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A Poisson Model for ridership on rural public 
transportation routes is developed. Models 
are tested on data collected previously in 
the research, and some modifications made. 
Illustrated is a technique of using analysis 
of variance on ridership rates to determine 
those which are significantly different, so 
as to form categories for cross-classifications 
which are not arbitrary. 

One of the technical problems facing Rural 
Public Transportation Planning is the lack of 
suitable techniques for estimating route rider­
ship. The U.S. Department of Transportation, 
Office of University Research. ftas sponsored a pro­
ject at West Virginia University to develop tech­
niques of demand estimation which are compatible 
with the resource constraints faced by planners 
in rural areas l!l_. The more important require­
ments were that the models should be simple to 
understand, easy to apply, and be low cost in 
nature; that is, capable of utilizing existing 
sources of data, such as the census. At the same 
time, the methods were to be accurate enough for 
reasonable estimates of needed vehicle sizes, and 
potential revenues. Another desirable charact­
eristic was that the models should offer the 
possibility of transferability from the areas 
where the model was calibrated to other areas. Yet 
another concern was that the models be capable of 
identifying the needs generated by specific target 
populations along routes, such as the elderly, 
carless, or households with low income. 

The most comprehensive previous work in this 
area has emphasized the use of regression anlaysis 
to forecast route ridership as a linear function of 
aggregate route characteristics such as total pop­
ulation along routes and route length and destina­
tion population J..l!l. The same approach was attem­
pted in the first phase of the reported research, 
but without good results. Generally, these models 
have met the requirements of being easy to apply, 
and low cost in nature. The models have often 
taken an econometric form with a moderately complex 
underlying structure in which parameters similar 
to coefficients of elasticity govern the estimates, 
for example, 
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R - Route passengers/day 
P0 - Orig;tn Population 
Pd -nestimation Population 
)' - frequency "' vellicle trips/day 
DR - Round Trip distance 
A,Bl,B2 - coefficients determined by 
gression. 
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The sensitivity of the predictions to errors in 
parameter estimates with this type of model can be 
high, which means that the application of the mod­
el may be limited to the range of values used in 
calioration and to the area represented by the 
'Values. The route ridership ~pproach based on 
linear regression models has been found to produce 
large forecasting errors when applied to other 
areas of the nation (5). Due to the structure of 
the models, howeve.r, the reasons for the error can­
not be easily identified and corrected, in as much 
as the models involve a set of simultaneously de­
termined exponential coefficients. A second draw­
back of the linear regression models has been a 
lack of sensitivity to the causal socioeconomic 
variables which are usually hypothesized to create 
a need for transit. Though aggregate route vari­
ables such as number of households with incomes 
below $3,000 have been tested as independent vari­
ables in regression analyses, they have seldom 
shown consistent, significant correlations with 
ridership and have not appeared in the final mod­
els. The authors concluded that a different mod­
elling approach was needed. 

First it intuitively appeared that probabil­
istic models were more appropriate than linear 
causal models. It was observed that one of the 
major problems with the route regression approach 
was that the model linear mathematical structure 
was better ·suited to the kind of rela~ionship in 
which transit ridership along a route could be re­
presented as a total magnitude that every person 
along the route contributed to in an extremely 
small but consistent amount. In reality rural 
transit ridership represented a small number of 
discrete daily occurences from among a large 

21 



22 

sample space of people. Thus, a probability model 
structure which could predict the probable range 
of a small number of riders, was conceptually more 
appropriate than a linear model structure which 
failed to recognize the probabilistic aspects of 
demand. Given this, a second observation followed: 
it was realistic to depict ridership generation as 
a phenomenon that occured at the level of the 
household, where the decision to use transit was 
influenced by the socioeconomic characteristics of 
the household. Thus, some form of cross-classifi­
cation approach was desirable, in which types of 
households were grouped on the basis of similar 
ridership rates. Combining the two observations 
resulted in the concept of a Poisson Model of 
Rural Transit Ridership which utilized a household 
level cross-classification of trip rates to estab­
lish a probable range of ridership along a route. 

The Model 

A poisson Model of Rural Transit Ridership mav 
be developed in the following way: let us assume 
that we have a typical rural transit route that 
leaves a central city, goes out through the 
countryside in a loose loop and returns to the 
city, picking up people with no drop-offs, Let 
us suppose that we can dimension the loop in some 
sense, with N being a linear dimension describing 
the loop, e.g., distance, population, number of 
autoless, etc. Let the probability of h aving n 
people on the bus be Pn(N). Let the prob ability 
of picking up one person in a short length of the 
route, 6N, be p6N. If 6N is sufficiently short, 
then the probability of picking up two riders is 
negligible, so that the probability of picking up 
no riders is 1 - p6N. At the point N + 6N, the 
probability of having n people on the bus is the 
sum of two probabilities: 

1. The probability of n-1 people on the bus 
N times the probability of picking up someone in 
6N. 

2. The probability of n people on the bus at 
N times the probability of picking up nobody in 
6N. 

In other words, 

(2) 

This can be rearranged to read 

Pn(N + 6N)-Pn(N) (3) 
6N 

letting 6N ~ o in the limit, we obtain 

(4) 

at 

To solve this equation, let us start by solving the 
situation in which the bus is empty and remains 
empty. In this case 4 simplifies to 

dP
0

(N) 

dN 

Since P
0

(0) 

-pP
0

(N) 

1, the solution to .'l is 

P
0

(N) = e-pN 

(5) 

(6) 

For n = 1, 6 can be substituted into 4 to yield 

This can be solved to yield 

p (N) = (pN) e -pN 
1 

And, in general 

p (N) = (pN)n e-pN 
n n! 

(7) 

(8) 

(9) 

which is the Poisson distribution with parameter 
pN. 

To apply the Poisson distribution to the pro­
blem of estimating ridership, let us suppose that 
a route has been divided into sections, designated 
Ni, If, in each section, we find the probable 
ridership, we can then sum the probable ridership 
over all sections to find the total probable route 
ridership. The probable (or expected) ridership 
in each section will be the number of riders. X. 
multiplied by probability of obtaining that given 
number of riders, Px(N), and summed over all num­
bers of riders. In other words 

S. = IxP (N.) 
l x=l X l 

where Si is the section ridership, 
Probable Route ridership, Q, will be 

(10) 

(11) 

(12) 

(13) 

This also shows that the parameter pis inde­
pendent of section size and that the route can be 
considered as a whole, merely by summing properties 
of sections. 

To provide more generality, let us suppose 
that we can divide riders into G groups with each 
group having its own probability,Pg, of belonging 
to the subgroup which uses public transportation 
and probability, rg, of riding on a given day. 
The section measure for each group would be Nig, 
the population in group g for section i. Total 
probable ridership on a route would be found by 
summing over all groups. If Sg is ridership by 
group, then 

S = [S. =[Lp r N. =[(pr [N. ) 
g ig g gig g g ig 

(14) 

Again, this implies that each group can be treated 
as a whole for each route. The parameter [Sg can 
be used in a Poisson distribution g 

p ([S ) = e-LSg ([S )n 
n g g g 

(15) 

to estimate the probability associated with diff­
erent values of total ridership, n, over the route 
fil. 

This approach has a number of advantages 
which make it theoretically superior to linear 
regression route models. 

1. It is a disaggregate model in the sense 
that transit users are disaggregated into socio­
economic groups and usage relationships are deve­
loped for each group. In this sense, the model 



forms the theoretical basis for placing a confid­
ence interval around values obtained with a cross­
classification approach (it is relevant to note 
that cross-classification approaches are rapidly 
replacing zonal linear regression approaches in 
urban transportation studies). It is sensitive to 
the causal factors of transit usage. 

2. The model produces the probabilities of 
attaining given numbers of riders and thus can be 
used to determine the likelihood that demand would 

exceed capacity of various sizes of buses. Regre­
ssion models can give similar information by use 
of confidence intervals, but the confidence inter­
val has severe drawbacks for forecasting rural 
transit usage. First, it is possible (and very 
likely) to give negative values of ridership. 
Second, there are two confidence intervals that 
must be considered: one about the regression line 
itself, the other about a fixed point on a line. 
The latter is much wider than the former and is 
more likely to provide negative values. The width 
of the confidence intervals depends upon the error 
remaining after the regression line has been 
fitted; in previous regression models for rural 
ridership the error has been large, producing very 
large confidence intervals. In contrast, the pro­
babilities generated by the Poisson model are 
easier to comprehend, may span a smaller range of 
values, and there cannot be negative ridership. 

3. The model can be applied very simply. 
Once a calculation of the term PgrgfNig has been 
made the planner can go to a table of Poisson pro­
babilities and immediately determine the probabil­
ities associated with different numbers of riders. 
The planner does not need to understand logarithms. 
The probabilities Pg and rg can be explained in a 
very simple heuristic manner. 

Parameter Estimation 

Thus far, the means for obtaining the values 
of Pg have not been discussed. To provide a way 
to estimate the value of Pg, a maximum likelihood 
estimator will be derived. Such an estimator 
would be used on a present route to provide esti­
mates for Pg for use in planning other routes. On 
a present route, let us suppose that in each sec­
tion i and for each group g we have nig people 
boarding the bus. 

For a Poisson distribution, the 
hood is described as the product of 
bilities for all the observations. 
done for each class. 

m (p N. )nig -pgNig 
Lg =i~l g 1g e 

n. ! 
1g 

maximum likeli­
all the proba­
One will be 

(16) 

To find the maximum likelihood estimator, we will 
take the natural log of both sides 

1 L r [ l N +l e -p lig I] n g=i=l nig n pg ig n -ln nig (17) 

Taking the derivative of both sides with respect 
to Pg and setting it equal to zero yields, for Pg 

m 
l: n. 

i=l ig 
m 

i ~l Nig 
(18) 

This is the maximum likelihood estimator for Pg and 
is the same estimator one would use in cross-class­
ification trip generation. 
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Study Area 

A portion of northern West Virginia on the bo­
arder of Pennsylvania was chosen for study due to 
an abundance of existing transit services and near­
ness to the research institution. The counties 
studied included Harrison, Monongalia, and Marion. 
The data base consisted of on-off counts, a survey 
of rider characteristics, and census data. Maps 
prepared by the State Department of Highways were 
used to determine locations of buildings along 
roads in the study area to estimate the portions 
of the census population living within 1.21 km 
of each route. Each of the counties had a county 
seat of between 26,000 and 35,000 population which 
served as the focal point for the rural routes. 
Average density for the rural portions (exclusive 
of the county seat) of the three county area in 
which the routes operate is 12 dwelling units per 
square km (31 per square mile). 

Expansion of Survey 

The probabilities Pg and rg were estimated 
from the rider survey and on-off counts which were 
conducted as part of the research (1,2). First, 
the rider survey had to be factore~equal total 
ridership on the day on-off counts were taken to 
compensate for people who did not respond to the 
survey. Among the daily routes, a total of 117 
questionnaires were obtained, and there were 277.1 
trip ends recorded from the rural areas. Assuming 
two trip ends were associated with each unique in­
dividual in the survey, the factor by which the 
survey had to be expanded was (277.1)~(2 x 117)= 
1.18. Thus, all responses to the sur~ey question­
naire had to be expanded by this factor. Among 
weekly routes, a total of 116 questionnaires was 
returned, and the on-off counts revealed a total 
of 229.5 trip ends. The expansion factor for this 
group of riders was estimated as (229.5)~(2 x 116)= 
.99, which was close enough to 1 to eliminate the 
need for any expansion. Next, factors had to be 
developed to compensate for a sampling bias which 
caused under-representation of infrequent riders. 
It was obvious that people who used transit daily 
or every week on weekly service had a high pro­
bability of being included in the survey sample. 
But the distinct individuals who rode less frequ­
ently tended to be under-reported since the odds of 
surveying them on any given day decreased as their 
frequency of use decreased. 

Mathematically, the problem was expressed as 
follows: let the expected number of riders who 
ride x days per month that would appear on a given 
day of service be Sx• Let the total number of un­
ique individuals who ride x days per month be Nx• 
If a person rode x days per month and service was 
offered D days, it was assumed that the odds of 
surveying him on any random day of the month would 
be x/D . . Thus, the expected number of riders who 
ride x days per month who would be surveyed· on a 
random day is Sx = Nx · x/D. If it is assumed 
that a sample of riders is taken on one day and 
the number who indicate they ride x days is Sx, 
then the total number of unique riders who ride x 
days can be estimated by 

N 
X 

s 
X 

X 

D 
(19) 

The number of weekdays of service offered per mon­
th, D, was estimated to be 21.7 days based on an 
average calculated over a 12-month period (this was 
approximately 4.34 weeks per month). For daily 
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routes, the number of survey respondents responding 
to the question, "How often do you ride the bus?" 
was multiplied by the expansion factor (1.14) for 
each category of response, to provide Sx, If a 
person said he or she rode daily, it was assumed 
to mean 21.7 days per month, the value of x. For 
responses of "2 -4 times a week, 11 "once a week," 
"2-4 times a month," "once a month," and "less fre­
quently." the number of days per month the indivi­
dual rode, x, was assumed to be 13.0, 4.3, 2.5, 
1.0 and 0.5, respectively. It may be questioned 
whether people could actually respond to this ques­
tion in a correct manner. It is possible that they 
did not provide accurate information but no inde­
pendent data existed to verify their answers. The 
answers were assumed correct due to lack of know­
ledge otherwise. The total number of riders,~. 
who ride x days per month was then estimated by the 
previous relationship, Nx = Sx · D/x. The 
probability of riding on any given day of ser­
vice, rg, was estimated as fSx/IN, This ap­
oroach oroduced a large number of unique riders 
and a low probability of riding on a given 
day. This approach assumed that users were 
randomly distributed among the days service was 
offered, and had equal probability of riding 
on any given day. 

Daily Routes 

Among the routes operated on a daily basis, to­
tal population served (within 1.21 km of route) 
was estimated as 18,693. The probability that an 
individual belonging to socioeconomic group g uti­
lized public transportation, Pg, was calculated as 
the ratio of INx to the total population living 
along the route as follows from the development of 
the maximum liklihood estimator. Previous research 
done in conjunction with the project showed that 
there were no significant differences in ridership 
rates for daily routes among different sub-pop­
ulations. Age, income, and auto ownership did not 
appear to influence the rate of ridership. Thus, 
Pg and rg were the same for all age, income, and 
auto ownership groups. 

The predictions of the model for each of the 
daily routes are shown in Table 1. The table lists 
the minimum number of individuals J which have a 
cumulative probability greater than .OS of riding 
on a given day, and the maximum number J which have 
a cumulative probability less than .95 of riding 
on a given day. Thus, the J values associated with 
.05 and .95 cumulative probabilities define a 90 
percent confidence interval for the number of rid­
ers. Also shown are the expected number of riders 
Ng , Pg , rg, and the actual number of riders. The 
cumulative probabilities associated with the actual 
number of riders are presented, making it possible 
to determine the likelihood of that many riders 
actually materializing under the assumptions of the 
Poisson model. As can be seen in the table, the 
Poisson model did not fit the data well. Two routes 
had actual ridership values less than the values 
associated with the .05 level, and one had actual 
ridership greater than the .95 level, with the re­
sult that only two routes, Crown and Wolf Summit, 
had values falling within the .90 probability inter­
val of the Poisson model. These results indicated 
that the model tended to over-predict and under­
predict. To further investigate the reasons for 
this, the relationship between actual ridership 
rates and accessibility measures were analyzed to 
determine if accessibility might have had an in­
fluence on ridership. The ratio of actual·riders 
to service area population was calculated for each 
route. This ratio represented the value that the 

TABLE 1 
POISSON MODEL RESULTS 

DAILY ROUTES 
Rider estimates based on service area population, 

p x r = .02600 x .291 = .00757a 

Route 90% prob. Expected Actual Cum Prob. 
interval Riders Number Actual no, 

Enterprise 27-45 31.4 18.7 .0120 

Crown 8-19 13.8 18.7 .9301 

Cheat 24-42 33.2 49.6 .9976 

Wolf Summit 31-52 41. 7 44.4 .6772 

Worthington 14-28 20.9 7.7 .0004 

aRider estimates; total trip ends 2.0 

TABLE 2 
POISSON MODEL RESULTS 

DAILY ROUTES 

Rider estimates based on service area population 
with p x r estimated as a function of route lengtha 

pxr = .000304 x length (km) 

Route 90% prob. Expected Actual Cum Prob, 
interval J Number Actual no. 

Enterprise 15-30 22.6 18.7 .2650 

Crown 11-24 18.1 18.7 .6463 

Cheat 39-61 50.4 49.6 .5126 

Wolf Summit 28-47 37.8 44.4 . 8628 

Worthington 5-16 10.9 7.7 .2416 

Doddridge 0-4 2.2 6.6 .9981 
Co. 

aRider estimates - total trip ends~ 2.0 

Poisson parameter Sg = Pg · rg · Ng would have to 
take to provide a good Poisson model estimate of 
ridership for each route. A plot of the ratio Sg 
versus route length for each route produced an ex­
tremely good straight line relationship with a 
correlation of .971. A least squares model of Sg 
versus length with suppression of the g intercept 
was obtained. The model had an R-square value of 
.94 and the intercept was not significantly diff­
erent from zero, making it possible to refit the 
model with suppression of the intercept. The re­
sulting relationship obtained was 

s 
g 

.000304 x route length (km) (20) 

This relationship was used tolles timate sg fo each 
route. Results of utilizing ~gin place of Sg = 
Ng , Pg . rg are shown in Table 2 All act-
ual ridership figures fell within the .90 probab­
ility interval except for Doddridge County, which 
was a new daily route initiated after the model 
had been developed. 

Ridership Estimates for Weekly Routes 

Because of previous research carried out (~) 
in conjunction with the·project, wherein it was 
shown that there are significant differences in 
ridership rates among people of various groups for 
weekly routes, whereas there were none for daily 
routes, it was felt that it would be necessary to 
divide the population into groups and form a cross­
classification model for weekly routes. 

The independent socioeconomic variables tried 



in the analysis were age, sex, income and auto ow­
nership. Unfortunately, census data at the enum­
eration district (ED) level was cross-classified 
only by age and sex. No cross-classification ex­
isted for any other sets of variables. Therefore, 
only one-variable classifications were available 
for any variables except age and sex. 

The selection of categories in cross-classi­
fication is usually somewhat arbitrary. To reduce 
the arbitrariness and to strengthen the estimates, 
an analysis of variance was applied. This was done 
by using the category variables as classification 
variables for analysis of variance. Even though 
it was believed that the statistical distribution 
underlying the cross-classification analysis was 
Poisson, nevertheless, the cross-classification 
rates derived were estimates of the means of the 
Poisson distribution and were therefore normally 
distributed, and thus could be analyzed using ana­
lysis of variance. Furthermore, multiple range 
tests, such as Duncan's test or Tukey's test, 
could be applied to the means(rates) of the cate­
gories to determine those which were not signifi­
cantly different from one another. Those which 
were not significantly different were combined to 
form new categories which, having a greater number 
of observations, reduced the variance in the new 
categories and thereby produced better estimates. 

The first step in deriving the model was to 
estimate the age-sex distribution of the ridership. 
Individual units of observation were considered to 
be routes. The questionnaire data (as described 
previously, (l..t.l)) was used to estimate the age­
sex distribution of riders by route. The number of 
people in each age-sex category within the service 
area of the route for each ED was then estimated. 
The numbers in each category were summed along the 
route. The ratios of ridership to total population 
in each category were estimated. The breakdown 
by age followed those used in the Census. The 
categories were as follows: 

5-14 
15-24 
25-34 

35-44 
45-54 
55-65 

65-up 

An analysis of variance of the rates was then 
undertaken for both weekly and daily routes, the 
results of which are illustrated in Table 3. As 
illustrated by the table, in the daily routes there 
was a significant difference between sexes, but not 
a significant difference by age and no interaction. 
This tends to follow all previous results and to 
indicate that a total population-based model may 
be appiicable to daily routes. For weekly routes 
it was found that there was a significant difference 
among age groups and by sex and there was signifi­
cant interaction. To find where the significant 
difference occurred, Duncan's multiple range test 
was employed. The results are shown in Table 4. 
Each letter in the grouping indicates groups in 
which the means were not significantly different. 
Three groups were evident, of which two were over­
lapping. One group stands out by itself, women 
over 65. Another group is women between the ages 
of 45 and 64 and men over 65. The third group is 
all men and women below the age of 45. There is 
an overlap, since the categories "men over 65" a~d 
"women between 45 and 54..-belong to two groups. 
For the purpose of forming cross-classification 
categories, it appeared that these two old cate­
gories should be grouped with the women 55-64. 
Therefore, the final cross-classification cate­
gories derived were: 
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TABLE 3 
ANALYSIS OF VARIANCE OF RIDERSHIP RATES 

Source of Degrees of Square F-Ratio Prob of F> 
Variation Freedom Calculated 

DAILY 
Sex 1 0.00636 13.56 0.0005 

Age 6 0.00358 1.27 0. 284 7 

Interaction 6 0.00307 1.09 0.3791 

Residual 56 0.00047 

WEEKLY 

Sex 1 0.02214 19.65 0.0001 

Age 6 0.11144 16.48 0.0001 

Interaction 6 0.05458 8.07 

Residual 182 0.00113 

TABLE 4 
Grouping of Means for Cross-Classification 

CLASSIFICATION 
Sex Age Mean Grouping 

F 65 & over .1210 A 
F 55-64 .0398 B 
M 65 & over .0232 BC 
F 45-54 .0203 BC 
M 45-54 .0081 C 
M 35-44 .0065 C 
F 35-44 .0053 C 
M 55-64 .0049 C 
F 15-24 .0038 C 
F 5-14 .0013 C 
F 25-34 .0000 C 
M 15-24 .0000 C 
M 25-34 .0000 C 
M 5-14 .0000 C 

1. Women over 65 
2 . Men over 65 and women 45-64 
3 . All others 

With these new categories formed, new rates were 
calculated. These were: 

Group 
I. Women over 65 

II. Men over 65 
and women 45-64 

III. All others 

Rate·trips/person/ 
day of service 

.121 

.0398 

.0027 

These rates were applied to existing routes 
and the results are shown in Table 5. Also shown 
in the table are the Poisson probabilities associ­
ated with each route. There were significant over­
and underestimates. Only seven ont of fourteen 
estimates were within the 90% interval. With re­
spect to underestimates, these occurred on routes 
which went through hamlets (population 500-1500) 
as well as the countryside. To correct this pro­
blem, the ridership and population were divided 
into two groups, those in the countryside and 
those in hamlets. Ridership rates were then 
calculated for these two groups· separately, and 
a new estimate was made as shown in Table 6. 
Rates utilized were as follows: 
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COUNTRYSIDE RATES 
Group 
I. Women over 65 

II. Men over 65 and 
Women 45-64 

III. All others 

Rate-Trips/Person/Day 
. 1338 

.0336 

.0029 

HAMLET RATES 
Group 
I. Women over 65 

II. All others 

Rate-Trips/Person/Day 
. 0424 
. 0018 

A comparison of the two estimates is shown in 
Table 7. Nine out of fourteen estimates were 
within the 90% interval. A improvement in rider­
ship estimates was immediately evident. In all 
cases but two the percentage error decreased. In 
particular for the three gross over-estimates, 
much better estimates were obtained. 

The same analysis was also performed for auto 
ownership, household size, and income, using a 
one-w.::1v r.lPJR..c;ifir::it:inn. ThP. P.rrnr nf nrPi!irt-inn 

was greater for each of these than for · the age-sex 
cross-classification. Also, the error was reduced 
when a division between countryside segments and 
hamlet segments was used. Nevertheless, the error 
was still greater than with the age-sex cross­
classification as segmented. 

Conclusions 

Presented in this paper has been a Poisson 
model for estimating rural transit ridership which 
utilizes cross-classification data. This model has 
been derived theoretically, and theoretical esti­
mators for parameters have been derived. These 
derivations provide a theoretical basis for placing 
confidence intervals around the cross-classifica­
tion approach which, heretofore, has been a purely 
empirical approach to trip generation and modal 
split. Having a theoretical basis for the approach 
now permits refinements in the approach, such as 
the setting of confidence intervals around route 
estimates and development of statistical tests. 
A further benefit of the approach is its simplicity 
which permits its use in all sorts of unsophisti­
cated planning operations. 

The application to daily routes shows that 
there is a significant contribution of route length, 
which strengthens the model greatly. What the re­
lationship suggests for daily routes is not immed~ 
iately clear. It could reflect the influence of 
level of service, or the care taken to locate a 
route within a service area. Although the rela­
tionship to route length is strong, further re­
search is necessary to discover if it is universal. 
For weekly routes, differing rates by population 
group were found. The rates can be tested by 
using analysis of variance and multiple range 
tests, to provide the best grouping, i.e., the 
one union which has the minimum variance, yet re­
tains statistically significant differences. A 
further discovery made was that ridership rates 
vary according to whether riders are in the count­
ryside or in hamlets, and thus much better esti­
mates were obtained by treating these two areas 
separately. 

Use of cross-classification trip rates for 
specific groups of people with similar socioeco­
nomic characteristics increased the sensitivity of 
the prediction of the socioeconomic factors hy­
pothesized to create the need for public transpor­
tation. Though the models were not tested outside 
the portion of West Virginia where they were cal­
ibrated, the trip rate approach would make it 
easier to compare results from one area of the 

TABLE 5 
POISSON MODEL RESULTS 

WEEKLY ROUTES 
Rider estimates based on age-sex classificationa 

Route 90% prob. Expected Actual 
interval no. J Number 

Cum Prob, 
Actual no 

Grafton 
Mt. Heights 
Blacksville 
Carolina 
Fairview 
Kingmont 

.Mannington 
Colfax 
McWhorter 
Kincheloe 
Johnstown 
Sardis 
f .T ....... +-+-
"J ~- -

Wallace 

13-28 
27-48 

5-14 
0-7 

24-44 
7-20 

84-116 
1-7 

18-33 
18-33 
10-23 

9-21 
5~-Rl 

21-38 

21. 2 
38.2 
9 . 6 
4 . 5 

34 . 7 
14 . 3 

100 . 3 
4 . 6 

25 . 7 
26 . 3 
16 . 7 
15 . 7 
i,A i; 

29 . 5 

12 . 3 
20.7 
13 . 2 

9 . 8 
12.0 
11. 8 
19 . 3 
10 . 5 
28 . 0 
22 . 0 
14 . 0 
18 . 0 
n .n 
28 . 0 

3 Rider estimates= total trip ends . 

TABLE 6 
POISSON MODEL RESULTS 

WEEKLY ROUTES - HAMLET SEPARATED 
Rider estimates based on age-sex 

classificationa 

Route 

Grafton 
Mt. Heights 
Blacksville 
Carolina 
Fairview 
Kingmont 
Colfax 
Mannington 
Mt. Wharter 
Kincheloe 
Johnstown 
Sardis 
Wyatt 
Wallace 

90% Prob, Expected Actual 
Interval J Number 

16-32 24 . 3 12 . 3 
13-26 19.5 20 . 7 

6-16 13 . 3 10.9 
2-8 5.2 9 . 8 

11-24 18 . 0 12 . 0 
10-22 16 . 3 11. 8 

2-8 5 . 2 10 . 5 
16-32 24 . 2 19 . 3 
11-25 19.0 28.0 
14-28 21. 5 22 . 0 

9-21 14 . 9 14 . 0 
11-24 18 . 0 18 . 0 
27-46 36 . 4 24 . 0 
19-34 26 . 7 28.0 

aRider estimates= total trip ends 

TABLE 7 

.0227 

.0018 

. 8938 

.9929 

.0 

. 3324 

.0 

. 9972 

. 7183 

.2349 

.3029 

.7668 

.n 

.4402 

Cum.Prob, 
Actual No . 

.0046 

.5151 

.7905 

.9823 

.0917 

.5362 

.9823 

.1701 

.9805 

.5987 

.4759 

.5622 

.0193 

.5739 

COMPARISON OF RIDERSHIP ESTIMATES 

Actual Entire Route Hamlet Separ-
Route Ridership % Error ated % Error 

Grafton 12.3 72 . 1 97 . 7 
Mt.Heights 20.7 84 . 2 -6 . 0 
Blacksville 13, 3 -27.8 -18 . 0 
Carolina 9.8 -54 . 1 -46 . 7 
Fairview 12.0 189 . 2 50 . 0 
Kingmont 11. 8 21. 2 38 . 1 
Colfax 10.5 -55 . 2 -50 . 5 
Mannington 19.3 419 . 7 25 . 4 
McWhorter 28.0 -8.2 -32.J. 
Kincheloe 22.0 36 . 4 -2 . 3 
Johnstown 14.0 19 . 3 6.4 
Sardis 18.0 -12 . 8 0.0 
Wyatt 24.0 185.8 51. 7 
Wallace 28.0 5 . 4 -4 . 6 



country to another. Rather than comparing the sim­
ultaneously determined coefficients of multiple 
linear regression models, with their often obscu­
rely intercorrelated values, a comparison could be 
made of simple age and sex specific rates. Level 
of service variables such as route length could be 
used to modify the rates. 

In most cases, the models have reasonably ac­
curate results. Over seventy percent of the 
routes were estimated within a 90 percent confi­
dence interval. Though some predictions were not 
as accurate as the planner would like to obtain, 
they were realistic and could easily be used to 
determine a probable range of demand for planning 
purposes. For example, by examining the minimum 
and maximum values of the confidence intervals, 
the planner possibly could begin to make a pre­
liminary assessment of the need for vehicles of 
different capacities and the probable range of 
revenues which could be anticipated. 
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