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Some other possible improvements in the present pro
gram are as follows: 

1. Developing an improved automatic blocking strat
egy process; 

2. Developing a technique to combine blocks and form 
trains automatically; 

3. Developing a cost model to compare various strat
egies on a cost basis; and 

4. Converting the whole system to time sharing with 
interacting blocking strategy and train editing capabili
ties. 

The above is only a partial list, and several other 
features have been suggested during the course of the 
project. We hope that the present programs can even
tually be augmented, by incorporating all the significant 
features, so that a highly efficient and useful tool will be 
available for railroad operators. 

ACKNOWLEDGMENTS 

The research work on which this paper is based was car 
ried out as a part of a research project requested by the 

U.S. Railway Association, whose support and permis
sion to present and publish the paper are gratefully ac -
knowledged. However, the contents of this paper reflect 
our views, and we alone are responsible for the facts and 
accuracy of the information presented. The contents do 
not necessarily reflect the official views or the policy 
of the U.S. Railway Association. 

REFERENCES 

1. W. Siddiqee, D. A. D'Esopo, and P. L. Tuan. Block
ing and Train Operations Planning. Stanford Research 
Institute, Menlo Park, CA, SRI Project 3759, Oct. 1976. 

2. D. D 'E sopo and W. Siddiqee. User's Manual for 
Network Analysis Computer Programs. Stanford 
Research Institute, Menlo Park, CA, SRI Project 
3759, Nov. 1975. 

3. P. L. Tuan and H. S. Proctor. A Railroad C lassifi
cation Yard Simulation Model. Proc., 1975 Winter 
Computer Simulation Conference, Sacramento, CA. 

Publication of this paper sponsored by Committee on State Role in Rail 
Transport. 

Inveniory Modei of the Railroad 
Empty-Car Distribution Process 
Craig E. Philip, Freight Car Utilization Program, Association of American 

Railroads 
Joseph M. Sussman, Department of Civil Engineering, Massachusetts 

Institute of Technology 

Techniques to improve freight-car fleet use are of considerable interest 
to the railroad industry. One potentially high improvement area is the 
disposition of empty cars within the network. This paper reports the 
first results of inventory control applied to one aspect of the process, 
namely the sizing of empty-car inventories at points in the network. 
First we evaluate existing techniques for distributing empty cars on a 
rail network. These techniques deal primarily with optimizing empty
car movements from areas of surplus to areas of deficit. To account for 
variations in supply and demand, we designed a discrete event simulation 
model that can determine optimum inventory level, for a single terminal 
area, as a function of (a) daily supply variations, (b) daily demand varia
tions, and (c) cost of holding a car in a terminal awaiting loading com
pared to cost of having no car available to satisfy shipper demand. A 
first attempt to use the model to evaluate the performance of an actual 
railroad terminal area indicates that excessive inventories are maintained 
in surplus terminal areas. The applicability of the model to a real rail
road operating situation is also demonstrated. 

Empty-car distribution is an unavoidable problem for 
most railroads, because demand and supply are typi
cally unbalanced in any given region. Thus, surpluses 
and deficits at terminal areas are inevitable, and some 
mechanism must be employed to move cars from points 
where they are not needed to points where they are. 

Shippers feel the impact of the distribution mechanism 
directly. Car availability will largely be determined 
by the ability of the railroad to efficiently move cars 
from surplus to deficit areas. 

This recurring need to manage and monitor car move
ment has come to dominate current empty-car distribu-

tion processes. The techniques used to allocate cars 
usually employ standard static optimization methods 
and thus rely on the hypothesis that levels of supply and 
demand will not vary significantly. Variations, how
ever, do exist, and one of them is periodic shortages 
caused by railroads unreliably routing cars from surplus 
to deficit areas. 

Some empty-car distribution practices have evolved 
to cope with this problem; individual terminal distribu
tors, for example, often maintain an inventory of empty 
cars to protect against the uncertainties of supply and 
demand. Still, since distribution mechanisms seldom 
consider inventory levels, no strategy for determining 
appropriate inventory levels has yet been proposed, 
and costs to the railroad incurred by wasted car days 
or lost loads due to shortage can be directly related to 
these levels. 

This report evaluates the theoretical implications 
and tests the methodology of one strategy for deter -
mining inventory level in a railroad operating en
vironment. The proposed strategy grew naturally from 
our reexamination of the empty-car distribution process 
from the perspective of the local or terminal decision 
maker. Several theoretical solutions to the empty-car 
distribution problem, such as existing network models 
that determine flow rules, are contrasted with a theo
retical construct of the need for empty-car inven
tories. 

A discrete event simulation model of empty-car 



distribution determines the best target inventory level 
for a particular terminal area given the supply and 
demand characteristics of that terminal. 

Finally, the results of sensitivity analyses of the 
impact of changes in railroad and shipper behavior on 
the optimum inventory level are presented, and the re
sults of our first attempt to use the model to predict the 
best inventory level in a railroad terminal area, based 
on the actual flows into and out of the terminal, are 
given. 

The results of this research effort have, to date, 
been encouraging. The model of freight-car distribu
tion we tested accounts for the relationship between 
service reliability and freight-car utilization, and it 
may prove to be a useful tool when applied parallel to a 
traditional flow model to improve car distribution 
strategies. Much of what follows has been founded on 
the work of Philip (!). 

THEORETICAL APPROACHES TO 
EMPTY-CAR DISTRIBUTION 

Efficient empty-car distribution satisfies shipper de
mands at the lowest possible cost. There are two 
necessary and related approaches to empty-car dis
tribution. The first, with its emphasis on empty-car 
movements to balance surplus and deficit areas, has 
been adopted in some form by most railroads. The 
second, which focuses on variable car supply to satisfy 
variable demand, has not been systematically analyzed. 
A theoretical base for such an analysis is the subject of 
what follows. 

Traditional System Focus of Empty-Car 
Distribution 

"The essence of car distribution and assignment is the 
process of providing destinations to empty cars and 
monitoring their movements towards those destinations" 
(2, case iv. 1). This definition embodies a rather ap
pealing philosophical approach to the car distribution 
process when it is viewed from the system perspective. 
A car emptied at a point on the railroad where it is not 
needed for reloading must be moved to a potential re
loading point. The process of deciding where to send 
which cars, then, becomes the essence of car distri
bution. 

This process is further delineated in Figure 1, which 
highlights the three subsystems in all traditional car 
distribution systems: 

1. Identification or prediction of empty-car supply, 
2. Identification or prediction of the demand for 

empty cars, and 
3. Allocation or control or both of car movements 

Figure 1. Four-part traditional empty-car 
distribution process. 
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from surplus to deficit areas. 

Demand and supply estimations define surplus and 
deficit areas, which themselves are only the inputs into 
the flow rule decision process; the quality of these flow 
rule decisions is necessarily limited by the accuracy of 
the demand and supply estimates. A recent report pre
pared for the Federal Railroad Administration (FRA) 
concluded that shipper demand varies a great deal (3, 
p. iii). Of even greater importance, it was found, iS 
that demand level is not measured adequately by rail
roads and, with a few exceptions, is not even formally 
forecast. 

Car supply itself is subject to at least as much varia
tion as demand, because the receipt of unloaded cars 
from industry is the principal source of empty cars. In 
fact, empty-car supply is likely to vary even more than 
demand because of the variations introduced by unreliable 
movement of the cars by the railroads themselves. 

Car Distribution as a Classical 
Transportation Problem 

If certain simplifying assumptions are made, the prob
lem of distributing empty cars from surplus to deficit 
points fits nicely into the form of what Dantzig (!, p. 
299) and others have called the "classical transporta
tion problem." This empty-car distribution problem as 
perceived in the classical sense is precisely one of 
determining a set of flow rules governing the movement 
of cars from surplus directly to deficit points; the ob
jective function is to "minimize the cost of moving the 
cars into position [for loading] from the locations where 
they become available" (5, p. 147). 

As one might expect, this has not been overlooked 
by theorists or practitioners. Models using either 
linear programing techniques or some other network 
optimization algorithm have been proposed repeatedly 
in the literature. One model for distributing wood rack
cars, was implemented with good results on the Louis
ville and Nashville Railroad Company, and the Missouri 
Pacific Lines periodically use a linear programing 
model to establish empty-car distribution guidelines. 
Dan Berman of the Southern Railway Company reports 
that a linear program is at the core of a system that 
manages the movement of the entire free-running fleet. 

Shortcomings of the Traditional Approach 

At first blush, the linear programing technique would 
seem to be an ideal solution to the problem of empty-car 
distribution, because it is offered as an optimum allo
cation of the empty-car fleet and thus minimizes the 
costs of allocation. Unfortunately, the solution is only 
optimum if the simplifying assumptions required to 
yield the solution are in fact correct, and in this case 
critical assumptions at odds with the realities of rail
roading have been made. For example, quality and 
uniformity of demand and supply forecasts are needed to 
define surplus areas, and the solution is optimum only 
when these forecasts are accurate and demand is stable. 

A second, more subtle assumption has been made in 
forming the objective function. Here it is assumed that 
the only cost important to the distribution process is 
the penalty cost of moving cars from surplus to deficit 
areas. If the first assumption were true and the situa
tion were in fact deterministic, then this second as
sumption might be plausible. The real costs associated 
with the stochastic nature of the process, however, 
should not be ignored in the solution strategy. 

It is not the purpose of this study to indict existing 
car distribution practices because of the tremendous 
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variations inherent in the levels of supply and demand. 
The system view of the problem, with its emphasis on 
flow rules and car movements, is an absolutely neces
sary component of any car distribution mechanism. 
Nevertheless, variations in supply and demand as well 
as forecasting difficulties need to be accounted for in 
any car distribution procedure. 

Inventory Approach to Car Distribution: 
T ermina l P erspective 

The model described in this section evolved naturally 
from what has been called the traditional or system 
perspective on empty-car distribution. The typical 
proposed definition of the process resulted in network 
solutions to the problem. An alternative definition, 
however, suggested by Johnson (6) demands a new per
spective and different solution strategies: "The main 
function of railway freight car distribution systems is 
to control the inventories of empty cars held to buffer 
the supply and demand at the loading points." This 
definition shifts the focus from the movement between 
areas to the surplus and deficit areas themselves . 

~iO'n'ro. ? fn rho-ro T - lnrirloN on"rC" nc C"nV'\Y'\1..,. "ti' -
- .. ~ ............. - \ •• ........... ..... ...... - ......... '"4 ................................... 1.4. ........ """J:-'.t'"" ,J , .L..l l -

emptied cars, and D = demand) shows the terminal 
perspective appropriate for car distributors at both 
surplus and deficit areas. The process involves less 
network optimization and more inventory control. This 
conceptual framework suggests that the variable nature 
of empty-car supply and demand is related to the in
vent ory maintained in terminal areas. A methodology 
to formally specify this relation is proposed in the next 
section. 

SIMULATION MODEL OF TERMINAL 
EMPTY -CAR CONTROL 

To provide a new perspective on the empty-car distribu
tion problem, we have sought a technique that would 
clarify the operation of a small part of the existing rail
road environment and, if appropriate, would give us a 
simple tool for managing this environment more effec
tively. To this end, the elements of a discrete event 
simulation model that represents the empty-car inven
tory decisions of a surplus or deficit terminal area are 
described. 

Figure 2. Terminal perspective on the empty-car 
distribution process. 

E-------s 
Empty cars from 
deficit areas 

L----+ 

DEFlCl'T TERMINAL 
(D>L) 

SURPLUS TERMINAi 
(D<L) 

D 

Es 
Empty cars routed 
to def1c1t areas 

Basic Structure of the Model 

As illustrated in Figure 2, most railroad terminal areas 
can be classified as being either "sources" (surplus) or 
"sinks" (deficit) for empty cars. 

In a surplus terminal situation, empty-car supply 
normally exceeds demand. Each day consignor demand 
for empties will first be satisfied; then any empty cars 
remaining will be used to replenish the inventory (Fig
ure 2). The model determines the number of cars, 
called the "target" inventory level, that should be in 
the inventory after replenishment. The following daily 
decision structure ranking is followed: (a) all daily 
demands are satisfied by the daily supply; (b) any empty 
cars not needed to satisfy the daily demands are used to 
bring inventory up to the target level ; and (c ), finally, 
any remaining empties are sent to a deficit area ac -
cording to the flow rules. 

In a deficit terminal area, demand for empty cars is 
generally greater than the number of loads terminated. 
Addit ional empties will be transshipped to the terminal 
area according to system flow rules, so that in the long 
run demand and supply will be in balance. Given this 
baln,nce, the terminrtl decision maker cannot re ly upon 
the daily flow of cars to establish or replenish his in
ventory, and additional cars will periodically be sent 
to the terminal to replenish the inventory. The model 
determines how large this inventory (initial inventory) 
should be at the beginning of each simulation period. 
Empty cars never flow out of the terminal area in this 
formulation, so a very simple decision structure is 
possible: All current demands are satisfied if possible, 
and any remaining empty cars are placed in the in
ventory. 

For both surplus and deficit situations, the inventory 
level on a given day i will be determined by the day's 
new supply of and demand for empties, by the previous 
day's inventory, and by the prespecified target or initial 
i nventory level (I°): 

I; = f(l;..1 , E( , Ef , !0
) 

where 

I1 inventory level at the end of day i; 
Ei arrival of empty cars on day i; 
E~ demand for empty cars on day i; 
I0 prespecified target or initial inventory level 

for the simulation. 

(I) 

I° is implicitly a part of the decision structure, be
cause it effectively increases the supply of cars every 
day by an amount I". Thus, for a day during the simula
tion period when supply exceeds demand, the result will 
be to increase the day's remaining inventory by I" cars. 
Likewise, on days when demand exceeds supply, the 
added cars will reduce the number of unsatisfied de
mands by an amount I". 

An optimum initial inventory level will be one that 
balances the costs of increasing the inventory level on 
surplus days against the costs of reducing the unsatisfied 
demand costs if shortages occur. The next section 
presents the method used to arrive at such a solution. 

Determining Optimum Inventory Leve 1 

The terminal decision structures for both surplus and 
deficit situations have been specified. While they differ 
in several important ways, the daily inventory levels in 
both cases depend on the same set of four independent 
variables shown in Equation 1, of which only I° is spec
ified by the decision maker. The other three depend 



on the external environment. For each I°, a different 
set of daily inventory levels Ii will emerge from the 
decision structure. The problem becomes one of selec
tion from among different sets of daily inventory levels. 

Terminal Cost Function 

The principal function of an inventory of empty cars in 
a terminal is to diminish the impact of variations in 

Figure 3. Using cost function to determine terminal cost. 
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demand and supply levels on the area's ability to satisfy 
empty-car demand. Each car added to the inventory 
decreases the risk of a shortage, but increases empty
car inventory cost. Incurring some cost is an inevit
able consequence of demand and supply variability, so 
the objective should be to minimize the expected total 
shortage plus inventory cost. 

We can define a terminal cost function that accounts 
for this. For any inventory level (positive or negative), 
the cost function defines the cost to the system, and a 
simple piecewise linear function can be denoted as fol
lows: 

lCuOil if!, <0 
C(I,) = 

-Ch (I;) i f I, > 0 
(2) 

Figure 3 illustrates the case where unsatisfied de
mand cost Cu equals 1 and holding cost Ch equals 2. If 
the inventory level is Ii= 4, then C(4) = -1(4) = -4; and 
if Ti= -4, then C(-4) = +2(-4) = -8. In a similar fashion, 
calculating the cost of a sequence of daily inventory 
levels is a simple matter of totaling individual costs for 
each day: 

r:= q 

where 

q 
z 

C(I1 ) 

CT 

first day of the simulation period; 
final day of the simulation period; 
cost for the inventory level Ii; and 
total cost for the period. 

(3) 

Recalling that the daily inventory level is itself a 
function of I1 = f(f), it is also possible to conclude that 
cost is a function of I". Each value of I° implies the 
unique sequence of daily inventory levels that follow 
(Figure 4). 

Daily Cost 

Day 1°= 0 1° = 5 1° = 10 1° = 15 1° = 20 

0 0 -5 -10 -15 -20 
1 -10 0 -5 -10 -15 
2 -30 -20 -10 0 -5 
3 -40 -30 -20 -10 -15 
4 -20 -10 0 -5 -10 
5 0 -5 -10 -15 -20 
6 -10 0 -5 -10 -15 
7 -10 -10 -15 -20 -25 
Total -120 -80 -75 -85 -125 

Each has a certain value of C1 associated with it. The 
remaining task is to find the I° value that defines the 
sequence of inventory levels with the lowest C1 • 

Finding Minimum Cost Inventory Level 

The nature of the decision and cost structures in the 
empty-car inventory problem defined here will ensure 
a well-behaved situation. As initial inventory increases, 
the number of demands not satisfied can diminish, but 
the daily inventory level can only increase. The piece
wise linear cost structure equates fewer demands with 
lower cost and a larger inventory with increased cost 
over its entire range, so increasing I° may at first 
reduce Ct, but, if large enough, it will evep.tually in
crease C'. Thus, the value of the C' function will fall 
to the point where increased inventory cost exceeds 
decreased unfilled demand cost associated with an in
crease in I". (The piecewise linear cost structure is 
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not required to create the conditions described; how
ever, any function whose slope is always positive for 
inventory levels less than zero and always negative for 
the inventory levels greater than zero will lead to the 
same optimality conditions.) 

Given this functional relationship between er and I", 
it is possible to define a very simple search routine to 
determine the optimum inventory level (llf). By succes
sively testing er (I") for increasing values of I"' the opti
mum value of I° will be found when er(!") stops decreas
ing. This process is illustrated in a sample problem in 
Figure 4, in which the holding cost is 1 and the unsatis
fied demand cost is 2; each day's individual cost for each 
I° is t•ecorded along with the er . For instance, t he cost on 
day three for I"= 0 is the inventory level (-20) multiplied 
by Cu(2), which equals -40 . As the results indicate, t he 
optimum I" is 10. 

Com1Jonents of the Input Subprogram 

The previous section's inputs were parameters defining 
the utility function (C0 and Ch) , the daily empty-car s upply 
(En , and the daily demand for empties (E~ ) . Much oI the 
simulation modP.1 i!'I givP.n over to the process of deter
mining these values, as is described in the following 
sections . 

Cost Function Parameters 

The cost function parameters are easily specified for our 
model's purposes because thev are treated determinis
tically. -However, they prove.difficult to determine ac
curately in any particular inventory or railroad situation. 
Buffa (7) suggests that "though it is not difficult to de
velop a-model for buffer stock based on the concept of 
balancing inventory and stockout cost, more often than 
not it is difficult, if not impossible, for management to 
isolate a realistic stockout cost ." 

In the railroad environment also, neither inventory 
cost nor cost of delayed or unfulfilled demand for cars 
is well defined. We therefore ran the model repeatedly 
using the same car supply and demand inputs but dif
ferent cost ratios in order to reduce the importance of 
the cost specifications. It is the linear nature of the cost 
function that makes this possible, because the actual 
optimization routine is sensitive only to the cost ratio 
CjCh and not to the absolute values of Cu and Ch them
selves. 

Daily Empty-Car Supply 

One principal goal of this modeling effort was to de
termine the impact of rail network operations on the 
need for empty-car inventories in terminal areas. The 
input structure we established gives the model user a 
wide range of options with respect to the specifications 
of rail service and shipper behavior. This structure 
for surplus and deficit terminal areas is depicted in 
Figure 5. 

For both surplus and deficit, the model assumes 
that loaded cars are destined for the terminal area in 
question. On each simulation day i, n groups of loaded 
cars (Li) are generated. The number of cars in an in
dividual q will vary from day to day according to the 
specified distribution, which can be different for each 
group. A Monte Carlo sampling procedure from each 
distribution was employed to determine the values of 
the L/s each day. This ensures that each L/ will have 
some known expected average value that keeps total daily 
number of loaded cars generated each day (L~) constant 
over the simulation period. 

At a deficit area, empty cars are also routed to the 

terminal. The same rules that apply to q and L~ also 
apply to E~ and E~. 

Trip-time distributions (R,!, Rt), which indicate how 
often a trip takes a particular number of days, are used 
to describe the railroad operating environment. The 
Monte Carlo procedure for appropriate trip-time dis
tribution is used to determine the travel time for each 
grouv of cars, Li or El. The trip- time distribution may 
be different for each group of ca1·s, ~ = ~' for instance, 
but a particular group's trip time will be governed by 
one distribution during the entire simulation. Having 
selected the trip times, the arrival day for each group 
of cars at the terminal is determined; therefore arrival 
day equals departure day plus trip time. 

Knowing the arrival day of each group of cars and the 
number of cars in each group, it is possible to deter
mine the total number ofloaded, q, and empty, Ef, cars 
arriving on day i. Empty cars immediately become part 
of the supply, but the loaded cars must first be unloaded 
and then returned to the terminal according to a "time to 
empty" distribution. 

The two components of the daily new empty-car supply 
are now well defined. The E~, added to the EI, defines 
tho tntal T'l111'Y'lho-r nf ncnu Qtt"lnt1r ,.~ ..... C! 0".l"h n".lu (~s). ........................................................................... "' •• .......... ,t!~J ........................................ ..... ..,,.J , ..... 1 J. 

Er= ET+ Er (4) 

From the terminal's perspective, a rather complicated 
network, characterized by numerous points of loaded 
and empty-car generation and equally numerous trip
time distributions , is rP.flP.ctP.d in the variation of a 
single input variable, Er. 

Daily Demand for Empty Cars 

Daily empty-car demand is simpler to define than 
empty-car supply. The model user specifies a daily 
shipper demand distribution, which is sampled to de
termine a daily demand for cars (E~), just as the loaded 
and empty group size distributions were sampled . The 
model in its present form also assumes that E~ and 
supply (En are not correlated with one another. Use of 
a more complicated demand structure that assumes 
numerous independent sources of empty-car demand is 
possible but was not pursued in this study, because the 
behavior of a group of sources can be adequately repre
sented for our purposes by a simple demand source. 

Results of both a theoretical and an applied study using 
the model are presented in the next section. 

EXPERIMENTAL RESULTS 

Verification of our simulation model is a multifaceted 
problem, but, as it is based on theories of inventory 
control, its results should be consistent with theory. 
Also, as a model of rail terminal operations, it should 
be capable of evaluating current operation realistically. 
Since the core of the model is independent of the input 
subprograms, the model can be used to test both cases. 

Theoretical Results Based on Hypothetical 
Input Data 

This model can be used to show how rail operations, 
shipper behavior, and perceived operating costs affect 
optimum inventory level. Of the many possible rela
tionships that can be analyzed, three of the most relevant 
concern the impact of 

1. Improving trip-time reliability, 
2. Lowering the cost of unfilled demand relative to, 

the cost of holding a freight car, and 



3. Decreasing variability in the number of loaded 
and empty freight cars generated. 

The initial hypothesis, based on common sense and 
the classical theories of inventory control, is that each 
change should lower the optimum inventory level. In
puts that isolate these relationships in the deficit case 
are described and utilized in the following analysis. 

To eliminate some sources of potential variation in 
the inputs, we created a simplified input structure that 
can be readily modified to isolate the three relation
ships outlined above. The demand for empty cars (En 
is assumed to be constant each day and equal to 200 cars. 
Exactly 100 loaded cars in four equal groups of 25 and 
100 empty cars in five equal groups of 20 cars are gen
erated each day. The time required to empty each 
loaded car is always a day. 

In addition, for a particular run, the trip-time dis
tributions for all groups are modeled identically. This 
does not mean that the trip time for each group will be 
the same on a particular day, because it is independently 
selected from the underlying distribution. Finally, the 
ratio of the late load to inventory holding cost is assumed 
to be 2:1, and we used a simulation period of 7 d, based 
on a general railroad official's consensus that a weekly 
planning horizon for many car distribution decisions 
seems reasonable. 

Impact of Trip-Time Reliability 

With these inputs, the only source of variability comes 
from the trip-time distribution, which allows study of 
the first relationship between trip-time reliability and 
the optimum inventory level by repeatedly running the 
model using different distributions. 

The trip-time distribution defines both expected trip 
time (the mean) and the reliability of the trip. The 
variance is a conventional measure of a distribution's 
dispersion. The "n-day-~, '' developed by Martland (8), 
is also a measure of a distribution's central tendency 
and is derived as the maximum percentage of cars with 
trip times in a single n-day interval. Martland also 
proposes use of the measure "%-n-days-late," which is 
defined as the percentage of cars arriving n or more 
days later than the mean. As reliability improves (in
dicated by a smaller variance or a larger 2-day-%), 
predictability of trip time also increases. 

Typical railroad trip-time distributions were selected 
from a compilation of actual trip times reported by a 
large shipper between seven origin-destination pairs. 
These distributions are listed in Table 1. 

Two hundred 1-week simulations were performed with 
each of the trip-time distributions; the results are 
graphically presented in Figure 6, which shows that 
improvements in rail reliability (according to any of the 
three measures) are generally accompanied by smaller 
optimum inventory levels. 

This imperfection reflects our inability to precisely 
define the variance of an actual distribution by using a 
single measure. Combining several of the measures, 
however, does provide a more adequate explanation of 
the results . The second distribution (2-day-'%= 79) 
appears to have a higher inventory than can be explained 
by the 2-day-%, but if its '%-2-days-late is also con
sidered, it becomes clear that the higher inventory is 
caused by the extreme values of the distribution. 

These seven trip-time distributions are used in the 
remainder of the analysis, and the seven runs of the 
model made with the inputs as specified for this first 
analysis will be referred to as the base case. 
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Impact of Cost Ratio 

Simple changes in the base case permit testing of the 
second relationship for the impact of changes in the ratio 
of unfilled demand cost to holding cost. The base case 
is modified by first increasing the ratio from 2: 1 to 3: 1 
and then decreasing it to 1:1. As before, 200 1-week 
simulations were run for each of the seven trip-time 
distributions, and in each case an optimum inventory 
level was determined . The results are illustrated in 
Figure 7. 

When the penalty cost of not satisfying a shipper's 
demand increases relative to the empty-ca1· holding cost 
(an increase in ratio) , the optimum inventory required 
to minimize the terminal decision maker's cost in
creases regardless of the level of trip-time reliability. 
If the penalty is small, the decision maker will keep an 
inventory only if service is very unreliable. 

These results are also consistent with those found in 
classical inventory theory. Safety stock is only justified 
when the cost of not maintaining it exceeds that of main
tenance . When the cost is the same (per car in this 
case), a car supply must be very unreliable before the 
cost of the inventory justifies the reduction in the risk 
of stockout associated with it. 

Impact of a Stochastic Car Generation Rate 

The base case was designed so that trip times would 
vary while number of cars generated each day was con
stant. To consider the impact of variability in the num
ber of loaded and empty cars generated, the base case 
is twice modified so that the number of cars generated 
is normally distributed, with means still equal to 25 and 
20 for the five loaded and four empty moves respectively, 
and standard deviations of 25 and 50 percent of the re
spective means in the two cases tested. 

Again, 200 1-week simulations were run for each 
trip-time distribution and standard deviation combina
tion. Note also that an additional trip-time distribution, 
one with perfect reliability, was tested in order to isolate 
the impact of variation in the car generation rate on the 
inventory level. 

The results are presented in Figure 8 and show that 
variability in the car generation rate does in fact in
crease the needed inventory for all levels of trip-time 
reliability. 

It is difficult to make a direct comparison between 
the relative impacts of trip-time unreliability and gener
ation variation, because there are no directly compar
able measures of variance. The results do support the 
hypothesis, however, that each source of additional un
certainty increases the required inventory level. 

Summai·y of Theoretical Results 

To isolate and evaluate certain critical relationships 
between inputs to the terminal model and optimum in
ventory level, the model was exercised by using an 
appropriately designed set of inputs. Each of the tested 
sources of supply and demand variation increased the 
required inventory level both individually and when com
bined together. In addition, increases in the cost ratio, 
representing a larger stockout cost, also raised the 
optimum inventory. Each of these results is consistent 
with inventory control theory, the basis for the model
ing structure. Although these results have no direct 
applicability to a particular railroad operating situa
tion, we shall use the model to evaluate performance of 
an actual terminal area in the next section. 
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Table 1. Trip-time distributions for 
seven origin-destination pairs. 

Percentage of Cars per Trip 

No. Trip Days 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
Mean no. trip days 
Percentage of cars 

2 d late 
Percentage of cars 

more than 2 d late 
Variance 

Figure 6. Impact of trip-time reliability on optimum 
inventory level. 
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Figure 7. Impact of changes in cost ratio. 
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Applying the Model to a Real Terminal Area 

Pair 1 

0 
0 
0 
4 
12 
57 
27 
1 

6.1 

84 

0 
0.55 

90 

The theoretical results suggest that an appropriately 
specified inventory model structure can be used to de
termine the empty-car inventory that should be main
tained in each terminal or area of a railroad. If the 
model can be verified, then the inventory information, 
along with data on total available empties and empty re-

Pair 2 Pair 3 Pair 4 Pair 5 Pair 6 Pair 7 

0 0 0 
2 6 0 
2 45 0 
64 33 11 
15 14 26 
10 2 43 
1 16 
2 0 
1 0 
0 0 
2 2 
0 0 
1 2 

4.6 3.6 5.9 

79 78 69 

8 2 4 
2.66 0.77 1.94 

0 
0 
17 
41 
19 
8 
15 

4.6 

61 

15 
1.65 

0 
0 
0 
0 
0 
15 
28 
30 
11 
2 
7 
5 
0 
2 
8.1 

59 

14 
2.24 

0 
0 
0 
4 
15 
27 
13 
12 
9 
6 
4 
4 
5 
1 
7.5 

42 

20 
5. 58 

Figure 8. Impact of supply variability on optimum inventory level. 
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positioning costs, might become part of a method to 
better allocate empty cars. 

10 0 

Currently, no railroad attempts to quantitatively de
termine an optimum empty-car inventory level. Several 
large class I railroads were contacted during the course 
of this study: we found one both willing and able to pro
vide daily data on empty-car movements for each car 
type and major terminal area. In concert with this 
particular railroad, we attempted to apply the model. 

Our railroad has a traditional but sophisticated car 
distribution process that relies on flow rules to balance 
system surpluses and shortages. The number of cars 
maintained in a terminal area's inventory is determined 
by the terminal manager himself. The system decision 
maker can define a route for all surplus cars, but the 
local decision maker is largely responsible for deter
mining how many cars are surplus. 

Available Data 

For each terminal area and car type, daily disaggregated 
data (each car is identified) are available showing (a) 
number of empty cars on hand and (b) number of empty 
cars out to industry. While these two categories do not 
in themselves define the inputs required by the model, 
the disaggregate nature of the data makes it possible to 
calculate empty inventory, empties loaded, empty 
arrivals, and empty cars routed to another terminal. 
One key variable is obviously missing-the number of 
empty cars demanded but not provided-and without this 
information it is impossible to balance the inventory 
cost against the cost associated with lost or delayed 
loads. 



Table 2. Model results for the case study. 

Average Daily 
Ratio of Unfilled Target lnventory Inventory 
Demand to 
Holding Cost Actual Generated .. Actual Generated• 

Existing situation 49 
1:1 0 0 0 0 
2 :1 0 0 0 0 
5:1 4 2 3 1 
10:1 16 5 13 4 
100:1 22 14 19 12 

a Results generated by using the stochastic input data~ 

Figure 9. Analysis of mean and standard deviation for area. 
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o Deficit Areas 

(o=6) 

While this problem is perhaps unavoidable in any 
deficit area, the characteristics of this railroad's 
decision-making structure permit and perhaps encourage 
a different problem in surplus areas . The surplus ter
minal manager is not penalized for maintaining an ex
cessive inventory of empty cars (in the model's ter
minology, his holding cost, Ch, is very low), leading him, 
as the theoretical results suggest, to maintain a large 
inventory. If surplus areas do maintain excessive in
ventories, then a precise measure of demand is avail
able in the "number of empties loaded," since we assume 
that loads are seldom lost and empty cars are always 
available. A surplus area was therefore selected for 
analysis. 

Characteristics of the Selected Surplus Area 

Data listing the empty cars on hand and out to industry 
at the terminal each day for the selected car type were 
collected for a 1-month period in 1976. 

It was possible to create a complete history of the 
empty-car decisions at the terminal from these data. 
On the average, 14 cars arrived each day; 5 cars were 
damaged; 9 cars were routed to the appropriate deficit 
area. An average inventory of 50 cars was maintained 
over the period, and at no point did the inventory level 
drop below 20 cars, which supports the assumption that 
loads were never lost. These characteristics are 
schematically summarized in Figure 9. 

Using the Model to Evaluate the 
Terminal's Performance 

The historical data, provided by the railroad, record 
variations in supply and demand as they actually oc -
curred. Thus, instead of repeatedly simulating the 
situation using hypothetical inputs, the model was run 
by using the actual supply and demand data. 

With these inputs, the optimum empty-car inventory 
was calculated for different ratios of delayed load to 
holding costs. The results, reported in Table 2, reveal 
that the average inventory required to avoid any lost or 
late loads was only 19 cars; average daily flow was 14 
cars; average daily demand for empties was 5 cars; and 
the maximum inventory was 91 cars. 

For the purposes of comparison, the stochastic model 
form was also run. · Both supply and demand were as -
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Average Daily Flow to 
Deficit Areas Total Late Loads 

Actual Generated" Actual Generated' 

9 
9 
9 
9 
9 
9 

0 
9 71 33 
9 71 33 
9 47 22 
9 10 11 
9 0 0 

sumed to be normally distributed with means and stan
dard errors equal to those found in the actual demand 
and supply data. These results were also reported in 
Table 2 and are similar to those determined by using 
the actual data. 

For the 1-month period examined, both sets of re
sults suggest that the inventory level maintained during 
the period is oversized regardless of the cost hypoth
esis used. The average inventory of cars needed to 
ensure that no load be lost is only 19 cars; the average 
of 30 additional cars sitting in the inventory were not 
needed and were of no value to the terminal operator. 
Of course, even a superficial, qualitative examination 
of the daily supply and demand characteristics indicates 
that an inventory of 50 cars is excessive. The model 
is useful to the extent that it can quantify the degree of 
excess inventory, given the unique characteristics of 
the flows into and out of the area. 

The cost of maintaining this excess inventory will 
depend on a number of factors, including car type, time 
of year, and age of the fleet. The particular car type 
analyzed was in short supply when the data for this study 
were collected, but during times of car shortage inventory 
cost will approach the opportunity cost associated with 
loads lost or delayed elsewhere on the railroad. 

SUMMARY AND CONCLUSIONS 

This paper reports the first results of applying an in
ventory control theory to one aspect of the empty-car 
decision-making process. The empty-car distribution 
process and its importance to overall railroad perfor
mance were first reviewed. Then the theory of inventory 
control and its applicability to empty-car distribution 
were outlined and a simulation model based on this 
theory presented. Theoretical results were discussed, 
and, finally, the model applied to an actual railroad 
situation. 

The theoretical results are consistent with classical 
inventory control theory. A positive correlation has 
been discovered between variability in the supply or de
mand and the number of cars needed in the inventory. 

The model has also been successfully utilized to 
evaluate the performance of an actual railroad terminal 
area, and the results in this case are consistent with 
railroad thinking. The model data required that a sur
plus area be analyzed; data needed to evaluate a deficit 
area were not available. During the 1-month period 
while data were being collected, the inventory level 
in that surplus area was found to be oversized. This 
conclusion corroborated opinions voiced by several in
dividuals at the railroad. Application of the model to 
deficit areas should prove useful in the long run, but 
data on lost or late loadings are not presently available. 

It should be recognized that these results are pre
liminary in nature. While the single case study per
formed does seem to verify the theoretical results, 
more terminal areas will be investigated. The model 
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itself should be looked upon as part of a more compre
hensive set of models for use as a tool for managers 
seeking to balance empty-car inventories over an entire 
network. 
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