
Table 4. Parameter magnitudes for socioeconomically disaggregated 
version of model. 

Income Group• 

Low Middle High 
(less than (Rs 500 to (more than 

Variable Rs 500) 1499) Rs 1500) 

Behavioral parameters 
Ot 0,112 0. 105 0. 120 
6 0.120 0. 140 0.120 

Trip generation rates 
Work to home/ employee 0.33 0.62 0.84 
Home to service/ household 0.29 1.02 2.31 

Modal split probabilities' 
Work 

Motor vehicle 0.03 0.21 0.69 
Mass transit 0.33 0.52 0.27 
Bicycle 0.64 0.27 0.04 

Service 
Motor vehicle 0.04 0.23 0. 71 
Mass transit 0.61 0.64 0.21 
Bicycle 0.35 0.13 0.08 

'In 1969, Rs7.49=$1.00. b Entries do not include pedestrian trips. 

and transportation model to issues encountered in re­
gional strategic development planning. Analysis models 
used for this type of planning must have modest data re -
quirements, be adaptable to a variety of issues, and 
have quick computer turn-around time. 

The first application of the model was to aid in the 
formulation of a consistent and desirable set of public 
development policies. In this application, the behavioral 
parameters of the model were disaggregated spatially, 
but the residential submode! was aggregated over all 
socioeconomic groups and the service submode! was ag­
gregated over all service sectors. 

The second application involved detailed analyses of 
the distribution of service employment by sector within 
one subregion. In this application the service employ­
ment submode! was disaggregated into a number of ser­
vice employment sectors. 

The final application involved the development of a 
version of the model disaggregated by socioeconomic 
group for Delhi, India. A disaggregated version is re­
quired because of the tremendous range of socioeconomic 
groups in Indian cities and the very different spatial dis­
tributions of employment and housing opportunities avail-

31 

able to these groups. This version of the model has been 
used to explore the impacts of alternative land develop­
ment policies on the corridor level volumes of road and 
public transportation trips. 
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Impact of Transportation on Urban 
Density Functions 
S. R. Johnson, University of Missouri 
James B. Kau, University of Georgia 

A method is proposed for analyzing the variable impact of transportation 
on urban structure. The varying coefficient model, which uses the nega­
tive exponential density function as a theoretical base, provides a means 
for systematically incorporating hypothesized effects of current and past 
levels of transportation while holding constant population, income, and 
other factors identified with current urban spatial structure. The aspects 
discussed include the following: the theoretical basis for the hypothesized 
effects of the conditioning variables to be investigated, the development 
of the model in relation to changing density functions, the estimation of 
model parameters by use of available cross-sectional data, the application 

of the model to the generalized problem of the urban density function, 
and simulated forecasts and analyses of transportation-related changes in 
urban structure for selected cities. 

The relation between density and distance-or, more 
generally, the density gradient-has been used in recent 
years to explain urban spatial structure. The standard 
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functional form assumed for the density gradient is the 
negative exponential; i.e., 

D(u) = D 0 exp(-ru) 

where 

D(u) = density u distance from the urban center; 
D0 = density at the urban center· and 

(I) 

r = density gradient, the percentage by which D(u) 
decreases as distance increases. 

Previous models of urban economies have focused on 
explaining the intensity of land use and employment by 
distance from the urban center, incorporating modifica­
tions to include transportation cost, income, past de­
velopment, and other selected socioeconomic factors. 
This paper proposes an alternative method for analyzing 
the variable impact of transportation on urban structure. 
The varying coefficient model (VCM), which uses the 
negative exponential density function as a theoretical 
base, provides a means for systematically incorporating 
hypothesized effects of current and past leve s or t.ran.s­
portatlon while holding constant population, income, and 
other factors identified with current urban spatial struc­
tures. The VCM thus generalizes the simple exponential 
density function to accommodate more realistic hypoth­
eses about the impact of transportation on urban struc­
ture. Because transportation exhibits high secondary 
relations with time, the VCM also represents a basis for 
sharpening existing forecasting tools . In addition, be­
cause its use requires little additional computation or 
data collection, it is useful in exploratory statistical 
analyses of urban structure and other applied economic 
problems. This study applies the VCM to the estimation 
of an urban density function conditioned on factors that 
vary within and among cities. 

THEORY AND DATA 

The theoretical foundation for the density gradient pro­
vided by Muth (6) can be used to determine qualitative 
effects of transportation on the intercept and the slope 
of the resulting exponential function. Briefly, housing 
is produced by using land that surrounds the central 
business district (CBD). Workers residing in these 
households are assumed to commute to and from jobs 
1n tnt! \...Ou. The OJ:.Jtl1uai huu8t::huid lc,(;ation fo1-: a eost­
minimizing worker employed in a CBD occurs when 

-ap/au(q) = oT/au 

where 

(2) 

p and q = price and quantity of housing services re­
spectively and 

T = transportation cost. 

Thus, -ap/;, u(q) is the reduction in expenditure neces­
sary to purchase a given q that results from moving u 
distance away from the CBD. The derivative aT/ou 
represents the increase in T that is incurred by making 
such a move. By using Equation 2 and related formula­
tions of the demand for housing, Muth was able to derive 
qualitative effects for a number of variables on optimal 
location. Because the model is well-known, this dis­
cussion only reviews the qualitative results as special­
ized for the variables selected for empirical analysis 
in this study. 

The data consist of a random sample of 43 census 
tract densities measured u distance from the CBD for 

each of 39 U.S. cities in 1970. Two corresponding sets 
of additional data were also used. The first consisted 
of observations for each of the 43 tracts in the various 
cities-referred to as tract-specific variables. The 
tract-specific variables are the percentage of com­
muters who use public transportation (X1) and income 
(X2), The percentage of public transportation com­
muters is used to reflect the impact of the introduction 
and continued use of subways or bus systems on urban 
structures . Relative costs of private versus public 
transportation are, of course, difficult to determine. 
Instead of making statements about relative costs that 
cannot be tested, this study uses observed behavior to 
establish the importance of the transportation variable. 
Muth's model shows that an increase in either the fixed 
or the marginal costs of transportation decreases the 
equilibrium distance from the CBD for any household. 

The relation between optimal household location and 
income is important because it determines patterns of 
housing consumption in different parts of the city. For 
example, consider a general increase in the level of in­
come for the residents of a city. The increase in in­
come would increase housing consumption and, assuming 
this outweighed effects of increased transportation cost 
and housing prices, the equilibrium distance from the 
CBD would increase for all households. On the basis of 
this reasoning, the density gradient is expected to vary 
inversely with the level of income. 

The second set of concomitant data is citywide and 
designed to explain differences among cities attributable 
to variations in past development. Harrison and Kain 
(2) have demonstrated the importance of past develop­
ment on current land use. In fact, they have suggested 
that the principal differences in urban structures among 
U.S. cities are attributable to differences in the timing 
of their development. For example, in the Los Angeles 
metropolitan area, dwelling units constructed between 
1950 and 1960 accounted for almost 40 percent of the 
total in 1960; in Boston they accounted for only 16 per­
cent (2). Two variables were used this study to capture 
these effects: relative age of the city (Xs) and city 
population (X4 ) . The age of the city, which is based on 
the last significant spurt of growth, pinpoints the timing 
of significant structural changes that have occurred in 
the city. Population levels are used to represent over­
all scale effects caused by past development. Generally, 
recent spurts of growth and population increases would 
tend to reduce the density gradient because of the effect 
on transportation of technological changes such as free­
ways and the automobile (~). 

THE MODEL 

In specifying a model that is consistent with the theory 
and the data discussed above, the approach was to use 
the exponential density function but to introduce sys­
tematic changes in parameters. That is, the parameters 
of the density function are hypothesized to vary as a 
result of the interplay of city- and tract-specific vari­
ables. As indicated above, the a priori basis for relat­
ing parameters of the exponential density function to 
city- and tract-specific variables is somewhat limited. 
Generally, the theory only yields conclusions for signs 
of anticipated parameter changes. 

Because of limited prior information, the VCM 
proposed is one with a polynomial as the structure for 
possible changes in parameters. Because the specifica­
tion locally approximates more complex relations, it is 
useful for exploratory work. To implement the poly-



nomial specification, let 

lnDo = lnD0(X1, X2, X3, X4) 
<Jo1 %2 %3 %4 

= L L L L /J~1 .n2.n3,n4X?X~ 2x?x~4 
n1 =o n2=0 n3=0 n4=0 

(3) 

and, similarly, for the slope coefficient (r) in Equation 
1, let 

r=r(X1,X2,X3,~) 
ql1 ql2 ql3 ql4 

= L L L L /3 1 x"1x" 2x"3x"4 
n1=0 n2=0 n3=0 n4=0 n1 .n2,n3 ,n4 1 2 3 4 

(4) 

The parameters lnDo and r are thus polynomials of 
orders q 0 and q1 respectively in X1, X2, X3, and~ (the 
four city- and tract-specific variables). Application of 
this revised specification to the data is straightforward. 
8~1.n2,n3,n4 and /3 ~1.n2,n3,n4, as well as values for city- and 
tract-specific variables that correspond to the data 
points, determine the exponential density function. The 
special case n1 = n2 = n3 = I4 = 0 is the constant coef­
ficient, log linear density function. 

The advantages of the VCM provided by Equations 3 
and 4 combined with the hypothesis for the log linear 
density function should be apparent. The VCM generates 
city- and tract-specific results but within the context of 
a functional form that has theoretical and empirical sup­
port. Moreover, the flexibility of the VCM would ap­
pear to make the exponential density function more useful 
in policy analysis and prediction. Since the selected 
city- and tract-specific characteristics may be subject 
to control by policy action or may be comparatively 
easily projected on the basis of time, the model can be 
used for both forecasting and policy analysis even 
though it is estimated from cross-sectional data. This 
feature is not without statistical limitations, but it should 
prove especially useful given the data bases available 
for studying density patterns in urban economies. 

METHODS OF ESTIMATION 

The estimation procedure follows from error assump­
tions and additional information that restricts the num­
bers of parameters for the model as expressed in Equa­
tions 3 and 4. First, the polynomials that relate lnDo 
and r to the X1, X2, X3, and ~ variables are assumed to 
be second order. Even if this is assumed, application 
of the standard formula for permutations shows that there 
are 1320 parameters for each of the hypothesized condi­
tioning structures on the lnDa and r coefficients. Al­
though the data are extensive in comparison with those 
used in some other studies, they obviously cannot sup­
port this ambitious specification. As a result, the 
number of parameters required to determine the vari­
able coefficients of the log linear density model was 
further limited. 

The approach used to obtain these restrictions is 
based on the intended uses of the model and on prelim­
inary tests in the sample data. Although there are some 
obvious statistical problems with this method (8), no 
alternative was possible. First, four versions-of the 
model of the density function were estimated; in each 
version the coefficients were functions of only one con­
ditioning variable. For example, in the case of the 
X1 tract-specific variable-the percentage of commuters 
who use public transportation-the assumption was qo2 = 
qo3 = qo4 = o and q1, = q1 3 = q1 4 = o, which implies struc­
tures for the VCM that are determined on the basis of 
six parameter estimates. If i denotes the city and j the 
tract for this special case, the model given in Equations 
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3 and 4 can be expressed as 

(5) 

for the 43 x 39 observations in the sample. An additive 
error term (£ii) with a subsequently specified structure 
has also been included. Applying the special assump­
tions to Equations 3 and 4 yields 

qOJ 

lnD0CX1,X2,X3,X4)=lnDo(X1)=lnD0ij= L ll'ii1Xu 1 
n1=0 

and 

q!J 

r(X1,X2,X3,X4) = r(X1) = lnrii = L /Jh1 XW 
n1=0 

where subscripts for {3° and {3
1 that correspond to the 

excluded conditioning variables have been omitted for 
convenience. 

(6) 

(7) 

The model specified in Equations 5, 6, and 7 includes 
coefficient restrictions across tracts and cities. It is 
clear, therefore, that pooling of the data on tracts and 
cities is necessary to estimate the required parameters. 
In addition, plausible assumptions for the distribution 
of the structural disturbance £ii point to the advantages 
of pooling the data (_!, ~ 10}. 

Based on the results from the four simplified VCMs 
and prior information to be subsequently discussed, a 
model was specified that incorporates the effects of all 
the coefficient conditioning variables. In terms of 
Equations 3 and 4, the structure of coefficient variation 
for the density function for this final model is 

(8) 

and 

(9) 

It should be apparent that final specification concentrates 
on variation in the density gradient (r). By using an argu­
ment analogous to that made for Equation 5, this structure 
can be substituted to reparameterize the model of the ex­
ponential density function, and generalized least squares 
methods can be applied to obtain estimates with desirable 
asymptotic properties. In addition, based on the proce­
dures just described, the central and noncentral F­
statistics can be used to test the null hypothesis (the 
density function model with constant coefficients) for 
appropriateness given the sample data. 

EMPIBICAL RESULTS 

Results from an application of the density function model 
with constant coefficients on a city-by-city basis are 
given in Table 1. These estimates provide a source of 
comparison for estimates derived from the alternative 
VCMs. The results in Table 1 demonstrate a concern 
about the appropriateness of the exponential density 
hypothesis with constant coefficients. Both lnD 0 and r 
are statistically significant for most of the 39 cities. 
But there are important differences in their magnitudes, 
especially for r. In addition, the estimated density 
function for the pooled data did not explain a high pro­
portion of the variation that was observed in the de -
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Table 1. Ordinary least squares 
estimates of coefficients for 
exponential density function for City lnD. Estirnate t-statistic R' City lnD, Estimate t-Statistic R' 
39 cities and pooled city data. 

Akron 9.273 -0 .202 -2 .86 0. 167 Pittsburgh 9.689 -0 . 121 -2 . 14 0.100 
Baltimore 9. 767 -0.186 -12.37 0. 783 Portland 9.193 -0.139 -4. 75 0.355 
Birmingham 9.017 -0 . 190 -6.38 0.498 Providence 9.090 -0. 135 -4.54 0.335 
Chicago 9. 745 -0.039 - 1.60 0.059 Richmond 8. 716 -0.221 -6.71 0.523 
Cincinnati 9.669 -0.162 -4. 78 0.358 Rochester 9.845 -0.327 -10.32 0.722 
Dayton 9.245 -0.179 -4.62 0.342 Salt Lake City 8.883 -0.128 -4.17 0.298 
Denver 9.624 -0.206 -5.37 0.413 San Antonio 9.300 -0.212 -6.44 0.503 
Detroit 9.714 -0,075 -3.86 0.281 San Diego 9.141 -0 .065 -2 .79 0.1 59 
Flint 9.462 -0.386 -6.82 0.532 San Jose 8.990 -0 .085 -2 .12 0.099 
Fort Worth 6.399 -0 .059 -2.38 0.121 Seattle 9.220 -0.140 -6 .02 0.469 
Houston 9.209 -0.153 -5.17 0,395 st. Louis 10.029 -0.170 -7.48 0 .577 
Jacksonville 9.205 -0 .343 -10.34 0. 723 Spokane 8.762 -0.256 -5 .24 0.404 
Louisville 8.619 -0 . 139 -6.12 0.478 Syracuse 9.938 -0.487 -15 .62 0.856 
Memphis 9.463 -0 .173 -5. 79 0.450 Tacoma 9.078 -0.171 -4 .20 0.284 
Milwaukee 10.013 -0.207 -6. 53 0,509 Toledo 9.835 -0.317 -7. 12 0.553 
Nashville 9.078 -0 .269 -8.42 0.634 Tucson 8.459 -0. 146 -2.88 0. 169 
New Haven 9. 791 -0 .510 -10. 75 0. 738 Utica 9.421 -0.374 -5 .78 0.449 
Omaha 8.845 -0 .114 -2 .41 0.124 Washington, DC 9.980 -0.138 -3.96 0.277 
Philadelphia 10.612 -0.195 -6 ,05 0.471 Wichita 9.000 -0.227 -4.63 0.343 
Phoenix 9.089 -0. 134 -4.54 0.335 

Note: Estimated coefficients for the pooled cily data are ln00 = 8-41 , r = -0~010, and R2 .. O 010, 

pendent variable. In all cases, a greater proportion of 
variation could be explained for city-by-city estimates 
of the density function than for the model that used 
pooled data. Although the results emphasize the 
limitations of empirical generalizations that are based 
on the density function hypothesis with constant coef­
ficients, they are typical of other results obtained by 
using data from U.S. cities (:!, Q) . The null hypothesis­
that the constant coefficient density function is ap­
propriate for all cities-is rejected at the 1 percent 
level in both cases. Obviously, more elaborate hy­
potheses are required to explain population density 
within and across cities. 

Estimates for the pooled data in which the parame­
ters vary according to the scheme given in Equations 6 
and 7 are given in Table 2. Recall that the conditioning 
variables are use of public or private transportation 
(X1), income (X2), age (X3), and population (~). The 
specification is that the coefficients for the density 
gradient are quadratic functions of these conditioning 
variables. Examination of the significance levels of 
the parameters on the linear and quadratic terms for 
the specifications given in Table 2 indicates that each 
of the conditioning variables is important in shifting 
the density from city to city and between tracts. This 
general observation is confirmed by comparing the R21 s 
in Table 2 with those given in Table 1 for the constant 
coefficient model as applied to pooled data. 

On a more specific basis, results obtained by usmg 
the public-private transportation variable to condition 
the coefficients of the density function show that its 
major effect is on the coefficient of distance (r). For 

Table 2. Estimation of exponential density function with coefficients 
jointly conditioned on selected variables (variation in parameters 
according to Equations 6 and 7). 

lnD, r 
Conditioning 
Variable Parameter Coefficient t Coefficient t R' 

X, Constant 8.545 86.08 -0 .086 7 13 .92 0.32 
Linear (X,)' -0.179 0.87 0.456 12 . 76 
Quadratic (X;)' 0.222 1.91 -0.0517 2 .14 

x, Const.ant 8.895 87.68 6.59 E-3 2.81 0.26 
Wnea.r (X,)' 5.91 E-5 2. 72 -2.17 E-5 12 .54 
QJ:1dratic (X()' -4 ,714 E-9 4.36 8. 75 E-10 7.33 

X, Constant 8.689 85.88 -0.120 1.42 0.21 
Linear (X,)' 0.015 4.81 -1.19 E-3 2.50 
Quadratic (X!t -9.96 E-5 5.86 1.23 E-5 5.03 

X, Constant 9.367 ]19.59 -2 .90 22.18 0.28 
Lln.,a r (X,)" -1.33 E-6 6.55 4.20 E-7 20.92 
Qundnitic (X:\" 5.10 E-13 8.51 -1.14 E-13 16.05 

Not,: E l rm lrtdfciuo, dKim11 mo'lmtlanl. 
• The index k takes on values 1, 2, 3, and 4 to indicate each of the four conditioning variables 

the constant term, the estimated parameter on the 
linear term is not statistically significant and the 
parameter estimate for the quadratic is only marginally 
so. Estimates on the constant, linear, and quadratic 
terms for the coefficient of distance are -0.0867, 0.456, 
and -0 .0517 respectively, and all are statistically 
significant. The estimates show that the public-private 
transportation variable first increases and then density 
decreases. What the result shows is that, in cities and 
tracts for which the value of the public-private trans­
portation variable is low, the density gradient is lower 
than it is in cities for which the transportation variable 
has a high value. Thus, if other things are equal, cities 
that have below-average levels of public and private 
transportation and contemplate policy measures de­
signed to improve it should expect a decrease in the 
absolute value of density. 

Parameter estimates for the density function, speci­
fied with coefficients conditioned as hypothesized in 
Equations 8 and 9, are given in Table 3. The table is 
similar in construction to Table 2 except that estimates 
in the constant columns are repeated for reference. 
The table gives all parameters as statistically signif­
icant, and the R2 for the pooled data is improved to 
0.49. The parameter estimates are generally inter­
preted as were those given in Table 2. 

For the constant coefficient lnD., the estimated 
linear parameters show that densities in the CBD in­
crease with increased public an<l privail:l L1'a111:1J:JOi'LaLion, 
income, and age and decrease with population. The 
significant estimates of the linear and quadratic parame-

Table 3 . Estimation of exponential density function 
with coefficients jointly conditioned on selected 
variables (variation in parameters according to 
Equations 8 and 9). 

lnD, r 
Conditioning 
Variable Parameter Coefficient Coefficient 

X, Constant 8.6746 91.88 -2.0146 E-1 
Linear 2.3102 E-1 1.71 2.4260 E-1 
Quadratic -3. 7874 E-3 

x, Const.ant 8.6746 91. 81 -2 .0146 E-1 
Linear 1.2194 E-5 1.42 -9.6 641 E-6 
Quadratic 1.2931 E-10 

x, Constant 8.8746 91.88 -2.0146 E-1 
Linear (X11:t 5.8489 E-4 -0.80 9.3994 E-4 
Quadratic (x:)· -6.3914 E-6 

X, Conalant . 8.8746 91.88 -2.0146 E-1 
Linea.r (X,)' -3.2657 E-8 -0.41 2.5331 E-7 
Q.iadrn.tio (X;)" -6.6665 E-14 

Note: E term Indicates decimal movement. 

• The Index k takes on values 1, 2, 3, and 4 to indicate each of the four conditioning variables, 

R' 

11.53 0.49 
6.42 

-11.21 

-11.53 0.49 
-7. 78 
3.30 

-11.53 0.49 
3.56 

-4.67 

-ll.53 0.49 
15.20 

-14.54 



ters for the coefficient of distance show that r increases 
at higher levels of public and private transportation use 
and higher income levels and decreases with increasing 
city age and population. The first effect would in­
dicate a flatter density gradient in cities with higher 
average income and greater use of public transportation. 

Perhaps the best way to assess the implications of 
this final version of the VCM is to evaluate the density 
function for each of the cities included in the sample. 
This has been done for the city-specific conditioning 
variables at within-city sample means (Table 4) . Such 
information makes it possible to do specialized analyses 
for particular cities by using the estimates given in 
Table 3. More generally, it is apparent from a com­
parison of Tables 1 and 4 that the VCM produces rea­
sonable estimates for the density function. The ad­
vantage of the VCM is thus the improved fit and 
increased reliability of parameter estimates and, most 
importantly, the increased possibility of functional 
analysis of population density based on commonly ad­
vanced arguments of socioeconomic conditioning. 

USE OF EMPffiICAL RESULTS 

Two examples demonstrate how the empirical results 
can be used in the context of policy making and fore-

Table 4 . Estimates of density function coefficients based on 
varying coefficient model. 

City lnD, r City lnD, r 

Akron 9.0223 -0.175 4 Pittsburgh 9.1589 0.030 81 
Baltimore 9.1219 -0.086 5 Portland 9.0365 -0.13139 
Birmingham 9.0055 -0.141 01 Providence 9.0587 -0.191 57 
Chicago 9.1495 0.078 5 Richmond 9.0846 -0.129 26 
Cincinnati '9,0504 -0.083 39 Rochester 9.0772 -0.151 85 
Dayton 9.0676 -0.168 36 Salt Lake City 9.0096 -0.215 1 
Denver 9.0399 -0 . 119 55 San Antonio 9.0016 -0.10121 
Detroit 9.0373 -0.018 7 San Diego 8.9008 -0 . 113 02 
Flint 9.4459 -0.297 51 San Jose 9.0112 -0.191 52 
Fort Worth 9.0097 -0.165 0 Seattle 9.0423 -0.127 74 
Houston 8.9848 -0.044 85 St. Louis 9.0911 0.080 84 
Jacksonville 9,0128 -0.107 18 Spokane 8. 9996 -0.206 7 
Louisville 9.081 -0. 125 008 Syracuse 9.0781 -0.164 27 
Memphis 9.0308 -0.044 47 Tacoma 9.0094 -0.209 05 
Milwaukee 9.0907 -0.056 99 Toledo 9.0388 -0.156 14 
Nashville 9.024 -0.109 8 Tucson 8. 9777 -0.207 1 
New Haven 9.1092 -0.199 26 Utica 9.0841 -0.234 5 
Omaha 9.0436 -0.131 25 Washington, DC 9.1478 -0.000 955 
Philadelphia 9.1784 0.075 24 Wichita 9.000 -0.203 38 
Phoenix 8.9984 -0.151 33 

Table 5. Impact of current values and 50 and 100 percent 
increases in levels of conditioning variables on central 
densities (logD ) and density gradient (r) for the typical 
city and Washi~gton, D.C. 

Conditioning Variable 

Level x, x, x, X, 

Typical City 

Current 
D, 0.049 4 0 . 1187 0.3269 0.0185 
r 0.051 7 -0 .0823 0.0326 0.1223 

50 percent increase 
D, 0.074 2 0.1781 0.4907 0.0278 
r 0.077 5 -0.1138 0.0343 0.1673 

100 percent increase 
D, 0.098 9 0. 2374 0.6539 0.0371 
r 0.103 14 -0.1395 0.0253 0.2016 

Washington, DC 

Current 
D, 0 , 100 3 0 . 1965 0.4094 -0.0247 
r . 0 , 104 6 -0.1030 0 .0345 0. 1535 

50 percent increase 
D, 0 .150 4 0 .2347 0.6141 -0.0371 
r 0 , 156 3 -0 . 1385 0.0283 0.2016 

100 percent increase 
D, 0.200 5 0.3130 0.8189 -0.0494 
r 0.207 7 -0 . 1634 0.0063 0.2306 

casting. One example involves a representative city 
obtained by setting the conditioning variables of the 
density function coefficients at mean sample values . 
The second example used is that of Washington, D.C. 

The analysis of the impacts of changes in public 
transportation, income, age, and population is made 
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on a partial basis; that is, the value for one of the con­
ditioning variables is changed while others are held at 
current levels for the two example cities. First, three 
levels are considered for each of the variables that are 
assumed to condition the coefficients of the density func­
tion: the current level and 50 and 100 percent increases 
in it. The results obtained by using these assumptions 
are given in Table 5. These results show, for example, 
that in the typical city setting public and private trans­
portation at the current level increases lnD. by 0.0494 
and r by 0.0517 . By contrast, increasing the public and 
private transportation variable by 100 percent raises 
the value of the constant by 0.0989 and the gradient by 
0 .103 04. Similar interpretations of the results apply 
for the Washington, D.C ., exam,ple and for the other 
conditioning variables. 

What the results in Table 5 show is that the major 
impact of the conditioning variables is on the density 
gradient. This is not surprising since the specification 
of the structure for the varying coefficients featured 
possible changes in the gradient. What is encouraging 
is that the results are reasonable for the changes con­
sidered even though some of the results are for values 
of the conditioning variables far from the sample means. 
This indicates that the surface being approximated by 
the polynomial is sufficiently stable so that projections 
or forecasts based on assumed values of the condition­
ing variables can be viewed with some confidence. 

Impacts of changes in the transportation variable on 
the density gradient (r) and representative structural 
shifts in the density function are plotted in Figure 1. 
The interpretation for the shifted density functions is 
that they are cross sectional and thus refer to levels of 
equilibrium. Thus, shifts that result from changes in 
the conditioning variables represent density relations 
to which the cities would gravitate as a result of policy 
changes or other possible exogenous effects. Finally, 
the similarity in the shifting density gradients shown in 
Figure 2 indicates that the VCM can be consistent with 
cities and tracts that have different characteristics 

Figure 1. Impact of public transportation on density gradient (r) . 
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Figure 2. Impact of public transportation on density function for 
50, 10, and O percent use of public transit by commuters 
(assuming same percentage of riders at all distances). 
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Figure 3. Impact of public transit for a special case [30 percent transit 
riders the first 5 km (3 miles) from city center and decreasing 
patronage beyond 5 km]. 
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and can thus explain much of what in a simpler hypothe­
sis would be attributed to spurious variation. 

Mills (4), Mohring (5), Muth (6), Pendleton (7), and 
others have found empirical evidence that improvements 
in transportation tend to reduce the density gradient. 
The evidence provided by the VCM indicates that, as 
the percentage of public transit users increases, r 
decreases; in fact, as shown in Figure 1, r becomes 
positive when the number of public transit riders 
exceeds 30 percent. This occurs in four cities: Chicago, 
Philadelphia, Pittsburgh, and Washington, D.C. The 
estimates of r based on city-specific values for the 
conditioning variables (Table 4) indicate that r was 
positive in all cases except that of Washington, D.C ., 
in which case it was essentially zero. Thus, the city­
specific results based on the VCM (and also the ordinary 
least squares estimates given in Table 1) corroborate 
the findings of the more general analysis of the impact 
of transportation on the density gradient. 

Additional information for policy analysis is con-
+.ain.an ;1"1 li';f"l'11't"'.O. ~ urh-il'h l'.lC!C!111'nOC! f-h-:1f- ':II 't"'.o.lr:if;,roln onh_ .,_ ......................... -o .... - ..... ~, ....................... ~ ................. ..,.., ...................... ............................... J .... ~OJ 

stantial number of riders consistently use public transit to 
travel some predetermined distance from the CBD and that 
eventually, at greater distances, the number of riders de­
creases. Because the marginal cost of public transportation 
is mostly time related, this result would apply if identical 
income groups had a tendency to locate approximately 
equal distances from the CBD. In general, then, sub­
sidies designed to increase the number of public transit 
riders would result in decentralization. Because the 
percentage of public transit use is a tract-specific 
variable, the VCM approach can measure, within a 
particular area of a city, changes in density patterns 
that are caused by a shift in the number of transit riders. 
For example, the impact of the new mass transit sys­
tem in Washington, D.C., could be approximated for 
each specific city tract. This allows for the develop­
ment of spatial-or, more generally, three-dimensional­
dens ity functions. 

SUMMARY AND CONCLUSIONS 

The varying coefficient model has been proposed as a 
method for introducing city- and tract-specific variables 

into the exponential density functions used to study urban 
structure. A major advantage of the VCM is that it 
permits the introduction of such variables while re­
taining an interpretation that can be reconciled with 
the body of theory that justifies the use of the expo­
nential functional form. As a result, results obtained 
by applying the VCM can be compared with the massive 
empirical literature on urban density functions. Most 
estimated density functions are only special cases of the 
general VCM with a polynomial structure that relates 
the coefficients of the density function to socioeconomic 
conditioning variables. 

Application of the VCM to data from 43 randomly 
selected 1970 census tracts for each of 39 U.S. cities 
provided a number of interesting results that may help 
to resolve a problem raised by recent studies in the 
application of the density function. It has been shown 
that questions about the appropriateness of the ex­
ponential functional form and specification errors as­
sociated with the omission of city- and tract-specific 
variables can be handled in the context of applied density 
function studies by using the VCM framework. In this 
study, the explanatory power of the density function and 
the significance levels of the structural parameters 
were greatly enhanced by the application of the VCM in 
studying the 1970 data. 

The results also show that the conditioning variables 
that reflect transportation mode, city age, household 
income, and population could be used to provide reason­
able explanations of apparent structural differences 
between cities and tracts. Of these results, perhaps 
the most interesting relates transportation mode to 
density. Analysis of the polynomial structure relating 
these tract-specific variables to the density gradient 
gave results that have a natural interpretation based on 
the opportunity cost of travel time as income increases. 
Other results, although perhaps less novel, are con­
sistent with hypotheses that have emerged from more 
elaborate theories that support the exponential density 
function. 

The most important results of the application of the 
VCM are those that relate to the use of the urban density 
function as a tool for policy analysis and projection. 
Until now, empirical work on urban density functions 
(including tests of the form of the density function and 
avnln't"'o:,,fn't"'u r:>nc.luac.C! nf n.ncc-ihl.o. rirlli1+innl'.'ll "lr<"l~ir:ihlo.o _.. ...... .t" .. ..., .......... ..., .. J ................ J .., ..... .., .......... 1:' ............................ .......................... ..., ........................................... ..., 

for explaining density patterns) has been largely de­
scriptive. By introducing a method for including pos­
sible policy control variables and additional uncontrol­
lable variables directly related to time, this study offers 
an expanded area of application for the density function 
hypothesis. The analysis of a typical city and of Wash­
ington, D.C., shows that effects of policies designed to 
influence transportation mode can be directly examined 
in the context of an estimated density function. When 
density is a target in urban planning, estimated VCMs 
of the type presented in this study can assume an im­
portant role in the structure of planning models. The 
relation between city age, population, and time illus­
trates how the model can be used in forecasting. Be­
cause these uncontrollable variables can be accurately 
projected on the basis of simple expressions in time, 
the cross sectionally estimated density function can be 
used for forecasting changes in urban structure. Al­
though such forecasts can yield little information about 
the adjustment to new levels of equilibrium, they should 
provide urban economists with a valuable tool. The 
lack of information on rates of adjustment indicates that 
this is an area that requires further research. 
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