example, 
automobile. The approach becomes computationally 
more complex as the number of different types of stimuli 
(independent variables such as modal attributes) in-
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creases. Rather than a column of numbers representing 
the sample at each level of stimulus, a multidimensional 
array representing the number of travelers who have 
alternative levels of service among modes becomes 
necessary. 

DATA AND MODEL PREPARATION 

The data base used to test this approach is the journey­
to-work trip record from urban households in the 
Nationwide Personal Transportation Survey (NPTS) (3). 
Thus, the results of simulations with these data can be 
viP.wP.n llf'I rP.prP.sP.nting the effects of national policies. 
Alternatively, the data can be used to reflect the effects 
of ubiquitous transportation level-of-service changes 
in an average urban area. Independent of the interpreta­
tion of the results of policy scenarios, the use of market 
segments with NPTS data can be replicated with data 
available from the transportation planning activities of 
most urban areas. 

The original home-interview tape from the survey 
was cross tabulated into market segments suitable for 
application of the original Charles River Associates 
work-trip modal-split model (4). This was a three­
stage process: (a) the relevant variables are identified 
from the demand model, (b) the market segments are 
formed from the home-interview tape, and (c) the vari­
ables representing market segm8nts are constructed 
for application of the demand model. 

MODAL-SPLIT MODEL AND 
VARIABLES 

The general form of the logit modal-split model is as 
follows: 

P(n) = 1 / J 1 + t exp [-a(xa - Xb) - /ly] l (I) 

1/4 

P(i) = exp [-a(xa - xi) - /ly 1 / 11 + ~ exp [ -a(xa - Xj) - /ly 11 (2) 

Jn [P(a)/P(i)] = cx(xa - x;) + /ly (i f. a) (3) 

where 

P(a) = probability of automobile drive alone being 
the chosen mode; 

P(i) probability of alternative i being the chosen 
mode; 

x. vector of costs and times for making the 
trip by the automobile -drive -alone mode; 

x1 = vector of costs and times for making the 
trip by mode i; 

y = vector of socioeconomic variables and 
mode-specific constants; and 

a. and f' = estimated vectors of coefficients for the 
time, cost, and socioeconomic variables 
and for the mode-specific constants. 

For the purposes of exposition, Equation 3 will be 
used. The estimated model is given by Equation 4. 

ln[P(a)/P(b)] = -4.77 - 2.24(Ca -Cb) - 0.41 l(T, -Tb) 

- 0.114(Sa -Sb)+ 3.79Y 

where 

(4) 

P(b) probability of transit being the chosen mode; 

C = costs of making the round trip by automobile (a) 
or transit (b) ($ ); 

T in-vehicle and wait times for the round trip by 
automobile (a) or transit (b) (min); 

S access walking time for the round trip by auto­
mobile (a) or transit (b) (usually assumed to be 
zero for automobile trips) (min); and 

Y = automobiles per worker in the household. 

Because the model and its estimation are described 
in detail in other places, it will not be evaluated here 
except to note some of its t-statistics (4). The t­
statistics of the coefficients in Equation 4 ::1rP. e-ivPn 
below. 

Value t-Statistic Value t~Statistic 

4.77 3.88 0.114 2.69 
2.24 4.53 3.?9 4.06 
0.0411 1.96 

For the sample size used to estimate Equation 4, which 
was 115 observations, t-statistics of 1.96 and 2.33 in­
dicate that a parameter is significantly different from 
zero at the 2.5 and 1 percent levels of significance re­
spectively for a one-tailed test, which means that all of 
the estimated parameters are highly significant. Another 
test of the model is whether the predicted probability of 
the selected mode for individuals is greater than 0.5. 
Equation 4 performed well in this respect also. The model 
predicted the correct choice of mode for 107 of the 115 
observations that were used in its estimation, which is 
an accuracy level of 93 percent. 

Construction of NPTS Market Segments 

To construct the NPTS market segments, the work-trip 
records from the home-interview survey of urban areas 
were cross tabulated across three variables: trip dis­
tance, access distance to transit, and automobile avail­
ability. In the data base, there were 1774 such trips 
recorded. Of these, 221 were eliminated on error 
checks, usually because there were insufficient data on 
the record. Another 101 trips were eliminated because 
they involved more than one mode of travel. The re­
maining 1452 trip records form the basis of the market 
segments used for the analysis, 

The market-segment categories are described below . 

1. Distance -trip distance was divided into two 
categories with the following ranges: (a) short trips 
are less than 14.6 km (9.1 mile) and (b) long trips are 
greater than or equal to 14.6 km (9.1 mile). Several 
different methods could have been used for the deter­
mination of the ranges for the short and long-trip 
categorieso For example, the dividing line could have 
been the median trip distance or that distance for which 
the total vehicle kilometers of travel (VKT) in each 
category are equal. In the ranges actually used, the 
mean trip distance [14.6 km (9.1 mile) on a round trip 
basis] was used as the dividing line; this number is 
between those that result from using the other two rules. 
The average distance characteristics for each mode 
category-where the mode categories are defined as (a) 
drive alone is automobile, truck, or motor-cycle; (b) 
transit is bus, streetcar, commuter train, subway, or 
elevated; and (c) car pool is automobile with other 
persons-are given below (1 km= 0.62 mile). 



Distance (km) Time (min) 

Short Long Short Long 
Mode Trips Trips Trips Trips 

Automobile drive-alone 13.89 53.52 29.04 64.53 
Transit 14.05 59.10 50.95 109.83 
Car pool 12.81 58.73 31.33 73.85 

2. Transit accessibility-the transit accessibility 
categories were determined by the distance from home 
to the nearest public transportation that could be used 
for the journey to work. The data were originally coded 
in blocks and were later transormed to kilometers [one 
block equals approximately 0.13 km (0.083 mile)]. These 
categories and their ranges in distance are as follows: 
(a) high transit accessibility is zero to two blocks, (b) 
middle transit accessibility is three to six blocks, and 
(c) low transit accessibility is more than six blocks. 
These ranges, which were selected after an examina­
tion of more refined breakdowns, showed the groupings 
that would tend most to equalize the number of trips 
among categories. The trip characteristics for these 
categories are summarized below (1 km = 0.62 mile). 

Transit Access 

High 
Middle 
Low 

Distance (km) 

0.109 
0.574 
2.132 

Trips(%) 

37.7 
16.3 
46.1 

3. Automobile availability-household automobile 
availability was divided into the following two categories: 
(a) automobiles per worker are less than or equal to 
0.5 and (b) automobiles per worker are greater than 0.5. 

These categories arise naturally from the bimodal dis -
tribution of the data; most work trip makers have either 
0 or 1 automobile/ worker in the household. These 
characteristics are summarized below. 

Automobile Automobiles 
Availability per Worker Trips(%) 

<0.5 0.020 89.7 
>0.5 1.753 10.3 

Table 1 gives the modal splits, number of trips, and 
VKT for each of the twelve market segments. The 
modal splits and total trips were computed directly 
from the data, but some assumptions were necessary 
to compute the VKT. That part of the VKT that can 
be attributed to the automobile-drive-alone mode is 
the sum of the round-trip distances for each trip made 
by this mode. However, the information in the data 
base does not allow a direct compuation of the VKT in­
curred by car pools because the distribution of car-pool 
sizes, i.e., the number of passengers per vehicle, is 
not known and therefore the number of vehicles used 
for this mode is not known. To derive an estimate of 
the VKT that can be attributed to car pools, a distri­
bution of one, two, and three-passenger car pools was 
created, and each person in the car pool was credited 
with an equal share of the car-pool VKT. The distri­
bution of car-pool sizes is derived from the predic­
tions of the modal-split model. This distribution varies 
from cell to cell, but its aggregate ratio is 0.78:0.17: 
0.04 for one-passenger: two-passenger: three-passenger 
car pools respectively. The NPTS distribution, tabulated 
from a different part of the survey, is that, for all travel, the 
ratio of car-pool sizes is 0. 72 :0.17:0.11 for one-passenger: 
two-passenger: three-passenger carpools respectively. 
Thus, the two independent estimates of passengers per 
automobile are in reasonably close agreement. 
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There is a large amount of flexibility in deciding the 
number of variables to be cross tabulated, the number 
of categories to be used, and the ranges to be applied. 
The decisions made about each of these issues reflected 
a desire to minimize the number of market-segment 
cells and, at the same time, capture the essential in­
formation of the modal-split model in data points having 
small associated variances. New variables and more 
refined breakdowns of the variables already chosen in­
crease the number of cells multiplicatively rather than 
additively; for example, if in addition to the variables 
already chosen, a cross tabulation that used two cate­
gories of trip time was performed, the number of 
market-segment cells would increase from 12 to 24. 
Unless broad ranges of categories are created and 
relatively few variables are selected, the data base can 
easily become overly cumbersome, which loses the 
advantage of using market segments. 

Although the choices of ranges and variables are 
basically rather arbitrary, there were some rules and 
reasons behind the decisions actually made. Some of 
the more important of these (in addition to those already 
presented) are listed below. 

1. The variables were selected to conform to the 
independent variables in the logit model. Both access 
time to transit and automobiles per worker are direct 
inputs to the model, and the model treats line-haul costs 
and times as functions of trip distance, which makes 
this variable an obvious choice on which to make a 
cross tabulation. 

2. Although trip-time data are available and are an 
input of the model, trip time is so closely proportional 
to trip distance that it was deemed unnecessary to create 
an extra variable for cross tabulating by time or trip. 

3. Those variables that contribute most to the aggre­
gation problem require more refined categories. Earlier 
research has indicated that automobiles per worker and 
access to transit cause more variation in logit-model 
log-odds functions than do other variables (5). Sub­
division into eighteen market segments did not sub­
stantially increase the accuracy of model predictions. 

Thus, the market segments created are dictated by 
the requirements of the model and the empirical testing 
of its performance. In this sense, the market segments 
presented here are intended to suggest things that can 
be done for the application of nonlinear disaggregate 
models. Because models and data bases vary, the cross 
tabulations performed by others for policy-evaluation 
purposes will also vary. In particular, the classic 
purpose of market segmentation is to emphasize socio­
economic groupings rather than trip characteristics. 
The methodology for market segmentation in such a case 
would be quite different. 

Construction of Mode-Specific 
Variables 

The independent variables required for application of 
the modal-split model must be constructed from the 
variables used for creating the market-segments data. 
The variables of the model, in the two-mode case of 
automobile drive alone and transit, are given in Equa­
tion 4. The variables available from the data have been 
given above. In addition to the two modes represented 
in Equation 4, it is also useful to construct data that 
represent automobile with passenger modes. 

The formulas for constructing the mode-specific 
variables are given below: 

1. Automobile drive alone: c. = 0.035 x automobile­
drive-alone distance, T. = automobile-drive-alone 
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time, and s. = O; 
2. Transit: c. = 0.4928, T. =transit time, and Sb = 

2 x 19 x distance to transit. 
3. Car pool with k passengers: Cck = C.[1 + (k/ 3 )]/ 

(k + 1), T c1< = [(k/ 3) x automobile-drive-alone distance / 
(car-pool distance for short trips+ car-pool time for 
short distance)]+ automobile-drive-alone distance/ 
(car-pool distance + car-pool time) + (20 x k), and 
Sek = O; 

4. Driver serve passenger : Cd = 2 x C., T d = 3 x 
T., and Sd = O; and 

5. Automobiles per worker : y = 0 if <0.5 auto­
mobiles/worker or 1 if >0.5 automobiles / worker. 

Most of these equations are self-explanatory, but the 
following assumptions should be noted: 

1. The cost for an automobile trip is $0.022/ km 
/~fl noc / __ n_\ f-innn _._..._'""" In \ , 
\'t'\hVUt.J/ HU.Lt::/ l...1.\1V\1 Uc:t.l.d. \V)J• 

2. Transit fare is the 1969 national average of 
$0.492 8 for a round trip (7). 

3. Walking speed to transit is 12 min/ km (19 min/ 
mile). 

4. For each distance category, the average 
automobile-drive-alone trip distance increases by 
one-third for picking up and dropping off each poten­
tial car-pool passe nger (B). 

5. Car-pool passenger s make arrangements to 
share costs equally. 

6. Car-pool line-haul speeds for picking up and 
dropping off passengers are equal to the speed for car­
pool trips in the short-distance category. 

7. The schedule delay associated with each poten­
tial car-pool passenger is 20 min. 

8. The driver-serve-passenger mode involves a 
household member who drives the trip maker to work 
and returns home for the first leg of the round trip and 
then drives from home to the workplace and retrirns 
with the passenger for the second leg. 

9. The automobile-per-worker variable was set to 
zero or one, and the model was calibrated on the 
automobile-per-worker coefficient to obtain a value of 
4.60. 

Although most of the above assumptions represent 
straightforward interpretations of the data; the heuristic 
nature of the construction of the automobile-with­
passenger variables deserves further comment. In the 
absence of adequate level-of-service data on the avail­
ability of car-pool alternatives to non-car-pool, work 
trip makers, some judgments about this mode are neces­
sary. When the problem of designing an optimal house­
hold survey to collect car-pool data is considered, it is 
easy to see why such data do not exist. Meanwhile, the 
modeling of shared rides will continue to be one of the 
weakest parts of the total travel-demand system. The 
major justifications for using the approach described 
here are that the assumptions are consistent with in­
tuition about car pools and that the model predicts car­
pool modal split reasonably well. 

MODEL APPLICATION AND 
PERFORMANCE 

The use of the model to predict modal splits and VKT 
has the following steps: 

1. Each of the mode-specific variables for each of 
the 12 market segments is constructed by using the 
formulas and data given above. 

2. For each market segement, a log-odds function 
for the automobile-drive-alone mode versus each of the 

other modes is calculated by using Equation 4, the vari­
ables constructed in the previous step, and 4.60 sub­
stituted for the coefficient on y. 

3. For each market segment, the probability of an in­
dividual choosing a given mode , other than automobile drive 
alone, is computed by using Equation 2. The automobile­
drive-alone probability is computed from Equation 1. 

4. The modal splits for each market segment are 
computed as follows: (a) automobile-drive-alone modal 
split = automobile-drive -alone moda l -choice pr obability; 
(b) transit modal s plit = transit moda l -choice probability; 
and (c) car-pool modal split= sum of one-passenger, 
two-passenger, and three-passenger car-pool and 
driver -serve -passenger modal-choice probabilities. 

5. The VKT for each market segment is the sum of 
the following VKT calculations for each mode : (a) 
automobile-drive-alone VKT = automobile-drive-alone 
modal-choice probability x automobile-drive-alone dis­
tance >< i.ui.ai irips, (b) k-passenger car-pool v KT = 
k-pas senger car-pool modal-choice pr obability x [1 + 
(1/ 3)) x automobile-dr ive-alone dis tance x total trips, 
a nd (c ) driver-serve-passenger VKT = driver - serve­
passenger modal-choice probability x 2 x automobile­
drive-alone distance x total trips. 

6. The aggregate modal split is computed as the 
weighted average of the predicted modal splits for each 
market segment. 

7. The aggregate VKT is computed as the sum of 
the VKT across the market segments. With these 
procedures, the model was used to predict the modal 
splits and VKT for each of the cells in the NPTS market­
segment data base. The actual values and the aggregate 
predictions are given below (1 km= 0.62 mile). 

Modal Split VKT (without 
Automobile Car driver serve 

Value Drive Alone Transit Pool passenger) VKT 

Actual 0.637 0.160 0.202 31 849 
Predicted 0.635 0.159 0.206 31 335 32 040 

The predicted modal splits conform closely to the actual 
modal splits. The first VKT (that without driver-serve 
passenger values) corresponds to the VKT that can be 
calculated from the data and does not include the VKT 
that are attributable to one-half of the drivcr =se rve ­
passenger trips (that half which is traveled by the driver 
without a passenger is not captured by the NPTS data). 
The second VKT includes all of the VKT associated 
with driver-serve-passenger trips as well as with other 
automobile-oriented trips. When the first VKT is used 
as a basis for comparing the predicted to the actual, the 
model predicts the VKT within 1.6 percent. For most 
applications of the model, this error is well within the 
range of predicted effects and within the errors that 
might have other causes, such as data errors or pa­
rameter estimation errors. In general, the model per­
forms well in replicating the aggregate figures fl'om the 
data. 

The modal split and VKT estimate for each market 
segment are given in Table 1. A comparison of the 
actual and predicted values indicates potential biases 
and the areas of greatest error. As expected, the error 
associated with any given market segment is greater 
than the aggregate error. The highest errors are those 
associated with the market segments that have the 
fewest total trips (basically, the six market s egments 
in .wh.icb automobiles/worker <0.5). Ther e appears to 
be some tendency for the model to overpredict driver­
serve-passenger trips for short-distance trips and 
under predict car-pool trips for long-distance trips. In 
general, the errors associated with individual market 



segments tend to cancel when aggregated. 

FORECASTING EFFECTS OF 
TRANSPORTATION 
ALTERNATIVES 

The procedures developed above were applied to a 
variety of transportation policy scenarios to forecast 
the effects of these policies on trip-making behavior. 
The approach to investigating a particular policy is 
relatively straightforward: The policy is examined 
from the question of how it would affect the independent 
variables in the logit model. This effect is quantified 
by changing the values of the independent variables from 
those that they were in the base case. With the new 
values of the variables, the logit model is applied to the 
NPTS market-segments data and modal splits, and the 
VKT are forecast. The predicted modal splits and the 
VKT with the policy effects are then compared to the 
base-case predictions to forecast the impact of the policy. 

Gasoline Tax 

The model was used to predict the effects of a 100 per­
cent gasoline tax [ in addition to the existing gasoline 
taxes (which are assumed to be 7 percent to the state and 
4 percent to the federal government)]. One of the pur­
poses of this exercise is to compute the implied price 
elasticity of gasoline. This provides a test of the ap­
proach because the result can be compared to other, in­
dependent gasoline-price-elasticity estimates. 

The effect of a 100 percent gasoline tax will be to 
increase automobile operating costs per kilometer by 
50 percent. The pump price of gasoline is increased 
by 69 percent when a 100 percent tax rate is applied to 
the pretax cost of gasoline. 

The forecasts of aggregate modal split and VKT 
under the assumption of a 100 percent gasoline tax are 
given in Table 2. The elasticities of the VKT are -0 .256, 
-0.184, and -0.128 with respect to automobile operating 
costs, the pump price of gasoline [which is within the 
range of short-run elasticities estimated by econometric 
studies of gasoline demand (9)], and the pretax cost of 
gasoline respectively. The predicted 12.8 percent 
decrease in VKT is predicted to occur as a one-third 
increase in transit trips, an 11.2 percent decrease in 
automobile-drive-alone trips, and an 8.7 percent in­
crease in car-pool trips. 

Because of space limitations, the effects by market 
segment, which have been discussed by Charles River 
Associates (8), are not given here . The gasoline tax 
has its greatest impact on long t1·1ps with good to fair 
transit access. This is to be expected because, on a 
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per-trip basis, the tax will have its highest dollar im­
pact on long trips. The result is that the model predicts 
a higher incentive for mode switching on long trips for 
this scenario. 

Transit Speed 

In this scenario, it is assumed that a combination of 
shorter headways and faster transit will cause a uniform 
10 percent decrease in transit line-haul-plus-wait time 
per trip. Access time to transit is assumed to be un­
changed. This scenario was modeled by multiplying the 
transit line-haul-plus-wait time by and then applying the 
logit model to the NPTS market segments. 

The predicted aggregate effects of this policy are 
given in Table 2. The predicted decrease in VKT was 
3.22 percent, and the predicted increase in transit trips 
was 12.6 percent. One of the interesting results of this 
exercise is the relatively high elasticity of transit modal 
split with respect to transit speed (1.26). The biggest 
impacts occur on relatively long trips with good to 
medium transit access. As with the case of a gasoline 
tax, the effect of a uniform percentage decrease in 
transit time will have its largest absolute impact on long 
trips. Consequently, those trip makers who have longer 
trips have the most incentive to switch modes. The 10 
percent decrease in transit time implies a saving of 
about 10 min for long trips, but only about 5 min for 
short trips. Also, as would be expected, the transit­
speed policy has little predicted effect on trip makers 
who have poor access to public transit. 

Transit Access: 

Uniform Improvement 

Because the weights that trip makers place on access 
time to transit are higher than the weights that they 
place on line-haul time, it can be assumed that the effect 
of decreasing access time would be greater than would be 
the effect of decreasing line-haul-plus-wait time. The 
results of various transit access scenarios indicate 
that this hypothesis deserves more consideration. 

The first of a series of scenarios for the improve­
ment of transit access involved decreasing transit­
access time by a uniform 10 percent for all market 
segments. In the base-case projections, the access 
times to transit for high, middle, and low-access 
categories were 2.58, 14.25, and 50.35 min respectively. 
Thus, only short transit trips with poor access would 
have time savings for equal percentage declines in 
access time that were equivalent to those for equal per­
centage declines in line-haul-plus-wait time. In all 

Table 1. Actual and predicted modal splits and VKT for NPTS market segments. 

Observed Values Predicted Values 

Market Segment Modal Split Modal Split VKT 

Automobiles Trip Transit Automobile Car Total Automobile Car Without Driver With Driver 
per Worker Length Access Drive Alone Transit Pool Trips VKT Drive Alone Transit Pool Serve Passenger Serve Passenger 

>0.5 Short High 0.603 0.197 0.200 315 3 002 0.598 0.140 0.261 3 041 3 286 
>0.5 Short Middle 0.589 0.113 0.298 124 1 228 0.667 0.041 0.292 1 335 1 442 
>0.5 Short Low 0.780 0.006 0.214 355 4 285 0.695 0.001 0.303 3 984 4 304 
>0.5 Long High 0.644 0.178 0.178 135 5 337 0.559 0.345 0.096 4 404 4 407 
>0.5 Long Middle 0.711 0.132 0.158 76 3 231 0. 749 0.122 0.129 3 323 3 324 
>0.5 Long Low 0.798 0.027 0.175 297 14 158 0.851 0.002 0.147 14 758 14 767 
<0 .5 Short High 0.014 0.836 0.151 73 77 0.040 0.942 0.018 48 51 
<0.5 Short Middle 0.083 0.917 0.000 24 27 0.132 0.811 0.058 51 55 
<0.5 Short Low 0.000 0.083 0.917 12 63 0.650 0.056 0 .284 126 137 
<0.5 Long High 0.042 o. 792 0.167 24 167 0.016 0.981 0.003 23 23 
<0.5 Long Middle 0.083 0.833 0.083 12 82 0.057 0.933 0.010 40 40 
<0.5 Long Low 0.400 0.000 0.600 5 191 0.696 0.184 0.120 203 203 

Note: 1 km"' 0,62 mile, 
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Table 2. Aggregate effects of travel-forecasting scenarios. 

Modal Split 

Automobile 
Scenario Drive Alone Transit Car Pool 

Base case 0.635 0.159 0,206 
100 % gasoline tax 0.564 0.212 0.224 
10 1' transit-speed in-

crease 0.619 0.179 0.209 
101" transit-access-time 

decrease 0.631 0.163 0.205 
Low transit-access im-

provement 0.600 0.202 0.198 
Low and middle transit-

access improvement O .oR~ n """ n . 1q3 

Note: 1km,..062 mile, 

VKT 

32 040 
27 940 

31 010 

31 780 

29 795 

28 735 

other cases, the time savings from a 10 percent reduc­
tion in line-haul-olus-wait time would be much e:reater 
than the time savings from a 10 percent reduction in 
access time. This helps to explain some of the results 
given below. 

The aggregate effects of this policy are given in 
Table 2. The decrease in the VKT caused by this policy 
is predicted to be 0 ,7 percent, and the predicted in­
crease in transit trips is 2.5 percent. Both the VKT 
and the transit-ridership elasticities are much lower 
for access times than for line-haul-plus-wait times. 

The market segments having the greatest impact are 
those where access to transit is in the middle category; 
those with good transit access are relatively insensitive 
to further improvements, and those with poor access 
would not find a 10 percent improvement sufficient in­
ducement to switch modes. 

Low-Transit-Access Improvement 

The results of the previous section indicate that making 
transit available to everyone would induce significant 
increases in transit ridership. Therefore, this scenario 
assigned to the low-transit-access market segment the 
same access time that the middle-access group cur­
rently has. All other variables were unchanged although 
it is unlikely that any real transit service design that 
provided such a large change would not also affect ac­
cessibility in other market segments and line-haul and 
wait times in au market segments. 

The aggregate results are gh1en in Table 2. The 
change in average access for the whole population is 
62.9 percent, and the decrease access time for the 
market segment that previously had low transit avail­
ability was 71. 7 percent. This change caused a de­
crease in VKT of only 7 percent for an elasticity of 
0.111 and a transit-patronage increase of 27 percent 
for an elasticity of -0,429. These elasticities are higher 
than those in the previous access-time scenario. For 
households in which the number of automobiles per 
worker is greater than 0.5, the predicted change in 
VKT is 10.2 percent. The effect of the policy on house­
holds with low automobile-ownership rates is quite 
dramatic, but because these contribute relatively little 
to the VKT, they have a small impact on the aggregate 
effects. 

Low and Middle-Transit-Access 
Improvements 

To evaluate the effect of improving transit access for 
those in the middle-transit-access market segment the 
low access category is again assigned the same access 
that the middle-access group currently has and the middle­
access group is assigned the access time that the high­
access group currently has. 

The aggregate results of this policy are given in 
Table 2. The percentage change in VKT is 10.3, and 
the implied elasticities are somewhat higher for both 
VKT and transit ridership. The conclusion that may be 
drawn from this series of scenarios is that improve­
ments in transit access arc more effective when moderate 
service is made better than when poor service is made 
only adequate. 

CONCLUSION 

The preceding results show that the use of market seg­
ments with behavioral demand modclo ia promising 
for quick policy contingent forecasting. The examples 
presented are somewhat simplistic and indicate that a 
module that translates complex policy issues and 
plannin.g alternatives into quantifiable demand-model 
inputs is needed. This module could be a manual activity 
that uses existing planning resources to determine the 
effects of a policy or system on the level of service for 
the relevant market segments. Moreover, this approach 
would allow quick parametric representations of level­
of-service changes that are consistent with Urban Mass 
Transportation Administration guidelines for alterna­
tives analysis. Other areas of future research include 
applying the approach to nonwork trips and linking the 
demand effects with cost models to determine the cost­
effectiveness of and trade-offs among policies. 
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This paper discusses the effects of using small-sample origin-destination 
survey data as the basis for urban transportation planning models. The 
study was based primarily on home-interview survey data collected in 
the 1969 San Antonio-Bexar County Urban Transportation Study. The 
analysis demonstrates the ability of small sample origin-destination data 
to produce travel estimates that are in close agreoment with model results 
obtained by using traditional large-sample survey data. The survey data 
for 12 477 dwelling units (i.e., a 5 percent sample) were used as a data 
base from which repeated geographically stratified random samples of 
6400, 3200, 1600, 800, 400, and 200 observations were drawn. Two 
samples for each sample size, representing the 10th and 90th percentiles 
of distributions of sample estimates of total automobile ·driver travel, 
were selected for evaluation. This procedure provided a 0.8 probability 
that samples of similnr size will produce travel estimates as good as or 
better than those obtained here. The selected samples were used to de­
velop inputs to trip-generation, trip-distribution (gravity), and traffic­
assignment models. Samples of 400 or more dwelling units were found 
to produce acceptable results. 

Traditional urban transportation studies invest a signif­
icant amount of time and effort in data collection. The 
home-interview survey generally accounts for a major 
portion of these costs, and reductions in the sampling 
rates used in these surveys will obviously result in 
significant cost savings. This paper reports an in­
vestigation to determine the reduction that could be made 
in the size of dwelling-unit samples without producing 
significantly different travel predictions after applying 
forecasting techniques. Data from the San Antonio­
Bexar County, Texas, urban area transportation study 
were used as the data base. 

PREVIOUS RESEARCH 

There has been a limited amount of research directed 
toward the determination of minimum sample-size re­
quirements, and much of this has been directed toward 
sample-size requirements for the calibration of trip­
generation and distribution models. Little research 
has been devoted to determining the smallest acceptable 
sample for the entire transportation process; i.e., from 
trip generation through traffic assignment. 

Sosslau and Brokke (1) used one-half, one-third, and 
one-tenth subsamples from the l-in-15 dwelling-unit 
sample collected in the 1957 Phoenix origin-destination 
(0-D) survey to estimate the root mean square error 
(RMSE) as a function of sampling rate. The results were 
extrapolated for a range of sampling rates. 

Heanue, Hamner, and Hall (2) tested cluster sampling 
as a way to reduce sample size in a 1960 study of the 
Pittsburgh urban area. They concluded that cluster 
sampling was unsatisfactory because of the bias intro­
duced by the location of the clusters. 

Parsonson and Cribbins (3) used systematic sub­
samples from the Raleigh, North Carolina, Urban 
Transportation Study to compare several approaches to 
trip generation. They observed differences in the re-

sponses of different trip-generation models to decreasing 
sample size and concluded that models based on small 
samples estimate the full origin-destination (O-D) data 
better than do models based on 0-D data expanded from 
the small samples. 

By using 100 percent survey data from three zones 
in San Antonio, Stover, Benson, and Ringer (4) found 
that large variances of estimates can be expected when 
traditional sampling rates are used to estimate both 
trips per dwelling unit and total trip ends for a zone. 
This research is significant because the sample esti­
mates could be compared to known population values. 
They concluded that regression models or cross-
c lassification rates provide better estimates of the 
total number of trip ends by zone than do expanded 0-D 
survey data. 

Further analysis of the San Antonio data by Benson, 
Pearson, and Stover (5) showed that, with the traditional 
sampling rates, a large majority of the interchange 
volumes of 1 to 10 trips were undetected while those 
detected were substantially overestimated. Sampling 
rates of more than 25 percent would generally be re­
quired to estimate nonzero interchange volumes of fewer 
than 50 trips within ±100 percent at 95 percent confidence. 

In an investigation of the sensitivity of traffic assign­
ment, Stover, Benson, and Buechler (6) showed the power 
of the assignment process to mask ma)or inaccuracies in 
estimates of zonal trip ends and zonal interchange 
volumes. They concluded that reasonably accurate as­
signment results may be anticipated if the preceding 
modeling phases produce reliable estimates of the total 
trips and trip-length frequencies. Only reasonable (i.e., 
relatively coarse) estimates of the geographic distribu­
tion of trip ends are needed. They also found (7) that 
the trip-length frequency distribution is functionally 
related to the mean trip length and the maximum inter­
zonal separation and developed a procedure for estimat­
ing the trip-length frequency distribution. 

METHOD OF STUDY 

This investigation used data for automobile-driver trips 
from the San Antonio-Bexar County Urban Transporta­
tion Study (SABCUTS). The study covered an area of 
3230 km2 (1247 miles2

), which was divided into 778 in­
ternal zones with 24 external stations. The population 
of the area at the time (1969) was 825 800 and com­
prised 256 640 households. Samples of 200, 401, 803, 
1606, 3212, and 6425 observations (for convenience, 
these sample sizes are rounded to the nearest hundred 
when referred to in the text) were drawn from the 12 477 
home interviews completed and collected in the nominal 
5 percent home-interview survey. These samples 
represent sampling rates ranging from 0.08 to 2.56 
percent. 

The complete processing and evaluation of even a 
single sample is a costly and time-consuming process; 
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the evaluation of a large number of samples is prohib­
itively expensive. A study design was required that 
would make possible valid conclusions from the re­
sults of evaluating a limited number of samples for a 
given sample size. Previous research (6) has shown 
that the total number of trips and the trip-length fre­
quency distribution are the dominant variables in terms 
of the results obtained from the traffic -assignment 
procedure. The product of the two variables -total 
number of trips times mean trip length-is an estimate 
of total travel. This estimate of total travel (in 
vehicle-minutes) was selected as the indicator of the 
traffic-assignment results that a given sample should 
produce when used as an input to urban transportation 
planning models. 

The procedures for sampling from the full data set 
were designed so that the various samples selected would 
rP.flP.~t, tn thP. P.xtP.nt possihlP.; the. ohse.rv::itions th!!.t 
would have resulted if the various small samples had 
been selected by using traditional sampling procedures. 
Therefore, the number of observations to be made at 
each sampling rate was .calculated by piultiplying the 
desired nominal sampling rate (e.g., /ax 5 percent ~ 
0.625 percent) times the number of households (256 640) 
in the study area. The specific households in each 
sample were then selected in a manner similar to the 
traditional sampling procedures used in home-interview 
surveys. This ensured that the geographical distribu­
tion of the observations selected would be proportional 
to the distribution of households in the study area. 

One thousand samples were drawn at each sample 
size to assess the sampling distributions of mean trip 
length, total trips, and total travel for automobile­
driver trips. A sample selected near the mean of the 
distribution of the total-travel estimates would be ex­
pected to produce good assignment results because it 
would provide a good estimate of total travel. The 
selection of a sample at random, however, would not 
allow analysis of the results that might be expected 
from some other sample of the same size. Therefore, 
at each sample size, the samples representing the 
10th and 90th percentiles of the expanded estimates of 
total automobile-driver travel were selected for use in 
the modeling procedures. These two samples can 
provide a basis for estimating the probability that other 
samples of the same size will perform as well as or 
better than the samples evaluated. If both samples 
produce acceptable travel estimates, other randomly 
selected samples of the same size will have an approxi­
mately 0.8 probability of producing travel estimates as 
good as or better than the samples evaluated. If either 
sample for a given sample size fails to produce accept­
able travel estimates, the sampling level should be con­
sidered unsatisfactory. 

The full set of survey data and the sample sets of data 
were processed independently to develop inputs for trip­
generation, trip-distribution, and traffic-assignment 
models. The trip-generation analysis used disaggregated 
trip-generation rates. Rates were developed for three 
trip purposes (home-based work, home-based nonwork, 
and non-home-based) by using income and automobile 
ownership asindependentvariables. A minimum of 25 
observations in any cell were used as the criterion for com­
bining ce Us before the calculation of trip-generation rates. 

Because the estimates of truck and taxi travel, 
external-local travel, and external-through travel are 
based on surveys other than the home-interview survey, 
the trip generation and trip distribution for these trip 
purposes were performed once, and the resulting trip 
tables were merged with the gravity-model trip tables 
developed for each set of home-interview data. Gravity­
model trip distributions and all-or-nothing assignments 

were performed by using the Federal Highway Adminis­
tration battery of programs. 

The relative zonal attractions used were those de­
veloped in the urban transportation study. The implicit 
assumption is that small-sample home-interview data 
aL'e uut ui:;etl fur ei:;limating· :wnal atll'actions. Instead, 
attraction rates are developed by using special surveys 
or secondary data sources. 

Data from the SABCUTS study provided a dwelling­
unit count for each analysis zone. However, because 
very small samples are not an adequate basis for esti­
mating zonal distributions of dwelling units by income 
or by automobile-ownership level, tract data from the 
1970 census of population and housing were used to esti­
mate these. These population estimates were used when 
applying the trip-generation rates to the calculation of 
the total zonal trips by purpose for the fuli data set and 
all sample sets. 

When samples of a given size give satisfactory re­
sults, it is reasonable to assume that larger samples 
will also give satisfactory results, and unsatisfactory 
results indicate that smaller samples will also be un­
satisfactory. Samples of 1600 observations (approxi­
mately one-eighth of the full data set) were evaluated first 
to determine whether further processing should use larger 
or smaller samples. Because the results using samples 
consisting of 1600 observations were satisfactory, fur­
ther processing of larger samples was discontinued. 

ANALYSIS 

Analyses using 100 percent survey data (4) have shown 
that much of the difference between observed and esti­
mated trip ends is due to sampling error in the number 
of observed trips. This indicates that expanded 0-D 
data will be of limited value in evaluating results ob­
tained from small samples. Therefore, the results ob­
tained from models generated or calibrated by using the 
full set of survey data for trip generation, distribution, 
and assignment were used as the standard of comparison 
for evaluating sample results. Each sample was 
evaluated as to its representation of the full data set and 
its performance in trip-generation, trip-distribution, 
and traffic-assignment models. Traffic-assignment re­
sults were also compared with actual traffic counts. 

Samples 

As expected, the variation in the distribution of esti­
mates of total travel, total trips, and mean trip length 
increased as the sample size decreased. The 80 percent 
probability limits for sample estimates of total automobile -
driver travel, total trips, and mean trip length are 
given below. 

Percentage of Full-Data Values 

Number of Total Total Mean Trip 
Observations Travel Trips Length 

6400 ±1 ±1 ±1 
3200 ±2 ±2 ±1 
1600 ±3 ±3 ±2 
800 ±4 ±4 ±2 
400 ±6 ±6 ±5 
200 ±8 ±9 ±8 

Thus, for each sample size, there is a 0.8 probability 
that a randomly selected sample will estimate the pa­
rameter within the indicated range of the population value 
as estimated from a sample of 12 477 observations. 
(ranges were rounded to the nearest integer value). 

For example, a sample consisting of 800 dwelling­
unit observations will estimate the total automobile-
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Table 1. Sampling means 
Total Tra ve 1 Mean Trip Length and standard deviations by (vehicle·min) Standard Total Trips Standard (vehicle·rnin) standard sample size. Deviation Deviation Deviation 

Sample Size Amount Percent .. (~of mean) Amount Percent .. (i of mean) Amount Percent• (%of mean) 

12 477 13 922 025 
6 400 13 775 250 
3 200 13 780 320 
1 600 13 759 140 

800 13 822 820 
400 13 813 390 

a eased on amount for full·data set, 

Figure 1. Comparison of origin-destination trip-length 
frequency distributions. 
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98.95 
98.98 
98.83 
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99.22 

driver trips within 4 percent of the population value at 
the 80 percent probability level. These data indicate 
that the dispersion of extreme values does not become 
significant until the sample consists of 400 or fewer 

1.21 
1.69 
2.31 
3.31 
4.65 

total dwelling-unit observations. As shown by the data 
in Table 1, the means of the sampling distributions for 
each of the three estimates (total travel, total t r ips, 
and mean trip length) for all of the sample sizes in­
vestigated were within 2 percent of the full data values. 
For samples consisting of 6400 observations, the 
standard deviations for the estimates of total travel, 
total trips, and mean trip length were about 1.2 percent 
of the mean values . Beyond 800 observations, further 
decreases in sample size resulted in significantly 
greater increases in the standard deviation expressed 
as a percentage of the mean. The results indicate that 
a relatively small sample has a high probability of 
yielding good estimates of study-area travel parameters. 

The trip-length frequency distributions for non-home­
based trips, shown as examples in Figure 1, compare 
two samples of 3200 observations and two samples of 
400 observations with the distribution from the 12 477 
observations in the full data set. As expected, the dis­
tributions become less smooth as the number of obser­
vations is reduced; however, they are considered satis­
factory approximations . Fitting a smoothed curve to the 
data points for the full data set or to data points for the 
smaller samples produces essentially identical curves. 
Similar results are observed for the other trip purposes. 

1 265 923 11.00 
I 251 225 98.84 1.20 11.01 100.09 1.10 
I 250 041 98. 75 1.65 11.02 100.18 1.28 
I 243 970 98.27 2.29 11.06 JOO. 55 1.53 
I 240 522 97.99 3.36 11.14 101.27 2 .01 
I 239 805 97.94 4.67 11.14 101.27 2 .57 

The percentage distributions of dwelling units by in­
come and by automobile-ownership levels for each sample 
were compared with those for the full data set. None 
exactly matched the full data-set distributions, but all 
of the samples of 400 or more observations produced 
acceptable comparisons. The samples with only 200 
observations exhibited distributions that were judged to 
be significantly different from the full data-set distribu­
tions. This agrees with the previous research (5) that 
found that at least 400 observations were necessary to 
estimate mean trip length for automobile-driver trips 
with acceptable accuracy. 

The income-level and automobile-ownership distribu­
tions estimated by the samples of 400 observations or 
more agreed closely with the distributions from the full 
data set. Consequently, in view of the previous re­
search (4), it was concluded that small samples selected 
in the traditional manner can provide reliable estimates 
of the socioeconomic variables used in transportation 
studies. 

Trip Generation 

The dwelling-unit records from the full and sample data 
sets were cross-classified by using four automobile­
ownership and five income levels. After all of the 
dwelling-unit records were assigned to the appropriate 
cells , the cells were grouped as necessary so that no 
cell would contain fewer than 25 observations by com­
bining cells that, a priori, might be expected to exhibit 
similar trip-generator characteristics. The basic 
criteria for cell combination were to 

1. Make the fewest possible combinations; 
2. Consider that, at zero automobile ownership, 

income is the less important variable and make com­
binations across income levels; and 

3, Create combined cells that were rectangular 
rather than L-shaped. 

Each of the three cross-classification matrices of trip 
productions (one for each trip purpose) for each sample 
was compared to the four by five matrices generated 
from the full data set by using the calculated chi square 
(X2

) and RMSE values summarized in Table 2. These 
calculated values tended to increase with decreasing 
sample size. However, the pattern has several excep­
tions. For example, the RMSE values of the 90th 
percentile sample for 1600 observations are less than 
those for the 90th percentile sample for 3200 obser­
vations. 

Because a very small difference may make a large 
contribution to the calculated X2 value, this statistic is 
of questionable practical significance. Moreover, the 
total trip matrices differ to a much lesser degree be­
cause errors by individual trip purpose tend to cancel 
out. As shown in Table 3, the range in total number of 
trips between the 10th and 90th percentiles increases 
significantly with fewer than 400 observations. With 
two exceptions (the samples consisting of 200 and 400 
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Table 2. Chi square and x' RMSE" root-mean-square error comparison Sample 
of trip generations for three trip Home-Based Home-Based Non-Home- Home-Based Home-Based Non-Home-
purposes. Size Percentile Work Nonwork Based Work Nonwork Based 

3200 !OLh 83.6 155.3 81.3 347 549 233 
90th 97.7 70.1 234.7 277 2333 477 

1000 !Oll1 102.9 :J~~.3 447. 7 334 ~~o 670 
90th 36.1 215.6 274.4 241 792 481 

800 10th 251.4 581.7 768.1 602 1181 1019 
90th 352.0 649.8 1604.9 637 1462 1758 

400 10th 1466. 7 513.1 315.4 1961 1268 371 
90th 351.2 644.5 1592. 7 860 1365 2348 

~ Trips in each cell for full data were used <is expected; trip generation rates estimated from each sample data set times total dwelling units in correspondirin 
cells for ful1 data were used to ca lculate observed trips 

Table 3. Trip productions generated for study area by different size 
samples. 

Productions 
Sample 

Home -Based Home-Based Non-Home 
Size Percentile Work Nonwork Based 

12 477 413 705 664 473 343 165 
3 200 10th 421 030 658 222 359 674 

90th 408 557 682 849 363 468 
I 600 !Olh 423 212 686 262 318 740 

90th 409 722 679 531 365 792 
800 10th 413 4HO 71Z OtiH Jbti :,3·1 

90th 418 386 682 837 395 211 
400 10th 382 460 673 825 325 383 

90th 395 493 692 481 399 240 
200 !Olh 461 431 605 431 324 277 

90Lh 441 511 757 019 362 445 

Figure 2. Expected error in number of total trips (0.8 
probability level). 
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observations at the 10th percentile), the total trips 
generated by the samples slightly 'overestimated total 
driver trips as compared to total trips generated by 
the full data. 

The frequency distribution of trip productions by 
zone for each sample was compared to those for the 
full data set. Samples of 400, 800, 1600, and 3200 ob­
servations had distributions essentially identical to that 
for the full data set. Distributions produced by samples 
of 200 observations were significantly different from 
that for the full data set. 

Trip productions by trip purpose and by income levels 
were compared using 14 geographic sectors. The com­
parisons by geograpbic sectors indicated no significant 
differences between the full data set and the samples of 
400 or more observations in either patterns of trip 
making or geographic patterns of travel. 

Based on the combined analysis of the several sample 
data sets and previous research (4), the maximum ex­
pected error for total trips at the -0.8 probability level 
was determined as shown in Figure 2. The average 
error is estimated to be slightly less than 7 percent for 
a sample of 400 dwelling units and decreases to about 
3 percent for a sample of 1600. Increasing the sample 

size from 1600 to 3200 observations decreases the maxi­
mum error to approximately 1.0 percent, which indicates 
that larger sample sizes contribute only marginally to 
the accuracy of travei estimates. Therefore, samples 
of 400 or more observations are adequate to produce 
acceptable trip-generation results. 

The presample determination of cross-classification 
cells was compared to the use of a more detailed matrix 
and postsample combining of cells to provide a minimum 
of 25 observations per cell. The two samples of 400 ob­
servations, the smallest sample size that produced ac­
ceptable trip-generation results, were used in the 
analysis . The results achieved by the procedure of 
reducing the number of cells after the sample had been 
selected and the observations assigned to the appropriate 
cross-classification cell (four automobile-ownership and 
five income level) were compared to the following cross­
classifications, which were established prior to the 
sample selection: (a) two automobile-ownership levels 
(zero and one plus) and no breakdown by income level, 
(b) t hree a utomobile-ownership leve ls (zero, one, and 
two plus) and no br eakdown by income level, and (c) two 
automobile-ownership l evels (zero and one plus ) and two 
income levels (low and medium to high). To achieve at 
least 25 observations per cell, the four by five matrix 
was reduced to the following five cells: (a) zero auto­
mobiles by all income levels, (b) one plus automobile by 
low income, (c) one plus automobile by medium to low 
income, (d) one plus automobile by medium income, 
and (e) one plus automobile by medium to high and high­
income levels. All of the presampling classification 
schemes produced results that were inferior to those of 
the cross-classification involving postsampling reduc­
tion in the number of cells. Ftll'thermore, the analysis 
indicated that better results were produced as the num­
ber of cross-classification cells increased. This sug­
gests that combining cells to achieve a minimum number 
of observations per cell after the sample has been 
selected is the better procedtll'e to follow when a small 
sample is selected by using traditional sampling pro­
cedures. 

Trip Distribution 

The trip-length frequency distributions by trip purpose 
obtained from the survey data were used as gravity­
model calibration criteria. The calibrated mean trip 
lengths were all within 3 percent of the target 0-D data 
values; most differed from the 0-D mean trip length by 
less than 1.0 percent. The calibrated trip-length fre­
quency distributions for the samples were in close 
agreement with the comparable distributions for the 
full set of survey data. 

The trip table is a more deterministic measure of 
the adequacy of models calibrated from small samples . 
Analysis of the zonal-interchange-volume distributions 
indicated no significant differences between the results 
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Figure 3 . Limits of expected error for 
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Table 4. Cutline volumes. 

Comparison to Full-Data 
Sample RMSE Set 

(comparison to 
Size Percentile counted volumes) RMSE Percent RMSE 

12 477 11 084 
1 600 10th 11 489 1653 3.6 

90th 10 806 734 1.6 
800 10th 10 668 1456 3.1 

90th 10 643 1638 3.5 
400 !0th 11 138 3999 8.6 

90th 11 945 2314 5.0 

Table 5. Link-volume differences. 

Sample 
Mean Volume Standard 

Size Percentile Difference Deviation RMSE 

1600 10th -28 185 187 
90th 39 88 97 

800 10lh 68 116 135 
90th 85 131 156 

400 10th -78 214 407 
90lh 102 407 420 

using the small samples and the full data. In each 
comparison, more than 50 percent of the cells in the 
total trip table were estimated as having exactly the 
same interchange volume, and approximately 95 per­
cent of the cells were within ±2 trips of the full data 
results. Although there was some tendency for the 
variations in the trip tables to increase as the sample 
sizes decreased, the differences in the trip tables were 
not significantly affected by the sample sizes used in 
the calibration. (The trip table that most closely 
resembled that using the full data set was produced by 
the 10th percentile sample of 400 observations, while 
the 90th percentile sample of 400 observations pro­
vided the poorest comparison.) 

Traffic Assignment 

Traffic assignments that used the modeled trip tables 
based on samples of 400, 800, and 1600 observations 
were compared to the traffic assignments based on the 
full set of survey data and to the counted traffic volumes. 
The expected errors (at the 0.8 probability level) for 
the total vehicle kilometers of travel (VKT), screen­
line volumes, and cutline volumes are shown in Figure 3. 

Estimates of the total VKT obtained with the models 
calibrated by using the small samples agreed with that 
using the full data set within 2. 7 percent. When tabulated 
by the 14 geographic sectors and compared to the full 

data-set value, the RMSEs for the samples were less 
than 1.0 percent. Thus, a sample consisting of 400 ob­
servations is adequate to produce acceptably accurate 
estimates of the total VKT and the geographical distri­
bution of the VKT. 

A rail right-of-way that essentially bisects the study 
area was used as a major screen line. The screen-line 
volumes given in the table below are in close agreement 
with those for the full data. 

Volume 
Sample Percent of 
Size Percentile Value Full Data 

12 477 444 339 100.0 
1 600 10th 436 368 98.2 

90th 448 684 101.2 
800 10th 452 566 101 .9 

90th 454 549 102.3 
400 10th 428 647 96.5 

90th 462 154 104.3 

Although the expected error begins to increase for 
samples of less than 800 observations, the samples of 
400 observations produced estimates of screen-line 
volumes that are within 4. 5 percent, or less, of the 
estimated volume based on the full data set. Therefore, 
sample sizes of 400 observations or more produce ac­
ceptably accurate estimates of screen-line volumes. 

Twenty-eight cutlines were used to compare the as­
signed volumes in various travel corridors. The mean 
differences from the full data-set assignment were 1.2, 
2.6, and 4.1 percent for 1600, 800, and 400 observations 
respectively. Although the maximum expected error 
tends to increase with decreasing sample size (Figure 3), 
the magnitude of the error in cutline volumes with 
samples of 400 observations is considered to be within 
acceptable limits. As indicated in Table 4, when the 
assigned volumes are compared to the counted volumes, 
the samples of 400 or more observations produced 
RMSEs that are not appreciably larger than that re­
sulting with the full data set. All of these assigned cut­
line volumes were within 10 percent of the counted 
volume, and three-quarters were within 5 percent. 

Comparisons of the individual cutline volumes indicate 
that the small samples produce results that are frequently 
as good as or better than that produced by the full data 
set. For example, when the 90th percentile sample of 
800 observations is us.ed, 17 of the 28 cutlines have 
assigned volumes that are closer to the counted volume 
than that produced by full data set. These analyses 
suggest that factors other than the number of dwelling­
unit observations have equal, or greater, impacts on 
the cutline results. 

The network links were classified for comparison 
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into 15 volume groups on the basis of the full-data­
set traffic assignment. Over 95 percent of the link 
volumes for the sample assignments were within the 
predetermined acceptable error ranges of the volume 
for the full-data-set assignment. The remainder 
were only slightly outside the acceptable range of 
error. The mean percent volume differences (based 
on the mean volume difference as a percentage of 
the midpoint of each volume range) were 1.0, 2.2, 
and 2,9 percent with samples of 1600, 800, and 400 
observations respectively. 

As indicated by Table 5, the calibration of models 
with vary small sample sizes does not contribute 
to a serious deterioration in overall results, although 
the mean differences and variances in assigned link 
volumes increase with decreasing sample size. A 
comparison of these parameters by volume group 
fou1-u1, fo1-; exa111ple, that the 10th pe1-;ceatile ~an1pie:s 
of the 1600 and 400 observations produced nearly 
identical results. The best overall results by volume 
group were those of the sample of 800 observations. 
This, together with the observed pattern of trip gen­
erations by income and automobile-ownership levels, 
suggests that random variations are more significant 
in affecting the assignment results than is sample 
size. Therefore, although the maximum expected 
error (Figure 3) for assigned link volumes tends to 
increase with smaller sample sizes, assignments 
developed from samples of 400 observations are 
within the acceptable limits of error. 

Examination and comparison of the posted traffic 
assignments did not identify any significant differences 
between the assignment based on the full data set 
and the assignments based on the samples. Similarly, 
comparisons based on 12 selected major routes did 
not identify significant differences in assigned vol­
umes. The full data set resulted in overassignment 
on 7 routes and underassignment on 5 routes when 
compared to the counted volumes. For samples of 
800 and 1600 observations, the assignments on each 
of the routes were within 2.5 percent of those pro­
duced by the full data set. The samples of 400 ob­
servations produced assignments that were within 
6.0 percent of those from the full data set. 

EVALUATION AND IMPLICATIONS 

The results of this study indicate that urban trans­
portation models calibrated for three trip purposes 
(home-based work, home-based nonwork, and non­
home-based) will produce acceptably accurate travel 
estimates from data based on as few as 400 dwelling­
unit interviews. The analyses indicate that there is 
only a modest decrease in the precision of the esti­
mates as the sample size is reduced to 400 observa­
tions, but that thereafter the reliability of the esti­
mates deteriorates rapidly. This indicates that the 
collection of the larger samples that results from 
traditional sampling rates is not cost-effective in the 
traffic -assignment results. 

This and other research have established that it is 
the number of observations in the sample, rather than 
the percentage of dwelling units surveyed, that deter­
mines whether urban planning models produce acceptably 
accurate traffic assignments. Thus, the results of this 
study can be applied to study areas having both smaller 
and larger populations. The minimum sampling rate 
will vary inversely with the study-area population, but 
the minimum number of observations required is a 
constant. 

Previous research has shown that the development 
of acceptably accurate traffic assignments requires 

relatively precise estimates only for total trips for the 
study area and for the mean trip length. Estimates of 
trip-length frequencies and the geographic (zonal) dis­
tribution of trip ends need only be reasonable approxi­
mations (and errors in the geographic distribution of 
trip ends will be offset). 

Although samples consisting of 400 dwelling-unit 
observations are an adequate basis for the calibration 
of transportation models to produce acceptably accurate 
traffic assignments, this does not imply that 400 ob­
servations is an adequate sample size for defining other, 
more detailed travel characteristics. A larger number 
of observations or specially designed studies are neces­
sary to define travel characteristics such as the num­
ber of trip attractions or the relative attractions for 
individual zones; travel patterns for trip interchanges 
between zones; the temporal stability of trip-generation 
....,.,... .. ,...,... • +...,..;....,. ....,.....,..;,......,..;+,i,...,.. ~ .... - .......... __ ,.,.. ••• L:-.L +-!·-- ~-·--- 1 ..J 
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not be made under adverse conditions such as fuel 
shortages; modal choice among alternative means of 
travel; measures of trip-generation characteristics of 
specific population segments, such as by dwelling-unit 
type or persons per dwelling unit; and the number of 
trip ends in a specific geographic area on the basis of 
0-D data expansion. 

The modification of urban transportation study pro­
cedures to efficiently use small samples will permit 
significant cost savings in data collection and reduction 
without causing measurable effects on the assignment 
results. The effective use of small-sample survey data 
suggests the following modifications in transportation 
study procedures: 

1. Disaggregate trip-generation techniques must be 
used-cross-classification with the number of cells to be 
used in the trip-generation analysis should be deter­
mined after the collection of the 0-D data and 

2, Stratified cluster sampling might be used to fur­
ther simplify and reduce the cost of the dwelling-unit 
inventory and sample selection tasks. 

Traditional record-keeping systems and procedures for 
developing the dwelling-unit inventory might be used 
for the geographic subdivisions not selected for data 
collection, for which only the number of dwelling units 
in each area would be required. 

The urban transportation study has been a valuable 
tool for the transportation analyst in the development of 
transportation demand forecasts, the evaluation of land­
use and transportation system alternatives, and the 
identification of major inconsistencies between proposed 
activity patterns and the transportation network. The 
use of a much smaller sample of home-interview data 
will permit the transportation study to continue to be a 
valuable, but more cost-effective tool. 
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An Application of D iagnostic 
Tests for the Independence From 
Irrelevant Alternatives Property of 
the Multinomial Logit M odel 
Daniel McFadden and Kenneth Train, University of California, Berkeley 
William B. Tye, Charles River Associates, Inc., Cambridge, Massachusetts 

Statistical tests are proposed to diagnose the validity of the indepen­
dence from (of) irrelevant alternatives property of the multinomial log it 
model. Application of the tests is illustrated by the use of actual travel 
data representing urban modal choice in the San Francisco area. The 
property as it applies to travel demand forecasting is discussed, and the 
common misconception that the property holds for market shares in 
heterogeneous populations is shown by examples to be incorrect. The 
relation of the property to the basic assumptions of the model is de­
scribed, and it is shown that the validity of the property in disaggregate 
modeling is an empirical issue that depends on the model specification 
and data in a particular application. A series of diagnostic tests for the 
property are developed and applied to actual travel data. 

The most widely used functional form for choice prob­
abilities in disaggregated transportation-demand anal­
ysis is the multinomial logit (MNL) model, 

P(i IC) = exp V(x;, s)/ ~exp V(xj, s) 
/ jcC 

where 

C = finite choice set, 
P(i IC) =choice probability for alternative i £ C, 

x1 =vector of the observed characteristics of 
alternative i, and 

(!) 

s = vector of the observed characteristics of 
the decision maker and the choice environ­
ment. 

The scale function V(x1
, s) may be interpreted as the 

representative utility of alternative i and is normally 
assumed to be linear in the parameters. The MNL 
model has significant advantages over the available 
alternatives in terms of flexibility and computational 
efficiency and permits a simple behavioral interpreta­
tion of the parameters of the scale function. 

The MNL model also has the property that the ratio 
of the probabilities of choosing any two alternatives 

PC ii C)/PCkl C) =exp V(x;, s)/exp V(xk, s) (2) 

is independent of the attributes or the availability of a 
third alternative (j), which is termed the independence 
from (of) irrelevant alternatives (IIA) property. This 
property greatly reduces the complexity of estimation 
and forecasting and in this respect is quite useful. 
However, it imposes restrictions on the structure of 
choice probabilities and cross elasticities; these re­
strictions may be invalid in some applications. Hence, 
tests of the validity of the IIA property should be made 
whenever a violation of the assumption is suspected. 

This paper analyzes the IIA property and discusses 
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several diagnostic tests. Complete descriptions of the 
tests and thorough instructions for construction of the 
test statistics can be found in a National Cooperative 
Highway Research Program (NCHRP) report (1) and 
McFadden, Tye, and Train (~). -

INDEPENDENCE FROM IRRELEVANT 
ALTERNATIVES PROPERTY OF THE 
MULTINOMIAL LOGIT MODEL 

In applications of the MNL model to individual modal 
choice, the IIA property (Equation 2) requires that if 
two modes are available and a new mode is introduced, 
the ratio of the probabilities of the two preexisting 
modes will be unchanged regardless of the probability 
of choice for the new mode. For example, if the new 
mode will be chosen with a probability of 0 .10 and each 
preexisting mode had a 0. 50 probability before the in-: 
troduction of the new mode, the probability of each of 
the preexisting modes will be 0.45 after the new mode 
is introduced, thus preserving the one-to-one ratio of 
probabilities of the preexisting modes. 

The HA property also greatly facilitates the fore­
casting problems associated with new modal-choice 
predictions. If 100 persons have the same observed 
characteristics of alternatives, the same observed 
characteristics of the decision maker, and the same 
choice set, i.e., they have the same V(x1

, s)'s, the 
demand for a new mode can be calculated by adding 
another term to the denominator of Equation 1 and 
recomputing all choice probabilities. The new prob­
abilities can then be multiplied by 100 to estimate the 
demand for each mode. If the old modes formerly 
shared the market equally and the probability of the 
new mode is 0.10 for each individual, the predicted 
modal demands will be 45, 45, and 10. 

An example of a choice setting in which the IIA 
property is inappropriate is the classic blue automobile 
versus red automobile case. Assume that the bus mode 
and the blue automobile each capture 50 percent of a 
given travel market as shown in the first column of 
the table below. 

Modal Choice (%) 

True and MNL Predicted MNL True 
Mode (binary choice) (3 modes) (3 modes) 

Bus 50 33.3 50 
Blue automobile 50 33.3 25 
Red automobile 0 33.3 25 
Total 100 100 100 

Assume then that a new automobile mode is introduced 
with exactly the same service attributes as the blue 
automobile mode except that the automobile is painted 
a different color, e.g., red (patrons are assumed to be 
indifferent to color). Assume also that the red auto­
mobile is leased for this trip only, to remove questions 
of automobile ownership and competing demands for 
the automobile. The true modal shares will now be 50, 
25, and 25 percent, for bus, blue automobile, and red 
automobile respectively; i.e., no bus users will switch 
to the new mode and automobile users will split evenly 
between the two automobile modes. However, the MNL 
model will forecast that each of the three modes 
captures one-third of the market, as shown by the 
second column of the table above, because the IIA 
property requires that the ratio of the bus share to the 
blue automobile share be unaffected by the introduction 
of the red automobile. In this example, the ratio is 
1.0: When the red automobile is introduced, the ratio 
of the blue automobile share to the red automobile share 

is 1.0 (because patrons are assumed indifferent to 
color). The only shares that allow both the ratio of bus 
share to blue automobile share and the ratio of blue 
automobile share to red automobile share to equal one 
are one-third shares for each mode. Thus, the MNL 
model predictA AhareA of :rn, 33, and 33 percent when 
the actual shares are 50, 25, and 25 percent for bus, 
blue automobile, and red automobile, respectively. 

If the probfom were confined to this simple example, 
it would be trivial. The new automobile mode is clearly 
irrelevant and should not be introduced as a mode. How­
ever, this extreme case points to a gray area, where the 
demand forecast for a new mode could be seriously 
compromised by incorrectly applying the IIA property. 

In the MNL model, the IIA is a property of individual 
probabilities and market shares in homogeneous popula­
tions, but not a property of market shares in heteroge ­
neous populations. Much unwarranted criticism of the 
MNL model has been based on the erroneous application 
of the IIA property to market shares in heterogeneous 
populations. It should be emphasized that the MNL 
model does not predict that the ratio of market shares 
in a heterogeneous population will be invariant with the 
introduction of a new alternative. 

To take a specific example, the MNL model does not 
in general predict that, if a new mode is introduced to 
a population composed of different market segments 
that have different observed socioeconomic characteris­
tics and level-of-service attributes [different V(x1, s)'s 
for the individuals], the percentage of automobile drivers 
who will use the new mode is equal to the percentage of 
transit users who will shift. 

This principle may be illustrated by an example. 
Table 1 presents the case of a population composed of 
two market segments of 100 persons each. Each seg­
ment is composed of homogeneous individuals; i.e., 
each person in the segment assigns the same representa­
tive utility to each alternative. Assume that the choice 
environment of observed attributes is identical for all 
persons within each segment and that it differs sig­
nificantly between the two market segments. Segment 1 
is automobile oriented, splitting 90 to 10 in favor of the 
automobile, and segment 2 is transit oriented, splitting 
90 to 10 in favor of transit. 

A new mode-dial-a-bus-is introduced. The MNL 
model predicts that it wm capture 5 percent of segment 
1 and 15 percent of segment 2. As L11dicated Ln. Table 1, 
the ratio of the automobile market share to the bus 
market share is preserved within each homogeneous 
market segment. However, the ratio of the bus modal 
share to the automobile modal share is not constant 
after the new bus mode is introduced, but decreases 
from 1.0 to 0.91 for the entire population (86 + 94 
0.91). 

Although the percentage diversions from the bus and 
the automobile to the dial-a-bus are the same within 
each homogeneous market segment (e.g., in segment 1, 

Table 1. Effect of 11 A property on a forecast of behavior in a 
population of heterogeneous market segments. 

Modal Share 

MNL (binary choice) Predicted MNL (3 modes) 

Market Ma rket Total Market Market Total 
Segment Segment Mar- Segment Segment Mar-

Mode 1 2 ket I 2 ket 

Bus 10 90 100 9. 5 76.5 86 .0 
Automobile 

driver 90 10 100 85.5 8.5 94.0 
Dial-a -bus 0 0 0 5.0 15.0 20.0 



5 percent of both bus and automobile patrons switch), 
the predicted diversions from the automobile and the 
bus are not the same for the population as a whole. Of 
the 100 total bus patrons in the binary-choice situation, 
14 percent (100 - 86) were predicted to switch to the 
dial-a-bus, but only 6 percent of the total automobile 
users were predicted to switch to the dial-a-bus. 

The IIA property is obviously a key assumption of 
the MNL model. Previous studies of it have tended to 
discuss its reasonableness or unreasonableness on 
logical grounds. This paper argues that the issues 
raised by the property are essentially empirical. The 
convenience of the IlA property in estimating and fore­
casting makes it extremely attractive to use when it is 
valid. But the undesirable consequences of assuming 
the IIA property when it is invalid are reason for cau­
tion in applying the MNL model without assurances of 
the reasonableness of the IIA property. 

This dilemma is addressed here by the development 
of statistical tests that can identify whether or not the 
IIA property is reasonable in the particular circum­
stances. These tests are comparable to the standard 
statistics that are routinely calculated as part of re­
gTession programs to identify whether or not the as­
sumptions of the least-squares model are reasonable. 

SOURCES OF VIOLATION OF THE 
INDEPENDENCE OF IRRELEVANT 
ALTERNATIVES PROPERTY 

In developing statistical tests to determine the validity 
of the IIA property it is useful to consider the basic as­
sumptions of the MNL model and the ways in which they 
might be violated. The utility for the individual of the 
i th alternative is assumed to be a function of the ob­
served characteristics of that alternative, the observed 
characteristics of the decision maker and choice en­
vironment, and an unobserved component that repre­
sents the effects of omitted random taste variations, 
choice attributes, and socioeconomic variables. 

where 

U1 = utility of the i th alternative, 
x1 = vector of observed characteristics of the i th 

alternative, (x1p ... , X1N), 

(3) 

s = vector of obsertred characteristics of the decision 
maker, and 

µ 1 =vector of unobserved characteristics of the de­
e is ion maker and the i th alternative. 

Without loss of generality, U1 can be separated into 
two parts: V (x1, s ), a function of the observed data, 
and E: 1, a random component that is not observed; i.e., 

U1 = V(x1, s) + E1 (4) 

The nonstochastic term is called the representative 
utility and is specified to be linear in the parameters : 

V(x1, s) = {1Z(x0, s) 

where Z = vector -valued function of x1 and s and f3 = 
vector of the parameters. 

Assume that alternative i is chosen if, and only if, 

(5) 

it has greater utility than any other alternative; i.e., if 
U1 >Uk for all k f i. Because the £ 1 are random vari­
ables, the event U1 >Uk for all k I i is also random. The 
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probability that the ith alternative is chosen is given by 

POIC) = P(U1 >Uk) (kt= i) (6) 

and, from Equation 4, 

(7) 

To determine the probability that U1 satisfies Equa­
tion 7, we must know the probability distribution of£ 1 • 

Assume that £1 has a reciprocal exponential {Weibull) 
distribution, distributed identically and independently 
across all alternatives; i.e., 

P(E1 "" t) = exp(-e-1) (8) 

Given this assumption, it is possible to derive the MNL 
model (Equation l)andthe IlA property (Equation 2) (.:!, !, ~). 

Any significant violation of the assumptions of the 
MNL model will usually cause the IlA property to fail 
to be valid. Generally, the violations may be traced to 
the MNL assumption that the unobserved-utility com­
ponent is independent across alternatives and indepen­
dent of the observed attributes (1, 2). 

Because the unobserved terms are defined simply as 
the difference between the true utility and the repre­
sentative utility, the independence or nonindependence 
of the £1 's depends on the specifications of the repre­
sentative utility. In a given choice situation, two dif­
ferent specifications of representative utility will re­
sult in two different sets of E: 1's. One set of E: 1's might 
be independent, while the other might not. Thus, the 
IIA property might be valid for one specification of 
representative utility and not for another, even though 
both specifications relate to the same choice situation. 
This means that the IlA property is or is not valid for 
a particular specification of representative utility in a 
logit model of a particular choice situation, not for the 
choice situation itself. Consequently, it is meaningless 
to say, for example, that the IIA property is or is not 
valid for a traveler's choice of mode. It is only possible 
to state that the IlA property is or is not valid for a 
particular specification of the representative utility of 
the various modes. 

Intuitively, the IIA property plays a role in the MNL 
model that is analogous to the assumption of independent­
error terms in least-squares regression. The IlA 
property implies that the factors omitted from the analysis 
(the £ 1 's) are independent random variables. 

APPLICATION OF DIAGNOSTIC TESTS 
FOR THE INDEPENDENCE OF 
IRRELEVANT ALTERNATIVES 
PROPERTY 

Suppose a set of qualitative choice data is hypothesized 
to satisfy a particular specification of an MNL form. 
If the hypothesis is valid, the data and fitted models 
should have internal consistency properties; these can 
form the basis for diagnostic tests of the IIA property. 

Model Specification 

Table 2 presents an MNL model of the choice of mode 
for the work trip. The estimation was performed by 
the maximum likelihood method described by McFadden 
(5) on a sample of 641 workers in the San Francisco­
Oakland Bay Area. 



42 

The model considers seven alternative modes: two 
automobile modes (automobile alone and car pool), two 
bus modes (one with walk access to bus and the other 
with automobile access), and three Bay Area Rapid 
Transit (BART) modes (with walk, bus, and automobile 
access). Most of the independent variables are self­
explanatory, and their coefficients are readily inter­
preted. For example, the negative coefficient of on­
vehicle time indicates that, when time spent in the 
vehicle for a particular mode increases, the probability 
of that mode being chosen decreases, all else being 
constant. Since the ratio of the on-vehicle time coef­
ficient to the cost divided by wage coefficient is 0.43, 
the estimated value of on-vehicle time is 43 percent of 
the wage. Three income variables are included to allow 
for a nonlinear relation between income and the repre -
sentative utility of the automobile-alone alternative. 
[These variables can be understood most readily by 
reference to Train (8).] 

The model given In Table 2 seems particularly ap­
propriate for testing violations of the IIA property. 
Decause some of the alternative modcc a.re aimilo.r, 
unobserved attributes of each mode may be correlated 
across modes. For example, the comfort on on-vehicle 
travel is similar for bus with walk access and bus with 
automobile access, and yet no comfort variable is in­
cluded in the model. Failure of the IIA property could 
also result from the attributes of the alternatives not 
being exogenous. If the choice of how many automobiles 
to own is related to the work-trip modal choice, then the 
automobiles per driver variables are endogenous, and 
if the choice of where to live is related to the work-
trip modal choice, then the cost and time variables are 
also endogenous. 

Universal Logit Method 

The universal logit (UL) model is a more general model 
than is the MNL model; it takes advantage of the fact 
that every choice model with positive probabilities can 
be written in apparent MNL form, except that the scale 
function of alternative i will depend on attributes of 
other alternatives. 

To use the universal logit method, a model is speci­
fied that includes all the variables in Table 2 plus some 
variables that are defined so that the attributes of one 
alternative are allowed to enter the representative 
utility of another. The hypothesis that the coefficients 
of all of the extra variables are zero is tested. If the 
hypothesis of zero coefficients is rejected, then the 
joint hypothesis of the MNL form and the specification 
in Table 2 is rejected. 

The more general model includes the variables given 
in Table 2 and the following others: 

1. Cost divided by posttax wage of automobile alone, 
with bus-with-walk-access and BART-with-walk-access 
alternatives having the values given in Table 2 and other 
alternatives having the value O; 

2. Cost divided by posttax wage of bus with walk 
access with automobile-alone and BART-with-walk­
access alternatives having the values given in Table 2 
and other alternatives having the value O; 

3. Cost divided by posttax wage of BART with walk 
access wage, with automobile-alone and bus-with-walk­
access alternatives having the values given in Table 2 
and other alternatives having the value O; 

4. Total weighted time (sum of on-vehicle time, 2.5 
times walk time, 1.25 times transfer-wait time, and 
1,25 times first headway) of automobile alone, with bus­
with-walk-access and BART-with-walk-access alterna­
tives having the values given in Table 2 and other alter-

Table 2 . Work·trip modal·choice model . 

Independent Variable 

Cost divided by posttax wage, ¢ + ¢/min 
On-vehicle time, min 
Walk time,• min 
Transfer-wait time,"" min 
Headway of first bus, " min 
AutomobJlcs 11or driver (cail!ng o ono)' 
AutomobJles pcr drlv r (cclUng or one) ' 
Dummy ii person Is IK'<ld or housoJ1old' 
Number of porsons in Ju:rusehol.d who en ' driveb 
Number or pe r sons in household who en drive' 
Family Income (oel l lll{l or 7fi00),' $/yMr 
Family income minus $7500 (floor of $0 and 

ceilini: of $3000),' $/ v<'. r 
Family income minus $10 500 (floor of $0 and 

ceiling of $5000),' $/year 
Automobile-alone clummy.i 
Bus-with-automobile-access dummy~ 
BART-with-walk-access dummy' 
BART-with-bus-access dummy' 
BART-with-automobile-access dummyh 
Car-pool dummy' 

Estimated 
Coefficient I-Statistic 

-0.0380 6.83 
-0.0162 1.91 
-0.1006 4.25 
-0.0122 0.923 
-0.0341 3.51 
2 .38 6.16 
1.48 1.92 
0.494 2.62 
0.5242 4.18 
0. 7567 3.82 
-0.000 308 2. 18 

0.000 139 1.05 

-0.000 096 6 1.78 
-1.84 1. 74 
-5.38 5.69 
1.94 3.18 
-0.159 0.285 
-4.06 4.38 
-2 .39 5.28 

Notes: Likelihood ratio index= 0._4119; log likelihood at zero= -982.6; log likelihood at con 
vergence • -577.9; degrees or f1eedom "' 24GO; percent co11ectly predicted• 64 27; 
values of time saved as a percentage of wage: on vehicle time= 43, walk time= 265, 
Jnd tr::iri~rc~ •.•,r:iit tiIT'c - 32 rc~p<!O:!iveoli,r 

All cost and time variables calculated for round trip. Dependent variable is alternative 
choice (1 for chosen alternative, 0 otherwise) 

Sample size = 641 

a Variable is 0 tor automobile alone and car· pool alternatives and takes dummy value for other 
alternatives -

"Variable 1akes dummy value for automobile-alone alternative and is 0 otherwise 
c Variable lakes dummy value for bus with automobile-access and BART-with automobile-access 

alternatives and is 0 otherwise 
11 Variable is 1 for automobile-alone alternative an<J 0 olherwise. 
"' Variable is 1 for bus with aulomobile-access altcrnalive and 0 otherwise. 
1 Variable is 1 for BART-with-walk access alternative and 0 otherwise 
'.I Variable is 1 for BART with·bus-access alternative and 0 otherwise 
"Variable is 1 for BART with automobile access alternative and 0 otherwise . 
' Variable is 1 for car-pool alternative and 0 otherwise 

natives having the value O; 
5. Total weighted time of bus with walk access, 

with automobile-alone and BART-with-walk-access al­
ternatives having the values given in Table 2 and other 
alternatives having the value O; and 

6. Total weighted time of BART-with-walk-access, 
with automobile-alone and bus-with-walk-access alter­
natives having the values given in Table 2 and other al­
ternatives having the value 0. 

The null hypothesis that the interaction effects are 
zero (i.e., the MNL model and the IIA are true) can be 
tested by using the likelihood ratio; when the MNL model 
and the UL model are fitted by maximum likelihood esti­
mation, the likelihood-ratio statistic 

X2 
= 2(log likelihood of UL model - log likelihood of MNL model) (9) 

is asymptotically distributed chi square (X2
) with degrees 

of freedom (df) equal to the number oi parameter re­
strictions imposed by the null hypothesis. [This has 
boon discussed in the NCHRP report (1) (Vol. 2, pp. 
C-172-175)]. -

The log likelihood at convergence for the more gen­
eral model is -567.6. The log likelihood at convergence 
for the model in Table 2 is -577 .9. Therefore, the test 
statistic (from Equation 9) is 20.6. The critical (0.05-
level) value of x2 with six df is 12.6. The joint hypoth­
esis that the MNL form and the specification of Table 2 
are correct is rejected. 

The signs of the coefficients of the extra variables 
are consistent with the hypothesis that the value of 
automobile on-vehicle time is higher than that of transit 
on-vehicle time. Variables 5 and 6 entered with negative 
signs (the latter with at-statistic of 3.0), and the coef­
ficient of variable 4 was estimated to be positive. Train 
(~) found the value of automobile on-vehicle time to 



Table 3. Tests 
based on 
conditional choice. 

Statistic 

Log likelihood at convergence for 
subsample choosing an alternative 
within subset of alternatives 

Log likelihood with coefficients re-
stricted to values given in Table 2 

test 
df 
Critical (0.05 level) value of x' with 

appropriate di 

Table 4. Tests of association. 

Alternative 

Automobile Alone Car Pool 

No. of Residuals Avg No, of Residuals 
Probability 

Alternatives Included in Subset 

All Except Bus and BART-
All Except All Except With-Automobile-Access All Except BART-With-
BART Modes Bus Modes Modes Walk-Access Mode 

-452.6 -400.1 -452.3 -557.8 

-454 ,6 -403.3 -455.0 -557,9 
4,0 6.4 5.4 0.2 

16 17 17 18 

26 .3 27.6 27.6 28.9 
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All Except 
Car-Pool Mode 

-230. 7 

-247 .3 
33.2 
18 

28.9 

Bus With Walk Access Bus With Automobile Access 

Avg No. of Residuals Avg No. of Residuals Avg 
Probability Probability Probability 

Cell Positive Negative for Cell Positive Negative for Cell Positive Negative for Cell Positive Negative for Cell 

1 17 5 0.93 6 16 0.060 14 3 0 .66 1 16 0.090 
2 21 1 0.89 9 13 0.055 10 7 0.52 0 17 0.053 
3 17 5 0.87 II 11 0.050 7 10 0.43 2 15 0.045 
4 20 2 0.85 8 14 0.046 7 10 0.37 2 15 0.038 
5 16 6 0.82 8 16 0.042 4 13 0.31 2 15 0.034 
6 17 5 0.81 0 16 0.038 7 10 0.26 0 17 0.030 
7 20 2 0.80 •l 18 0.034 1 16 0.22 0 17 0.028 
8 19 3 0.78 18 0.030 3 14 0.19 1 16 0.025 
9 17 5 o. 77 5 17 0.028 2 15 0.17 0 17 0.022 

10 18 4 0.75 6 16 0.025 2 15 0.15 0 17 0.020 
11 14 8 0.74 •I 18 0.021 3 14 0.13 1 16 0.018 
12 19 2 0.72 z 19 0.018 1 16 0.11 0 17 0.016 
13 14 7 0.69 5 16 0.015 3 14 0.10 0 17 0.014 
14 18 3 0.67 6 15 0.010 2 15 0.085 0 17 0.013 
15 13 8 0.65 2 19 0.004 0 17 0.072 0 17 0.012 
16 14 7 0.63 5 16 0.17 2. 15 0.059 0 17 0.011 
17 12 9 0.62 6 15 0.164 0 17 0.051 0 17 0.009 
18 12 9 0.60 1 14 0.158 0 17 0.044 0 17 0.008 
19 14 7 0.57 I 20 0.154 1 16 0.038 0 17 0,008 
20 11 10 0.53 l 20 0.147 0 17 0.034 0 17 0.007 
21 11 10 0.49 4 17 0.141 1 16 0.028 0 17 0.006 
22 7 14 0.47 4 17 0.135 0 17 0.022 0 17 0.005 
23 10 11 0.42 6 15 0.129 0 17 0.019 0 17 0.005 
24 11 10 0.38 3 18 0.122 0 17 0.015 0 17 0.004 
25 3 18 0.35 ,I 20 0.116 0 17 0.013 0 17 0.003 
26 5 16 0.32 5 16 0.110 0 17 0.010 0 17 0.003 
27 5 19 0.27 4 17 0.104 0 17 0.008 0 17 0.002 
28 5 19 0.20 2· 19 0.085 0 16 0.006 0 16 0.001 
29 4 17 0.13 0 21 0.080 0 16 0.004 0 16 0.001 
30 3 18 0.05 17 0.054 0 16 0.001 0 16 0.000 

Table 5. Tests of 
association (con- Alternative 

tinued). BART With Walk Access BART With Automobile Access BART With Bus Access 

No. of Residuals No. of Residuals No. of Residuals 
Avg Probability Avg Probability Avg Probability 

Cell Positive Negative for Cell Positive Negative for Cell Positive Negative for Cell 

0 12 0.057 6 6 0,390 1 4 0.266 
0 12 0.037 4 8 0.289 1 4 0.148 

2 1 11 0.029 2 10 0.222 1 4 0.119 
3 0 12 0.025 5 7 0.195 1 4 0.103 
4 1 11 0.021 3 9 0.177 1 4 0.088 
5 0 12 0.019 1 11 0.160 0 5 0.080 
6 0 12 0.017 2 10 0.138 0 5 0.067 
7 1 11 0.016 2 10 0.124 1 4 0.060 
8 0 12 0.014 1 11 0.113 0 4 0.052 
9 0 12 0.012 0 12 0.103 0 4 0.044 

10 1 11 0.011 2 10 0.093 0 4 0.034 
11 0 12 0.010 1 11 0.086 0 4 0.031 
12 0 12 0.008 1 11 0.077 0 4 0.027 
13 0 12 0.007 2 10 0,069 0 4 0.023 
14 0 12 0.007 1 11 0.065 0 4 0.018 
15 0 12 0.006 0 12 0.060 0 4 0.016 
16 0 12 0.005 0 12 0.055 0 4 0.014 
17 0 12 0.005 0 12 0.050 0 4 0.014 
18 0 11 0.005 0 11 0.046 0 4 0.012 
19 0 11 0.004 0 11 0.042 0 4 0.010 
20 0 11 0.004 0 11 0.038 0 4 0.008 
21 0 11 0.003 0 11 0.034 0 4 0.007 
22 0 11 0.003 0 11 0.030 0 4 0.006 
23 0 11 0.002 0 11 0.028 0 4 0.005 
24 0 11 0.002 0 11 0.025 0 4 0.005 
25 0 11 0.002 0 11 0.021 0 4 0.004 
26 0 11 0.001 0 11 0.018 0 4 0.003 
27 0 11 0.001 0 11 0.015 0 4 0.002 
28 0 11 0.001 0 11 0.010 0 4 0.001 
29 0 11 0.000 0 11 0.004 0 4 0.000 
30 0 11 
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be higher than that of bus on-vehicle time and gave the 
explanation that, while automobiles are more comfort­
able than transit, the difficulty of driving an automobile 
during rush-hour congestion makes automobile on-vehicle 
time more onerous than transit on-vehicle time. The 
~odel of Table 2 requires that automobile and bus times 
be valued equally; this constraint may contribute to the 
failure of the model of Table 2 in the test against the 
more general model. 

Tests Based on Conditional Choice 

If two dependent modes are included in the calibration 
sample, a different set of model coefficients will be 
generated than those generated from a model in which 
one of the the dependent modes is eliminated; i.e ., 
violation of the IIA property will cause the maximum­
likelihood parameter estimates to be biased. If the IIA 
property is valid, however, the coefficients estimated 
from the full choice set will coincide with the coef­
ficients for a smaller choice set. An obvious test of 
the validity oi the IIA property is whether or not the 
coefficients estimated from a reduced choice set are 
statistically different from those estimated from the 
full choice set. 

In applying this test, the estimation is performed 
on the subsample of individuals who chose an alterna­
tive in the subset of alternatives to be tested for de­
pendence. The coefficients of representative utility 
are estimated on the subsample and the log likelihood 
at convergence is calculated; the log likelihood is also 
calculated on the subsample with the coefficients re­
stricted to the values given in Table 2. By using the 
likelihood-ratio test statistic analogous to that applied 
to the UL model test (Equation 9), the hypothesis that 
the coefficients estimated on the subsample are the 
same as those given in Table 2 is tested. The re­
sults of the tests for various subsets of alternatives 
are given in Table 3. The subsets chosen for testing 
were those that seemed most probable to cause re -
jection of the hypothesis of equal coefficients. For 
example, models similar to that of Table 2 esti­
mated on a sample taken before BART was providing 
service greatly overpredict the use of BART with 
walk access; hence , the subset consisting of all al­
ternatives except BART with walk access seemed 
particularly relevant for testing models based on 
conditional choice. 

The hypothesis that the coefficients estimated on the 
subsample are the same as those of Table 2 (the hy­
pothesis that the property IIA is valid) is accepted for 
each subset of alternatives except the subset that in­
cludes all alternatives except cir pool. The failure of 
this test for this subset is probably the result of mea­
surement errors in the obs-erved attributes of the car­
pool alternative. The exact attributes of the car-pool 
mode depend on such factors as the number of persons 
in the car pool, each person's home and work locations, 
and the allocations of costs among car-pool members. 
Because these variables cannot be determined for per­
sons who do not choose car pool, crude estimates were 
used in calculating car-pool attributes. 

Residuals Tests 

Violations of the IIA property will cause systematic 
errors in the predicted choice probabilities. The dif­
ference between the observed choices and the predicted 
choice frequencies (the residuals) will therefore depend 
on whether the IIA property is valid or not (!). 

To illustrate the way in which the residuals may be 
used to test the validity of the IIA property, suppose 

that an MNL model is estimated. Then the residuals 

(10) 

can be defined, where 

n = 1, ... , N is a sample, 
PJn = P(j IC, x., s.) for jEC is the estimated choice 

probability, 
R. = number of repetitions (possibly one) of sample 

point n , and 
8Jn = number of r.hoicP.R j. 

To avoid statistical dependence in the above residuals, 
it is sometimes more convenient to work with the trans­
formed residuals , 

(11) 

where IEC is a fixed alternative and j =/ 1. Under the 
hypothesis that the estimated model is correct, the 
residuals DJ• have, as ymptotically,. zero mean, unit 
variance , and covar iance , ED1.DJn = -(P1nPJnlY2 : The 
residuals YJn are asymptotically independent and have 
zero mean and unit variance. Further discussion of 
these residuals and their properties has been given by 
McFadden (5). 

Tables 4and 5 present tests of association of the 
residuals and estimated probabilities of the model in 
Table 2. For each alternative, a contingency table is 
constructed as described by McFadden, Tye, and Train 
(2): The estimated probabilities for the alternative are 
ranked and classified into 30 cells, with each cell con­
taining approximately the same number of cases, and 
the numbers of positive and negative residuals associated 
with the probabilities in a cell are counted. (The num­
ber of positive and negative residuals summed over all 
cells for a particular alternative is different for dif­
ferent alternatives because the number of persons in 
the sample who have a given alternative available varies 
among alternatives.) 

If the MNL form and the specification of Table 2 are 
accurate, then the number of positive residuals is ex­
pected to be higher for low-number ed ce Us than for 
high-numbered cells (a positive residual is generated if 
the alternative was actually chosen). This pattern 
emerges for each alternative. 

The goodness -of-fit test 

"' x2 = ~ CSm -NmPim)2 /NmPJn 
m=l 

where 

m = index of cell, 
M = total number of cells, 
s. = number of positive residuals in cell, 
N. = total number of observations in cell, 

(12) 

PJ• average probability for alternative j in cell m, 
and 

PJn average probability of alternative j for total 
sample, 

has an asymptotic distribution bounded by X2 distributions 
with M - 1 and M - K - 1 df, where K is the number of 
estimated parameters. These test statistics are not 
independent across alternatives. 

The test statistic for each alternative is given below. 



Alternative 

Automobile alone 
Bus with walk access 
Bus with automobile access 
Car pool 
BART with automobile access 
BART with walk access 
BA RT with bus access 

Test Statistic 

17.51 
14.14 
15.75 
38.63 
13.81 
15.83 

5.32 

Since there are 30 cells and 19 parameters, the test 
statistic has an asymptotic distribution, under the hy­
pothesis that the MNL form and the specliication of 
Table 2 are correct , bounded by x2 distributions .with 
29 a nd 10 df. The critical (0.05-l eve l) value of X2 with 
29 df is 42.56; that with 10 df is 18.31. The values of 
the test statistic for all alternatives except car pool are 
below the lower of the two bounding critical values, and 
therefore the hypothesis is accepted for those alterna­
tives. For the car-pool alternative, the test statistic 
falls between the two bounding critical values: The 
test is therefore inconclusive. As in the failure of 
the test based on conditional choice, measurement 
errors in the car-pool attributes are probably the 
reason that the car-pool alternative cannot pass the 
test of association unambiguously. 

Other Tests 

Other tests using the properties of residuals are the 
means test and the variance test . Other tests that may 
be used are the saturated model test, which was found 
not to be powerful, and tests using two data sets. Tests 
using two data sets were found to be particularly power­
ful in identifying violations of the IIA property (2). For 
example , a before-and-after data set involving the in­
troduction of a new mode offers a particularly powerful 
test of the independence of the mode . Both likelihood­
ratio and residuals tests can be used. Another alterna­
tive that deserves consideration is to test the MNL 
model against the multinomial probit model with an 
explicit structure of dependence of unobserved attri­
butes, which is practical if the number of choice alter­
natives is four or less (?_). 

Modifications of the Modal Choice Model 
to Correct for Violations of the Irrelevance 
of Inde pendent Alternatives Property 

The model given in Table 2 failed two of the tests of the 
IIA property. First, it failed the universal-logit test 
against a more general model with six extra cross­
alternative variables. The probable reason for this 
failure is that the model constrains the value of auto­
mobile and transit time to be equal. Second, it failed 
the test of equality of coefficients across choice sets 
when the car-pool alternative was eliminated. The 
probable reason for this failure is that the car-pool 
data were poor. 

A new model of work-trip modal choice has been 
given by Train (8). This model is more general than 
the model given Tn Table 2 in that, among some other 
generalizations , automobile and transit on-vehicle 
times are allowed to have different coefficients and 
socioeconomic variables are allowed to enter the car­
pool alternative. 

This more general model passed both of the diag­
nostic tests that the MNL model (Table 2) failed: 

1. The universal logit test-the log likelihood of 
Train's model is -519.9. The log likelihood of the more 
general model (which includes the six cross-alternative 
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vai·iables) is -515.5. Therefore, the test statistic is 8.8. 
T he critical (0.05-level) value of x2 with six df is 12 .6. 
The model passes the test. 

2. The test of equality of coefficients across choice 
sets-the log likelihood of Train's model with the car­
pool alternative removed is -191.0. The log likelihood 
of the model with the car-pool alternative removed 
and the parameters restricted to those obtained with 
all alter natives included is -199 .4. The test statis tic, 
ther efore, is 16 .8. T he critical (0.05-level) value of 
X2 with 23 degrees of freedom is a bout 35. The hy­
pothesis of equal parameters is accepted, and the 
model passes the test. 

These results illustrate that the pass ing or failing 
of the diagnostic tests depends on the specification 
of the model for a particular choice situation, not 
on the choice situation itself; i.e., the IIA property is 
or is not valid for a particular model, not for a 
particular choice situation. These results indicate 
the way in which the diagnostic tests can be used to 
find problems in the specification· of the model. The 
diagnostic tests applied to the model in Table 2 in­
dicated that there were problems in the on-vehicle­
time variable and the car-pool alternative ; these 
problems were corrected in Train's model. 
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Effects of Parking Costs on Urban 
Transport Modal Choice 
David W. Gillen, Department of Economics, University of Alberta, Edmonton 

The effects of parking costs on urban modal choice are investigated by 
using a standard binary-choice model and estimated by using the logit 
technique. Previous studies have misspecified the form of the parking­
cost variable and the model normally estimated. After estimating the 
traditional and correctly specified models, the claim that parking taxes 
are an effective substitute for roadway pricing in influencing congestion 
is only partially supported. Aggregate elasticities for four policy-oriented 
variables are calculated. The elasticities provide a measure of the bias 
from misspecification and indicate the most effective policy variable for 
the reduction of automobile use. 

This paper is concerned with estimating the effects of 
parking costs on individual choice of transportation 
mode for trips within urban areas. It has three basic 
objectives: 

1. The determination of how to characterize the 
parking variable and incorporate it into a model of 
modal choice, 

2. The calculation of the elasticity of modal choice 
with respect to parking costs, and 

3. The determination of the way in which changes in 
one of the characteristics that determine the modal 
choices of individuals will affect the expected proportion 
of individuals taking the choice being considered. 

(The third objective is implemented by examining the 
,u!:lu in 111hir-h f'lh':lnO'AC! in inrlhrirl11!:1l f'lh!:il"'!:lf'ltA'f"iC!tiPC! !:If-
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feet the mean of the distribution of population probabili­
ties [cf. WestL'1 (11)] }. 

The first section introduces a model of individual 
choice of transportation alternatives that treats parking 
as a commodity, the demand for which is derived from 
the choice of the automobile as the transit mode, The 
second section describes the data and the implications 
of this model for the structural forms of the estimating 
equations. The third section presents the empirical 
results for an application of this model to data for 
Toronto. The fourth section presents the derivation of 
the elasticity of modal choice with respect to instrumental 
variables and empirical results for aggregate and in­
dividual elasticities. 

BASIC MODEL 

The variable to be explained is the individual's choice 
of transportation mode (automobile versus public transit). 
The econometric model used in this paper to represent 

this binary-choice problem is derived from a choice­
theoretic framework, based on a microeconomic be­
havioral model developed by DeSerpa (2), in which in­
dividuals maximize utility in choosing among alternative 
goods and the times allocated to them, subject to income 
and time-resource constraints. In this model, the 
choice of any amount (X1) of commodity i places only a 
lower bound on the amount of time (T 1 ) the individual 
must use in consuming X1; a change in relative prices 
of either goods or times causes the individuals to sub­
stitute among goods of various time intersities and, 
therefore, to implicitly substitute among alternative 
uses of time. Others (~ ~. L ~ 10) have used similar 
theoretical approaches to demonstrate the relation be­
tween the microeconomics of choice behavior and binary­
choice economitric models. These models suggest, 
that modal choice is a function of two categories of vari­
ables, transportation-system characteristics that affect 
the money and time costs of travel and user characteris­
tics that serve as proxies for objective comfort char­
acteristics. 

Traditionally, modal-choice studies have simply added 
the costs of parking to the automobile running costs (L 
10). This procedure implicitly assumes that parking 
services and automobile use enter into the individual's 
production function in fixed proportions. It also implies 
that the decision about where to park is independent of 
rnnrl!:il ,-.hnif'P c;i,n th!:it n!:it"'kina-lnf'!:ltinn ilPPi!=:i.inn~ ~t'A ...... ._ ___ --·-----, -- ----- .r--------o ---------- ----------- --- -

unaffected by variations in time costs. 
In this paper, parking is defined as a commodity that 

is complementary to automobile trips. The individual 
is assumed to maximize a utility unction [U(C1)J, where 
C1 = F(Xi, T 1 ), subject to income and time-resource 
constraints. The explicit specification of the production 
functions that determine C1 is important for understand­
ing the role of parking use. For transit, the service 
consumed is generated by the production function 

Cy= Fy(Xy,Ty) (1) 

where Xr =transit service purchased and Tr =time spent 
in using Xr; for automobile use, the service consumed 
is generated by the function 

(2) 



where 

XA automobile service consumed, 
TA time spent in using the automobile, 
Xp parking services used, and 
Tp time spent in moving from parking facility to 

final destination. 

The consumption of parking is location specific be­
cause each location is characterized by a unique money 
and time cost and alternative parking locations are 
substitutes. The indi victual, in chaos ing his or her 
mode, is aware of some average parking cost about the 
destination point, but has some discretion with respect 
to the final location chosen. Although the individual 
faces a binary choice with respect to mode, he or she 
does not with respect to parking-location decisions. 

Changes in parking costs cause both parking reloca­
tion and modal switching. As parking prices change, 
individuals tend to reallocate their money and time 
resources to less expensive substitute commodities in 
two ways: (a) by reallocation of time and money within 
the automobile mode by changing parking locations and 
(b) by reallocation of time and money by substituting 
other modes. The former effect is not captured in 
traditional modal-choice models. 

The suppression of the parking-relocation decision 
in the traditional modal-choice models implies that 
such models will have a biased prediction of the re­
sponsiveness of changes in mode to changes in relative 
parking or modal running costs. The bias may enter in 
a number of ways. First, if parking costs are added to 
automobile running costs, one will find that, as the 
distance traveled increases, the automobile running 
costs increase and parking costs become a lower pro­
portion of total automobile costs and could then conclude 
that an increase in parking costs will have little effect 
on the modal choices of more distant individuals. 
However, the lack of effect could also be attributed to 
the increasing differential between other service attri­
butes of the two modes as distance increases. Second, 
if higher income individuals do consume more housing 
and thus tend to live at more distant locations, the 
lack of a parking-price effect may be attributed to an 
income effect rather than to a price effect. If one does 
not treat parking costs separately and stratify the data 
by income level, one cannot separate these effects. 

ESTIMATING EQUATIONS 

The general form of the equation used for estimating 
modal-choice behavioral models is 

where 

uc. 

probability of selecting mode i, 
jth transportation-system characteristic, 
and 
kth user characteristic. 

(3) 

Since the P1 are limited to the internal (O, 1) choice, the 
function f is nonlinear. 

There are alternative methods for estimating prob­
abilistic modal-choice models. The method used here 
is logit analysis (~ !!_, ~). This technique estimates the 
probability of a particular choice of mode as a non­
linear function of the explanatory variables. The rela­
tionship is assumed to be S-shaped, which is logistic 
sigmoid (i.e., the cumulative distribution function for 
the logistic). The form of the logit model is 
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P={I +exp [-G(xll}- 1 (4) 

where G(x) = linear function of explanatory variables and 
P = probability of choosing to use the automobile mode 
conditional on x. 

Logit models will not be discussed in detail here be­
cause they ai·e we ll doc umented in the literat ure (.!, !, ~. 
~ ~) . A computer pr ogram descr ibed by Nerlove and 
Press (8) was used in all of the estimations. 

The data were taken from the 1964 Metropolitan 
Toronto and Regional Transportation Study (MTARTS) 
home-interview summary. The estimates used in this 
research are based on a subsample of 515 work trips. 
The dependent variable is the probability of choosing the 
automobile for all of the equations estimated. 

The following criteria were used to select the sub­
sample: 

1. The trips originated within the boundaries of 
metropolitan Toronto; 

2. The zone of origin was the same as the home 
zone because we are interested in home-based trips; 

3. The trip destination was within the central business 
district; 

4. The mode used for the trip was either private 
automobile or public transit; and 

5. Each family had the use of an automobile, and at 
least one member of the family possessed a driver's 
license. 

From the total sample of 84 064 trips, a final sub­
sample of 3012 trips was selected. This number was 
significantly reduced to 515 trips because of missing or 
miscoded information. 

All the data used in the estimation were taken from 
the computer tape provided by MTARTS. Some vari­
ables used in the estimation were calculated from in­
formation provided by MT ARTS. 

The real-route distance was not coded. Distance 
was calculated as the straight-line distance between 
centroids of the home and destination zones. The rela­
tion between the real or route distance (D.) and the 
straight-line distance (Dsd is D" = 1.4DsL (12). 

The travel-time variable used in the model is T0 /Tr. 
The data provided information on the departure and 
arrival times of the mode used. It also provided in­
formation on the excess vehicle time at the beginning 
and end of the trip. 

The following procedure was used to estimate the 
time of travel for the mode not used for the given 
trip: A regression of the travel time on the straight­
line distance for each mode was computed, and the 
regression estimate was then used as the proxy for 
the time required for the journey to work if that 
mode is used. The regressions were computed over 
the whole sample; the results for the automobile 
mode are: 

Tc, = 0.30 + 0.037DsL, Tc2 = 0.23 + 0.038DsL (5) 

(R = 0.383 and N = 341.) 

where 

Tc 1 = total travel time by automobile (h), 
Tc

2 
= in-ve hic le travel time by a utomobile (h), 

DsL = straight-line distance between origin and des­
tination zone, 

R = correlation coefficient, and 
N = number of observations. 

The regression results for public transit are 
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Tp
1 

=0.31 +0.072DsL, Tp
2 

=0.16+0.072DsL (6) 

(R = 0.59 and N = 430.) 

where 

Tp
1 

total travel time by transit (h) and 
Tp

2 
in-vehicle travel time by transit (h). 

The t-statisties for the coefficients in Equations 5 and 
6 are shown below. 

Value t-Statistic Value t-Statistic 

0.30 9.54 0.31 12.67 
0.037 7.62 0.072 14.9 
0.23 7.27 0.16 6.06 
0.38 6.38 0.72 14.3 

The differences between Te 1 and Te 2 and between Tp 1 

and T r 2 are walking times at. t.hP. hP.ginning anrl 
ending of the trips. The constant term decreases from 
Te 1 to Te

2 
and from Tp 1 to Tp2 • The change is greater 

for transit than for automobile because the removed 
components are a larger proportion of transit. 

The small decrease from Te 1 to Tc
2 

is due to the 
discretion that the individual has with respect to 
scheduling and location. The rather high constant term 
in the equation for Tc 2 may be interpreted as the average 
effect of congestion on in-vehicle time because a large 
percentage of the sample trips were made in the peak 
periods and may also include the average time used 
looking for a parking location. 

Explanatory Variables 

The following transportation-system and user charac­
teristics were used as explanatory variables: 

Cr 
PC 

overall travel time by automobile for a given 
trip; 
overall travel time by transit for a given 
trip; 
money cost of emphasizing the automobile for 
a given trip, which are here set equal to the 
marginal (equal to the average) running costs 
of the automobile (fuel, oil, tires) per kilo-
meters traveled plus the parking fee; 
money cost of using transit for a given trip; 
parking fee paid for a given trip; 
money cost of using the automobile minus 
the parking fee (F0 = C0 - PC); 

Ei'c : ~~~lusive price of parking (parking fee plus 
time costs), \Vhich is equal to PC plus the 
marginal value of time times walking time 
from parking location to destination (the 
time component is deducted from T 0 when 
E PC is entered into the estimating equation); 

Y = personal income of the trip maker; 
A = dummy variable for age of the trip maker (1 

if age is between 20 and 55 years, 0 if other­
wise); 

sx 
SS 

= sex (1 if female, 0 if male); and 
occupation-status dummy (1 if the individual 
is a white collar worker, or a middle or 
professional manager, 0 if otherwise). 

The dependent variable is coded 1 if automobile is 
used, 0 if transit is used. 

Travel Costs 

The questions in the MTARTS survey relating to direct 
costs or money saved or lost by alternative modes were 
unusable or qualitative, which is disappointing because 
perceived cost is the relevant cost in this behavioral 
model. 

For transit riders, the perceived cost is the fare, 
but the answer is less straightforward for automobile 
users. Individuals normally purchase an automobile 
for many uses, of which work is one; hence intuitively 
it seems reasonable to conclude that individuals will 
consider only the marginal running costsof a trip. This 
includes fuel, oil, tires, and maintenance at most and 
fuel at least. (The inclusion of parking costs should 
be entered as a separate cost variable.) 

The running costs are calculated on an average auto­
mobile being driven at the average speed: 

(7) 

where 

C1 cost of ith trip, 
C average running cost of automobile [approxi­

mately 2.5 cents/km (4 cents/mile)], and 
1.4 proportionality factor relating straight line to 

real distance. 

The parking-cost variable was coded for those in­
dividuals who use the automobile, but not for transit 
riders. A parking-cost variable for that group was 
constructed from knowledge of their walking time at the 
end of their trip to their destination point, their zone 
of destination and its associated parking-rent gradient, 
and the trip purpose of the individual. 

There are a number of methods that can be used to 
construct the EPC for transit users. The method here 
was to use the longer of the average distance walked 
by automobile users in that census tract or the distance 
walked from the transit terminus to the destination 
point. This establishes an outer bound for the transit 
user. 

User Characteristics 

The MTARTS home-interview survey also provides the 
following socioeconomic information: sex, age, occupa­
tion (social status), number of wage earners, household 
income, trip purpose, travel mode, driver's license, 
number of vehicles owned or leased, and number of 
persons L'l the household and their age distribution_ 

ParkL'lg Data 

The data about parking fees and the fee structure across 
the urban area were not available from the MTARTS 
tape. This information was provided by the Toronto 
Parking Authority, City Parking Limited, and the 
Metropolitan Toronto Department of Public Works. 
These agencies provided information about hourly and 
daily rates of each parking facility and the location of 
each facility within the central business district. All 
parking data were for 1964 to be compatible with the 
MTARTS data. 

Full Price of Parking 

The vi;tlue of time for use in the full parking-price 
variable was calculated from the data set by using the 
technique developed by McFadden (6) and was 58 percent 
of the wage rate. -



Model Specifications 

Three models were specified and estimated to test the 
effects of different specifications of the effect of parking 
costs on modal choice. Model 1 

where bo, ... , bn are estimated parameters, is a variant 
of the modal-choice models used in other studies. It 
will serve as a benchmark against which the estimates 
of this data can be compared with those of other studies. 
It incorporates parking costs with the modal running­
cost variable: Because Cc = F 0 +PC, the relative cost 
coefficients can be compared with those in models 2 and 
3 in which modal money and parking costs are separated. 
Model 2 

G(x) = bo + b1Tc/TT + b1Fc/FT + bgPC/FT + b3A + b4SX 
+bsSS+b6Y (9) 

separates parking costs and modal running costs. This 
permits examination of the separate influences of changes 
in modal money costs and changes in parking fees on 
modal choice and the determination of whether or not 
individuals capitalize money costs at the same rate 
despite differences in the service purchases; i.e., 
whether b1 s ba. It also allows comparison of the rela­
tive magnitudes of the relative cost and relative fare 
variables. If b2 > b1 and b8 is significant, the effect of 
a change in parking costs measured in model 1 will be 
upwardly biased. Model 3 

G(x) = bo + b1 Tc/TT + b1Fc/FT + b9EPC/FT + b3A + b4SX 
+b5SS+b6Y (10) 

is a variation of model 2 that incorporates an inclusive 
parking price, a formulation suggested by McFadden (6). 
EPC combines the money and time costs associated with 
parking. The time element associated with the terminal 
end of the trip, which was previously included in the 
overall trip time, is now included in the full price rather 
than in T0 • This permits an estimation of the effects of 
changes in parking fees on the full price of parking and 
a comparison of the coefficient estimates of models 2 
and 3. A priori, one would expect that bg < ba and that 
the elasticities calculated from these variables would 
have the same relation because parking costs as a 
proportion of full costs decrease with distance. 

EMPIRICAL RESULTS 

The parameter estimates of models 1, 2, and 3 are 
given in Table 1. The estimates of all three models are 
of the expected signs and the magnitudes agree with 
those of previous modal-choice studies. The likelihood 

Table 1. Parameter estimates using binary logit 
models. Explanatory 

Parameter Variable 

Constant 
(automobile 
preference 
errect) 

TJT, 
CJC, 
FJF, 
PC/F, 
EPC/F, 
A 

~~I 
y 
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ratio, -2 log A, tests the hypothesis of dependence be­
tween the dependent and explanatory variables. The 
values of the likelihood ratio for all three models in­
dicate that the null hypothesis of independence between 
dependent and explanatory variables can be rejected. 
Because the focus of this paper is on the relative cost 
and parking variables, only these will be discussed. 

The values of b2 and b1 differ significantly when 
parking costs are and are not included in modal running 
costs. The high estimate of b2, the coefficient of the 
relative-cost variable (in which parking fees are in­
cluded), would seem to indicate that, for a given change 
in relative modal costs, the effect on modal switching 
will be perceived to be the same regardless of the source 
of the change in relative costs. The low estimate of b1, 
the coefficient of the relative fare variable, and the 
relatively higher values of b8 and bg, the coefficients of 
the parking costs variables, indicate that changes in 
relative modal fares have a negligible effect on modal 
switching, but changes in parking costs have a higher 
effect on inducing individuals to switch to transit. If 
one attempts to measure the effects of changes in park­
ing costs on modal choice through the relative-cost 
variable, the results will be upwardly biased. 

The sign of the coefficient for the parking variable 
indicates that parking services and automobile use are 
complements in the case of the work trip. These two 
services, parking and automobile use, may well be 
substitutes in the non-work-trip case in which variable 
parking duration is allowed. The magnitudes of b8 and 
bg indicate that individuals are relatively more respon­
sive to changes in parking costs than to changes in rela­
tive modal fares in their modal-choice decision. How­
ever, the effect of changes in parking costs on auto­
mobile use is not as great as some have previously 
believed. This is because changes in parking costs 
allow parking relocation as well as modal switching 
effects. 

The value of bg is expected to be less than that of b8 
because changes in either parking fee or time costs will 
cause changes in full price according to its' proportion 
of full price. 

Table 2 gives the results of estimates of models 1 
and 2 when the data are stratified by income class. The 
relative magnitudes of the relative cost, relative-fare, 
and parking-costs variables are similar to those shown 
in Table 1. 

ELASTICITY OF MODAL CHOICE 

A measure of the sensitivity of the change in the prob­
ability of choosing the automobile with a change in one 
of the explanatory variables is provided by the point 
elasticity. The elasticity may be defined as 

~ = (ilE[P] /ilXi) (Xi/E[P)) (11) 

Model 1 Model 2 Model 3 

Value t-Statistic Value t-Statistic: Value t-Statistic 

1.84 5.87 1.44 6.51 1.07 6.14 

-2.00 8.30 -1.73 7.05 - 1.63 7.46 
-0.159 4.09 

-0.0 13 1.4 6 -0.021 1. 87 
-0.244 6.8 1 

-0.205 6.12 
0.47 3.93 0. 396 3. 15 0.419 3.36 

-0.85 6.00 -0.84 6.16 -0 .85 6.43 
-0 .02 0.19 0.049 0.36 0.008 0.068 
0.096 3.07 0.103 3.13 0 .167 4.82 

Notes: Sample size= 515; dependenl variable is automobi le transit choice (0 if transit is used, 1 if 11u1omobile is used) ror the work 
trip; -2 log~= 246 9, 284 7, and 275.1 for models 1, 2, and 3 respeclively, 
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Table 2 . Parameter estimates by income group. 

Constant 
(Automobile 

lncome Preference Errectl Age Sex 
Class 
($ 000) -2 log A Value t-Statist ic: Value t-Stalistic Value t-Stat istic 

4 to 6 42,01 3.24 4.52 0,238 0. 818 -1 ,12 3. 14 
6 to 8 39.65 4,03 4.61 0.027 0.091 -1.01 3. 11 
8 to 10 42.23 2. 65 4.25 0 ,438 1, 53 -0.61 1.99 
>10 27. 29 6.06 4.08 1.06 2. 75 -1.49 3. 37 
4 to 6 43.25 3.38 4.54 0 ,295 1,04 -1.09 3. 22 
6 to B 46. 57 3.66 4.09 0 ,156 0.575 -0 .97 3,34 
6 to 10 46. 56 2.65 3.91 0 .443 1.65 -0.78 2.34 

>10 35.23 4.39 4. 15 1.03 3, 12 -0.93 2.85 

wher e ; =elasticity of cho ice of mode with respect to 
variables Xi and E[P] =expected probability of choosing 
the automobile. 

One can simplify this expression by substituting 
E[P] = exp G(X)/ [1 +exp G(X)J and differentialing. Then 

~ = ( a{exp G(x)/[ I +exp G(x)l} /3G(x)) x aG(x)/3X; x 

[X;/expG(x)]/[l + expG(x)] 

={expG(x)/[l +expG(x)J 2} x b; x [X;/expG(x)]/[l + expG(x)] 

= (I - E[P])b;X; (12) 

; becomes intractable if the transportation-system 
characteristics are expressed in terms of differences 
because at some point X1 may be zero. The elasticity 
is a linear function of the Xi's and is proportional to 
the probability of choosing the other mode. 

The elasticities may be calculated in three different 
ways. The probability may be estimated for a specific 
individual by using individual values of the explanatory 
variables. The elasticity would then be estimated by 
Equation 12. The second method, which is referred to 
below as the individual elasticity (;), is to estimate the 
logit function across individuals for the set of ex­
planatory variables. The probability is then estimated 
from the sum of the parameter estimates times the mean 
value of each explanatory variable, given the distribution 
of characteristics over the population. The expected 
pr obability (E [P]) is then us ed in E quation 12 to det e1· ­
mine ; . T he third method, developed by Westin (11), 
is to determine the probability fo1• each catego1·y or 
class within the distribution for each explanatory vari­
able. These probabilities are then aggregated, and E[P] 
is determined from these weighted probabilities and used 
in Equation 9 to estimate ;', which is referred to as the 
aggregate elasticity. Westin has shown that the difference 
between (~)the individual elasticity and E.' is determined 
bytherati~E[P)(l - ECP))/ E[P] (1 - P). The difference be-
t ween ~ and ;' occurs because ; is determined from the 
mean value of the explanatory variables, which are 
aggregated, and the probability P is then determined, but 
;' is the mean of the aggregate of probabilit ies which 
are estimated for each clas s in the dis tr ibution of char­
acteristics. One would expect ; and;• to be very close . 

The table below gives both the individual and the 
aggregate elasticities for CclCr, F 0 / Fr, PC, and EPC. 

Elasticity Cc/CT PC EPC 

-0.34 -0.068 -0.38 -0.25 
-0.29 -0.059 -0.31 -0.19 

The decrease in the relative-cost elasticity when park­
ing costs are and are not included, i.e., in Cc/ Cr and 
Fe/ Fr respectively, demonstrates the nonresponsiveness 
of modal switching to changes in transit fares. It is 
also evident that the relative-cost elasticity upwardly 
biases the expected change in mode when relative 

T,/T, F,/F. C,/C, PC/F, 

Value t-Statislic Value l-Statislic Value t-Statistic Value t-Statistic 

-3 .91 4.63 -0 .041 1.22 -0.652 1,49 
-3.66 3.99 -0.037 Ll2 -0 .259 3.59 
-2 .24 3.48 -0 .069 1. 17 -0.237 3.32 
-4.41 4.47 -0.025 1. 32 · 0 .291 3.18 
-3.88 4.01 -0 .091 1.48 
-3. 58 4.29 -0.178 1,88 
-2 .46 3,90 -0 . 17 2.21 
-4 ,09 5.09 -0.283 2.02 

running costs change but downwardly biases the expected 
change in modes when parking fees change. The 
parking-fee elasticity is larger than both the relative­
cost and relative-fare elasticities, but is somewhat 
smaller than previously suggested (!). 

CONCLUSIONS 

The models developed and the empirical results obtained 
in this research point to the following conclusions: 

1. The form of the parking-cost variable is crucial 
if one hopes to obtain unbiased estimates of the effects 
of charges in parking costs on modal choice. The re­
sponse to modal switching will be overestimated if one 
simply adds the parking costs to the modal running costs. 
The parking variable was entered in the estimations in 
two forms. The parking-cost variable (PC) allows one 
to estimate the effects on modal choice of any changes 
in the many costs of parking. The full-price variable 
for parking (EPC) is somewhat more flexible than PC 
because it allows one to estimate the effects of a number 
of parking-policy changes, whether they relate to changes 
in parking fees (such as a parking tax) or changes in 
time costs (such as parking restrictions). 

2 . The sign of the coefficient of the parking variable 
indicates that parking services and automobile use are 
complements for the work trip. The relatively low 
elasticities, especially in those of the EPC, can be 
attributed to the fact that changes in parking costs re­
sult in parking relocation as well as modal switch­
ing. It is only those individuals who are on the 
margin of relocating or switching modes who tend to 
switch. These individuals are generally those who have 
located some distance from their destination point and 
who represent a small proportion of the total parking. 
This point is more precisely captured in the EPC vari­
able. 

The elasticity of the probability of automobile use 
with respect to parking costs indicates that a 10 percent 
increase in parking fees will result in a ;j .1 percent 
decrease in automobile users as a percentage of current 
automobile users. If automobile and transit uses are split 
50 :50 for the work trip, 3.1 percent of the automobile 
users will switch modes. If this split is 75 percent 
automobile and 25 percent transit, a change in parking 
costs may cause a 10 or 15 percent increase in transit 
use as a percentage of current transit use . Such large 
changes would require a coordinated transit investment; 
i.e., a parking pricing policy. 

If a parking authority attempts to introduce parking 
fee changes of a local nature, i.e., at one or two points, 
the effect on automobile use will be negligible because 
the affected individuals will simply relocate. 

3. The use of the technique suggested by Westin for 
making aggregate predictions from individual data leads 
to calculated aggregate elasticities that are slightly 
smaller than the individual elasticities. These elas-



ticities are valid only for small changes in the explan­
atory variable . 
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Analysis of Predictive Qualities of 
Disaggregate Modal-Choice Models 
Thomas E. Parody, if Charles River Associates, Cambridge, Massachusetts 

The results of a study that examined the predictive accuracy and ability 
of a set of disaggregate, behavioral demand models of modal choice are 
presented. Although other issues such as sample size, value of time, de­
mand elasticity, and policy predictions are discussed, the primary objec­
tive was to test the validity of disaggregate logit models in forecasting. 
The analysis is structured around a carefully designed before-and-after 
study of individual travel behavior as affected by significant, short-term 
changes in the transportation system. Various specifications of disaggre­
gate modal-choice models are calibrated by using as input data the actual 
responses of individuals from the before phase of the travel-behavior 
surveys. This was followed by a series of prediction and validation 
phases by using the after data that was generated by changes in the trans­
portation system. Because the actual modal shares are known from the 
longitudinal data, it is possible to assess accurately the predictive quali­
t ies of the calibrated logit models. The results of the empirical analysis 
ind icate that disaggregate models, especially those that include a full 
range of transportation level-of-service and socioeconomic variables, can 
be used to predict future behavior with acceptable levels of performance. 

Traditionally, disaggregate demand models have been 
evaluated on the basis of how well they calibrate (or of 
how well they replicate existing behavior) rather than 
on the ir ability to for ecast adequately changes in tr avel 
de mand. Such analyses are sever e ly limited when t he 
sets of data that were used in the model calibration are 
also used for its validation. As expressed by Pr att (14), 
"there have been all too few rigorous comparisons of­
modeled travel demand with actual before-and-after 
data." Yet, if the primary function of a modal-choice 
model is to predict the impact of changes in the trans­
portation system on travel behavior, then an essential 
characteristic of such a model is its ability to predict 

accm·ately. However , because of data restrictions, it 
is generally not possible to evaluate the accuracy of 
forecasts obtained from disaggregate demand models. 

An opportunity to evaluate and document t he capa­
bilities of disaggregate models arose when the University 
of Mas sachusetts at Am he1·st was se lected to par t icipate 
in a demonstration of a free bus ser vice accompanied 
by incr eases in parking fees a nd associated pai·ldng re­
strictions. The demonstr ation, which was funded by a 
g1·ant from the Ur ban Mass Transpor tation Administra­
tion, involved expanding a limited, 3-bus, campus 
shuttle system by the addition of 10 new buses so that 
commuter trips could also be served. Later, the fleet 
was expanded to 16 vehicles by the purchase of 3 more 
buses. 

The purpose of the demonstration was to determine 
the extent to which the availability of a free, fairly con­
venient bus service, coupled with the introduction of 
r estx·ictive parking policies and increased par king prices, 
might cause a shift away from commuting by automobile 
to commuting by bus. Later, during the oil embargo 
and the accompanying ener gy cris is, it was apparent 
that further changes in travel patterns and behavior were 
occurr ing. Thus, although not part of the original scope 
of the work, the effect of rapidly increasing gasoline 
costs was introduced into the study framework, The 
main focus of the demonstration, however, was on the 
institution of an attractive and convenient free bus ser­
vice · extensive data colle.ction and a car efully de­
lineated experimental design centered around changes 
in the parking policy. 
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To determine the impact of each change in the trans -
portation system, the demonstration and data-collection 
phases were divided into four separate events. A before 
survey of travel patterns was conducted during the 
semester preceding the demonstration (i.e., survey 
period 1, the fall 1972 semester). Thereafter, observa­
tions of behavior and user characteristics were made: 
(a) after the introduction of the expanded free bus ser­
vice (i.e., survey period 2, the spring 1973 semester), 
(b) after the introduction of changes in parking prices 
and regulations (i.e., survey period 3, the fall 1973 
semester), and (c) during the approximate peak of the 
energy crisis (i.e., survey period 4, the spring 1974 
semester). 

To monitor travelers' responses to changes in the 
transportation system, telephone travel-behavior sur­
veys were conducted that involved reinterviewing of the 
same sample of individuals over time and collecting in­
formation on the characteristics of alternative modes. 
Only individuals associated with the university (i.e., 
students, staff, and faculty) were surveyed. The data 
obtained from these longitudinal or time-series surveys 
were left in their disaggregate form. 

To evaluate the accuracy of model forecasts at least 
two sets of data are required: one to calibrate the model 
and the other(s), preferably made after some quantifiable 
change to the transportation system, to test the predic­
tion. This is seldom possible and the model and the 
forecasts usually must be tested on the same data set 
(15). In this study, disaggregate modal-split models 
were calibrated with data from one time period and 
validated with data from subsequent time periods. By 
using a longitudinal data base that was generated by 
planned transportation changes over time, the calibrated 
models could be used to forecast changes in modal 
choice that should result from distinct short-range 
changes in the transportation system. Because the 
actual amount of modal shifting was known, the forecasts 
obtained from the model could be precisely evaluated. 
A favorable evaluation of the model in prediction implies 
a properly specified and calibrated model and increases 
confidence in it. 

MODEL 

The logit form was chosen as the statistical tech­
nique to be used in calibrating the models. Detailed 
descriptions of this model form are given elsewhere 
(!, ~ E_). The following equations express the form 
of the multinomial logit model: 

P(m:M1) = expG(m, tf m~l expG(m', t) (I) 

where 

P(m:Mt} probability that traveler t, out of the total 
sample of T travelers, will select mode m 
from the M set of available modes and 

G(m, t) = utility of mode m to traveler t. 

G(m, t) can be expressed more specifically in the follow­
ing form: 

(2) 

where 

z.,i = vector of variables describing the level-of­
service characteristics of mode m for traveler 

t (e.g., time and cost), 
S, = vector of socioeconomic characteristics for 

traveler t (e.g., income, sex, and automobile 
ownership), 

0k KXl vector of coefficients (01, 02,. • ., 0k), and 
X.1• KXl vector of variables (x.ti. X.12, •• ., x.tk ). 

Because the primary purpose of the free bus demon­
stration project was to assess the diversion of travelers 
from automobile to bus that would result from the im­
plementation of free bus service and increased parking 
fees (and later increased gasoline costs), only the auto­
mobile and bus modes are considered here. For this 
two-mode situation, the model can be rewritten as 

P(a) =exp lh X.tk/(exp Ok Xatk +exp Ok Xb1iJ 

= 1/[1 +exp-Ok(X.1k-Xbtk) 

or 

Variables Considered in the Model 

(3) 

(4) 

The selection of variables was based on a combined 
analysis of those typically considered in previous modal­
choice models [Parody (12)] and those that were included 
in the telephone-survey questionnaires conducted during 
the free bus demonstration. They are described in 
Table 1. 

Data Selection 

The first task in selecting the sample population for use 
in the analysis was the identification and eventual dis­
carding of improper data. For example, the main pur­
pose of this study was to evaluate the choices travelers 
will make when there are changes in the transportation 
system. Therefore, all captive mode users were 
eliminated from the sample. The individuals eliminated 
included those for whom bus service was not available 
(as determined by their proximity to the nearest bus 
stop) and those who responded negatively to the automobile­
availability question, By using these criteria, about 70 
percent of the total sample population were considered 
to be choice automobile or bus users. 

Telephone survey 2, taken toward the end of the first 
semester of the free bus operation (i.e., spring 1973 ), 
was chosen as the initial data base for calibration, from 
which all forecasts and predictions were to be made. 
Thus, for calibration purposes, survey 2 was the before 
time period, and survey 3 (after the introduction of higher 
parking fees) was the forecasted time period. Conse­
quently, in selecting the individuals to be included in the 
sample, it was important to ensure that the respondents 
answered at least surveys 2 and 3 and that they could be 
considered choice travelers in terms of the automobile 
or bus modes. 

Initially, it was intended that only the reported re­
sponses of the individuals would be used as inputs to the 
model. However, it soon became apparent that some 
individuals did not record some data (usually travel times) 
for the alternative mode. This was almost exclusively 
limited to those for whom the bus was the alternative 
mode: Very few bus users did not estimate automobile­
drive time. Of the approximately 400 individuals sur­
veyed in each time period, 91 responded completely to 
all of the appropriate questions. These individuals com­
prise data set 1-1. 

To enlarge the sample size, estimates were made for 
those automobile users who did not report bus travel­
time information during the survey. Because a large 



fraction of the sample population lived in approxi­
mately 15 apartment complexes surrounding the uni­
versity, the automobile and bus travel times reported 
by those individuals who resided in the largest of the 
apartment complexes were analyzed, and the results of 
this analysis were used as a guide in estimating omitted 
bus trave 1-time data. Then, the data on the individuals 
residing in apartment complexes, for whom it had been 
necessary to estimate missing responses to the bus 
travel-time question, were combined with the previous 
data set to form data set 1-2. The use of this procedure 
increased the sample size to 128 individuals. 

For individuals not residing in apartment complexes, 
estimates of bus travel times were based on residential 
location and, to the extent possible, on data generated 
from nearby apartment complexes. The sample size of 
this third data set (i.e., data set 1-3) was 164. 

These three data sets were used to evaluate the 
stability and statistical reliability of the model vari­
ables as a function of increasing sample size. The 
three data sets also were used to test the predicting 
capability of models, each drawn from the same popula­
tion, but based on various levels of formulated data be­
cause the first data set was based entirely on the re­
sponses of the surveyed individuals, the second data set 
contained the best manual estimation of some sample 
points, and the third data set contained additional esti­
mates of travel time values. 

Model Calibration 

The first s pee ification of model variables was limited to the 
time and cost differences between automobile and bus. By 
using this model specification as a starting point, other 
combinations of variables were then used to test a number 
of models. The coefficients (estimated on the basis of max­
imum likelihood techniques), t-statistics, and levels of 
significance (Lal)for each variable are given in Table 2 
for the three-variable model specification and in Table 3 
fortheseven-variablemodelspecification. Other sum­
mary statistics are given in Table 4. 

From a priori knowledge of travel behavior, it ap­
pears at first that all of the variables except sex have 
the correct sign. Past studies have usually indicated 
either that stratifications by sex cannot be used to dif­
ferentiate modal preference (10) or that females, on a 
relative basis, select the bus mode more often than do 
males (5, 16). However, the sex-variable sign given in 
Table 31ndicates that males select the bus more fre­
quently than do females. A closer examination of data 
set 1-3, for example, shows that males are split 58 
percent automobile users and 42 percent bus users, 
and females are split 79 percent automobile users and 
21 percent bus users. Thus, in the Amherst-University 
of Massachusetts area, males, on a relative basis, are 
about twice as likely to choose the bus mode than are 
females. (All females included in the sample must have 
responded affirmatively to the question on automobile 
availability.) 

Statistical Reliability 

An initial comparison of the magnitudes of the esti­
mated coefficients for the three models in Table 3 
shows a high degree of stability. A more exact way 
to examine both the stability and statistical reli­
ability is to compare the relative magnitudes of the 
standard error terms for the various coefficients. 
As expected, this comparison (12) shows that the 
standard errors decrease and that all variables, ex­
cept possibly the sex variable, approach a fairly 
stable condition as the sample size increases. As 
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in other studies (3), travel time is the most stable 
coefficient. -

From this analysis, it can be inferred that there will 
be relatively high standard errors if the sample size is 
too small, even if it is based entirely on the responses of 
individuals. But what can be said about the size of the 
sample necessary for calibration? Watson (16) has re­
ported, for example, that 100 data records should be 
the absolute minimum required for calibration. Ben­
Akiva and Richards (3) concluded that a desirable sample 
size is between 300 and 400 observations and that at 
least 600 observations are desirable if comparisons are 
to be made between two independent random samples. 
From the changes in standard error as a function of in­
creasing sample size given here, it appears that most 
coefficients (except sex) appear to stabilize at sample 
sizes of 175 to 200 observations. [Additional details 
have been given by Parody (~).] 

MODEL PREDICTION AND VALIDATION 

Test 1 

Possibly the best way to examine the efficacy of a model 
is to evaluate its ability to predict changes in travel be­
havior that occur as a result of actual changes in the 
transportation system. To make such an evaluation, all 
three data sets and the three- and seven-variable specifi­
cations of the models were used for the first before­
and-after prediction analysis. The before case was 
represented by the period of the expanded free bus ser­
vice and regular parking charges (i.e., survey period 2). 
The after case was represented by the time period fol­
lowing the introduction of significantly higher parking 
fees (i.e., survey period 3). 

In the before period, a flat $5/ year parking fee was 
charged for all lots. In the next time period, a con­
venience fee based on the approximate location of the 
desired lot with respect to the center of the campus was 
charged in addition to the $5 base fee. Three categories 
of convenience fees were established: (a) core lots at 
$36.00/year (except $50.00 for one lot adjacent to the 
administration building), (b) edge lots at $12.00/year 
and (c) peripheral lots at $0.00/year. (Shuttle bus ser­
vice was provided to these outlying parking lots.) It was 
proposed originally that parking fees be increased up to 
$75.00, with reserved parking spaces prices at $125.00 
but, because of strong, adverse, and vocal reactions by 
students and union employees, the rates of increase 
were scaled down. 

From the revenues and capacity figures for each lot, 
it was determined that parking fees increased an average 
of $21.00. If it is assumed that most spaces are pur­
chased on a 9-month basis, this represents an average 
daily increase of 11 cents. Thus, for the after analysis, 
data were generated by adding 11 cents to each in­
dividual's automobile cost. The calibrated model coef­
ficients, which were assumed to remain constant, were 
applied to the vector of forecasted variables for each 
traveler to generate new probabilities of modal selection. 
Finally, modal shares were developed by summing 
choice probabilities across all individuals in the data 
set. The use of this forecasting procedure makes the 
analysis free from aggregation bias. 

Table 5 gives the actual and predicted modal shares and 
the percentages by which the predicted values differed from 
the actual ones for both the three- and seven-variable models 
for the three data sets. For example, the percentage 
error associated with data set 1-1 with the three-variable 
specification is (34. 7 - 28.6 )/28.6, or an overestimation 
in the change of automobile use of 21.5 percent. 

Table 5 shows that the seven-variable model specifi-
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Test 2 cation performs better in prediction than does the three­
variable model. Similarly, models calibrated with data 
set 1-3 perform better than models calibrated with data 
sets 1-1 and 1-2 in terms of their accuracy in forecasting 
modal s witching. This conclusion is consistent with the 
statistical stability results given above. 

The data sets for the first prediction test were compiled 
on the basis of surveys of travel behavior before and 
after the parking-fee increase. The second prediction 
test extended the time -series analysis by one more 
period to analyze , by using the disaggregate logit model, 
those changes in modal split that resulted from the in-

Table 1. Description of variables. 

Variable 

Const 
BusW 
FOS 

TimeDif 
CostDif 

Sex 
SE con 

Description 

Modal constant (automobile = 1, bus = 0) 
Walk time at origin to nearest bus stop (min); automobile walk time at origin assumed to be 0 
Level-of-service variable representing frequency of bus service [low service frequency (headways of aboot 20 min) = 1, high service 

frequency (headways of about 10 min)= OJ 
Total travel time by automoblle minus total travel time by bus (min) 
Total travel cost by automobile minus total travel cost by bus(¢); in general terms can beexpressedas A1 x automobile fixed cost+ A2 

x automohile 01>C.rn.tlng cost + A't >< (parking + toll) - transit fare• 
Binary variable (m<tle • -1, lomnle = 0) 
Occupation status of traveler (graduate student= 1, undergraduate student= 2, nonprofessional staff= 3, professional staff= 4, 

faculty = 5)' 

8 In th is application, A1 , isassumedto beO, which is common to most analyses [except Wigner (.16:)]; operating cost is based on link trip distance x 3 rt/km (5r,!/mile} and A2 is assumed to be 1; 
A3 is also assumed to be 1 (Q_). but drops out in calibration b~use parking cost was 0 I Wigner (1.§.) assigns A3 a value of 0,5; limited empirical evidence(_§_) suggests that travelers are more 
responsive to a unit change in parking cost than to a unit change in operating cost; equivalent observation for in-vehicle and out-of-vehicle times is given by Krah and Domencich (8)) 

b Variable may also be regarded as a surrogate for income. ~ 

Table 2. Coefficients and levels of 
significance for three-variable model 
specification. · 

Table 3. Coefficients and levels of 
significance for seven-variable model 
specification. 

Data Set 1-1 Data Set 1-2 

Variable Coefficient t-Statistic LOS Coefficient 

Const -1.215 7 -2.246 0.03 -0.187 19 
TimeDif -0.478 65 -4.875 0.01 -0.463 71 
CostDif -0.060 25 -1.89 0.06 -0.063 08 

Note : N :: 91, 128, and 164 for dala sets 1-1, 1-2, and 1.3 respectively . 

Data Set 1-1 Data Set 1-2 

Variable Coefficient t-Statistic LOS Coefficient 

Const -4.169 7 -2.6475 0.01 -2.970 7 
Time DH -0.544 32 -3.9813 0.01 -0.521 06 
CostDif -0.121 87 -2.1518 0.04 -0.126 93 
BusW 0.473 57 1.5034 0.14 0.550 86 
Sex 0.921 48 1.1987 NS 0.788 41 
FOS 2.096 3 1.932 0.06 1.820 2 
SEcon 0.640 19 1.9725 0.06 0.571 03 

Note: N = 91, 128, and 164 for data sets 1-1, 1-2, cind 1-3 respectively, 

Data Set 1-3 

t-Statistic LOS Coefficient t-Statistic 

-0.469 67 NS - 0 .007 252 -0.018 052 
-5 .365 3 0.01 ·0.505 10 -6 .019 7 
-2.433 9 0.02 -0.070 68 -2.797 20 

Data Set 1-3 

t-Statistic LOS Coefficient t -Statistic 

-2 .6309 0.01 ·2.606 5 -2 .4905 
-4.5335 0,01 -0.556 43 -4.9055 
-2.9958 0.01 -0.141 73 -3.4131 
2.1263 0.03 0.462 71 2.0422 
1.3813 0. 16 0.942 25 1.6875 
2.337 0.02 1,958 7 2.586 
2.5648 0.01 0.579 17 2.6290 

Table 4 . Summary statistics for three- Three-Variable Model Seven-Variable Model 
and seven-variable model specifications. 

variable Data Set 1-1 Data Set 1-2 Data Set 1-3 Data Set 1-1 Data Set 1·2 Data Set 1-3 

-2log~ 53.1637 59 .4995 97 .3101 72.4601 87.7606 131.6842 
LOS 0.01 0.01 0.01 0.01 0.01 0.01 
L*(Ol -63.076 -88.723 -113 .676 -63 .076 · 88.723 -113.676 
L*@ -36.495 -58 .973 -65 .021 -26.841 -44.842 -47.834 
p' 0 4~ 0.34 0.43 0.57 0.49 0.58 
p' 0.40 0.32 0.42 0.53 0.47 0.56 

Note: N = 91, 128, and 164 ror data sels 1-1, 1-2, and 1-3 respectively , 

Table 5. Disaggregate pred ictions for the three and seven-variable model specifications. 

Three-Variable Madel Seven-Variable Model 

Actual Automobile Bus Automobile Bus 

Survey Automobile Difference Difference& Difference• Difference 
Data Set Period (%1 Bus(%) (%) ~ (%) (%) (%) 

1-1 2 42.9 57.1 42.9 57.1 42.9 57.1 
3 28.6 71.4 34.7 21.5 65.3 8.6 31.5 10.40 68 .5 4.2 

1-2 2 57.8 42.2 57 .8 42.2 57.8 42.2 
3 37.5 62.5 47 .2 25.8 52.8 15.5 42.0 12.1 58.0 7.2 

1-3 2 65.9 34.1 65.9 34.1 65.9 34.1 
3 48.8 51.2 55.6 13.9 44.4 13.2 50.9 4.2 49 .1 4.0 

1 Based on actual modal shares. 

LOS 

NS 
0.01 
0.01 

LOS 

0.02 
0.01 
0.01 
0.05 
0.10 
0.01 
0.01 



Table 6. Coefficients Variable Coefficient t-Statistic 
and levels of 
significance for data Const -3.845 5 -3.0566 

set 2 and six·variable TlmeDif -0.578 48 -3.9406 

model specification. CostDif -0.150 97 -2.5985 
Busw 0.676 72 2. 7409 
FOS 2.163 3 2.0849 
SE con 0.632 39 2.3275 

Table 7. Disaggregate predictions for the six·variable model 
specification and data set 2. 

Predicted 

Actual Automobile Bus 

Survey Automobile Bus Difference Difference• 
Period (%) (%) (%) % (%) 

2 68 .3 31.7 68 .3 31.7 
3 52 ,9 47 .1 53. 1 0.4 46,9 -0.4 
4 48.3 51.7 46 .0 -4.8 54 .0 +4.5 

" Based on actual modat shares~ 

LOS 

0.01 
0.01 
0.01 
0.01 
0.05 
0.03 

crease in gasoline prices after the embargo of oil by the 
Organization of Petroleum Exporting Countries. 

The before time period was identical to that used in 
the first prediction test. The two after cases were 
represented by the periods following increases in park­
ing fees and in gasoline costs respectively. In selecting 
the sample for data set 2, the procedures that were used 
to establish the data sets in the first prediction tests 
were followed with the exception that individuals had to 
respond to at least surveys 2, 3, and 4 to be included 
in this new data set. With this procedure, a sample 
(containing both actual and estimated responses ) of 104 
individuals was selected for the second prediction 
analysis. About one-third of the individuals who had 
responded to surveys 2 and 3 could not be reached at 
the time of survey 4 or had made modal choices other 
than automobile or bus. 

To keep the evaluation as independent as possible 
from the first prediction analysis, logit models were 
again calibrated for data set 2 [a cross-prediction test 
in which models were not recalibrated can be found in 
Parody (12)] using the same seven-variable model 
specification. For this model, all variables (except 
sex) were significant at appropriate confidence levels. 
Therefore, a model was calibrated without the sex 
variable; its coefficients are shown in Table 6. All six 
variables are significantly different from zero at the 
0,05 level or better. Summary statistics for the entire 
model are given below . 

Term Value 

-2 log A 86.972 
LOS 0.01 
L *(0) -72 .087 
L *(O) -28.602 
p2 0.60 
µ2 0.58 

Forecasts were then made with this calibrated model 
for two different time periods. The first forecast, to 
the period represented by increased parking fees, fol­
lowed the procedures outlined for the first prediction 
test. For forecasts into the second period, it was first 
necessary to compute the amount that gasoline prices 
(and thus automobile costs) had increased over the base 
t ime period. In the Amherst area, the pre-embargo 
pr ice of gasoline was about 10.6 cents / L (40 cents/gal). 
During the embargo, it incr eased to approximately 
14.5 cents / L (55 cents /gal ), an increase of 37.5 percent. 
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[A study of the embargo period in the Chicago area 
calculated that gasoline prices there increased more 
than 40 perce nt (13) and, in the New York-New Jersey 
r egion, gasoline prices increased 35 to 40 percent (11).J 
On the assumption t hat most drivers consider only the 
operating cost of t raveling, the 3.1 ce nts / km (5 cents/ 
mile) driving cost used in calibration was increa.s ed by 
37.5 percent to 4.3 cents/km (6.9 cents/ mile). T his new 
operating cost, in addition to the increased parking cost, 
was used to determine the automobile traveling cost for 
the second prediction period. This new vector of data 
for each individual was used with the calibration coef­
ficients to give a second set of new probabilities and 
their resulting modal splits . Table 7 gives the actual 
and forecasted modal shares and the percentage by which 
they differed from each other for the before and the two 
after time periods. 

For the period representing increased parking fees , 
the predictions obtained from the logit model were ex­
ceptionally accurate. For the period representing in­
creased gasoline prices, the model overpredicted the 
amount of switching away from the automobile mode by 
about 5 percent. Given the large changes that occurred 
in modal splits from the base time period, the errors 
associated with these predictions were considered to 
be very reasonable . 

In terms of the way in which modal use changed over 
time, two points deserve note. First, as was also shown 
by the first prediction test, a fairly significant number 
of automobile users switched to the bus mode after the 
introduction of higher parking fees. Second, the higher 
gasoline and driving costs caused by the oil embargo 
caused only a minimal amount of modal switching. For 
example, for data set 2, automobile users were 68.3 
percent of the sample population during the base period; 
this decreased to 52. 9 percent after the parking fee was 
increased, and to 48.3 percent during the embargo. 

Other studies have arrived at comparable results 
with regard to changes in travel behavior during the 
embargo. For example, a Northwestern University 
study showed that the increased price of gasoline had 
little effect on the work-trip traveling habits of in­
dividuals (13). A more important factor was the avail­
ability of gasoline . 

ADDITIONAL ANALYSIS 

Value of Time 

For the model calibrated with data set 1-3, the implied 
price of time was $2 .36/ hour. The use of the identity 
given by Kendall and Stuart (8) for the ratio of two 
random variables gives a standard error of estimate of 
$1.05/hour. Consequently, the value reported is sig­
nificantly different from zero at the 95 percent confi­
dence level. 

El asticity 

To make comparisons with other studies or to examine 
the sensitivity of model variables, it is useful to con­
sider the elasticity of demand with respect to price and 
time. 

Direct and cross elasticities of demand were com­
puted based on the aggregate elasticity identities derived 
for logit models by using data set 1-3 [see Parody (12)1 
The automobile time and cost elasticities given below 
compare favorably with elasticities reported elsewhere. 



56 

Aggregate Elasticity 

Direct 
Automobile cost 
Automobile time 
Bus time 
Bus walk 

Cross 
Bus with respect to automobile time 
Bus with respect to automobile cost 
Automobile with respect to bus time 
Automobile with respect to bus walk 

Value 

-0.2772 
-0.8622 
-2.0679 
-0.322 

1.6993 
0.5346 
1.0722 
0.1670 

For example, in a study by Charles River Associates 
(CRA) on free transit (9) the automobile-cost (line-haul) 
direct elasticity for work trips was found to be -0.49, 
and the automobile-cost elasticity determined here 
is -0.28; CRA found an automobile-in-vehicle-time 
elasticity of -0.82, which is very close to the -0.86-
value given here. CRA also computed elasticities for 
in-vehicle and out-of-vehicle transit time. However, be­
cause the bus time used in this study is actually a door-to­
door travel time, the components of time elasticities must 
be summed to make an equivalent comparison. Thus, 
their total transit-time elasticity is -1.1 and their transit 
access time is -0. 71. In the present study, the equiv­
alent values are -2 .1 and -0 .32. The larger difference 
in the transit elasticities may be due to the fact that, in 
the CRA study, all transit modes-commuter rail, sub­
way, bus, and streetcar-were combined into a single 
modal classification, which reduced the accuracy of 
their estimated transit-demand relationships. 

Several observations can be made from the elastic­
ities given above. First, automobile users appear to be 
about three times more responsive to changes in auto­
mobile time than to changes in automobile cost (CRA 
cost-to-time ratio for automobile travel is about 4.5). 
With regard to the inelastic nature of the automobile­
cost variable, it is evident that a significant increase 
in automobile cost had to occur (which was the case 
with the five-fold increase in parking cost) to observe 
such a large shift away from the automobile mode. 
Second, because travel appears to be very sensitive to 
changes in automobile time, it could be expected that 
there will be a large amount of mode shifting if the 
university phases out the center parking lots in an at­
tempt to have a pedestrian campus by the process of 
introducing automobile-free zones. 

Last, the demand for bus travel is quite elastic with 
respect to bus time, in marked contrast to bus walk 
time, which is highly inelastic. Initially one might 
expect the elasticity of bus walk time to be greater than 
that of total transit time, which includes in-vehicle 
time. Although the respective coefficients given in 
Tables 3 and 6 indicate that travelers weight a minute 
of bus walk time about the same as a minute of total 
transit time, the elasticity for bus walk time is less 
because the values of bus walk time are generally much 
smaller than the values of total transit time. Conse­
quently, a 1 percent change in bus walk time is much 
less in absolute terms than a 1 percent change in total 
transit time. This observation has also been noted in 
a recent study by CRA (4). It appears, therefore, that 
a very productive way to attract passengers would be to 
improve service by increasing bus frequencies and 
better scheduling. Conversely, there will be substantial 
reductions in bus ridership if headways are increased 
or if schedules become unreliable. 

CONCLUSIONS 

By using a longitudinal data base of individual travel be­
havior that was a product of planned, phased changes in 

the transportation system, the accuracy of forecasts 
from disaggregate modal-choice models was evaluated. 
In terms of the actual setting from which the data were 
drawn, the disaggregate, behavioral models of modal 
choice were able to forecast future modal shares with 
reasonable and acceptable levels of accuracy. Only a 
relatively small sample of specially collected data was 
required to estimate the models. Because these re­
sults are only a single test in one setting of the fore­
casting capability of disaggregate models, additional 
research efforts are desirable and may be particularly 
appropriate in a more complex, urban environment. 
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Adaptable-Zone 
Transportation-Assignment Package 
Carter Brown, Tri-State Regional Planning Commission 
Yehuda Gur, John Hamburg and Associates, Inc., Chicago 

The adaptable-zone transportation-assignment package is a computer soft· 
ware system of traffic assignment for subregional analysis. The develop· 
ment of the package was completed in early 1976; it is currently being 
used by the Tri·State Regional Planning Commission. It combines a 
windowing operation that creates a zonal structure and network focused 
on the area of interest with relatively conventional traffic·distribution 
techniques in an integrated software package. These features make it 
possible to analyze subregional plans and projects faster and at a lower 
cost than other operational planning packages. 

An increasingly large portion of the highway planning 
activities of the Tri-State Regional Planning Commission 
(TSRPC) deals with the design and evaluation of sub­
regional plans or individual projects within the New York 
metropolitan area. To perform subregional planning, 
it is necessary to have tools that permit detailed pre­
sentation and analysis of an area of interest. At the 
same time, it is necessary to consider the regional 
effects of the area of interest and the relation of the 
particular project to the regional pla.n. Other important 
requirements of subregional planning tools are under ­
standable techniques that allow cooperative planning 
with subregional agencies, reasonable costs, and timely 
responses . 

The need for efficient subregional planning tools is 
common to most public planning agencies, but this re­
quirement is more pronounced in the case of TSRPC, 
because of the size of the metropolitan New York region 
and the many subregional agencies that require technical 
support. The TSRPC region has an area of about 23 000 
km (9000 miles 2

) and a population of more than 18 mil­
lion. The standard data files include about 7000 zones, 
which range in size from 0.65 to 41 km2 (0.25 to 16 
miles2

) and about 16 000 links (excluding centroid con­
nectors). Most of the available highway-assignment 
programs cannot handle a problem of this size or can 
do it only at a prohibitively high cost. Thus, subre­
gional analysis tools are not only desirable, but are 
absolutely necessary for TSRPC. 

Because of the lack of tools having thre required 
capabilities, TSRPC began in mid-1974 to develop them. 
The project, which was completed in early 1976, re­
sulted in the adaptable-zone transportation-assignment 
package (AZTAP). This paper gives an overall de­
scription of the package. A more detailed description 
of AZTAP has been given by John Hamburg and As­
sociates (!)· 

MAJOR FEATURES OF AZTAP 

AZTAP is structured along the lines of the conventional 
urban transportation planning process for highway plan­
ning process for highway planning. It includes the 
'stages of trip distribution, assignment, and assignment 
summaries. Within this framework, it also includes 
special features that answer the needs of subregional 
analysis. 

Windowing 

AZTAP provides for windowing of subareas. There are 
two aspects of windowing: areal aggregation and network 
culling. Within a user-specified area of interest, the 
analysis uses all of the available data, including zones 
that might be as small as 0.65 km2 (0.25 mile2

) and all 
the coded network. As the distance from the area of 
interest increases, the level of detail given for other 
regions diminishes gradually, reaching zones as large 
as 662 km2 (256 miles 2

) and networks that are only a 
skeleton of major regional arteries. The construction 
of the windowed data files is done by computer, based 
on structured data files that include detailed information 
about the entire region and a user-specified window 
configuration. 

Structured Input Data 

Both the network and the zonal data have built-in hier­
archical structures, with all links assigned to one of 
three network levels and all zones classified by one of 
four sizes. Both sets of data also share a common 
geographical reference using a rectilinear coordinate 
system. These two features greatly simplify the pro­
cessing required to relate the networks and zones to 
the specified window configuration. 

Streamlined Application 

The package was designed to permit streamlined, fast­
response applications to specific study areas with a minimal 
need for manual intervention in the process. This objective 
has been achieved through a number of built-in features, in­
cluding the selection of models and software capabilities. 
The models used in the package are vigorous in their 
performance and relatively easy to calibrate. 
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Figure 1 . Adaptable-zone 
transportation-assignment package program 
sequence. 
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Figure 2. Typical 
hierarchical zonal 
structure. 
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Streamlined applications are also facilitated by special 
software, including a package driving program (DRIVER), 
job-control procedures, and prespecified job programs. 
Many tasks normally done manually are carried out 
during processing. The most important is the creation 
of approach links that is performed in the WINDOW 
program. This capability is the key element in the fast 
creation of zones and networks tailored for specific 
projects. Intermediate evaluation reporting is also 
performed within the package. 

Compata bility With Other Systems 

Built-in procedures permit the loading of relevant data 
on the Interactive Transportation Analysis System 
(INTRANS) (2) data files as an integral part of the anal­
ysis process-:- Most of the data files in the package are 
also compatible with the U.S. Department of Trans­
portation Urban Transportation Planning System (UTPS) 
(3) , which permits the use of various programs in 
U-TPS for a multitude of auxiliary operations. 

AZTAP DATA INPUTS 

The input data used by AZTAP consists of the TSRPC 
highway network and regional, vehicle trip ends. Both 
the trip-ends data file and the network file conform to 
the rectilinear grid system used by TSRPC. Other than 
that, the two files can be manipulated independently; 
the common coordinate system provides a geographical 
interface during operation of the model. 

Trip ends are input to AZTAP as uniform grid cells 
of 0 .65, 2.5, 10, and 41 km2 (0.25, 1, 4, and 16 miles 2

) 

as delineated by the coordinate system. Current-year 
trips are based on 1963 home-interview surveys, 1970 
census data, and annual state vehicle-registration data. 
Forecast trips are created by applying trip-generation 
rates developed from the above data to land-use demo­
graphic forecasts. 

t ' TRIP TABLE 
REPORTS 

ASSIGNMENT 
REPOA1$ 

The network file contains 15 771 links representing 
27 056 route km (16 285 route miles). The network in­
cludes all freeways, principal and minor arterials 
within the region, freeways and major highways outside 
the region, and collectors or selected local streets in 
higher density areas within the region. The future high­
way network also includes all proposed roadways in the 
regional transportation plan (4). The network uses a 
link-name identification system with each node identified 
by the rectangular grid coordinate. 

The highway network is coded in a three-level hier­
archy. The highest level (level 1) includes all freeways 
and major highways and any additional links required to 
ensure network continuity. Level 2 includes links that 
generally bisect the areas bounded by level 1 links; 
levels 1 and 2 links form a fully connected network. 
All remaining links are classified as level 3. 

AZTAP OPERATIONS 

AZTAP consists of 20 programs of varying im­
portance and complexity. The basic interrelation-
ships among the most important of these programs 
WINDOW, TREBLD, ALDGRAV, COMBYN, and UROAD) 
is shown in Figure 1: The first main program is WIN­
DOW, which creates a zonal file and a modified network 
file with approach links. TREBLD generates a zone-to­
zone friction table. ALDGRAV creates a trip table that 
uses the friction table and the zonal file. COMBYN is 
used to modify the network files so that more than one 
network can be used to reflect various improvement 
alternatives. UROAD then carries out a conventional 
traffic assignment by using networks from either WIN­
DOW or COMBYN and the ALDGRA V trip table. 

WINDOW: ZONAL CONFIGURATION 

J::Secause ot the size of the TSRPC area [the base zonal 
trip file covers 40 122 km2 (15 491 miles2

)], there is 
always a trade-off in assignment work between the need 
for detailed networks and small zones and computer 
costs and core-storage requirements. WINDOW has 
been created to deal with this inherent conflict. 

WINDOW performs three individual tasks: areal 
aggregation, network culling, and construction of ap­
proach links that connect the zones to the network. 

Areal Aggregation 

The areal aggregation is done by the program and based 
on the user-specified window configuration. Through a 
set of control cards, the desired minimum zone size is 
specified in each part of the r egion. Those sizes range 
from 0.65 to 2. 5, 10, 41, 166 and 662 km2 [0.25 to 1, 4, 
16, 64 and 256 (16 by 16) miles 2l TJ1e program s truc ­
tures the analysis zones according to the user's re­
quests. In particular, it aggregates the zones from the 



input trip file into larger analysis zones. A typical 
zonal configuration is shown in Figure 2, where the 
zones have the areas given below (1 km2 

= 0.39 mile2
). 

Type Size (km 2 ) No. of Zones 

5 
6 
7 

2.5 
10 
41 

48 
52 
32 

Type Size (km 2 ) No. of Zones 

B 
9 

166 
662 

24 
16 

The aggregation process has a number of limitations. 
First, the program never increases the level of detail 
in the input trip file; thus, if an area is desc1•ibed in the 
input file on a level of 10 km2 (4 miles2

), it remains 
this way even if the request in WINDOW is for smaller 
subdivisions. The second limitation is that the zones 
(both those in the input file and those created by WIN­
DOW) must always be perfect squares that conform to 
the grid of the coordinate. To do this, the zones must 
always be nested within the larger size zone, with 
smaller zones occupying at least the area of the next 
larger size. Consequently, the analysis zones do not 
necessarily coordinate with political or geographical 
boundaries. (These limitations are implemented auto­
matically by the program without undue complications 
in the method by which the window is specified by the 
user.) 

The flexibility and convenience in specifying the 
zonal structure gives the package tremendous power. 
The structure is uniquely specified for each problem 
and tailored for the analysis needs. The zones are 
typically structured in the shape of concentric rings, 
with small zones [0.65 and 2,5 km2 (0,25 and 1 mile2

)] 

in the immediate study area and progressively larger 
zones as the distance from the area of interest in­
creases; wherever appropriate, the ring structure is 
adapted to unique conditions. 

Network Culling 

The culling of the network is done by WINDOW and 
based on user-specified rules. Through a set of con­
trol cards, the user specifies the lowest level network 
to be included in each part of the region. The program 
reads the entire network file and builds a new file that 
includes only those links that pass the selection test. 
During this process, the link records are restructured 
to fit the needs of the network-analysis programs. In 
particular, node numbers are assigned to the ends of 
the links to augment the link-based identification scheme 
used in the TSRPC network. 

Typically, the network culling program follows the 
zonal aggregation; e.g., wherever large zones are re­
quested, only level 1 links are included, and vice versa. 

Building Approach Links 

Approach links are built by WINDOW after the stages of 
zonal aggregation and network culling to ensure that 
connections are made to nodes that exist in the network 
and that the connections are compatible with the zone 
size [e.g. , 0.65 km2 (0.25 mile 2

) zones are not connected 
to expressways]. 

A search routine checks each quadrant of each zone 
for network nodes. The best nodes are selected to 
serve as end points for the approach links. At least 
one approach link is generated for each zone, but as 
many as four links may be generated. Approach links 
are added to the network file to create a culled network 
that is structured as a conventional file for analysis. 
These generated approach links become the interface 
between the zonal information and the network, which 
are independent before the generation of the approach 

links. This network and the zonal file comprise the 
major output of WINDOW and are the major inputs to 
the subsequent steps in the process. 

ALDGRA V: TRIP DISTRIBUTION 
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The ALDGRAV program generates trip-interchange 
tables for the zones created in the WINDOW program. 
This trip-distribution model was developed by Schneider 
(5) and was refined in a combined project by the Chicago 
Area Transportation Study (CATS) and Creighton, Ham­
burg and Associates (6). The ALDGRAV function is 
similar to the gravity-model in that the number of trips 
between two zones 0/ 1i) is a function of the number of 
trips in the origin zone 011), the attraction of the des -
tination zone (AJ x BJ) relative to all other zones, and 
a travel function between the two zones (G1J): 

V;i = V; x Ai x Bi x G;/~:/k x Bk x G;k 
I k 

(I) 

ALDGRA V differs from the conventional gravity model 
in that the travel function (G1J) is a Bessel function. The 
travel function is calculated as G1J = GB(BTR x F1J ), 
where F1J is the travel friction between zones i and j as 
measured in the TREBLD program, GB is a Bessel 
function, and BTR is a parameter of the travel function. 
An attractive feature of the Bessel function is that the 
shape of the trip-length distribution that it produces fits 
the observed data well. 

The ALDGRAV program permits convenient and effec­
tive control of the key measures of the trip-distribution 
table. By the use of the BTR parameter of the Bessel 
function and the parameters that control the calculations 
of the intra.zonal travel function, it is possible to easily 
adjust the average trip length and the total vehicle kilo­
meters of travel 0/KT) assigned. Correct values for 
these key parameters and a correct trip-length distribu­
tion ensure satisfactory assignment results. The close 
control on these factors obviates the need for cumber­
some calibration procedures that try to duplicate ob­
served interchange volumes. 

This observation of the relative insensitivity of the 
assignment to certain inaccuracies in the trip table 
agrees with the results of Miller and Nihan (7) and Stover 
and others (8). Of particular relevance here-is the 
work by Stover, which shows that good assignment re­
sults may be obtained as long as the trip table produces 
the correct VKT and the correct numbers of trip pro­
ductions and attractions are preserved. 

UROAD : TRAFFIC ASSIGNMENT 

The UTPS program UROAD (6) is used for traffic assign­
ment. To use the program as part of AZTAP required 
additional programming through user-coded subroutines. 
A new network-input procedure was implemented to 
allow direct use of the WINDOW network file. With this 
procedure, it is possible for the network to contain as 
many legs from each node as is desired. This freedom 
is particularly important in conjunction with the 
automatic-approach link assignment. In addition, ex­
ternally calculated capacity and zero-volume speeds for 
each link are read from the network file, rather than 
being estimated by the program, which permits the use 
of off-line procedures for the calculation of these vari­
ables. The network-output procedure has also been 
modified to permit the use of the assignment results 
with a number of evaluation and summary programs, 
which are produced in addition to the standard UROAD 
reports. 

The major technique used for assignments within 
AZTAP is the CATS option of UROAD. In this form of 



60 

restrained assignment, the process begins with zero­
volume speeds assigned to all links. Zones are loaded 
in batches, and link impedances are updated after the 
loading of each batch. During the updates, delay pen­
alties are added to the input impedance of each link. 
These penalties are computed based on the volume-to-

Figure 3. Approach nodes, contrasting two types of zone. 

Figure 4. Zonal configurations: (a) Hudson County and (b) Suffolk 
County. 

(O) 

capacity ratios that result from the sequential batch 
loading. Extensive modifications have been made to 
the default volume-delay curves of UROAD. The modi­
fied curves are different for arterials and for express­
ways and are based on the results of the West Side High­
way study (~). 

TESTING, APPLICATION, AND 
OPERATION 

The primary impetus for the development of AZTAP 
was the need to carry out traffic assignments quickly 
and easily in many locations throughout the New York 
metropolitan area. The package was tested by applica­
tions in the planning environment by applying it to on­
going traffic studies as early in the development pro­
cess as was possible. In parallel, testing was car­
ried out to prove the mechanical performance of the 
software and to establish the proper parameters for 
ALDGRAV and the impact of the variable zonal 
structure. 

The ALDGRA V program was originally developed as 
a multimodal trip-distribution model. However, in 
AZTAP it is used for vehicular trips only. Conse­
quently, it was necessary to establish the proper range 
for the travel-function parameters by using cost values 
appropriate for current conditions. The initial testing 
established that BTR values of between 0.014 and 0.020 
cents-' with a cost of time of 6.4 cents/min gave ac­
ceptable trip distributions. Variations in zonal struc­
ture showed that the program is relatively insensitive 
to zone size. Fo1• example, one zone of 10 Ian" ~4 milea2

) 

generated the same vrcr as four zones of 2.5 km (1 
mile2

) in the same location (dis counting trips among the 
four zones). Variations in zone sizes did cause aberra­
tions in the trip-length distribution, but the variations 
coincided with the network and approach links and were 
dissipated in the assignment stage. 

The WINDOW structure is crucial for the assignment. 
As in conventional assignments, the zonal structure 
affects loading. Unlike conventional assignments, how­
ever, the structure can be varied to match study needs, 
Figure 3 shows the approach nodes for one location 
when two different zonal structures are used. 

In the first case, the area was subdivided into four 
2.5-km2 (1-mile") zones (type 5) with 10 approach Links; 
in th~ second case, it was described as one 10-loni (4-
mile") zone (type 6) with four approach links. To obtain 
good assignment results, it was necessary to match the 
zonal structure in and around the area of interest (and 
the resulting number of approach links) to the density 
of the coded netwu1•k. 

Symmetry in the zonal configuration around the area 
of interest was more important than coverage for the 
sake of consistency with political boundaries. When 
zones were added in an unbalanced manner to include 
all of the region, there was very little change in the 
assigned volumes, but there was a substantial increase 
in the size of the problem. On the other hand, lack of 
symmetry in the zonal configuration caused reduced 
travel toward the thin side. However, reliable assign­
ments could be made with 200 or fewer zones. 

AZTAP has been used in a wide range of study con­
ditions including high-density areas in the center of the 
region (Hudson County, New Jersey) and low-density 
areas in the outer suburbs (Suffolk County, Long Island). 
In these varying conditions, AZTAP has proved to be 
very satisfactory. Zonal configurations for the two 
studies are shown in Figure 4. There are certain dif­
ferences between the configurations: The Suffolk County 
configuration does not include the entire region because 
it is far from the core, but the Hudson County configura-



tion covers a larger area because of its central location. 
The hierarchial pattern is broken for Manhattan in the 
Suffolk zonal structure, to account for effects of the 
unique network structure and the high densities. 

Comparisons to detailed ground-count data were used 
as the major means to assess assignment quality. For 
most studies (with Manhattan the exception), the as­
signed VKT for the area of interest was within 2 percent 
of ground-count VKT. It was necessary to adjust the 
trip-distribution parameters for different sectors of the 
i·egion. Studies in suburban New York have requil'ed 
longer trip lengths {BTR = 0.014 cents-1), and studies 
in northern New Jersey have requil·ed shorter trip 
lengths (BTR = 0.020 cents-'). It bas not yet been deter­
mined whether the need for adjustment is due to real 
differences in travel behavior or whether it is due to 
model-specification errors. Such errors might make 
the model unduly sensitive to variations in trip-end 
densities and measures of separation. 

Although the ALDGRAV and WINDOW programs have 
proven to be easily adaptable to various locations and 
conditions, the results of the capacity-restrained 
UROAD assignments have not been uniformly succesful. 
Because aggregate measures of assignment accuracy, 
such as screen lines, cordons, and cutlines, have been 
quite good (many within 3 percent of the ground counts), 
it appears that trip tables that are generated by the pro­
cess are acceptable. However, in urban areas with 
close roadway spacing, the assignment accuracy suffers 
(root-mean-square = 45.5 percent, for example). 
Apparently, there is no easy substitute for meticulous 
network coding in urban areas where variables, such as 
signal timing and roadside characteristics, affect the 
impedance more than do physical roadway characteris­
tics. Further improvements in volume-delay curves 
are also needed. 

Operationally, AZTAP has proven to be quite efficient. 
A full package run for a new study area can be program­
med in 1 working d. More frequently, jobs are run in a 
series of steps that takes advantage of the modular 
nature of package plans. A typical run sequence for a 
study of future-year alternatives and representative 
computer run times are shown below (central processing 
unit time on IBM 158; problem size of 200 zones and 
12 000 links). 

Operation Programs Used Time (min) 

Current year initial WINDOW, TREBLD, ALDGRAV, 20 
run COMBYN,UROAD 

Trip·distribution 
adjustment ALDGRAV,UROAD 11 

Network adjustment COMBYN, UROAD 9 
Future no build WINDOW, TREBLD, ALDGRAV, 

COMBYN, UROAD 20 
Future alternative COMBYN, UROAD 9 

DIRECTIONS FOR FURTHER WORK 

A comprehensive system for subregional analysis is 
clearly needed. The adaptable zone package is only 
one element in the set of tools: The most obvious 
others are those for summaries and evaluation, for 
multimodal planning, and for analysis of low-capital, 
small to medium-scale projects. 

The need for fast summary and evaluation of as­
signment results is most pressing. The use of in­
teractive graphics (INTRANS) for assignment evalua­
tion is promising, but its main role to date has been to 
supplement standard (mostly manual) techniques. There 
is a need for a significant research and development 
effort to learn how to fully exploit the power of inter­
active graphics in assignment evaluation. The effec-

tive use of this powerful tool could reduce the time 
required for analysis and evaluation by orders of 
magnitude. 
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Traffic assignments are the basic input data for 
plan-evaluation work and environmental studies. Ef­
ficient development of these postassignment tasks re­
quires additional software to convert link volumes and 
speeds to useful evaluation measures. The broader 
evaluation issues, such as estimates of social and en­
vironmental impacts and economic analysis, must be 
brought into the systems-evaluation procedure. 

At present, AZTAP serves only highway planning. 
There is no comparable tool that performs windowing 
on transit networks. Analyses that are based on the 
flexible zonal structure of AZTAP are incompatible 
with transit analyses that use fixed zonal structures 
and network descriptions. At present, this precludes 
multimodal, subregional analysis. Thus, a logical 
immediate step is to expand AZTAP to include the 
processing of transit networks (10) or to implement a 
similar tool for transit analysis:-

The increased importance of small and medium-scale 
projects in transportation system development makes 
increased detail and accuracy of assignments necessary. 
AZTAP is the first step in this direction, in that it per­
mits fast, inexpensive, and detailed analysis of sub­
areas. A natural extension of AZTAP are facilities that 
will permit an increase in the level of detail within the 
area of interest, along the lines of micro assignment. 
There is a high probability that such a tool could support 
comprehensive and meaningful evaluation of such projects 
as improvements in traffic-control strategies and 
widening of major streets. 
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Propensities to Ship Manufactures by 
Rail Within Four U.S. Traffic Flows 
Thomas A. Stone, Northampton, Massachusetts 

The use of a freight transportation service at two levels 
of geographic aggregation, represented by nonover­
lapping component traffic flows and the aggregate that 
combines them, is modeled. The basic aim is esti­
mators of demand parameters. Propensity is used to 
denote the nonrandom part of the actual percentage of 
goods shipped via the specified service. Under certain 
conditions, propensity statistics that i·emove impacts 
of s hipment distance and weight ar e a means of estimat­
ing impacts of demand determinants that are assumed 
to vary systematically among component flows (service 
quality might be one such determinant). 

The general approach is by three hypotheses: The 
first states that the expected value of use in the aggre­
gate is a weighted average of expected use in the com­
ponents. The second states that expected use in each 
component equals expected aggregate use plus a con­
stant. The third states that all of the random variables 
describing service use have the same form, whether 
aggregate or component. This form varies from one 
version of the model to another. The simplest model 

Modal Advantage 

is extended by explicit inclusion of variables for rela­
tive price and other determinants that are assumed to 
be aggregate in the sense that they influence demand 
in the same way everywhere. The slopes of the aggre­
gate determinants and the geographic propensity sta­
tistics can then be estimated simultaneously. 

An illustrative study of rail shipments by manufac­
turers uses two-digit data from the Public Use Computer 
Tapes, 1967 Census of Transportation, in four com­
ponent traffic flows-east to east, east to south and 
west, south and west to east, and south and west to 
south and west. No aggregate determinants are in­
cluded. Differences among estimated propensity sta­
tistics are often small and of mixed sign. However, 
greater commodity detail and the inclusion of at least 
a relative price are required for a conclusive empirical 
study. 

Pu/Jlicarion of this paper sponsored by Committee on Passenger and 
Freigllt Transportation Characteristics. 

Ronald D. Roth, Department of Economics, American Trucking 
Associations, Inc. 

Shipper preferences for truck or rail were determined by using shipment 
mas> and distance as criteria. Data on individual manufactured commod· 
ities from the 1972 Census of Transportation Commodit y Transportation 
Survey were arranged in a matrix-table format and analyzed for the ex­
tent o f involvement by these primary modes in carrying cargo of various 
weight brackets moving over a ser ies of distance blocks. As axpected. 
trucks dominated the movement of lighter weight shipments and rails 
dominated the movement of heavy shipments. Competition, or involve­
ment by both modos, was limi ted to cargo in the medium-weight range, 
which was not an extensive amount. Amounts of cargo either modally 
dominated or competitive were determined and correlated to actual 
overall percentages of cargo by mode. Changes in overall model per· 
centages of cargo over time have a strong relat ionship to changes in the 

size of shipments over time, although not as strong and direct a rela· 
tionship for the rail mode as for trucking. Major shifts of cargo between 
modes will not occur in the absence of artificial or arbitrary obstacles 
to market forces . 

The national transportation policy of the United States 
has long recognized the importance of a balanced trans­
portation system to satisy the distribution demands of 
manufacturers and the consumption demands of the 
public. The system that the policy promotes and main-



tains generally provides alternative means of transport, 
available on demand, to all shippers. The rationale of 
this system is that each mode possesses inherent or 
relative advantages that allow it to handle some portion 
of the total freight traffic at the least possible cost to 
the economy. In basic terms, it recognizes that trucks 
can handle short hauls of limited quantities at a cost 
that could not be equaled by any other mode, but that 
for long hauls of large quantities, rails are generally 
the lower cost mode, although water carriers also pro­
vide low-cost bulk movements for shippers located along 
waterways. Air carriers provide transport services 
for products that are extremely time-elastic. 

While few would disagree with the basic premise that 
there are relative advantages in transportation, an ef­
fective and responsive policy must recognize where the 
advantage of one mode ends and that of the other begins. 
That is, how is the freight traffic that is represented by 
the gray area between short hauls of limited quantities 
and long hauls of large quantities allocated between the 
modes? This analysis of this question is based on actual 
shipper preferences, i.e., shippers' perceptions of 
relative modal advantages, as they existed in 1972. 

PURPOSE 

The 1972 Census of Transportation provides data on 
the movement of manufactured commodities by mode 
of transportation within specific weight and distance 
brackets. These source data, when arranged in a matrix 
format, show discernible and consistent trends in 
modal use that allow one to address a number of per­
tinent questions concerning transportation: 

1. What are the limits of the relative advantages 
of truck and rail most suited to satisfying the demands 
of shippers, based on distances traveled and weight of 
shipments carried? For what shipments do truck and 
rail compete ? 

2. What is the extent of competition between truck 
and rail for manufactured freight: (a) relative to the 
total amount of manufactured freight and (b) relative to 
the amount of manufactured freight suited to movement 
by each mode? 

3. What is the potential amount of manufactured 
freight that could be transferred from one mode to the 
other? 

SOURCE 

The principal source of the data used in this study is 
the Commodity Transportation Survey, one of the re­
ports generated from the 1972 Census of Transportation 
by the Census Bureau. The survey consists of 15 re­
ports, each dealing with commodity-movement data 
grouped by major manufacturing industries. As ex­
amples, one report deals with food and kindred prod­
ucts and tobacco products, and another deals with 
lumber and wood products , Detailed commodity­
movement data for the various specific commodities 
that comprise the major industry groupings are shown 
within these reports; i.e., the report that deals with 
food and kindred products and tobacco products details 
data separately for such categories as meat products, 
dairy products, canned foods, and cigarettes. 

For each specific product, such as meats, the survey 
presents four tables. Tables 1 through 3 give origin 
and destination data, and Table 4 gives data relating to 
the weight and distance of shipments. The specific 
commodity data used here are taken from Table 4A of 
the survey, which is entitled Percent Distribution of 
Distance Shipped and Weight of Shipment, by Means of 
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Transport, 1972: Tons of Shipment. It shows the total 
amount of cargo of the individual commodities shipped 
and the percentages of this cargo handled by each 
mode. The table is further detailed into seven distance 
brackets and, within each of these distance brackets, 
into six weight-of-shipment categories. The amount of 
cargo within each of these specific-weight-and-distance 
categories is distributed by percentage according to 
type of transport. The survey also gives a Table 4B 
for each commodity that measures megagram kilometers 
rather than megagrams. However, because the data of 
Table 4A were already cast in terms of weight-and­
distance categories, these data were disregarded as 
they could be of only limited additional value. 

Limitations Within Source Data 

The Commodity Transportation Survey was designed to 
measure nonlocal shipments by large manufacturing 
concerns (those with 20 or more employees) of manu­
factured commodities only. The data in the survey in 
essence measure regular flows of intercity manufac­
tured freight. Firms with 10 to 19 employees were 
surveyed by the Census Bureau, but these data could 
not be incorporated into this study because of the lack 
of comparable statistics in the weight and distance for­
mat. Firms with fewer than 10 employees were not 
surveyed. 

Limitations Placed on Source Data 

Only truck and rail will be considered in this analysis 
because the majority of freight transportation of manu­
factured goods involves movements by these two modes. 
For this purpose, truck movements handled by for-hire 
trucking companies (shown by the survey as motor car­
rier) were combined with those by private carriers 
(shown as private truck) to obtain a truck total. This 
combination involves some imperfection because these 
respective trucking groups, although generally having 
different characteristics in terms of length of haul and 
size of shipment, compete with each other to a degree. 
However, because both are substitutes for (or com­
petitors with) rail service, their combination is con­
sistent with the basic purpose of this analysis, which 
is to evaluate the relative advantages of truck and rail. 

Air carriers, water carriers, and other and unknown, 
which were also covered in the Commodity Transporta­
tion Survey, will not be considered as to competitive 
impact. The exclusion of water carriers in this analysis 
required that Transportation Commodity Code (TCC) 29 
(coal and petroleum products), one of the major industry 
categories, be disregarded. This group of products is 
handled predominately by water carriers (the Census 
Bureau does not measure pipeline movements) and, in 
fact, provided the overwhelming majority of total water­
carrier cargo in all manufactured freight. This is the 
only group of products in which any mode other than 
truck and rail handle a significant share of the cargo. 
Another product group-TCC 27 (printed matter)-was 
also excluded because the data on this product were 
collected on the basis of value of shipments, rather than 
cargo amount. 

The 13 remaining survey reports contain data on 89 
separate products. These products represent 18 major 
manufacturing divisions. The total amount of cargo 
accounted for by the weight-and-distance data on these 
89 products is 827 839 051 Mg (912 521000 tons). Of 
this aggregate amount, the railroads carried 38.1 percent 
and trucks carried 58.1 percent (for-hire motor car­
riers, 36.2 percent and private trucks, 21.9 percent). 
Water carriers, air carriers, and other excluded modes 
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carried only 3.8 percent of the total amount so that their 
exclusion does not materially affect the results of this 
study. 

ANALYSIS 

Limitations 

The results presented in this paper add, surprisingly 
enough, a new dimension to traditional modal-share 
analysis, a view of a division of cargo to mode by ship­
ments of a specific weight and distance. Older analyses 
have tended to rely on either 

1. The overall division of the cargo of a product to 
mode (without considering weight or distance brackets), 

2. The division of the cargo of a product to mode 
by distance bracket, or 

3. The division of the cargo of a product to mode 
by weight bracket, 

However, none have presented a combined picture of 
weight and distance. These older analyses have served 
to identify general trends in modal use, but their 
results are hardly definitive. 

In this paper, only aggregate data are presented, i.e., 
combined data for the 89 commodities. Presenting re­
sults on an aggregate basis has its limitations as in­
dividual product peculiarities and small trends are lost 
in the processes of aggregating and averaging. Yet, 
because of the necessity to analyze the modal split of 
each of the 89 individual commodities to determine the 
aggregate figures, this analysis provides a methodology 
to recognize products that have peculiar shipping pat­
terns. 

Another limitation of this analysis concerns the level 
of detail presented. The product detail shown in the 
survey is only at the three-digit TCC level (equivalent 
to the standard industrial classification). Because the 
statistics were collected at as fine a level as seven­
digit codes but summarized at the three-digit level, 
there is potentially an aggregation problem inherent in 
them. To the extent that the three-digit statistics fail 
to accurately reflect the finer level of data, this analysis 
could be misleading. 

In addition, this analysis investigated cargo alloca­
tions only in specific weight-and-distance brackets, 
which are only two of the many factors affecting a 
shipper's choice of mode. Not considered independently 
were such factors as time-in-transit differentials be­
tween modes, loss and damage experiences, reliability 
of service, availability of specialized equipment, product 
density, product value, locational concentration of pro­
duction or consumption, and many others that affect a 
shipper's choice of mode. However, if it is assumed 
that shippers have made a rational choice of mode by 
taking such factors into consideration, then these omis­
sions have little, if any, impact on this particular 
analysis. 

The inherent limitations of analyses based only on 
physical amounts of cargo (weight) should also be rec­
ognized. The amount of cargo handled by any mode 
should not be construed to be a measure of the relative 
economic position of that mode, nor should it be used 
as a proxy for the economic value that the cargo handled 
provides to the economy. Although no direct revenue 
comparison could be made between modes on the basis 
of manufactured freight only, the railroads carried 
twice as much total cargo (bulk, manufactured, scrap, 
and miscellaneous commodities) as did Interstate Com­
merce Commission regulated trucks in 1972-1389 
million Mg (1531 million tons) versus 699 million Mg 

(771 million tons) respectively-but generated only about 
70 percent of the total gross freight revenue ($12.8 
billion versus $18. 5 billion respectively). In terms of 
shipment values in manufactured commodities, the 38.1 
percent of the manufactured cargo carried by rail ac -
counted for only 29.9 percent of the total value of manu­
factured shipments, and the 58.1 percent of cargo car­
ried by trucks accounted for 67.5 percent of the total 
value. Hence, amounts of cargo are a less than perfect 
measure of the economic roles of the modes of trans­
portation. However, aside from this and the other pre­
viously mentioned limitations, this analysis will serve 
to identify some areas where the transportation roles 
of the modes tend to be uncertain (overlap) and, hence, 
where policy changes might have some impact. 

Format 

The data contained in Table 4A of the survey, while pre­
sented in a rather cumbersome tabular form, can be 
clearly and usefully displayed in matrix format. Figure 
1 gives a partial example using the data of TCC 321 
(Flat Glass). 

This percentage matrix is one of two matrices con­
structed for each of the 89 products. (Matrix 1, which 
is not shown, contains the actual cargo amounts). The 
top left cell of the example matrix, indicated by TOTAL, 
shows the overall modal percentage distribution of the 
cargo of the product (represented as 100 percent) to 
rail, truck (motor carrier and private truck), and other 
modes. Horizontally displayed from the TOTAL cell 
are the percentages of total cargo (the top left figure of 
each cell) and the modal percentages thereof for each 
of the six weight-of-shipment divisions. Vertically dis­
played from the TOTAL cell are the percentage data in 
the seven distance categories. The body of the matrix 
consists of 42 cells giving cargo data within the specific 
weight-and-distance categories. 

MEASUREMENT OF MODAL ADVANTAGE 

Procedure 

Each of the 42 specific weight-and-distance categories 
(cells) of each of the 89 products was analyzed as to the 
extent of modal involvement in handling the cargo in that 
cell. Each cell was classified as either truck dominated, 
competitive, or rail dominated on the basis of the fol­
lowing assumptions: 

1. A cell is classified as competitive if the mode of 
secondary importance carried 10 percent or more of 
the total cargo of the cell (the mode of secondary im­
portance is the mode carrying the second highest per­
centage of cargo), which is not to say that intermodal 
competition (competition between truck and rail) exists 
for each and every shipment in that cell, but indicates 
that shipper action favors both truck and rail in carrying 
cargo of that shipment weight and distance; and 

2. If the mode of secondary importance did not carry 
at least 10 percent of the cargo of a cell, that cargo 
was considered to be noncompetitive or dominated by 
the mode of primary importance, which simply says 
that shipper preference favored one mode almost ex­
clusively, for whatever reason(s). 

This classification procedure can create distortions 
by an attribution of cargo to modes that differs from 
actual results. When a cell is classified as truck­
dominated, this in essence attributes all of the cargo 
of that cell to trucks when, in actuality, rails may have 
carried up to 9 percent. However, while a number of 
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Figure 1. Illustration of basic matrix distributing 
UNDER 453.6 - 4,536.0 - 13,608.0 - 27,216.0 - 110,824.0 kg cargo percentages by mode by shipment weight and 
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cells of a product will be classified truck dominated, a 
number also might be classified rail dominated. This 
creates a trade-off of cells in which the distortions 
tend to be neutralized when the totals of individual cells 
are compared to the actual overall modal split of the 
product. The only time that a significant distortion 
might occur is when, e.g., a great majority or all of a 
product's ce lls are shown to be truck dominated. In 
this case, the amount of cargo considered to be truck 
dominated will be proportionally gr eater than the actual 
amount of the product cargo carried by truck. Such a 
distortion might occur for a commodity in which the rail 
mode carried 9 percent of the cargo of each cell. The 
classification procedure would attribute 100 percent of 
the product cargo to truck as truck dominated when the 
rails would have actually carried 9 percent of the over­
all cargo. However, this analysis determined that a 
significant distortion occur1·ed in only a few products, 
all of which shipped very small amounts of freight for 
which the actual rail percentage was very low. Thus, 
the distortion was not significant. 

The 10 pe1·cent level used to classify cells is arbitrary. 
If a level of 20 pe.rcent had been used, the numbe1· of cells 
classified as competitive would be less, and if a 5 per­
cent level h.ad been used, the number of cells classified 
as competitive would be greater . A 10 percent level 
was felt, however, to be a relevant delineation for this 
analysis. 

Truck Versus Rail 

When the cells of the individual products were classified 
by the 10 pe1·cent competitive definition, the modal divi­
s ion of cargo showed extremely consistent patterns. 
Low -,weight shipments we1·e consistently truck dominat ed 
and heavy shipments were r a il dominated, as expected. 
E>..'tens ive intermodal involve ment was generally evident 
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only in the middle shipment weight -and-distance brackets . 
At first, the modal division of the cargo of products 
might appear to indicate extreme competition; yet, c loser 
observation shows that this is not so. For example, the 
overall division of the cargo of TCC 243 (mill work, 
plywood, and such) was 50.5 percent rail and 48.7 per­
cent truck. When classified by the 10 percent definition, 
however, 42.9 percent of the cargo of this product was 
truck dominated and 26.2 percent was rail dominated, 
leav ing 30.9 per cent showing extensive intermodal in­
volvement. Similarly, a lthough the ove1·al.l division of 
the cargo of TCC 282 (plastic materials) was 44.9 per­
cent rail and 51. 5 per cent. truck, these modes actually 
competed for only 31.0 percent of the freight, the other 
69.0 percent being either truck or rail dominated. 

In fact, of the total manufactured cargo in this st udy 
(827 839 051 Mg (912 521 000 tons )), which in the aggre­
gate divided 38 .1 percent to r ail and 58. l percent to 
truck, the amount found to be truck dominated (and non­
competitive with r ail) was 44.60 percent as shown below. 

Cargo 

Rail dominated 
Truck dominated 
Competitive 

Percentage of 
Cargo 

28.83 
44.60 
26.57 

All rail-dominated cells within individual products ac­
counted for 28.83 percent of the total, and the cargo of 
cells for which truck and rail involvement is evident was 
26.57 percent. 

These data can be expressed in matrix format as 
shown in Table 1, which was constructed by analyzing 
the classification of each specific cell for each of the 
89 products. Each cell in Table 1 that is labeled T 
showed truck-domination in a majority of the 89 products. 
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R and C cells were classified by the same procedure. 
This matrix construction, therefore, gives equal weight 
to the shipment pattern of each product and represents 
the propensity for modal choice. (When this distribution 
patterns is referred to in the remainder of this analysis, 
it will be identified as typical.) 

This typical modal-use pattern shows that truck 
domination generally extends to shipments of less than 
4536 kg (10 000 lb), independent of the distance over 
which the shipment must be carried. The railroads 
generally dominate shipments of 40 824 kg (90 000 lb) 
or more, again virtually independent of the distance to 
be shipped. For shipments ranging from 4536 to 40 824 
kg (10 000 to 90 000 lb), distance becomes a more im­
portant factor in modal choice. Shipments of 4536 to 
13 608 kg (10 000 to 30 000 lb) generally move by truck 
up to 805 km (500 miles). Beyond 805 km (500 miles), 
there is a significant degree of competition from rail. 
For shipments of 13 608 to 27 216 kg (30 000 to 60 000 
pounds), trucks generally dominated up to 483 km (~00 
miles) with longer hauls being competitive with rail. 
Truck competition with rails extends to 805 km (500 
miles) in the 27 216 to 40 824 kg (60 000 to 90 000 lb) 
shipment-mass range, but beyond 805 km (500 miles), 
shipments tend to be rail-dominated. 

LIMITATIONS TO MATRIX REPRESENTING 
TYPICAL USE PATTERNS 

Since the typical use pattern, as represented in Table 
1, reflects averaging, it is not valid for the shipment 
patte1·n of each and every product. In some commodities, 
ti·uck domination is found in cells that are typically 
represented as competitive or rail dominated. Con­
versely, there are products in which rail domination 
extends into the typical competitive or truck domains. 
However, an important value of the typical use pattern 
is that of providing a frame of reference by which to 
identify and measure the extent of deviation in the pat­
tern by individual commodity. These deviations, if not 
reflective of weaknesses in the data, could provide 
valuable information on modal demand. 

Despite this qualification, there is a strong rela-
tion between the typical distribution pattern and the pat­
terns exhibited within individual commodities. Con­
sidering that shippers are free to use any mode to 
transport any shipment, and that the 10 percent definition 
of competition tends to make the occurrence of competi­
tion high in individual commodity cells, there is a re­
markable consistency between the modal-preference 
patterns for individual commodities and the typical use 
pattern. Tn only fl, 7 percent of the products (6 of 89) 
do the modal-use patter11s deviate by more than 33.3 
percent from the typical. 

The vast majority of deviations were minor, involving 
truck domination or rail domination in typic al competi­
tive cells or competition in the typical truck or rail 
domains. There were only 49 instances, involving 30 
products, of major deviation out of the 3299 cells anal­
yzed in this study. A major deviation has been defined 
as an instance in which truck domination exists in a cell 
that would typically be considered rail dominated, or 
vice versa. In 16 of these 30 products, only one cell 
showed major deviation. In 11 products, only two cells 
showed this deviation. One product showed three major 
deviations, and two products showed four. 

The distinction between minor and major cellular 
deviations is important because of the trend in modal­
use patterns. That is, modal use generally favors truck 
for light-weight shipments and rail for heavy shipments. 
Instances of major deviations were in direct contrast to 
this pattern, where truck domination was evident in 

heavy shipments or rail domination in light shipments. 
The matrices for two commodities, TCC 202 (dairy 
products) (Table 2) and TCC 355 (,special industry ma­
chinery) (Table 3), illustrate the distinction between 
minor and major deviations. While major deviations 
may represent weaknesses in the data, it is much 
more probable that they accurately reflect the actual 
peculiarities of some products for transportation ser­
vice. 

Of the 49 instances of major deviation, 45 involved 
truck domination in shipment weights and distances that 
typically involve rail movements. Some specific in­
stances of major deviations were concentrated as shown 
below. 

TCC Industry Description 

36 Electrical machinery 
35 Nonelectrical machinery 
34 Fabricated metal products 
22 Ba3ic taxtiles 
Total 

RELATION BETWEEN MATRIX 
REPRESENTATION AND 

Number of 
Instances 

9 
8 
6 
G 

28 

NUMERIC TABULATION OF DATA 

While the percentages of cargo found to be truck 
dominated, competitive, or rail dominated pertain to 
the count of cargo performed on eac h cell of each product 
and thus l'epresent absolute figures, the representation 
of these data in summary matrices requires the use of 
averages. The question to be addressed at this point 
concerns whether the actual instances of deviation in­
validate the use of the matrix. Or, can Table 1 be 
reconciled with the absolute figures? 

Table 4 shows the typical use pattern, giving the 
percentage of total manufactured cargo accounted for 
by each individual cell of the total matrix. This table, 
as summarized be.Low, shows that the total of cargo 
within the truck domain of this aggregate matrix is 45.6 
percent. 

Truck Rail 
Dominated Competitive Dominated 

Percentage of Cargo (%) (%) (%) 

Total in Table 4 45.6 25.5 28.9 
Total by count of 

individual commodity 
cells 44.6 26.6 28.8 

D!fference bet1.~.:een 
Table 4 and cell· 
count amounts 1.0 1.1 0 .1 

This Ilgw·e is greater by only l.O pet•cent than the cargo 
amount determined to be truck dominated by the cowit of 
individual product cells (44.6 percent). The difference 
between the actual count of competitive cargo and the 
matrix-represented amount of competition l.s 1.1 percent. 
Hence, the matrix representation appears to accurately 
reflect tile modal division of cargo at this aggregate 
level. The data given in Table 4 thus show that essen­
tially all of the cargo actually carried by rail in the 
portion of the matrix that is typically truck dominated 
was offset by an equal amount of another product in the 
rail-dominated segment that is actually handled by truck. 

COMPETITION: TRUCK AND RAIL 

The evidence given above and the matrix as developed by 
Tables 1 and 4 show that only about a quarter of the total 



manufactured cargo involves intermodal choice. This 
competitive freight lies between light-weight shipments, 
for which the truck is inherently suited, and heavy­
weight shipments , which are gener ally suited to rail. 
Specifically, this competitive cai·go involves (a) shipment 
sizes that are related to the marginal use of the carrying 
capacity of each mode (the upper limits of truck capacity 
and the lower l imits of rail capacity) and (b) s hipment 
distances that are related to multiday delivery within the 
size-of-shipment constraints. 

While this competitive cargo is about one-fourth of 

Table 1. Distribution of shipment sizes and distances, modally 
dominated and intermodally competitive for all products (1972). 

Weight (kg) 

Distance 454 to 4536 to 13 608 to 27 216 to 
(km) <454 4536 13 608 27 216 40 824 , 40 824 

<161 T T T T c c 
161 to 

322 T T T T c R 
322 to 

483 T T T T c R 
483 to 

805 T T T c c R 
805 to 

1609 T T c c R R 
1609 to 

2414 T T c c R R 
>2414 T T c c R R 

Notes: 1 km= 0.62 mile, 1 kg= 2.2 lb. 
T = truck, C =competit ive, A = rail. 

Table 2. Distribution of shipment sizes and distances, modally 
dominated and intermodally competitive for TCC 202 (1972). 

Weight (kg) 

Distance 454 to 4536 to 13 608 to 27 216 to 
(km) <454 4536 13 608 27 216 40 824 A0 824 

<161 T T T T c T 
161 to 

322 T T T T c c 
322 to 

483 T T T T R R 
483 to 

805 T T T T R R 
805 to 

1609 T T T c R R 
1609 to 

2414 T T T R R 
>2414 T T T R R 

Notes: 1 km = 0.62 mile. 1 kg = 2.2 lb. 
T =truck, C • competitive, A ""rail . 

Table 3. Distribution of shipment sizes and distances, modally 
dominated and intermodally competitive for TCC 355 (1972) . 

Weight (kg) 

Distance 454 to 4536 to 13 608 to 27 216 to 
(km) <454 4536 13 608 27 216 40 824 "40824 

<161 T T T T T 
161 to 

322 T T T T R T 
322 to 

483 T T T T T c 
483 to 

805 T T T c c T 
805 to 

1609 T T c c R c 
1609 to 

2414 T T c c T R 
, 2414 T T c c c T 

Notes: 1 km= 0.62 mile, 1 kg = 2.2 lb. 
T =truck, C = competitive, R ,. ra il. 

67 

the total manufactured freight, it is a more significant 
amount relative to each mode individually. That is, 
most of the lighter weight shipments are unsuited to 
rail movements, and most of the heavy- weight shipments 
are unsuited to truck transport. As such, it is realistic 
to exclude the cargo accounted for by these respective 
shipment types from the total to determine the universe 
of cargo applicable to each mode. The cargo applicable 
to rail movement is, hence, that which is rail dominated 
or intermodally competitive [55.40 percent of the total 
(28,83 percent plus 26.57 percent)]. The cargo applicable 
to truck transport is 71.17 percent of the total (44,60 
percent plus 26.57 percent). Relatively, truck dominance 
extends to 62.67 percent of the cargo applicable to this 
mode (or 44.60 percent/71.17 percent) and rail dominance 
extends to 52.03 percent of its applicable cargo (28.83 
percent/ 55.40 percent). 

While the above data indicate that the presence and 
importance of each mode are assured in the future virtually 
irrespective of competition, it is of significant impor­
tance to each mode to capture as much of this competi­
tive cargo as possible. The question then becomes : 
What is the potential division of the. competitive freight ? 

There are many different techniques available to the 
imaginative analyst by which to allocate this competitive 
traffic to mode. Within the framework of this analysis , 
the following procedure was used: The mode with the 
higher percentage of cargo within the individual com­
petitive cell was awarded the total of the cargo of that 
cell. There are certainly weaknesses in using such a 
simple approach to allocate the competitive traffic, but 
it is supported by the data itself. Also, the data could 
not be analyzed in this detailed format over time, and 
there are no other divisional techniques that are totally 
devoid of subjective weaknesses. At the extreme, the 
most optimistic procedure would award the entire 26.57 
percent to one mode or the other, but this would entail 
assuming stagnation and deterioration in the entire tech­
nology of the other mode. This approach would be totally 
unrealistic. Both trucks and rail will seek to increase 
their amount of cargo, and some of the competitive cargo 
will tend to truck and some to rail. 

The results of this analysis, in which the competitive 
manufactured cargo was divided so that the mode that 
handled the larger percentage of freight in each individ­
ual product cell was awarded the total cargo of the cell 
are shown on the following page. 

By actual count , the competitive cargo tended to 
divide in half, 13.33 percent to truck versus 13.24 per­
cent to rail. As can be seen in Table 5, the traffic 
tending to rail was the heavier weight shipments, and 

Table 4. Percentage of cargo accounted for by applying Table 1 
modal divisions to totaled amounts of cargo for all products (1972) . 

Percentage of Cargo 

Weight (kg) 

Distance 454 to 4536 to 13 608 to 27 216 to 
(km) <454 4536 13 608 27 216 40 824 >40 824 

<161 0. 51 2.28 6.05 11.84 1.29 6.93 
161 to 

322 0.27 1.24 2 .51 7.22 1.02 4 .57 
322 to 

483 0.20 0.93 1.60 4.88 1.05 4 .09 
483 to 

805 0.30 1.22 1.90 4.84 1.37 5.46 
805 to 

1609 0.44 1.34 1.85 4.55 2.12 6 ,63 
1609 to 

2414 0.11 0.29 0.38 1.12 0.80 2.27 
>2414 0.12 0.37 0.33 0.77 1.17 1. 76 

Note: 1 km = 0.62 mile, 1 kg= 2.2 lb. 
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Cargo 

Rail dominated 
Truck dominated 
Competitive 

Tending to rail 
Tending to truck 

Percentage of 
Cargo 

28.83 
44.60 
26.57 
13.24 
13.33 

to truck the lighter weight shipments. 
The portion of Table 5 tending to truck accounts for 

14.36 percent of the aggregated cargo of all products. 
This figure can be derived from the data given in Table 
4 and differs by only 1.03 percent from the actual amount 
of competitive cargo found tending to truck as shown 
above. The amount of cargo shown in Table 5 as tend­
ing to rail is 11.14 percent, which differs by 2.10 per­
cent from the actual amount tending to rail. Again, the 
matrix representation appears to validly reflect the 
actual cargo-count data. 

Based on the actual count of cargo, the potential dis­
tribution of freight to mode can be seen from the follow­
ing data: 

Mode 

Rail 
Truck 

Modally 
Dominated (%) 

28.83 
44.60 

Competitive Tending 
to a Mode(%) 

13.24 
13.33 

Total 
Potential 

42.07 
57.93 

That is, if the rail mode handled all of the cargo (a) 

Table 5. Distribution of competitive shipment-size-and-distance 
categories by means of transport for all products (1972). 

Weight (kg) 

Distance 454 to 4536 tc> 13 608 to 27 216 to 
(km) s454 4536 13 608 27 216 40 824 

s161 T T T T C" 
161 to 

322 T T T T C' 
322 to 

483 T T T T C' 
483 to 

805 T T T c· C' 
805 to 

1609 T T C' c• R 
1609 to 

2414 T T c• c• R 
~2414 T T C' C' R 

Notes: 1 km= 0.62 mile, 1 kg= 2.2 lb. 
T =truck, C =competitive, A"" rail . 

a Tending to truck_ b Tending to rail. 

Table 6. Potential distribution of shipment-size-and-distance 
categories by means of transport for all products (1972). 

Weight (kg) 

Distance 454 to 4536 to 13 608 to 27 216 to 
(km) s454 4536 13 608 27 216 40 824 

~161 T T T T T 
161 to 

322 T T T T R 
322 to 

483 T T T T R 
483 to 

805 T T T T R 
805 to 

1609 T T T T R 
1609 to 

2414 T T T T R 
~2414 T T T R R 

Notes: 1 km= 0.62 mile, 1 kg - 2.2 lb. 
T =truck, A =rail , 

A0824 

c' 

R 

R 

R 

R 

R 
R 

A0824 

R 

R 

R 

R 

R 

R 
R 

designed as dominated and (b) currently competitive and 
tending to rail, the total rail percentage of cargo would 
be 42.07 percent. The truck percentage of cargo would 
be 57.93 percent. 

Table 6 shows the composite matrix of all products 
and the potential division of all shipments ize -and-distance 
categories. Based on this aggregate matrix representa­
tion, the division of total manufactured cargo between 
the modes reflects primarily the weight of the shipment 
being transported. Almost all cargo of less than 27 216 
kg (60 000 lb) tends to trucks, and that of more than 
2 7 216 kg (60 000) tends to rail. While this matrix 
presents clearly defined areas of modal advantage, not 
all shipments will, nor can they, move in compliance 
with these broad modally related weight-and-distance 
delineations. In fact, in aggregating the potential amounts 
of freight by mode as shown above, no attempt was 
made to allocate the cargo amounts accounted for by the 
instances of (major) deviation to what Table 6 would in­
dicate to be the correct mode. The factor or factors 
that caused the deviant modal choices were obviously 
not weight and distance related in the first place and will 
not be so in the future unless there is a significant change 
in modal technology. In general, however, the shipment 
size versus mode of transportation relation is based 
on weight. 

For comparative purposes, the three sets of modal 
percentage of cargo applicable to this analysis are 
listed below. 

Category Rail(%) Truck(%) 

Actual overal I percentages of total cargo 
handled by mode in 1972 38.10 58.10 

Overall percentages of total cargo derived 
through the allocation of individual prod-
uct cells to mode in 1972 42.07 57.93 

Typical (Table 2-represented) percentages 
of total cargo to mode in 1972 40.05 59.95 

The actual overall percentages given above fail to 
account for the 3.80 percent of freight actually car­
ried by the excluded modes; i.e., air, water, and 
other. 

Concerning the amount of cargo potentially tending 
to each mode as shown above, one can readily see 
that the modal splits as classified by this analysis 
are proportionally not significantly different from 
the actual percentages of cargo in 1972. The actual 
rail percentage was 38.10, and the potential rail 
cargo was 42 .07 percent. Trucks actually carried 
58, 10 percent and potentially carried 57. 93 percent. 
"Uhon tho t::11nt11".ll no-rnont".lITC.C! nf n'::l1"0'n n!:ll,.1"iAr1 hu thi:i ................................... '"' ....... ....., .. !" ................................ b ................... '"'"""'"'b"' ........ - ............... "'J ... & .. .... 

excluded modes are considered, the potential rail 
and truck cargo amounts will decrease minimally. 

Thus, regardless of the way in which freight is allo­
cated to mode, either by the real world, presently exist­
ing means (as represented by the actual figure) or by 
drawing an arbitrary line of comparative advantage, 
which reflects the typical shipper preference existing 
in 1972 (as represented by the individual cell count and 
table divisions), there would have been no significant 
change in the amount of cargo handled. A relatively in­
significant amount would have been transferred from 
truck to rail for some products, and front rail to truck 
for others, but the net change in cargo carried would be 
inconsequential. 

FUTURE ROLES OF TRUCK 
AND RAIL 

Throughout this analysis, attention has been focused on 
the modal division of shipments for a single time period, 



Table 7. Analysis of changes in modal percentage of cargo based on 
chongos in relative amounts of cargo in lighter versus heavier 
shipments for all comparable commodities (1967 and 1972). 

Amount of Amount of 
No. of Products Cargo Decreased Cargo Increased 

Affected 43 42 
In which rail percentage of 

cargo decreased 36 19 
In which true k percentage 

of cargo increased 36 19 
In which rail percentage 

of cargo increased 23 
In which true k percentage 

of cargo decreased 6 23 
In which no change occurred 

in rail percentage of cargo l 
In which no change occurred 

in truck percentage of cargo 

Table 8. Analysis of changes in modal percentage of cargo based on 
changes of 5 percent or more in relative amounts of cargo in lighter 
versus heavier shipments for all comparable co111modities (1967 
and 1972). 

No. of Products 

Affected 
In which rail percentage of 

cargo decreased 
In which truck percentage 

of cargo increased 
In which rail percentage of 

cargo increased 
In which true k percentage 

of cargo decreased 
In which no change occurred 

in rail percentage of cargo 
In which no change occurred 

in truck percentage of cargo 

Amount of Amount of 
Cargo Decreased Cargo Increased 

16 15 

15 

16 4 

10 

11 

1972. If this 1972 division of cargo were constant over 
time, the future roles of truck and rail, in the absence 
of any artificial or arbitrary obstacles to modal use or 
interfei·ences in market -forces, would be dependent 
simply on the amount of cargo or the number of ship­
ments in the weight-and-distance categories in any 
future time period. However, it is not at all certain 
that the 1972 modal division is constant. Certainly, if 
a long-term comparison could be made in the matrix 
format, perhaps over 20 or 30 years, material changes 
would have occurred, primarily reflecting the growth 
of trucking. Concerning the future roles of truck and 
rail, the question to be addressed is whether shippers' 
perceptions of modal comparative advantages will change 
and, if so, in what direction. Will trucking ln the future 
dominate any current rail cells, or vice versa, or are 
the 1972-depicted limits stable? If changes ue found to 
be occurring (assuming the rates of one mode have not 
changed d1'astically in relation to the rates of the other), 
this weuld indicate that s hippers ' perceptions of service 
differences are developing between the modes in one 
direction or another. 

To determine trends in shippers' preferences, a 
time-series analysis is helpful. However, because of 
data-incompatability limitations i.e., the lack of de­
tailed data that would be necessary to create the matrix 
for a period other than 1972, this time-series evaluation 
can only be made in rough form and is only attempted 
because the 1972 potential modal split centered arc:>und 
27 216 kg (60 000 lb) shipments, a shipment-size de­
lineation that is available in the 1967 Census of Trans­
portation. 
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This time-series comparison involved evaluating the 
relation between changes in the relative amounts of cargo 
suited to movement by a mode and changes in the actual 
overall percentages of freight handled by it . It was con­
ducted under the assumption that modal relative advan­
tage was stable at the 1972 limits, i.e., that there would 
be a strong and direct relation in the following measure­
ments: 

1. If the relative amount of cargo heavier than 
27 216 kg (60 000 lb) decreased from 1967 to 1972, the 
overall truck percentage of freight would increase and 

2. If the relative amount of cargo heavie1· than 
27 216 kg (60 000 lb) increased from 1967 to 1972, the 
overall rail percentage of freight would increase. 

This test could be rerformed on 85 products. Of the 89 
products listed in the 1972 census, 2 were not con­
tained in the 1967 source, namely, TCC 205 (bakery 
products ) and TCC 225 (knit fabrics). An additional 2 
products were eliminated because they failed to ship any 
cargo heavier than 27 216 kg (60 000 lb) in either 1967 
or 1972. Those commodities we1·e TCC 381 (engineering, 
laborato1·y, and scientific instruments ) and TCC 387 
(watches, clocks, and allied products). The results of 
this test are summiU'ized in Table 7. These data per­
tain to all commodities in which there was any change 
in the percentage of cargo heavier than 27 216 kg (60 000 
lb), irrespective of the magnitude of the change. There 
was a decrease in the percentage of heavy-weight ship­
ments in 43 products. The overall rail percentage of 
·cargo decreased in 36 products, increased in 6, and 
exhibited no change for 1. Conversely, the overall 
truck percentage of cugo increased in 36 products 
decreased in 6, and did not change for 1. These results 
for decreases in the relative amounts of heavy-weight 
cargo indicate that rail is not making serious im·oads into 
t he lighter weight shipment market, the truck domain. 
However, consider the relationship concerning the 42 
commodities in which there was an increase in the per­
centage of heavy shipments. Contrary to the results 
expected by assuming stabilized modal use, in almost 
half of the commodities (19 of 42) the rail percentage of 
cargo decreased! 

To further test the hypothesis, the commodities with 
only minor changes in the percentage of heavy-weight ship­
ments were eliminated from the tabulation. The results for 
all commodities in which there was change of at least 5 per­
cent of total cargo between heavier [over 27 216 kg 
(60 000 lb)) and lighter [under 27 216 kg (60 000 lb)) 
weight shipments are shown in Table 8. Sixteen com­
modities exhibited significant decreases in heavy ship­
ments. The overall truck percentage of cargo increased 
in all 16. The actual overall rail percentage of cargo 
decreased in 15 and remained unchanged in 1. There 
were 15 commodities in which there were significant 
increases in heavier shipments. The overall rail per­
centage of cargo increased in 10 and decreased in 5, and 
the overall truck percentage of cargo decreased in 11 and 
increased in 4. Hence, it appears that modal-use 
changes have occurred from 1967 to 1972 to the detri­
ment of the rail mode and, extrapolating from these re­
sults, could very well occur into the future. Since 
there is good reason to believe that no signilicant rate 
disparity occurred between 1967 and 1972, trucks 
apparently offer a service advantage that is tending to 
absorb a portion of the rail freight market. 

Although service advantages are almost impossible 
to quantify, a recent study by the U.S. Department of 
Transportation helps to explain the attitude of shippers 
toward this performance factor. This study indicated 
that shippers felt that rail performa11ce relative to 
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truck performance was inferior in the following areas, 
even with the inherent modal differences (s uch as average 
tirrle in transit) acknowledged: (a) on-time pickup· (b} 
on-time delivery; (c) arrivals without loss, short, or 
damage; and (d) availability of specified equipment . If 
the railroads cannot improve their service performance 
on inherently suited traffic, they cannot be expected to 
retain their present freight base, nor to gain traffic of 
other sizes or distances. However, if the rail time 
factors and damage performances improve and afford 
better reliability of service, then a significant increase 
in demand for rail service, especially long-distance 
line-haul service, could be expected. Improvements in 
these areas would a lso allow service innovations such 
as trailer on flatcar and container on flatcar to come 
up to their potential for the benefit of all modes, ship­
pers, and consumers. Improving and expediting inter­
change arrangements and improving control of freight 
cars also could be expected to increase the amount of 
freight moving by rail. 

At the same time, however, attention should be 
focused on productivity improvements that are available 
to the truck mode. An area with significant potential 
for such improvements is weight-limitation and vehicle­
length and configuration laws, where there are differ­
ences among the various states. Changes in these laws 
can not only help trucking to better fulfill its obligation 
to provide service to the public, but can also have 
secondary impacts on i 1esources allocated to trucking. 
They are a means to improve the freight-moved-to-fuel­
consumed ratio, for example. They can impact on the 
number of trucks needed to move a fixed amount of 
freight with resultant fuel use and highway congestion 
and safety implications . Such changes can also impact 
on the cost of products to consumers if one truck can 
do the job that now might require two, or two trucks the 
job currently performed by three. In any event, there 
are reasonable means available to improve the perfor­
mance of all modes, and these means must be seriously 
evaluated in the context of the continuing development of 
a national transportation policy. 

CONCLUSION 

The purpose of this paper has been to recast, or better 
display, the numbers used in the evaluation or analyses 
of the traffic split between modes. It is concerned 
principally with modal choices made in 1972 on the basis 
of shipment weight and distance moved. No attempt was 
made to identify or measure factors of modal choice 
other than shipment weight and distance, nor was any 
attempt made to allocate traffic to modes in any way 
that is inconsistent with actual shipper preferences as 
shown by the data. There was no attempt to quantify 
service or rate differentials between modes or to cal­
culate social costs or benefits created by the modal 
split. This analysis simply investigates and depicts 
what shippers in 1972 felt were the roles or the relative 
advantages of truck and rail in their distribution sys­
tems. However, these data can be used as valuable 
aids in further research concerning modal choice. If 
one assumes that the shipper is oriented toward min­
imizing total costs, i.e., that the shipper has con­
sidered all relevant factors in the equation of costs 
before making a modal choice, then these data could 

help identify the level-of-service differential given a 
wide spread in rates, or help dispel the premise that 
there are significant nonjustified economic costs created 
by the modal split. 

This study provides a procedural frame in which to 
analyze the roles of truck and rail in the distribution of 
manufactured freight. The analysis, which uses un­
complicated statistical techniques, was conducted under 
the assumption that there are relative advantages, which 
are adhered to, in transportation. The data of the 1972 
Commodity Transportation Survey not only suppo1·ted 
this assumption as concerns the basic areas of advan­
tage, but moreover, showed that shipment weight is a 
more significarrt factor in shipper choice of mode than 
is length of haul, although length of haul (centering 
around 483 to 805 km (300 to 500 miles)] does have some 
impact on modal choice for freight in the middle size -
of-shipment brackets (4536 to 40 824 kg (10 000 to 90 000 
lb)]. However, the advantages of trucks, especially 
that of for-hire motor carriers, generally pertain to 
shipments up to 27 216 kg (60 000 lb). The advantages 
of rail IJ rt in to hlp1nenls of 27 216 kg (60 00 JJJ) and 
more. 

ln .relation to the total amount of manufactured freight 
(with minor exceptions ), 44.60 percent involved virtually 
only truck movement. The traffic moved solely by rail 
is approximately 28.83 percent of manufactured f.reight; 
intermodal competitive involvement is evident for the 
remaining 26.57 percent. Although these figm·es apply 
to a composite of all products, the basic data of this 
analysis show that there are noncompetitive areas within 
the shipment distribution patterns of any product. 

This analysis has demonstrated that the amount of 
cargo subject to modal substitution is virtually incon­
sequ.ential. Within individual commodities, some freight 
of some products could shift from truck to rail. But 
within other commodities, freight shifts will be from rail 
to truck. When all products are considered, the in­
dividu.al commodity freight shifts will tend to cancel 
each other. 

The futm·e roles of truck and rail will depend pri­
marily on the amount of freight in the modally oriented 
shipment-size tots, although there will probably be 
shifts in modal use for Il'eight in certain weight-and­
distance categories. Factors such as service innova­
tions, technological change, and transportation-oriented 
legislation can have significant impacts on modal roles; 
however, the primary factor should remain the size of 
the shipment. 

The current split of ca1·go reflects the modal pref­
erences of shippers who are themselves oriented toward 
minimizing the total cost of manufacturing and distrihu­
tlon of the-lr product. The modal choice has already 
been made and the areas of advantage ai·e relatively 
solid. The orientation of the canie1·s, the regulatory 
agencies, and policy economists should center on im­
proving th.e efficiency and service offered by each mode 
within their respective freight bases. For only when 
efficient and satisfactory service can be offered in ship­
ments for which a mode is inherently or relatively 
suited can the real cost of transpo1·tation decrease. 

Publfr:otion of this pBper sponsored by Committee on Passenger and 
Freight Transportation Cllaractetistics. 
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Approximation Equations for Costs of 
Rail, Trailer-on-Flatcar, and Truck 
Intercity Freight Systems 
Edward K. Morlok and John A. Warner, Department of Civil and Urban Engineering, 

University of Pennsylvania 

This paper presents equations that approximate the fully allocated and 
variable costs contained in the Interstate Commerce Commission cost 
tables for rail-carload, trailer-on-flatcar, and truck intercity freight 
movements. These equations were developed to enable the user to ap­
proximate the costs quickly and easily. They should be useful in ini­
tial studies of costs where the exact values are not needed, such as in 
consideration of rate changes, studies of profitability, and general inter­
modal comparisons. Tho equations were used to develop estimates of 
cost for complete shipper to receiver shipments via the three carriers to 
illustrate general properties of the carriers, individually and with re­
spect to one another. 

The cost characteristics of rail-carload, trailer-on­
flatcar (TOFC), and common-carrier-truck intercity 
freight systems, as estimated by the Interstate Com­
merce Commission (ICC), are discussed for two pur­
poses: (a) to make available app1·oximation equations 
for the ICC costs, which are in tabular form, and (b) 
to compare these costs, individually and with one 
another. 

There are several reasons for using the ICC cost 
tables. Because they are in the public domain, costs 
estimated by using them have none of the problems as­
sociated with costs estimated by using proprietary 
methods. The ICC cost tables give estimates that are 
useful for many transportation-analysis purposes, their 
value in large measure being derived from the fact that 
they are used by regulators as a lower bound on the 
prices that carriers can charge. The fully allocated 
costs are somewhat analogous to average total costs, 
and thus also provide a useful measure of cost. The 
ICC costs are also useful to a shipper engaged in a rate 
negotiation with a carrier, as a means of estimating 
the cost to that carrier of providing the service in 
negotiation. These cost estimates may also be useful 
to carriers who wish to obtain estimates of the ICC­
based costs for particular movements. Such estimates 
would be useful in studies of the profitability of various 
movements, as indicators of the commission's potential 
reaction to a rate change request, and as a basis for 
comparison of a carrier's true (Le., 'internally de­
veloped) costs with those of the average canier. 

Balancing the advantages of the ICC cost tables is 
that the tables themselves are cumbersome to use and 
that it is difficult to obtain any general picture of cost 
characteristics from them. Therefore, analytical rela­
tions that approximate these tabular costs can be 
used advantageously, not only to simplify the computa­
tions, but also to gain a general understanding of the 
basic functional relations among the many variables 
that affect a carrier's costs. The relative costs of rail, 
TOFC, and road transport depend on a number of char­
acteristics of the shipment and the carrier, such as the 
distance of the movement, the density of the material 
being shipped, the total weight of the shipment, the 
circuity of the routes, and the extent of empty versus 
loaded distance traveled. 

In the following sections of this paper, we will discuss 
the cost characteristics of each of the freight systems 

individually, compare these characteristics, and make 
several comments pertinent to freight systems in gen­
eral. The details of the cost-estimating equations are 
given in detail. 

RAIL CARLOAD 

Rail cost and performance will be illustrated for the two 
most common carriers of general-merchandise freight: 
unequipped and equipped (sometimes called damage-free 
or cushion-underframe) general-service boxcars. Al­
though such cars have a wide range of sizes, capacities, 
and equipment configurati.ons, we will model a typical 
car having a 59-Mg {approximately 65-ton) weight ca­
pacity and a volwne capacity of about 139 m3 (4900 ft3). 
The costs are derived from the ICC statement, Rail Car­
load Cost Scales 1973 (1), one of a series published 
annually, which contairis, by region, scales showing 
variable and fully allocated costs as a function of short­
line rail distance and weight of load. The costs are 
given in three forms: (a) a summary table of average 
regional costs; (b) a breakdown of these unit costs into 
terminal and line-haul components, with the line-haul 
component further broken down into way trains and 
through trains; and (c) a detailed table that contains, for 
average trains, way trains, and through trains, by car 
type, variable and constant terminal and line-haul costs 
on a car-mile and hundredweight-mile basis. In 
addition to these three basic tables, provision is made 
to allow adjustment of average costs for situations in 
which it is known that operational procedures, such as 
circuity or empty-return ratio, are different from 
regional average procedures. 

In this paper we illustrate costs for ICC region 3, 
the official territory of which includes those states east 
of Wisconsin and Illinois (including a portion of Illinois) 
and north of Kentucky and North Carolina (excluding a 
portion of Virginia). The costs of providing basic rail 
boxcar service in the region, as computed from the ICC 
cost data, are summarized in Figure 1 for equipped and 
unequipped cars for several distances as a function of 
shipment weight. The cost of moving a car is the 
largest portion of any shipment cost, and marginal in­
creases in the net load of the car have a small effect on 
total shipment costs. 

Cost-Estimating Procedure 

The basic rail-boxcar cost-estimating procedures are 
as follows. 

1. Determine .shipment characteristics: 

S shipment weight (cwt); 
L shipment distance (actual miles)-(if this is not 

available, reasonable estimates are 1.25 times 
great-circle distance or 1.18 times rail short­
line miles for boxcar movements, 1.09 times 
rail short-line miles for TOFC movements, 
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and 1.20 times great-circle distance or 1,06 
times highway rate-making miles for truck 
movements); 

D commodity density (lb/ ft3); 
t = t ype of rail car used; and 
a highway-access coefficient [(a) O, indicating 

highway access at neither origin nor destina­
tion; (b) 1, indicating highway access at either 
origin or destination, but not both; and (c) 2, 
indicating highway access at both origin and 
destination]. 

(SI units are not given for the variables in these equa­
tions, inasmuch as they were derived for U.S. cus­
tomary units.) 

2 . Compute number of rail cars required for ship­
ment: 

nd = (l OOS/0.9V) (l) 

where nd = volume requirement and V = volume capacity 
uf t:Y.ui.pme11l U:,je<l (a lypical value is 4900 ft3). 

n, = (S/W) (2) 

where W = weight capacity of equipment used (a typical 
value is 1300 cwt). If n, or nd are not integers, they 
are rounded to the next higher integer. 

n =Max (nd, n,) (3) 

3. Select applicable cost formula and compute cost: 
The basic cost equation has the form 

y = B;n + 0.000 36S + L (E;11 + 0.000 148 2S) (4) 

where Bi and E 1 are parameters that vary with car type. 
The variable line-haul cost (ct) is given by 

Figure 1. Rail carload cost as a function of shipment weight and 
distance. 

12.33 

10.96 

9.59 

8.22 

-r 
'f 
"' ?; fi.85 
0 ... .. 
"' "' 
"' 5. 48 E 

..<;; 

:;; 
0 4.11 v 

2.74 

1.37 

0 

-

67 ,53 KM 

941.27 KM 

1382, 53 KM ( 

TOP LINE AT EACH ~IST.t\NCE rs 
fQq BOX, GEN ERA L SERVICE., 

EPU I PPEO 
BOTTOM Is FO~ eox .. GENE!'.?AL 

SERV I CE, UNEOU I ~PF.D 

9.07 18.14 27.22 36.29 45. 35 SQ .43 
SHIPMENT WEIGHT (TONNES) 

c 1 = l l 6n + 0 .000 36S + L(0.317 3511 + 0.000 148 2S) (4a) 

and 

c2 = l l 6n + 0.000 36S + L(0.422 49n + 0.000 148 2S) (4b) 

for unequipped and equipped general -service boxcars 
respectively. The fully allocated line-haul cost (c0 is 
given by 

ci = 11611 + 0.024 46S + L(0.317 3S11+0.000 286 IS) (Sa) 

and 

c:i = l l 6n + 0.024 46S + L(0.422 49n + 0.000 286 IS) (Sb) 

for unequipped and equipped general-service boxcars 
respectively, The variable highway-access cost (h,) 
for rail boxcar is given by 

h, = a( 4 .fi?.R.<;0.465 + fl 11 'i RS) (S < 100) 

h, = a(0.633 8S - 0.001 4S4 S2) (I 00 "' S < 200) 

h, = a(0.474 8S - 0.000 6S9S2) (200 " s < 300) 

h, = a(0.363S - 0.000 286S2) (300 .. s < 437) 

h,=a(0.238 IS) (S "' 437) 

The fully allocated highway-access cost (h:) for rail 
boxcar is given by 

h,' = 1 .1 I (h,) 

(6:i) 

(6b) 

(6c) 

(6d) 

(6e) 

(7) 

The total rail-boxcar system cost (c) is the sum of the 
line-haul and highway access costs (dollars per ship­
ment). 

Adjustments to Basic Procedure 

Intuitively, we would expect the many different sizes, 
weights, and configurations of rail cars to have wide 
variations in cost characteristics. The two rail cars for 
which cost data are given above, unequipped and equipped 
general-service boxcars, are in the middle range of 
ranking by car costs. The least expensive to operate 
are large liquid tank cars, and the most expensive (de­
pending on distance of shipment) are several types of 
special-service cars, such as refrigerated cars, 
special-service boxcars, and special-service gondolas. 
Tt is i.mportant to keep these 1.rariat!ons due to car type 
in mind when analyzing specific commodity movements. 

The cost characteristics of different types of rail 
cars can be taken into account by substituting for the 
basic coefficient values of Equation 4. Table 1 presents 
coeUicient values for B1 and E1 , the two coefficients 
that vary with car type. The wide variation among car 
types in weight and volume capacity requires that these 
characteristics be determined for each individual sit­
uation. 

Another major variation in cost for which provision 
can be made through use of the ICC cost data is the 
effect on total shipment cost of var.iationB in frequency 
of intermediate yardings . These may be of three types: 
(a) an :iliterchange movement between two i·ailroads, 
(b) an intertrain switching between trains of the same 
railroad company, or (c) an intratrain switching of cars 
of the same train. The ICC assumes that an intertrain 
or intratrain switching occurs, on the average, about 
every 322 km (200 miles ) (2). For example, there 
would be five i11te1·train or lntl'atraln switchings tn a 



Table 1. Coefficient values of 
Car Types 

common railcars. 
Unequipped general box 
Equipped general box 
Special box 
General gondola 
Special gondola 
Open general hopper 
Open special hopper 
Covered hopper 
Stock 
General flat 

Figure 2. TOFC cost as a function of shipment weight and 
number of trailers required. 
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1600-km {1000-mile) haul, resulting in an average dis­
tance between such switcl~gs of about 269 km {167 
miles). There is no explicit statement of the average 
frequency of interchanges. Calculations based on the 
average cost of each interchange in official territory, 
however, indicate an ave1·age frequency of one such in­
terchange about every 965 km (600 miles). The cost 
difference among different intermediate yarding fre­
quencies is substantial, especially for longer hauls . 
For example, over a 1600-km (1000-mile) haul, the 
unit cost difference for a shipment of about 23 Mg (25 
tons) would be more than $5.50/ Mg (approximately $5/ 
ton). 

B, 

116 
116 
125 
125 
125 
125 
125 
125 
125 
125 

The calculation of shipment costs for other than 
average intei-mediate switching conditions is straight­
for ward. The cost estimated by the basic rail formulas 
includes the cost of average interchange and intermediate 
switch.ing conditions. If the analyst knows that the move­
ment being costed has otl1er than average interchange 
switching, l1e or she may proceed as follows. (This 
example is for unequipped general-service boxca1·s.) 
The cost fo1· x interchanges Is given by 

Cx = (36.54x - 0.066 69L)n (8a) 

and the cost for y intermediate switchings is given by 

Cy = ( l 2.04y - 0.060 l 7L)n (8b) 

The appropriate value (c. or Cy) should be added to the 
cost computed by using the basic procedure. 

73 

E, Car Types B, E, 

0.317 35 Mechanical meat refrigerator 83 0.564 99 
0.422 49 Mechanical other than meat 
0.482 18 refrigerator 83 0.535 08 
0.36~ 45 Nonmechanlcal meat refrigerator 83 0.532 85 
0.428 81 Nonmechanical other than meat 
0.369 58 refrigerator 83 0.517 25 
0.394 23 38 to 72 kL (10 032 000 to 
0.429 81 19 008 000 gal) tank 83 0.538 61 
0 .384 86 106 to 121 kL (27 984 000 to 
0.378 57 31 944 000 gall tank 83 0.615 66 

TRAILER ON FLATCAR 

TOFC costs are developed based on information in 
the Rail Carload Cost Scales 1973 (1). Cost scales 
are not presented, however, and the - method of com­
putation is quite different. Costs are computed on 
the basis of an assumed cost pei· ton mile carried 
and other operational characteristics of TOFC are given 
on a regional average basis. This method allows the 
analyst to explicitly vary such operational character­
istics as the number of trailers requil•ed for the ship­
ment being costed, the number of trailers assumed to 
be riding on each rail flatcar, and the weight of the 
shipment. If information on these characteristics of 
the shipments is not available the analyst can use 
regional average data. 

There are several TOFC plans, with variations in 
the degree to which responsibility for a s hipment is 
divided between the railroad and the shipper. We will 
illustrate costs for plan 2, in which the railroads per­
form the entire service from consignor to consignee. 
FiglU·e 2 shows cost per shipment for various shipment 
weights for distances of about 1600 km (1000 miles). 
The cost curves of Figure 2 illustrate three interesting 
characteristics of TOFC costs : (a) the significant con­
tribution to total cost of terminal-related costs, (b) the 
influence on total cost of the number of trailers required 
to carry any given load, and (c) the relatively minor in­
fluence on total cost of the load carried in any give n 
number of trailers. The second of these, that the num­
ber of trailers required for a movement, rather than 
the absolute size of the net load, is the primary deter­
minant of cost, can be confu·med by inspection 0£ single 
and double-trailer cost curves for movements of the 
same weight and distance. For example , a s hipment of 
about 22 Mg (488 cwt) moving about 1600 km (1000 miles) 
in a single traile1· has total shipment cost of approxi­
mately $465 . In a double trailer, the same shipment 
costs approximately $820. Finally, the third point, that 
(as for rail-boxcar movements ) the marginal effect of 
increasing shipment weight is min imal, can be observed 
by inspection of any single cost curve. For example a 
three-trailer movement of about 22 Mg (488 cwt) moving 
about 1600 km (1000 miles) has a total shipment cost of 
approximately $1200 dollaxs but inc1·easing the load to 
about 60 Mg (1317 cwt) inc1·eases the total shipment cost 
to only approximate ly $1304, an increase in cost of 
slightly more than 11 percent. 

Cost-Estimating Procedure 

The basic TOFC cost-estimating procedure is as follows. 

1. Determine shipment characteristics in the same 
way as for rail car. 

2. Compute number of TOFC trailers required for 
shipment by using Equations 1, 2, and 3. (Fox T OFC 
trailers, typical values ru.·e V = 2550 f t3 and W = 490 
cwt.) 
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3, Select applicable cost formula and compute cost: 
The variable cost (en) is given by 

c 1 =l93+0.00118S+(0.206+0.0001367S)L (n= I) (9a) 

c2 = 378 + 0 .00 1 18S + (0.379 + 0.000 136 7S)L (n = 2) (9b) 

C3 = 566 + 0 .00 l l 8S + (0.585 + 0.000 136 7S)L (n = 3) (9c) 

C4 = 750 + 0.001 l 8S + (0.758 + 0.000 136 7S)L (n = 4) (9d) 

and the fully allocated cost (c;) is given by 

c1' = 193 + 0.G25 28S + (0.206 + 0.000 262 2S)L (n = l) (lOa) 

ci = 378 + 0.025 28S + (0.379 + 0.000 262 2S)L (n = 2) (!Ob) 

c:i = 566 + 0.025 28S + (0.585 + 0.000 262 2S)L (n = 3) (!Oc) 

c4 = 750 + O.G25 28S + (0.758 + 0.000 262 2S)L (n = 4) (lOd) 

both in dollars per shipment, 

Adjustments to Basic Procedure 

Interchange and intermediate switching adjustments are 
simllal' to those used for i·ail-carload costs. The cost 
for x inte1·change switchings is given by 

c, = (30.79x - 0.042 66L) (n/2) (l la) 

and the cost for y intermediate switchings is given by 

Cy= (10.l4y-0.033 610L) (n/2) (l lb) 

where, if (n/2) is not an integer, it is rounded to the 
next higher integer. 

HIGHWAY COMMON CARRIER 

Highway, intercity freight-system costs are estimated 

Figure 3. Highway common-carrier cost as a 
function of shipment weight and distance. 
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by using the ICC statement, Cost of Transporting 
Freight by Class 1 and 2 Motor Common Carriers of 
General Commodities 1973 (3 ), which gives several 
tables of updated unit costs and ope1·ational characteris­
tics that allow the analyst to develop cost scales for 
various shipment weights or weight brackets. As Is the 
case for rail carload and TOFC, cost estimates ai·e 
given for various regions or territories of the United 
States. For consistency, highway costs are here esti­
mated for the eastern and central territory, which is 
simila ·to the rail industry's official territory, al­
though it includes more of Illinois and none of Virginia. 

There are two significant differences between the 
highway system cost-estimating procedw-es a.nd those 
described above for rail boxcar and TOFC. First, it 
is not necessary that the analyst have explicit knowledge 
of the physical and operational ch:u·acteristics of the 
highway service being costed, Data are given for a 
wide range of shipment weights and distances, and the 
assumption implicit in the associated unit costs is that 
lhe sh.ipment moves in a service having average char­
acteristics. This might mean, typi ally, th l a 10all 
shipment would be first handled in local pickup-ancl­
delivery service by a small vehicle suited to such opera­
tions and then be consolidated with other shipments with 
common destinations in a larger over-the-road vehicle 
for tlle intercity line-haul portion of the total movement. 

The second difference, which iB Telated to the first, 
is that in highway costing the density of the shipment 
being costed is explicitly taken into account. Since the 
capacity of a vehicle is limited by not only weight but 
also by volume characte1·istics, the highway costing 
technique, which does not include explicit determination 
of the number and type of vehicles requh•ed for a given 
shipment, must include some other method for taldng 
va1·iations in spatial occupancy of different commodities 
into account. 

FigU1'e 3 shows the cost characteristlcs of the high­
way mode. Cost iB given by a band, rather than by a 
single curve, that shows the effect of different densities 
of commodities being shipped. The lower line at each 
distance is for the higher density commodity, and the 
higher line is for the lower density commodity. Al­
though, intuitively, we would expect density to have 
effects on platform o,perations on the pick-up and 
delive1·y porti.ons of terminal costs, and on line-haul 
cost, it is taken into account in the source publication 
(3) by a weighted factor adjustment to the line-haul unit 
costs. As might be expected, cost decreases with in­
creasing shipment weight, in part because of efficiencies 
associated with larger vehicles and in part because of a 
reduction in shipment platform handling by the carrier. 
(The probability that a shipment will be picked up at the 
consignor's dock and transported in a single truck to 
the consignee's dock without intermediate terminal 
handling by the carrie1· increases as the shipment size 
increases.) The rate of decrease in unit cost, however, 
becomes much lower above a shipment weight of approxi­
mately 18 Mg (399 cwt) . One possible explanation is 
that tllis is the point beyond which vehicle size cannot be 
further increased so that the economies previously 
i·ealized by inc1·easing vehicle size a.re no longer avail­
able. 

Cost-Estimating Procedures 

The highway common-carrier cost-estimating procedure 
is as follows. 

1. Determine shipment characteristics in the same 
way as for rail car. 

2. Select applicable cost formula and compute cost : 



The variable unit cost (C,) is given by 

c, = 924s·0·537 + (8.828 6 + 0.169 01 L) 

(0.855 + 1.32 exp-0.144 7 (D - 2.5)] 

+ (0.292 93S-0·736)L (S < 100) (l 2a) 

c, = 70.51-0.2907(S- 100) + (12.107 + 0.180 98L) 

(0.855 + 0.68 exp-0.161 76 (D - 7.5)] 

+ [0.009 88 - 0.000 063 8 (S - 100)] L (I 00 .; S < 200) (12b) 

c,=41.44-0.1317 (S-200)+(6.25+0.172 75L) 

(0.855 + 0.68exp--0.161 76 (D-7.5)] 

+ [0.003 5 - 0.000 029 9 (S - 200)] (200 < S < 300) ( l 2c) 

c, = 28.27 - 0.057 1 (S - 300) + (2.706 + 0.150 9L) 

[0.855 + 0.68exp-0 .161 76 (D-7.5)] 

+ 0.000 51 (300 .; s < 437) (12d) 

c, = 23.153 + 0.134 06L 

+[0.1026lexp-0.16176(D-7 .5) ]L (S .; 437) (12e) 

The fully allocated unit cost (C;) is given by 

C,' = 1.1 lC, (13) 

The total highway common-carrier variable and fully 
allocated costs (C, and c: respectively) al'e given by 

C, = c,S/l 00 (14a) 

and 

C,' = c,'S/l 00 (14b) 

all in dollars per shipment. 

Accuracy 

The truck costs estimated by equations are not as good 
a fit as those for the rail modes. The errors, at rep­
resentative shipment weights and distances, are given 
in Table 2. It is necessary, therefore, that an analyst 
using these equations be aware of the potential errors 
involved, although for the most common shipment dis­
tances and weights, the total cost error is less than 5 
percent. 

COST UPDATING 

Although the costs given above are useful in providing 
information on general cost behavior in the study year 
(1973), most applications would require more current 
estimates. 
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One way of updating is based on the Bureau of Labor 
Statistics (BLS) indexes of rail freight costs. (The BLS 
term cost corresponds to our term rate-the price 
charged to shippers by transportation firms-rather than 
to our cost-the cost to transportation firms of providing 
that service.) For example, in 1973 the index stood at 
129.3 (4)· its last reported level was 198 (Februa1·y 1977) 
(5). If\ve assume that rate increases mirror increases 
in carriers' costs, then we can update the 1973 cost 
estimates presented here by increasing them by the 
ratio of the current to the 1973 rate index. In the ex­
ample above, this would mean multiplying the 1973 rail­
carload and TOFC cost estimates by 1.53. A similar 
set of indexes for highway common-carrier costs (rates) 
is scheduled for release by BLS in 1977. 

COMPARISON OF SYSTEMS 

In the previous sections, we have presented cost models 
for the three intercity freight carriers. In this section, 
we will present a comparison of their characteristics 
for a few sample origin-to-destination intercity move­
ments, including several levels of shipment size and 
distance. In all cases, the variable cost will be used. 

The TOFC and highway systems as they are described 
above are capable of providing a direct dock-to-dock 
service. However, some shippers or consignees do 
not have direct rail access and, therefore, it is neces­
sary to include in the rail-system cost estimates pro­
vision for highway access at either origin or destina­
tion or both, if required. 

The highway portions of these access segments are 
assumed to be similar to the pick-up-and-delivery 
operations included in the highway cost estimation, and 
their cost is estimated on this basis. The physical 
transfer of cargo is assumed to be a rail operation. On 
this basis, access cost at both origin and destination is 
composed of the origin-and-destination terminal cost 
included in the highway cost estimates: (a) pick-up and 
delivel'y, (b) highway platform handling, (c) billing and 
collecting, a nd (cl) a i•ail platform-handU11g charge esti­
mated at about $3/ Mg (13.6 ¢/cwt)/ handling (i.e., at 
each end) (!., p. 149). 

Another factor that must be taken into account before 
we can make direct compru:ison among the three intercity 
freight modes is circuity, the deviation of the path ac­
tually followed by a shipment from some common or 
reference distance between its origin and destination. 
In the abse11ce of actual knowledge of this information, 
we will adopt the results of a recent study (6). Since 
the typical circuity values for rail and truck are so 
similar (1.25 for rail and 1.20 for truck) (and we know 
that cost estimates may well have variations of the 
magnitude of the difference between these two circuity 

Table 2. Absolute and percentage deviations of costs estimated by equations according to shipping distance and value. 

40 .2 km 644 km 1609 km 

$10 to 15 $20 to $30 $10 to $15 $20 to $30 $10 to $15 $20 to $30 

Shipping Abso- Per- Abso- Per- Abso- Per- Abso- Per- Abso- Per- Ab so- Per-
Weight (Mg) lute centage lute centage lute. centage lute centage lute centage lute centage 

0.169 1.3 8.0 1.3 8.0 1.6 7.6 1.7 8.5 2.3 2.3 8.7 9 .3 
0.292 0.3 1.3 0.2 0.9 0.2 0 .7 0 .3 1.0 0.6 0.6 1.5 1.6 
0.581 0.6 1.9 0.4 1.3 -0.1 -0 .2 -0.1 -0.2 -0.5 -0.2 -0 .1 -0.4 
1.261 -1.2 -2.5 -1.5 -3.1 -3.2 -4.2 -3.2 -4.5 -3.8 -3.9 -3.4 -3.9 
2.921 3.1 4.4 2.4 3.5 -0.2 -0.2 -0 .2 -0.2 0.2 0.1 
5.797 17.4 19 .8 14.7 17 .3 7 .7 3 .5 7.4 3.8 11.07 10.2 3.0 3.3 

11.06 13.1 10. 7 12.3 10.6 7.8 2 .4 3.2 1.2 28.5 12 .2 4.9 2.5 
15.39 -7.5 -6.1 -8.2 -7.0 -2.0 -0.1 -7 .5 -2.4 13.5 -6.1 1.9 -1.1 
19.82 -13.1 -9.6 -13.4 - 10.4 -5. 7 -1.2 -13 . l -3.4 14.0 -11.4 1.6 -1.6 

Note: 1 km= 0.62 mile; 1 Mg"' 1.102 tons. 
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values), we will assume that these systems may be 
compared on an equal-distance basis. 

These assumptions concerning highway access to 
rail carload and the circuity of the three systems are 
included in the cost-estimating procedures given above. 

Effect of Distance and Shipment Weight 

We are now able to compare the costs per megagram 

Figure 4. Comparison of shipper-to-receiver costs for 
1609-km shipment distance. 
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Figure 5. Comparison of shipper-to-receiver costs for 
280-km shipment distance. 
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kilometer of the three systems for the same transport 
service. Such comparisons are illustrated in Figures 
4 and 5 for 1609 and 280-km (1000 and 175-mile) line­
haul movements respectively. 

Analyzing Figure 4, we observe that truck is the 
least costly mode for shipments up to about 10 Mg (220 
cwt), that TOFC is the least costly from that point up to 
a full (by weight) trailer load of about 22 Mg (488 cwt), 
and that relative ranking above that weight depends on 
whether or not highway access to the rail boxcar system 
is necessary. If access at either one or neither end is 
required, then conventional rail is the least costly for 
loads above about 22 Mg (488 cwt). If, however, highway 
access service to rail is required at both origin and 
destination, then TOFC is the low-cost mode for loads 
up to about 40 Mg (874 cwt) and above about 55 Mg (1220 
cwt). 

Figure 5 shows that the effect of distance on relative 
cost ranking is significant. For the shorter distance, 
the low-cost system is either highway or conventional 
rail, with thP. P.xception of a. Rma.ll reeion ::ironrni 22 Me 
(488 cwt), within which TOFC is less costly than high­
way. The relative rank of conventional rail and highway 
depends again on the extent to which highway feeder ser­
vice to the rail line-haul is required. If it is not re­
quired, then rail is the low-cost system above about 16 
Mg (360 cwt), and if it is required at both origin and 
destination, highway is least costly for all loads. 

As we discussed in the section on TOFC costs above, 
drayage cost has an important effect on total TOFC cost 
levels. The results cited in the example will, of course, 
vary with changes in drayage, which was assumed here 
to be at average nonurban area (relatively low) levels. 

Effect of Density and Shipment Weight 

The assumption that weight, rather than volume, is the 
limiting characteristic in determining the number of ve­
hicles or containers necessary to carry any given load 
is implicit in the system comparisons. Thus, a density 
of about 320 kg/ m3 (20 lb/ft3

) was assumed in the cost 
calculations. This explains the breaks in the TOFC cost 
curves: once a single trailer is loaded to its weight 
capacity, about 23 Mg (about 25 tons), any increase in 
ioad requires a second trailer. Similarly, a load of 
.about 59 Mg (65 tons) in a typical boxcar requires a 
mlnimum density of about 430 kg/m3 (27 lb/ It3

) . These 
constraints were not addressed in the examples above, 
except as they are taken into account in the highway cost 
scales. 

We can perform an analysis that illustrates the extent 
tu which cargo density aifects volume occupancy-the 
number of vehicles required for a given movement of 
specified weight and density-and, therefore, the density 
effect on relative cost ranking. The difference between 
this and the previous cost estimates is that these costs 
for highway and conventional rail systems were engi­
neered on the basis of costs per basic unit of capacity 
and then used to determine costs per vehicles required, 
taking into account both weight and volume limitations of 
the vehicle used. Assume a load of about 22 Mg (488 
cwt)-slightly less than the maximum highway trailer 
load by weight, tnilers in both highway and TOFC ser­
vice of about 65-m3 (2300-ft3) usable capacity (!!., P- 23), 
and a t ypical rail boxcar of about 139-m3 (4900-ft3

) 

usable capacity. For a cargo density of about 178 to 340 
kg/m3 (11.1to21.2 lb/ft3), conventional rail boxcar is least 
costly for all distances, and TOFC is second least costly 
above distances of about 640 km (400 miles). For more 
dense commodities, highway is least costly at distances 
below about 200 km (125 miles), conventional rail between 
200 and 1125 km (125 and 700 miles), and TOFC above 



1125 km (700 miles). The higher density, of course, 
allows a single trailer (either highway or TOFC) to 
carry the entire 22-Mg (488-cwt) load. We see, then, 
that the effect of changes in cargo density may (as in 
our example) change the cost ranking of the three sys­
tems for some distance movements. 

CONCLUSIONS 

In this paper, we have presented cost-estimating equa­
tions for the variable and fully allocated costs of pro­
viding conventional rail boxcar, TOFC, and highway in­
tercity freight services, based on ICC cost data and 
models. The paper covers three topics: 

1. Presentation of the estimating equations and a 
comparison with the values obtained from the original 
rec cost tables, 

2. The basic costs of each mode and some discussion 
of the sensitivity of each to several different operating 
policies, and 

3. An example comparison of the costs of each mode 
in the provision of total dock-to-dock freight transport 
service under various market conditions. 

Some important conclusions about the characteristics 
of these three modes are that 

1. The high cost of local access to line-haul facilities 
(shown here by highway access to rail line-haul) has 
significance for any multimodal system that includes 
existing technology and operating policies and spe­
cifically, potential improvements in line-haul cost and 
performance may be more than offset by the costs of 
local drayage and the transfer between the modes and 

2. Variations in cargo density cause substantial 
variations in system costs, to the extent that the ranking 
by cost of the three systems may be changed. 

Some conclusions about cost estimation in general are 
that 

1. Although the costs given here are reasonable 
estimates of average costs in 1973 in the Northeast and 
Midwest regions, they are deficient in the following 
respects: (a) because of the regional average basis of 
both unit costs and service units, these costs would not 

Abridgment 
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be a sound basis on which to evaluate specific services 
in any but the most cursory analysis; (b) the current 
unsettled status of the rail system in the region might 
be resolved in such a way that institutional, operational, 
and managerial changes would cause the costs to become 
obsolete; and (c) the passage of time lessens the accuracy 
of any estimates based on historical data and 

2. To correct these deficiencies will require research 
on the basic nature of transport system costs that goes 
far beyond the original ICC cost studies, which despite 
their widespread use for determining costs and rates, 
rely on many assumptions. 
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Evaluation of Potential Policies for 
Intercity Passenger Transportation in 
Canada 
J. C. Rea, M. J. Wills, and J. B. Platts, Strategic Planning Group, Transport Canada 

A quantitative, internally consistent assessment of the 
impacts of various policy options on national, multimodal, 
intercity passenger transportation has been studied. The 
results of the study are summarized in two reports (!, ~). 

A multimodal travel demand model was developed to 
forecast travel by mode between pairs of cities. The 
model is responsive to (a) modal travel time and service 
frequency-reflecting the configurations and quality of 
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the modal transport systems, (b) modal fares-reflecting 
fare structures, and (c) city population and linguistic 
characteristics-representing the demographic system. 
Each policy option was interpreted and analyzed to 
deduce its effect on modal level of service or fare 
structure. The resulting amended modal travel times, 
service frequencies, and fares were then used in the 
demand model to estimate the effect of the policy on 
modal demand. 

The 1975 intercity air, bus, rail, and highway sys­
tems and subsequent variations were defined on the 
basis of 94 communities that represent two-thirds of the 
Canadian population. 

DE MAND MODEL 

A cross-sectional, quasi-abstract modal-travel demand 
model [Spatial Linkages Analysis Group (SLAG)] was 
estimated to assess modal demand response. This 
direcl-demand econometric model was estimated in two 
steps: (a) a relative shares modal-split equation orig­
inally due to Warner (3) and later extended by Monsod 
(4), and (b) a total intercity-travel demand equation. 
FUrther details on the prope1·ties and empirical validity 
of the model have been given by Crow, Young, and 
Cooley (5) and by Crow and Savitt (6). 'l'he estimated 
form of the model is shown below. -

T .. = [(exp 4 l 2 )(P~.492 Lo..s2)] [(~ f'.~2.72T..;l.31D~.12s)0.339] 
Jjm · IJ IJ X ~ '-iJm IliJm ljm 

m 

x [(exp Km)(Ci}~ 2 Hif~31 Di~~ 28 )/ ~(exp Km) 

(,.,:2.nH-1.31 Do.12s )] F 
X '--'ijm ijm ijm X ijm (I) 

where 

T,;m travel demand for city i to city j on mode m; 
P,; population cross products, cities i and j; 
L •; linguistic pairing index, cities i and j; 
C ii cost or fare (cents). of mode m from city i to j; 

R1;m travel time (h) of mode m from city i to j; 
D;;m departure frequency (per week) of mode m 

from city i to j; 
Km modal constants that may be interpreted as 

modal acceptability factors representing the 
unmeasured convenience involved in intercity 
travel(= -0.377, 0.979, 1.520, and 0 for air, 
rail, bus, and automobile respectively); and 

F;;,,., = city-pair modal-specific adjustment factor. 

In Equation 1, (exp4.12)(P?i'492 L?i' 52
) is the travel­

potential term, [(I: Cij!' 12 Hi;~31 D~;;,,120 ) 0 ' 339] is the travel-
m 

impedance term, and [(exp Km) (C ;-~· 72 H ij~' 31 D~~128 )/ 

~(expKm)(Cij~ 72 Hij~' 31 D~;·: 0 )J is the modal-split term. 
A calibration data set was developed for 1972, the 

latest year for which reliable data were available. 
The data set for each mode consisted of (a) modal­
attribute variables-minimum travel time, weekly 
frequency of service, and economy-class fares be­
tween any origin-destination (0-D) pair; and (b) ob­
served, annual aggregate travel demand by mode and 
0-D. Because automobile and bus 0-D data were 
not available, these were estimated using link-flow 
data (7). The level-of-service attributes were sea­
sonally weighted where appropriate. 

Although the coefficients are measures of aggre­
gate elasticity, it is also possible to obtain link 
and mode-specific elasticities by systematically vary-

ing the policy variables and computing the response 
from the model in terms of travel demand on a 
link and mode-specific basis. The results of such 
a procedure are shown in Table 1 for all city pairs 
in given distance intervals on a mode-specific basis. 
Thus, the effect of a constant-dollar 10 percent in­
crease in long-haul air fares is a 13 percent de­
crease in long-haul air travel demand, other things 
remaining unchanged. In reality, such a change can 
be masked by an underlying structural trend toward 
more air travel. Service improvements may have 
two effects: (a) the diversion of demand from un­
improved modes and (b) the generation of new in­
tercity travel demand due to the substitution of this 
for local travel and other commodities. Both of 
these effects are represented in the elasticities 
presented in Table 1. 

A comparison of SLAG-model elasticities with those 
obtained in other studies is given below. 

Departure 
Model or Data Time Cost Frequency 

Monsod (1,) -2.15 -2.99 0.65 
Crow and Savitt (QJ -1.94 ·2.34 0.36 
SLAG (2) -1.31 ·2.72 0.128 
c ·1 t; (fil ·1.3!:> ·<!.!:>9 
Gupta and others ~) -0.53 -2.17 
Kraft and Kraft (1.QJ -1.84 ·2.89 

The model forecasts of 1975 domestic traffic at Toronto 
airport were within 6 percent of observed traffic volumes. 
In general, the model, when used for the comparative 
assessment of macropolicy implications at an aggregate 
level, appears to give a reasonable indication of mod.al 
demand response when policy variables are altered. 

DEVELOPMENT OF INTEGRATED 
MODAL-SYSTEM OPTIONS 

To construct integrated scenarios, 14 different modal 
systems were developed. All of them were described 
in terms of the same set of 94 community nodes although 
all nodes are not necessarily present in every system. 

An integrated multimodal system can be created by 
grouping selected modal systems. By grouping together 
air, bus, rail, and highway systems of requisite char­
acteristics, an integrated package can be created that 
reflects a desired option. Thirteen multimodal com­
binations were created as shown in Table 2, which 
describes general characteristics of each combination. 

The 0-D travel times and service-frequency attributes 
were computed by analyzing each modal isyistem uy wsiug 
the Canada passenger system developed by Transport 
Canada. 

DEVELOPMENT OF INTEGRATED 
MODAL-FARE OPTIONS 

Ten different modal fare structures were initially con­
structed. From these elements, four integrated modal­
fare options were assembled as shown in Table 3. The 
demand model does not include an income term because 
this proved not to be significant, which makes it neces­
sary to deflate the above fare structures to 1972 values 
by using a disposable income index, so as to preserve 
the 1972 fare-and-income relation embedded in the de­
mand model. 

DEVELOPMENT OF INTEGRATED 
POLICY SCENARIOS 

Combinations of the modal-system sets and modal-fare-
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Table 1. Model elasticities. 

Due to JO' 
Change in Variables 

Distance 
Change in Variables 

Distance 
Change In 

Due to 10% 
Change In Range Time Cost Frequency Change In Change In Range Time Cost Frequency 

Air I -0.373 -2.193 0.128 Bus Air J 0.001 0.005 -0.000 

2 -0.421 -2 .247 0.126 2 0.005 0.026 -0.001 

3 -0.536 -2 .339 0.122 3 0.022 0.093 -0.005 

4 -0.360 -1.558 0.082 4 0.161 0.693 -0.037 

Ii -0.370 -1.327 0.068 5 0.308 1.103 -0.056 

Air Rail I 0.004 0.009 -0.001 Bus Rail l 0.005 0.011 -0.001 

2 0.010 0.023 -0.001 2 0.011 0.025 -0.001 

3 0.021 0.049 -0.002 3 0.022 0.050 -0.002 

4 0.047 0.099 -0.005 4 0.062 0.137 -0.007 

5 0.074 0.166 -0.008 5 0.101 0.219 -0.011 

Air Bus I -0.007 -0.016 0.001 Bus Bus I -0 .973 -2.082 0.129 

2 -0.010 -0.022 0.001 2 -1.077 -2.393 0.130 

3 -0.009 -0.020 0.001 3 -1.144 -2.571 0.129 
0.011 0.023 -0.001 4 -1.142 -2.603 0.128 

5 0.008 0.018 -0.001 5 -1.195 -2 .659 0.127 

Air Automobile 1 0.860 1. 784 0.000 Bus Automobile I 0.867 1. 798 0.000 
2 0.846 1. 753 0.000 2 0.853 1. 769 0.000 

3 0.797 1.667 0.000 
4 0.286 0.859 0.000 

3 0. 784 1.626 0.000 
4 0.193 0.684 0.000 
5 0.078 0.326 0.000 5 0.098 0.404 0.000 

Rail Air I 0.001 0.006 -0.000 Automobile Air J 0.001 0.005 -0.000 

2 0.005 0.025 -0.001 2 0.006 0.028 -0.002 

3 0.025 0.095 -0.005 3 0.022 0.090 -0.005 

4 0.136 0.611 -0.032 4 0.131 0.542 -0.029 

6 0.328 1.147 -0.059 fi 0.284 1.054 -0.054 

Rail Rail I -0.195 -2.160 0.128 Automobile Rail l 0.004 0.010 -0.001 
2 -0.02 7 -2.400 0.126 2 0.012 0.026 -0.001 

3 -1.023 -2 .480 0.125 3 0.022 0.051 -0.003 

4 -1.134 -2 .482 0.123 4 0.064 0.148 -0.007 

5 -1.058 -2 .293 0.110 5 0.095 0.209 -0.010 

Rail Bus I -0.007 -0.015 0.001 Automobile Bus I -0.007 -0.015 0.001 
2 -0.009 -0.020 0.001 2 -0.009 -0.020 0.001 

3 -0.007 -0.015 0.001 3 -0.008 -0.018 0.001 

4 0.005 0.011 -0.001 4 0.005 0.011 -0.000 
5 0.044 0.093 -0.004 5 0.012 0.027 -0.001 

Rail Automobile 'I 0.862 1.788 0.000 Automobile Automobile l -0.448 -0,935 0.000 
2 0.850 1.762 0.000 2 -0.463 -0.964 0.000 

3 0.777 1.643 0.000 3 -0.497 -1.059 0.000 
4 0.383 0.980 0.000 4 -0.481 -1. 715 0.000 
:; 0.092 0.402 0.000 5 -0. 546 -2 .323 0.000 

Note: Distance ranges are 1 = 124 to 1232, 2 = 1232 to 2341, 3 = 2341 to 3450, 4 = 3450 to 4558, and 5 = 4558 ta 5673 km respectively. 

structure sets gave a total of 52 integrated system-fare 
policy scenarios. These were assigned alphanumeric 
designations from lA to 13D by using the numerical 
system-set designations and alphabetic fare-set des­
ignations given in Tables 2 and 3. Obviously, many 
more scenarios could have been constructed from the 
elemental variables, but the time available constrained 
the scope of the study. 

Each exploration of a policy scenario required that 
the demand model be presented with an integrated multi­
modal set of 12 variables (i.e., 0-D fare, o.:.n travel 
time, and 0-D service frequency for each of the air, 
bus, rail, and automobile modes) in addition to the 
demographic and linguistic index variables. 

·Forecast travel patterns for the year 1975, based on 
the lA scenario, which closely approximates the real 
situation, serve as a basis for comparing the effects of 
the other scenarios. The forecast 1975 modal split, as· 
function of trip length, is shown below. 

All Short Medium Long 
Mode Trips Trips Trips Trips 

Automobile 88.5 91.9 43.1 20.3 
Air 5.4 2.7 39.3 58.2 
Bus 4.5 4.2 8.7 9.7 
Rail 1.7 1.2 8.9 11.8 

Total 100.0 100.0 100.0 100.0 

The market shares of intercity passenger kilo­
meters are shown below. 

All Short Medium Long 
Mode Trips Trips Trips Trips 

Air 29.31 8.83 40.31 48.27 
Bus 7.25 5.00 8.84 10.29 
Rail 6.78 2.94 8.79 12.24 
Automobile 56.66 83.23 42.07 19.20 

Total 100.0 100.0 100.0 100.0 

These differ considerably from the passenger-tripmodal­
split figures, as would be expected. 

IMPACTS OF SCENARIOS 

On Air Travel 

The effect of imposing a cost-based air fare (B) is to 
decrease total air patronage by about 25 percent. Short­
distance travel is reduced by one-third, and medium­
length trips are reduced by about one-sixth. 

The effect of an increase in air fares to reflect a cost 
of crude oil of $79/m3 ($13/bbl) is to decrease air travel 
by about 5 percent. [Remember that, in this analysis, 
the other modes will suffer a simultaneous corresponding 
increasing in fares (i.e., fare set C).] 

When gasoline costs are further increased to $0.33/L 
($1.50/gal) in the above context (i.e., fare set D), total 
air travel increases by about 20 percent, and short-haul 
air travel increases by 50 percent. 

Changes in the rail system do not have a great effect 
on air travel. However, the imposition of an 88-km/h 
(55-mph) automobile speed limit causes an approximately 
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Table 2. Multimodal system sets. 

Designation 
of Integrated 
System Set General Characteristics of Multimodal System Set 

Existing 1975 systems 
Existing 1975 systems amended to reduce service route 

kilometers by 25 percent 
Amended 1975 sytitums with maximum automobile speed 

of 88 km/ h (55 mph) 
Amended 1975 sy !ems with l'all Improved to gl••e 129-

km/h (80 - nlph) ovcrngo spot'<! on main lines ond 80-
km/h (50-m1ih) speetl 011 br1mch lines 

Amended 1975 systems with 129-km/ h (80-mph) rail ser­
vice on main lines and 80-km/ h (50-mph) service on 
f)ranch Lines in the context of an BB-km/ h (55-mph) auto­
moblle speed limit 

6 Amended 1975 systems with 129-km/h (80·mph) rail ser-
vice and 161-km/h (100-mph) service on Toronto to 
Montreal corridor 

Amended 1975 systems with 129-km/ h (BO-mph) rail ser­
vice nnd 161-km/h (100-mph) service on Windsor to 
Quebec corridor 

8 As 6, bul maximum auton1obllc speed of 88 k.m/h (55 mph) 
9 As 7, bill maximum automobile speed of 88 km/ h (55 mph) 

10 Amended 1975 systems wllh 161-km/ h (100 -.mph) rail ser-
vice In Windsor to Quebec and Edmonton to Calgary cor­
ridors and 129-km/ h (80-mph) rCjjlnnnl d•ylimP snvke", 
but nil other rail servicM eUm111D.tcd 

11 As JO, bul maximum automobile speed of 88 kntfh (55 mph) 
12 Amended 1075 sys tems wll11 rnil se1·vi · oUered only in 

·101-km/h (100-mpb) Whldsor to Quebec nod Edmonton to 
Calgary corridors 

13 As 12, but maximum automobile speed of 88 km/ h (55 mph) 

Table 3. Multimodal fare-structure combinations. 

Designation 
of Integrated 
Fare Set General Characteristics al Integrated Fare Set 

A Uniform intramodal fare structure based on 1975 fares 
B As A, but with cost-based air-fare structure; long-haul 

versus short-haul cross-subsidies for air partially re­
moved 

C 1975 fares increased to reflect a 100 percent increase in 
crude oil costs 

D As C, but automobile. gasoline costs increased to $0.33/L 
($1.50/gal) 

5 percent increase in air travel, as compared to cor­
responding scenarios based on a 113-km/ h (70-mph) 
freeway speed limit. As would be expected, short­
haul air travel has a relatively larger increase (about 
8 percent). 

On Interc ity Bus Travel 

Air and bus demand are virtuallv indeoendent of each 
other, and the imposition of cost-based air fares (B) 
causes only a slight increase in aggregate bus demand . 
An incr ease in the cost of crude oil to $79/ m9 ($13/bbl) 
(C) i ncreas es bui> ti·avel by 17 percent . When gasoline 
cost increases from $0.19 to $0.33/ L ($0 .86 to $1. 50/ 
gal) (D), bus trave l increases dJ:amatically and at tracts 
twice as many patrons as in the 1975 (lA) situation. 

Changes in the rail system have, in general, little 
impact on bus travel. Only when the spatfal extent of 
the rail system is reduced (by 25 percent), does bus 
patronage respond to any noticeable extent (about 11 
percent). The 88-km/ h (55-mph) maximum automobile 
speed limit generally increas es bus travel by about 11 
percent. Ut was assumed t hat bus travel times would 
not be changed by the imposition of an 88-km/ h (55-
mph) m aximum automobile s peed limit.J 

On Intercity Rail Travel 

The effects of fare sets A, B, and C arc almost coin-

cident. Cost-based air fares increase rail patronage 
by only 1.5 percent, indicating that rail does not sub­
stitute for air travel to any great extent. One might 
perhaps have expected rail to benefit when energy is 
expensive (C). In pr ac tice, however, rail-load factors 
in Canada are quite low. When the increased operating 
costs are passed on to the s ma ll number of patrons, the 
increase in r ail fares (compared to the increase suffered 
by other modes) is great enough to actually deter rail 
patrons. Under fare option D, rail demand increases 
by 45 percent with almost all of the increase due to 
deterred automobile travelers switching to short-haul 
rail. 

In the 1975 lA situation, 40 percent of the rail de­
mand occurs on only 6 percent of the route kilometers. 
Consequently, a 25 percent reduction in route kilometers 
(principally by the elimination of underused branch lines 
and one of the two transcontinental services) causes a 
reduction of only 11 percent in patronage. This indi­
cates that rationalization of the Canadian rail system 
could significantly improve its economic situation. 

With a partially rationalized i·ail system impr oving 
service to give 129-l<m/b (80-mph) average s peeds and 
80 -km/h (50-mph) s peeds on branch lines iI1c1·eases 
patronage to 40 percent of the 1975 patronage. The 
cost of achieving this 40 percent increase in demand 
would be billions of dollars. The addition to the above 
system of the 161-km/ h (100-mph) average-speed ser­
vice in the Windsor to Quebec corridor increases aggre­
gate demand by only a small percentage. 

When the rail system is reduced to one that provides 
six 129-km/ h (80-mph) coterminal regional services 
and 161-km/h (100-mph) service in the corridor [a 68 
percent r eduction in r oute kilometers to 8850 km (5500 
miles)], forecast rail patronage approximates the 1975 
level. The elimination of all rail s e1·vice except the 
161- km/ h (100 -mph) service in the cor ridor [a 94 per­
cent reduction in route kilometers to 1600 km (1000 
miles )J would attract about 50 percent of the 1975 pa­
tronage. The effect of an 88-km/ h (55-mph) automobile 
speed limit depends on the extent of the rail system and 
ranges from a 10 percent increase in patronage with a 
national rail system to a 15 percent increase when only 
a corridor system exists. 

On Automobile Travel 

The scenario of crude oil costing $79/ m3 ($13/ bbl) (C) 
reduces automobile demand by about 13 percent. In­
creasing the cost of gasoline to $0.33/ L ($1.50/ gal) is 
forecast to decrease automobile travP.l hy about 40 per­
cent. (Remember that the demand model was calibrated 
on 1972 data, and thus reflects the behavioral patterns 
of that time. The subsequent energy price increases, 
inflation, and more energy-efficient automobiles since 
then would probably imply a much weaker response to 
operating cost increases.) 

POSTSCRIPT 

The study repo1·ted in this paper was the first attempt 
in Canada to carry out a national-scale , multimodal 
passenger transportation policy analysis. Because of 
the limited time available, the need to use available 
secondary data, and the fact that the demand model 
reflects 1972 conditions, the results should be inter­
preted with care. However, the results give a reason­
able indication of the directions and relative strengths 
of modal-demand shifts in response to various policy 
options. 

Since the above study was completed, an extensive 



data base has been established, a comprehensive analyt­
ical capability has been developed, and a new demand 
model based on a 1976 data set has been calibrated. Pre­
liminary results indicate that sensitivity to fare has 
decreased considerably since 1972, that service fre­
quency is more significant, and that sensitivity to travel 
time has increased slightly. 
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Analysis of Truck Deliveries in a 
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The nature of goods deliveries in a small commercial district in Pittsburgh 
was analyzed. The considerations in choice of the site were the expected 
cooperation from merchants, the diversity of store types available for 
analysis, and a high level of business activity. The surveys collected data 
on several aspects of the delivery process and its relationship to related 
activities in two phases. The first phase involved interviews at 59 stores 
in two blocks of the study site. The second phase involved recording 
truck pickup-and-delivery movements for one week in each block. The 
400 observations covered the 8 a.m. to 12 n. period each day. The dis­
tributions in the data identified such things as hourly and daily delivery 
patterns, delivery times, and total number of deliveries to particular 
stores. Multiple linear regression was performed on the business data to 
test for equations that could predict the average number of deliveries per 
week. Regression on the movement-survey data was performed to test 
equations with the handling time of deliveries as the dependent variable. 

Only recently has the urban goods-movement problem 
received a significant amount of attention from trans­
portation planners. However, since 1970 interest in 
the question has increased, and it is now considered an 
integral part of the urban picture. 

The object of this study was to identify and formulate 
the character of urban goods movement in a typical small 

commercial district. Specifically, the analysis was to 

1. Validate and calibrate or refute the existing models 
that are designed to forecast the demands for goods 
movement that are associated with various categories 
of business establishments; 

2. Collect and form the data base that is needed to 
study goods movement in a small urban business district 
made up primarily of single private owners; and 

3. Analyze truck delivery and pickup patterns, in­
cluding arrival and departure times, handling and dwell 
times, at-vehicle times, means of transporting goods, 
parking situations, and internal handling methods. 

ME TH ODO LOGY 

Two of the primary considerations in the selection of 
the site were (a) the amount of cooperation anticipated 
from the businessmen in the area and (b) the inclusion 
of a typical variety of stores in a suitable district. 

The Squirrel Hill business area of Pittsburgh was 
chosen because one of its two major streets was sched­
uled for renovation. Many of the local businessmen 
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were concerned that goods delivery service during this 
period could not be maintained. It was felt that one of 
the primary considerations in site selection, that of 
business cooperation, could be met because of this im­
pending problem. In addition, the Squirrel Hill business 
district includes a typical variety of stores suitable for 
the study. At the beginning of the study, an agreement 
of cooperation in carrying out the study and a joint letter 
to the businessmen was prepared in conjunction with the 
local merchant's organization. 

The data collection was accomplished in two steps. 
First, a business survey was developed to obtain infor­
mation about a sample of at least 50 percent of the 
stores that were observed in the movement survey . 
The data in the first section of the business survey were 
determined without asking the store manager. The in­
formation included address, type of store, and products 
sold. It also included the location of the store in terms 
of distance to traffic signals and type of road, to obtain 
information about the impacts on traffic of goods move­
ments. 

The second section of the business survey required 
an interview. It was composed to obtain as much in­
formation as possible in less than 10 min; to make the 
answers easy to understand and reliable; and to be not 
too detailed or confidential, which might interfere with 
the cooperation of the businessmen. This section in­
cluded information about floor space and number of 
employees and was used to correlate numbers of gen­
erated trips with the structures of the stores. As other 
studies have shown, it is difficult to obtain data on in­
ventory turnovers (4). Therefore, the survey asked for 
the number of sales-per day, which is equivalent to 
customers served. 

All but one or two of the businessmen agreed to allow 
observation of the deliveries that they received. Over­
all, they were very cooperative and provided more in­
formation than was asked for in the survey. 

The second step in the data collection was a move­
ment survey that was developed to gather information 
from interviews of truck drivers and through observa­
tion of the pickup and delivery processes. As with the 
business survey, cooperation was generally good. 

The data were collected between 8 a.m. and 12 noon. 
From the business-survey questionnaire, it was con 
eluded that about 80 percent of the deliveries and pick­
ups in the study site could be observed during those 
hours. The information collected included parking 
locations, delivery times, goods delivered, delivery­
process used, and general truck-route details. 

ANALYSIS OF BUSINESS SURVEY 

A sample of 59 business establishments was taken on 
two streets. This included 15 clothing stores, primarily 
on Forbes Avenue, and 14 retail food stores, primarily 
on Murray Avenue. Figure 1 shows the distribution of 
answers to six of the interview questions. The bar graphs 
compare the characteristics of all stores with those of 
clothing and retail food stores. 

More than 50 percent of the establishments have only 
one entrance, which is also used for deliveries, and 
almost all of them (97 percent) have no loading docks. 
There are some side doors (28 percent of all stores), 
with retail stores having a higher percentage (43 per­
cent), but few of them are used for deliveries. 

The floor-space distribution shows that most of the 
establishments are small to medium sized, which means 
that they have less than 372 m2 (4000 ft2) of business 
space. Ninety-five percent of the retail food stores 
were this size, while c lathing stores tended to be larger. 

Quite a few of the clothing stores have more than 15 

salespersons, while the retail food stores are generally 
small family-type establishments with fewer than five 
employees. Almost 30 percent have only the owner and 
one helper to run the store. On the whole, small stores 
are commonest. This is also confirmed by the distribu­
tion of sales per day. The fifth bar diagram, which in­
dicates the number of enterprises ordered from, shows 
that most of the stores order from more than 20 dif­
ferent suppliers. This is particularly true for clothing 
stores. Only 13 percent of them order from fewer than 
five different suppliers. These are either highly spe­
cialized firms, such as a fur store, or branch-store 
boutiques, which obtain their goods from the main stores. 
The number of food stores in this low category is also 
significant. These stores are typically delicatessens, 
meat markets, and other specialized small places without 
an extensive variety of different products. 

The distribution of deliveries per week was similar 
for the three categories of all stores, clothing stores, 
and retail food stores. 

Because graphic illustration alone is inadequate to 
establish the store characteristics that determine the 
nature of related goods movements, regression analysis 
was performed on the complete set of business data and 
then on a data subset that included only businesses that 
sell at least two different types of products. This second 
set of regressions was performed to test the conclusions 
of a similar study conducted at the Polytechnic Institute 
of New York (PINY) (1). The dependent variable for all 
regressions was the average number of deliveries per 
week. 

The table below shows the correlations of a number 
of variables for the complete data set. 

Dependent Variable 

Number of product types sold (PN) 
Number of enterprises delivering (EN) 
Floor space (000 ft°) (FL) 
Full-time employees (EMF) 
Part-time employees (EMP) 
Total employees (TEMP) 

Weekly Deliveries (NW) 

-0.1634 
0.1420 
U.2883 
0.5434 
0.1509 
0.5525 

The strongest correlation is that between the number of 
employees and the number of weekly deliveries. The 
only apparent anomaly is the negative correlation be­
tween the number of products (referred to in the PINY 
report as the specialization index) and the number of 
weekly deliveries. This may be representative of the 
high number of deliveries associated with food stores 
and restaurants, which deal in only one type of product. 

The best regression equation developed for all busi­
nesses was the following ; 

NW= 0.1 87EN -0.888PN + l.04FL + 0.471EMF + 0.738EMP (!) 

The explained sum of squares for this equation is 0,64. 
(These equations were developed for U.S. customary 
units; therefore SI units are not given for the variables.) 
An equation with equivalent performance for the ex­
plained sum of squares is the following: 

NW= 0.2 1EN + 0.58TEMP (2) 

This equation, however, did not perform as well on the 
chi-squared normality test. 

The PINY equation for stores selling more than one 
type of product had the following form: 

NW= 9.0PN - 16.6 (PN;;, 2) (3) 

but an equation of this form failed to explain the Pitts­
burgh data. On the other hand, an equation similar to 



Equation 1 performed even better than it did for the full 
data set. For the data subset, the best equation was as 
follows: 

NW= 0.438EN + l.89PN - 6.82FL + 1.1IEMF+0.534EMP 

(PN;;. 2) (4) 

The explained sum of squares for this equation is 0.83 
and the chi-squared value for nine degrees of freedom 
was 5.76. 

ANALYSIS OF MOVEMENT SURVEY 

The daily patterns of deliveries and vehicle stops are 
shown in Figure 2. On Forbes Avenue there was a 
rather regular distribution on Monday through Wednes­
day, a slight increase on Thursday, and a peak on Fri­
day. From an average of 48 deliveries/d at the begin­
ning of the week, there was a 3 5 percent increase on 
Thursday and a 55 percent increase on Friday. The 
distribution of vehicle stops was more homogeneous, 
with an increase of 37 percent on Thursday and of 31 
percent on Friday. A large percentage of the additional 
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deliveries were made by the United Parcel Service (UPS) 
truck. 

Murray Avenue did not show such a significant num­
ber of multiple deliveries. Monday, Wednesday, and 
Thursday are rather similar days on Murray, while 
Tuesday is the least busy and Friday the most busy day. 
Here there was an increase of about 40 percent for Fri­
days, which is different from the 5 percent average in­
crease observed in Brooklyn for Thursdays and Fridays 
(1) and the uniformly distributed deliveries in the German 
town of Braunschweig (~ ~). 

There was a peak period for deliveries after 10 a.m., 
which is comparable to the 10 to 12 a.m. peak in Brook­
lyn. A distinct difference between food deliveries and 
other deliveries is that food deliveries are more fre­
quently made in the early hours. 

There are some obvious differences in the dwelling, 
delivery, at-vehicle, and delay times between food stores 
and clothing stores (Figure 3). The average dwelling 
time for food stores (19.8 min) is close to the Brooklyn 
value of 22 min. The 33 .5-min average dwelling time for 
clothing stores, however, is misleading, because the UPS 
truck makes multiple deliveries from the same curb space. 
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The delivery times represent a more realistic im­
pression. The unloading of trucks with food usually 
took longer than that of any other commodity. The rea­
sons for this are the larger size of the shipments, the 
larger number of smaller packages, and often the un­
packing and setting up of displays inside the store. 

The at-vehicle times were not always easy to esti­
mate. The high average value for clothing stores is 

Figure 2. Daily vehicle stops and deliveries on Forbes and Murray 
avenues. 
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again caused by the UPS truck, because the at-vehicle 
times were not individually recorded, but were com­
puted by subtracting the delivery times and delays from 
the dwelling times and then dividing the result by the 
number of multiple deliveries per stop. The at-vehicle 
time for single deliveries could not always be recorded. 

Four subsets of the movement data were used in the 
regression analysis. Subset A, 378 observations, in­
cluded all of the data for single and multiple deliveries 
and single and multiple pickups and deliveries. Subset 
B, 167 observations, included the data for single de­
liveries only. Subset C further restricted the single­
delivery data to only those deliveries in which the means 
of transport was by one-man carry and included 87 ob­
servations. Subset D, 61 observations, restricted the 
single-delivery data to deliveries in which the means of 
transport was by dolly or hand truck. 

The dependent variable selected for the most analysis 
was delivery time. Preliminary regression runs elim­
inated most of the potential independent variables from 
consideration. The variables that remained-number of 
packages, total weight, number of persons per truck, 
and means of transport-were used as explanatory vari­
ables in most of the regression analysis. The table 
below shows the coefficients of correlation between 
these variables and delivery time. 
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Dependent Variable 

Number of packages (P) 
Total weight (W) 
Number of persons in truck (N) 
Means of transport (MT) 

Delivery Time 
(T) (min) 

0.7215 
0.7699 
0.1413 
0.2648 

The PINY work obtained the best results by using 
delivery time as the dependent variable and number of 
packages and total weight as the independent variables. 
The basic equation was 

T = 1.9 + 0.1 !P + 0.008W (r2 = 0.62) 

where 

T delivery time, 
P number of packages, and 

W total weight. 

(5) 

The best results in testing Equation 5 were obtained 
by using the data subset that represented single-delivery 
data only. The equation was 

T = 4.453 + O.l 77P + 0.007W (r2 = 0.68) (6) 

The use of the other three data subsets in testing this 
equation caused little change in the constant term, some 
changes in the coefficients of the explanatory variables, 
and significantly lower r 2 values. 

Better results were obtained with our data by dropping 
the constant term from the equation. The equation de­
veloped by using the data for single deliveries only was 

T = 0.28P + 0.008W (r2 = 0.76) (7) 

Further improvement in the explanatory powers of 
the equation was obtained by including the variable for 
the number of persons per truck. Equations 8, 9, and 
10 were developed by using the data for single deliveries 
only, one-man carry, and dolly or hand truck respec­
tively. 

T = 0.196P + 0.007W + 3.601N (r2 = 0.84) 

T = 0.041P + 0.014W + 3.856N (r2 = 0.80) 

T = 0.302P + 0.00 I W + 4.578N (r2 = 0.84) 

where N = number of persons per truck. 

(8) 

(9) 

(10) 

Quantitatively, these results are in substantial agree­
ment with those of the PINY research. The differences 
in the equations, which may be considered site specific, 
predict longer delivery times than do those in the PINY 
equation in both the constant and nonconstant forms. 
Clearly, there is a need for quantitative analysis of 
additional study sites having different characteristics 
to provide a better site basis for comparison. 

QUALITATIVE FINDINGS 

A number of behavioral characteristics were observed 
in the study area that could not be adequately quantified. 
These findings were a composite of the observers' in­
tuitive notions, information supplied by vehicle opera­
tors, and opinions expressed by several of the merchants. 

The issue of parking legality was of interest because 
both Forbes and Murray avenues are extensively me­
tered throughout the study area. Not once during the 
10 d of observation was a delivery-vehicle operator ever 
observed inserting coins in a meter. Illegal parking 
zones in front of fire hydrants, bus stops, driveways, 
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and near intersections were extensively used by delivery 
vehicles with no evidence of reprimands from policemen. 
Because the periods of occupancy of these zones were 
generally quite brief, very little or no interference with 
their intended purposes was observed. This seems to 
suggest that many illegal parking zones could function 
as temporary loading zones with a minimum of inter­
ference to normal community operations. 

Vehicle operators almost always turn off their engines 
while making deliveries. Exceptions were noted during 
cold weather when some operators kept their engines 
running to provide heat for the cabs of the vehicles. In 
addition, some refrigerated vehicles have engines left 
running to keep the perishable payload cooled, and some 
rubbish vehicles have engines left running to power the 
hydraulic compactors. 

Delays experienced by vehicle operators were re­
corded in the movement survey, but causal factors were 
not formally recorded. A general consensus of operators 
attributes the longest delays to searching for establish­
ment owners or the persons responsible for unlocking 
delivery-service doors. In one particular instance, a 
vehicle operator attempted to deliver to a restaurant 
three different times before successfully gaining access 
to the basement storage area, because the manager was 

. late arriving at the establishment. Delays were also 
observed when goods were being picked up. Quite often, 
packages were not prepared for shipment until the ve­
hicle arrived. Delays were observed from time to time 
in connection with signing the bill of lading and because 
of conversations carried on between operators and 
establishment owners or employees. 

There was less correlation between vehicle capacity 
and shipment size than was expected. Several large 
straight trucks with payloads of less than five pieces 
made deliveries during the observation period, but small 
vans and station wagons with all available space occupied 
by their shipments were also observed. There was a 
great deal of variation in packing efficiency among ve­
hicles. The UPS vehicles have shelves catalogued by 
the names of the establishments along the vehicle route. 
This system eliminated much of the en-route sorting 
required of vehicle operators. In contrast, U.S. postal­
vehicle operators generally spend a great deal of time 
along the route sorting packages. 

Most vehicle operators were quite concerned with 
operating efficiency. However, there did appear to be 
a relation between prevailing weather conditions and 
operating efficiency. No hard data were collected to 
support this contention, but observations were made 
through a wide range of conditions, including 15°F (-9 .5° C) 
with snow showers and sunny days with mild tempera­
tures. There was clearly a reduction in operating ef­
ficiency on those days when the weather was inclement. 

One example of the general concern for operating 
efficiency was found in an operator's route plan that 
served establishments on the east side of a street, went 
on to the next community, and then served establish­
ments on the west side of the street during the return 
trip. In cases of pickup and delivery, very few steps 
were wasted as operators used return trips to the ve­
hicle to transport packages that were being picked up. 
Some operators expressed a fear that members of the 
observation team might be time-study personnel rep­
resenting their employers. However, we believe that 
what we observed was an accurate portrayal of normal 
daily operations. 

The experiences with the survey completion, data 
computerization, and data analysis of the business and 
movement surveys all led to the development of certain 
conclusions about desirable format and content im­
provements. 
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Deliveries that involved one man with a dolly dem­
onstrated the importance of package volume on delivery 
time. The dolly made it possible for one man to trans­
port a full load of even the heaviest goods, yet required 
two or more trips for relatively small numbers of pack­
ages of large size. Because the number and weight of 
the packages was less critical in these instances than 
their number and volume, an estimate of the volume of 
packages delivered should be included in the movement 
survey. 

It would also be valuable to include a question about 
the number of store employees involved in the delivery 
process. The relevance of this was particularly evident 
in loading-dock deliveries, where packages were typ­
ically transferred by .a bucket brigade consisting of the 
driver and one or two store employees. This was one 
of the fastest delivery systems observed. 
. At the conclusion of movement surveys in a location, 
a check should be made with the stores to establish 
whether the week of observation was a normal one for 
deliveries. This permits eliminating significantly 
atypical observations. 

SUMMARY AND CONCLUSIONS 

The survey format used had the advantage of collecting 
both empirical and interview data, which allows cross­
checking of the results for consistency. The data­
collection process was designed specifically to acquire 
as much data as possible with a very small staff. The 
movement data were collected in two concentrated areas 
chosen to provide information about a wide variety of 
retail establishments, with specific emphasis on food 
and clothing stores. The observation periods were 

· chosen so that daily patterns would be observed. The 
hours of observation were chosen to coincide with high 
levels of delivery activity. The collection periods were 
chosen to allow comparisons with the results of the 
business survey. 

The distribution analysis indicated similar daily 
patterns of deliveries. The peaks generally occurred 
on Friday, regardless of type of establishment. The 
average Friday delivery rate was about 30 percent 
higher than the delivery rate on other days. This peak 
was somewhat higher than that found in the PINY study. 
Hourly patterns of various retail types were not markedly 
different, although food stores generally received goods 
earlier than did other stores. 

Analysis of the business-survey data indicated that 
delivery frequency can be generally correlated to em­
ployment, floor space, and product diversity. While 
the PI!~ ...... i"'" anaiysis w~ pioven to be too siinplistic in 
this respect, this data base must also be considered 
too small to permit extensive generalization. 

The movement survey was used to find indicators of 
delivery times. The variables that appeared to have . 
the most correlation were the number and weight of 
packages. This is in agreement with the PINY findings 
although the coefficients of the equation developed for 
the Pittsburgh data were generally higher than those 
for the New York data. This appears to be an indica­
tion of site-specific differences. The volume of a ship­
ment is also fundamental to the delivery time required. 

Analysis of the present data base is not complete., 
Future work will include analysis of other data dis­
aggregations to further determine the characteristics 
that are most critical in defining the delivery process. 
Cross-checking the results of the two surveys will aid 
in identifying consistent biases or errors in interview 
responses. The effects of the delivery process on 
traffic congestion are largely unresolved. 

The present study leaves as many questions as 
answers, but it adds needed insight to the urban goods­
movement problem. The specific equations found in the 
analysis are of limited applicability, but the importance 
of general relationships (and nonrelationships) cannot be 
overstated. In particular, the points of correspondence 
and contradiction vis-a-vis the PINY results indicate the 
types of generalizations and models that may be valid 
under more extensive testing. The problem of deriving 
general conclusions from site-specific data is an acute 
one in urban goods-movement research because there 
are so many variables distinguishing commercial dis­
tricts from each other, To date, no clear evidence 
exists to distinguish the variables that are descriptive 
from those that are irrelevent. It is hoped that the 
present study has helped to narrow the focus toward 
some of the more important relationships. · 
. There is a need for a coordinated series of studies 

to compile data that are significant to goods deliveries. 
These data should be collected on a common basis from 
a wide variety of sites to define valid general relatfon­
ships and important site-specific variables. Ultimately, 
a better understanding of these topies can provide tools 
for planners to use to anticipate the nature of goods 
movements that any commercial area can be expected 
to generate. 
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