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A theoretical and experimental study of the 
ultimate strength of the deck slab of composite 
I-beam bridges is summarized. A theory, based 
on a mechanical model proposed by Kinnunen and 
Nylander, for punching failure of simply 
supported slabs, is developed which permits the 
calculation of the punching strength of 
restrained slabs. The theory suggests that a 
deck slab can be expected to have a high 
inherent strength due to boundary restraints 
ensured by the presence of shear connectors, 
beams, diaphragms and the neighbouring slab 
areas. One-eighth scale direct models of a 
24.4 m (80 ft) span prototype bridge were 
tested in laboratory studies of both 
orthotropically and isotropically reinforced 
slabs. Shear connector behaviour and dead 
load stresses appropriate to unshored 
construction were simulated. The results of 
the tests show that conventionally reinforced 
deck slabs have very high factors of safety 
against failure by punching and are wastefully 
reinforced. From considerations of ultimate 
strength as well as shrinkage and temperature 
reinforcement requirements, 0.2 per cent 
isotropic reinforcement is recommended as being 
adequate for bridge slabs of the type studied. 
Although this amounts to approximately 30 
per cent of the current reinforcement 
requirements for such slabs, a high factor of 
safety can still be expected. 

Background 

The research described in this paper was 
tmdertaken to investigate the ultimate strength of 
the concrete deck slabs of composite steel/concrete 
bridges under concentrated loads. It was 
considered that the inherent restraint of slabs of 
structures of this form could result in 
enhancement of load carrying capacity, a~d if this 
were considered in design, the reinforcement of the 
slab could be reduced. This report is a summary of 
an extensive investigation carried out at Queen's 
University (1). 

It is current practice (2,3) to design the deck 
slab of a composite bridge by assuming a wheel load 
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to be distributed over transverse slab strips of 
unit width, that are perpendicular to the direction 
of the traffic. A~er approximating the maximum 
moments to be resisted, the slab strips are 
designed as if they were concrete beams. It is 
understood that slabs designed in this manner can 
be regarded as being safe against shear type 
failures. 

An investigation (1,4) sponsored by the 
Ontario Ministry of Transportation and 
Communications, has confirmed that the 
conventional desi€n of deck slabs of composite 
bridges is very cc.x1servati ve, and that even with 
considerable reduction of the slab reinforcement, 
satisfactory factJrs of safety against failure by 
punching can be anticipated. Similar high 
strengths for restrained slabs have been noted by 
researchers including Taylor and Hayes (5) and 
Batchelor and Tong (6). 

It is shown in this report that, by considering 
the mechanism of failure and following an ultimate 
strength method of design rather than an elastic 
approach, an adequate and more economical slab 
design can be achieved, 

Outl ine of Theory 

The idealized model of failure proposed by 
Kinnunen and Nylander (7) has been proven to give 
a good estimate of the punching strength of simply 
supported slabs (1). The punching shear strength 
of restrained slabs has been investigated (1,4) by 
modifying Kinnunen and Nylander's theory to 
incorporate a boundary restraining force, Fb' and 
a boundary restraining moment, "1,· Both Fb and 
'.:1b are per unit length of slab, and act at the 
J P.VP.l of t.hP. t.P.nslle rE'inforcement at the hmmdary. 
The idealized mechanical model adopted for a 
restrained slab at punching failure is shown in 
Figure 1. 

In Fig. 1, the outer portion of the slab, 
which is bounded by the shear crack and by radial 
cracks, is considered to be loaded through a 
compressed conical shell that develops from the 
perimeter of the loaded area to the root of the 
shear crack. The conical shell is assumed to have 
the shape shown in Figure la, and its thickness is 
assumed to vary in such a manner that the 



• • compressive stresses at the intersection with the 
column and at the root of the shear crack are 
approximately equal. 

The sector element shown in Figure lb is acted 
upon by the external load PS/2n and by the 
following forces which are caused by rotation: 

1. The oblique compression force T8/2n in the 
compressed conical shell. 

2. Horizontal forces in the reinforcement at 
right angles to the radial cracks, with resultants 
Rl. 

3. Horizontal forces in the reinforcement 
crossing the shear crack, with resultants R2 . 

4. Horizontal tangential compressive forces 
in the concrete, with resultants R

3
. 

5, The boundary restraints Fb and M,_ acting 
at the level of the tensile reinforcemen~ at the 
boundary. 

Figure 1. Mechanical model of a slab with boundary 
restraints at punching failure. 
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(a) SECTION SHOWING BOUNDARY FORCES 

( b) SECTOR ELEMENT SHOWING SLAB FORCES 

The criterion of failure is that punching 
occurs when the tangential strain at the top 
surface of the slab in the vicinity of the root of 
the shear crack reaches a critical value. By 
considering the equilibrium of the sector element 
and adopting an empirical criterion of failure used 
by Kinnunen and Nylander, the theoretical punching 
load, P, can be determined in an iterative process 
using a computer program (1) developed for this 
purpose. This theoretical punching load can then 
be corrected for the dowel effect to give the 
ultimate punching load, V, of the restrained slab. 

During the analysis of reported shear tests, it 
became apparent that the theory of Kinnunen and 
Nylander was unreliable for estimating the punching 
shear strengths of slabs of extreme dimensions and 
material properties. It was found that, for slabs 
with any of the parameter functions outside the 
following limits, the theory generally gave 
inaccurate estimates of the punching load or 
because of limited test results, the theory could 
not be verified. These limits are: 

Parameter function 

C/d 
q 

Est eel 

y 

Limits 

4 - 11 
0.05 - o.45 

186 - 228 GPa 
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(27 x 106 - 33 x 106 psi) 
4 - 20 

The equations used in computing the theoretical 
punching load have been derived and presented in 
Reference ( 4) . 

Influence of Boundary Restraints 

A hypothetical slab was analysed in order to 
demonstrate the influence of variations of the 
boundary restr aint on the punching load of a 
restrained slab. The assumed dimensions and 
properties of the slab were as follows: 

Slab thickness (t) 178 mm (7 in.) 
Slab effective depth (d) 140 mm (5,5 in. ) 
Diameter of the loaded area (B) 305 mm (12 in. ) 
Slab diameter (C) 1.83 m (72 in.) 
Reinforcement Ratio (p) 1.0 per cent 
Yield stress of reinforcement (f ) 310 MPa (45 ksi) 
Compressive strength of concretesrf•) 34.5 MPa 

c (5.0 ksi) 

The boundary force was varied from 0 to 1400 
kN/m (0 to 8,000 lb/in.), and the boundary moment 
from 0 to 53.3 kN.m/m (0 to 12,000 lb.in/in). The 
theoretical punching load is plotted against the 
boundary force in Figure 2 for various boundary 
moments. The theory evidently suggests that 
considerable increase of the punching shear 
strength ~fa slab can result from boundary 
restraining forces. 

Few punching tests of restrained slabs have 
been reported in which the magnitudes of the 
restraining forces were known or could be inferred . 
However, tests of prestressed concrete slabs by 
Scordelis, Lin and May (8) have permitted a 
limited investigation of the accuracy of the 
punching load calculated using the theory proposed 
for restrained slabs. Seven prestressed concrete 
slabs were analysed assuming the prestressing 
cable forces to be boundary restraining forces 
acting in the plane of the slab. Estimates of the 
dowel and tensile membrane effects were made for 
each slab and the influence of the unbonded 
prestressing cables was considered. The ratio of 
the test load to the calculated load was found to 

Figure 2. Variation of theoretical punching load 
with edge restraints. 
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have a mean value of 1.01 and a standard deviation 
of 0.044. Considering the assumptions made in 
estimating the dowel and tensile membrane effects 
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and in assessing the influence of the unbonded 
prestressing cables, the calculated punching loads 
were remarkably consistent and accurate. Using an 
empirical approach, Scordelis, Lin and May obtained 
ratios with a mean value of l.02 and a standard 
deviation of 0.075. A more in-depth comparison is 
given in Reference (4). Additional comparisons of 
tests by others are provided in Reference 1. 

Restraint Factor 

In pro.ctica.l nituo.tions the boundary resLnlinlng 
forces on a slab loaded to punching failure are 
usually not known and would be difficult to 
calculate or to measure accurately. In a slab such 
as the deck slab of a composite bridge, the 
difficulty is further increased by the likelihood 
of varying support and boundary restraint conditions 
at adjacent boundaries. For these reasons a single 
factor, F , to be termed the 'restraint factor', is 
proposed &hich expresses the slab strength 
enhancement due to practical boundary conditions. 
This factor can be used for the calculation of the 
punching load of restrained slabs by means of the 
largely rational approach already described, though 
it must be noted that the factor is itself empirical. 

The idealized geometrJ of displacement of a 
slab at failure, as used by Brotchie and Holley 
(9), and the resultant maximum boundary stresses 
and forces are given in Fig. 3. The maximum force, 
Tb, per unit length of the boundary in the tensile 
reinforcement at the boundary is given by: 

Tb = d p fsy 

Figure 3. Idealised displacement and maximum 
boundary forces for a restraint slab. 

( a ) GEOMETRY r:F DISPLACEMENT 

Tb•d.p.fsy kN/nt 

Cb=k.~(i ·t) kN/m 

( b) ASSIMED MAXIMUM BOUNDARY STRESSES 
ANO FORCES 

Tb is zero if reinforcement is absent or 
discontinuous at the boundary. The maximum 
compressive force, Cb, in the concrete per unit 
length of the boundary is given by: 

in which k is the ratio of the average stress to 
the maximum stress and depends on the stress 

(1) 

( 2) 

distribution. 
If a parabolic distribution of stress is 

assumed, then k is 2/3 and f is assumed to be 
o.85 f'. The idealized maxifil~ boundary restraints 
are th~n given by~ 

M_ = T ( 2d - t) - C ( d - li t o(max) b b 16 
3 32 6) (3) 

and 

A value of F < 1.0 was introduced to take 
r -account of the fact that the maximum boundary 

restraints would rarely be attained at failure. 
The actual boundary restraints at failure by 
punching are then given by: 

Fr ~(max) 

and 

Fr Fb(max) 

( 4) 

( 5) 

(6) 

It is not implied that the distribution of 
stress at the boundaries and the actual boundary 
restraints at the instant of punching are known. 
It is a fact, however, that F varies from zero 
for the simply supported slab§ usually tested in 
investigations of punching, to unity for slabs 
with a full edge restraint, therefore, F must lie 
between 0 and l for all practical cases bf 
restrained slabs. The restraint factor will 
depend on the properties of the slab as well as on 
the confining s':r'..lcture and can be determined 
empirically for ~ particular slab system. 

After cal:,i_:_~ tion of M..( max) and Fbl max), F 
can be determined for any ~ype 6f restr~ined r 
slab for which ~he punching load is known. The 
lower limit of this factor can then be used in 
determining punching loads for design purposes. 
The values of M,_lmax) and Fblmaxl are dependent 
upon the deflec~ion, 6, and consequently must be 
calculated iteratively. A computer program has 
been developed (:) which calculates the punching 
load of -r-estrained slabs for values of F varying 
from zero to unity in steps of 0. 25. r 

Influence of Restraint Factor 

The typical slab previously described was 
analysed in order to demonstrate the influence of 
the restraint factor on the punching load of a 
slab. The calculated punching load is plotted 
against the restraint factor in Fig. 4. The 
boundary moment and force for each restraint 
factor are also given. By varying the restraint 
factor from 0 to 1, the calculated punching load 
increases through the full range of feasible 
punching loads even though actual values of the 
boundary moment and force are not necessarily used. 

If the punching load of a restrained slab is 
known , the restraint factor can be determined by 
interpolation after calculating the punching load 
for given values of the restraint factor. Slabs 
tested by Taylor and Hayes (5), Aoki and Seki (10) 
and others have been investigated in this way. It 
was found that the restraint factor of a slab with 
no tension reinforcement at the boundary generally 
decreases as the reinforcement index , q, 
( = pf If' ) increases. As a rule, with all 
variaBrescconstant except the reinforcing r atio, 



.. Figure 4. Variation of theoretical punching load 
with re~traint factor. 
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a slab with low reinforcement ratio will have 
deflected more at failure than one having a high 
reinforcement ratio. Consequently, the boundary 
restraining forces, which are dependent upon the 
slab deflection, are likely to be nearer their 
maximum values in the restrained slab with the 
lower reinforcing ratio, and would therefore have 
the higher restraint factor. Although there were 
limited available test results, the following can 
be tentatively suggested to apply to slabs with 
this form of restraint. 

For 
c B ~ 6.0 and q = 0.1, Fr 0.50, 

and 

For 0.25 

Tests and Observations 

The behaviour of I-beam bridge slabs was 
investigated by testing a total o;' ni:1e l/8th 
scale direct models of 24.4 m (80 ft) span 
four-be3.JTI and three-beam bridges. Apart from the 
usual difficulties of small scale modelling, 
pa:ctic:..liar problems arose in ~he accurate 
modelling of all section properties, stud shear 
connector behaviour and dead load stresses 
appropriate to W1shored constr'.lct ion. The 
solutions co these problems are described in detail 
elsewhere (l,11). The four-beam prototype and 
model bridges are detailed in Figure 5. A view of 
a four-beam model bridge superstructure is given 
in Figure 6. The three-beam model was similar to 
the four-beam model except that the beam spacing 

Figure 5. Details of prototype four-girder bridges 
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Figure 6. View of four-beam model 

was 460 mm (18 in.) and the beams were supplemented 
with bottom flange plates. 

The deck slabs of the bridges were tested to 
failure W1der single concentrated loads applied 
mid-way between adjacent bridge beams through a 
steel plate bearing on a neoprene pad. The contact 
area modelled an ellipse with major and minor axes 
of 760 mm (30 in.) and 510 mm (20 in.), 
respectively, which represents the assumed contact 
area of the pneumatic tires of large earth moving 
equipment. A view of a model bridge and the 
testing arrangement is given in Figure 7. 

Deck slabs with orthotropic and with isotropic 
reinforcement, as well as plain concrete slabs, 
were tested. ~:.2 orthotropic reinforcement 
modelled the "-<n:"orcement of conventional deck 
slabs. Slabs ·,;:'.th isotropic reinforcement at 
mid-depth of c'.:e sl'.i.b, and therefore with maximum 
cover, were a.C.c:o tested. The influences of slab 
span and thic>:::ess, load position, dead load 
stresses, rein~2~cement ratio, and concrete strength 
on the ultimate strength of the deck slabs were 
studied, t:igether with co he ounching streng+h in a 
hog~ing moment r~gion. 

The model briiges ~2st2d are numbered 1 to 9. 
A bridge panel is defir.ed 9.S that portion of the 
deck bounded by 3-d,j 9.cer.t bridge beams and 9.djacent 
diaphragms, and J:9.r.els 'l.cross a bridge are referred 
tn collectively ~s 3~~ips. The bridges and the 
tests 'l.re desce'ibed generally in Table l. Bridges 
numbered l ~o 3 wer'2 ~our-beam bridges, bridge No. 9 
was a three-bear.: bridge. 

A total of 65 tests to failure were carried out. 
All but one of the reinforced panels and some of 
the m1reinforced panels failed by punching. 
Failure by punch~ng usually left a neat elliptical 
hole, a little larger than the loaded area, in the 
top of the slab and a pushed-through plug of 
concrete in the form of a frustum of a cone with 
an approximately circular base. The cracking 
patterns were similar for the slabs of the 
four-beam and three-beam bridges. 

As the load was applied, visible cracking in 
the form of longitudinal and diagonal cracks was 
observed on the underside of the slab. This 
occurred directly beneath the loaded area and 
usually commenced at a load of between 25 and 50 
percent of the failure load. Subsequently, 
transverse cracks appeared on the upper-side of the 
slab on either side of the loaded area in the 
vicinity of the adjacent bridge beams. As failure 
approached, the underside cracking developed into 
a complete pattern of cracks radiating from beneath 



166 

Figure 7. View of testing arrangement 

Table 1. Models constructed 

Bridge Reinforcement* 
number Strip 1 Strip 2 Strip 3 

1 ORT ORT ORT 

Strip 4 

ORT 

Figure 8. View of cracking pattern at failure of 
panel with 0.2% reinforcement 

Bottom view 

Top view 

Special Tests 

2 ORT ORT ORT ORT Full dead load compensation 
3 ORT ORT 
4 ORT ORT 

ORT 
ORT 

ORT 
ORT 

Some panels with dead load compensation 
Full dead load compensation 

5 ORT zero o.4% 0.2% 
6 o.6% 0.2% 0.6% M Hogging moment in strips .:: and 3 
7 o.4% 0.2% zero o .6% 
8 o.4% zero M 0.2% 
9 o.4% 0.2% zero 0 .6% 

Note: ORT indicates orthotropic reinforcement 

o.6] 
0.4 - is percentage of isotropic reinforcement 
0 .2 

M indicates mid-depth isotropic reinforcement 

the loaded area, and the upperside longitudinal 
cracks lengthened and curved around the loaded 
area. Prior to failure, the cracking pattern 
indicated imminent flexural failure in an 
elliptical fan mechanism and never suggested 
failure by punching. Although accelerated creep 
usually gave some warning, failure was always 
explosive. Cracking rarely extended into 
adjacent panels and, generally, the higher the 
percentage of reinforcement, the more symmetrical 
and closely spaced was the cracking. Views of the 
cracking pattern of a four-beam bridge panel with 
0.2 percent isotropic reinforcement after failure 
by punching, are given in Figure 8. 

Some unreinforced panels and one panel with a 
low percentage of reinforcement failed in flexure 
in elliptical fan mechanisms. Up to failure the 
cracking behaviour was similar to that for all 
other slabs but failure occurred after much creep 

Designation of strips: 

3 4 Strips I 2 I 
;-...~~--'-~~~-'-~~~"--~~--.; 

,--i---i-- -,- -- , 
t---~--+---+-- i 
~/)'. - -t---1- - ~ 
W(..(L. ...l - - - L - _ _J 

- 8 ea ms 
Di apnragm 
Pane I 

and with some crushing o f the concrete on the 
upperside of the slabs along lines radiating from 
the loaded area. The major axis of the fan 
mechanism was aligned with the major axis of the 
loaded area, and the cracking pattern was 
contained within adjacent bridge beams. 

Deflection Behaviour 

Figure 9 shows typical variations of net slab 
deflection with load for a four-beam bridge. There 
was considerable scatter of the net slab 
deflections for panels of the same design but the 
tests plotted in Figure 9 were chosen to show the 
general trend of deflection behaviour. Panels 
with low percentages of reinforcement failed after 
relatively large deflections. Panels with 0.6 
percent isotropic reinforcement behaved similarly 



Figure 9. Typical variations of net slab 
deflection with load for four beam bridges 
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to panels with orthotropic reinforcement and failed 
after relatively small deflections. 

Punching Strength 

Slabs with Orthotropic Reinforcement 

There was considerable variation of the failure 
loads for slabs of the same design. A statistical 
analysis of all the results of tests of 
orthotropically reinforced panels indicated that 
the variation of failure load could be attributed 
to unavoidable variations of the slab dimensions. 
The analysis showed that the failure load is not 
significantly influenced by the position of the 
panel, by previous failures in adjacent panels, 
and by the strength of the concrete or dead load 
stresses. 

Figure 10 is a plot of test punching load for 
orthotropically reinforced panels versus effective 
depth, ~t' to the bottom transverse reinforcement 
Rnd shows the regression line determined using all 
results. There was no significant difference 
between this regression line and those determined 
using only the results of tests with and without 
dead load compensation. It should not be inferred 
that the regression line can necessarily be 
extrapolated for slabs of properties outside the 
range of those which have been included in the 
analysis. The scale of multiples of design wheel 
load shows that the factor of safety against 
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Figure 10. Punching load vs depth to reinforcement­
orchotropic reinforcement 
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failure by punching, ignoring impact, was never 
less than 17. 

The punching load for a slab of design 
dimensions determined using the regression line, 
is 23.2 kN (5.21 kips). If a design wheel load of 
71. 2 kN ( 16 kips) is assumed, the factor of safety 
against punching is approximately 21. If a design 
wheel load of 71.2 kN (16 kips) and an impact 
factor of 0,3 are assumed the factor of safety is 
approximately 16. The bridge deck design is 
obviously very conservative. 

In a few cases the load was applied at four 
points simultaneously to simulate a truck with 
wheels 1.83 m (6 ft) apart on axles 4.3 m (14 ft) 
apart. By measuring the extreme bottom fibre 
strains of the bridge beams it was shown that for 
a conventional I-beam bridge under truck loading, 
beam failure is to be expected well before slab 
failure. This is further indication that the 
bridge deck slab design is conservative. 

Slabs with Isotropic Reinforcement 

The average test punching loads for each 
nominal percentage of reinforcement and for panels 
of both four-beam and three-beam bridges are 
shown plotted against average reinforcement 
percentage in Figure 11. The average reinforcement 
percentages were calculated using the means of all 
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the measured effective depths of panels with the 
respective nominal reinforcement. Both flexural 
and punching failures occurred in four-beam bridge 
panels with O.?. percent and with zero reinforcement, 
and it was assumed that flexural and punching 
strengths were the S8Jlle for these panels. Only 
flexural failures, at an average load of 9. 4 3 kN 
(2.12 kips), occurred in the unreinforced panels of 
the three-beam bridge and results of the tests of 
these panels were excluded from the analysis. 

Figure 11 shows that the punching strength 
increases with increase of reinforcement and with 
decrease of span to thickness ratio (C/t). The 
scale of multiples of design wheel loads indicates 
that the factor of safety is always high, even when 
the span to depth ratio is unusually large, and 
that the factor of safety for a panel of a bridge 
of conventional dimensions would be approximately 
13, if impact is ignored. There was some scatter 
of the test results but the factor of safety for 
unreinforced panels of four-beam bridges was never 
less than 10. 

In the usual elastic design only the strength 
due to reinforcement is considered. Only in an 
ultimate strength design can both the strength due 
to the reinforcement and the very significant 
additive inherent strength of the unreinforced 
panel be utilised. 

In tests on a model bridge in which hogging 
moment was induced, it was shown that such a 
moment has little, if any, effect on the punching 
load. It became apparent that extensive 
transverse cracking can be tolerated before any 
decrease in the punching strength of the bridge 
deck is to be anticipated. 

The restraint factors for panels of the 
four-beam and three-beam bridges are given in 
Table 2. The theo:r; was not considered to be 
applicable to the unreinforced panels of the 
three - beam bridges, which all failed in flexure, or 
to the panels with mid-depth reinforcement. The 
restraint factors here quanti~J the actual boundary 
restraints of the panels in terms of the idealized 
m~.xlmwu .rest raints on the boundaries of the 
idealized equivalent slabs. It is seen that the 
restraint factors generally increase with increase 
of percentage reinforcement, This is contrary to 

Figure 11 . Load vs reinforcement percentage -
isotropic reinforcement 
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the findings from the analysis of the tests of 
Taylor and Hayes (5) and Aoki and Seki (10) 
discussed previously, and is thought to be due 
largely to the fa.ct that in bridge panels the 
top reinforcement may also contribute to the 
boundary restraint. 

However, noting the reinforcing indices (q) 
and the diameter ratios (C/B) given in Table 2, it 
is seen that the limits of the restraint factor 

which have been tentatively proposed, also apply 
here although the increase of restraint factor with 
increase of reinforcement is not utilised. With 
the high factors of safety, slabs with very low 
percentages of reinforcement a.re of interest, and 
for design purposes a restraint factor of 0.50 is 
proposed for use in the calculation of the ultimate 
punching strength of the deck slabs of composite 
I-b~ 9.ITl bridges. This would be satisfactory for a 
slab with a span to thickness ratio as high as - 20 
and with a reinforcement percentage as low as 0.2. 

Design Recommenda~ions 

In accordance with the philosophy of the ACI 
Code, the ultimate strength of a structure is 
expected to exceed about two and a half times the 
design live load. The factor of safety against 
failure by punching of an unreinforced panel of a 
four-beam bridge, assuming a wheel load of 71.2 kN 
(16 kips) and an impact factor of 0.3, is 
approximately 10. The study indicated that 
cracking under working loads is not a problem and 
that slab failure is highly unlikely, particularly 
since the bridge beams would probably fail first 
'under truck loading, 

Clearly, if only the punching strength is to 
be considered, reinforcement is theoretically not 
required in the deck slab of I-beam bridges. 
However, the AASHTO Standard Specifications for 
Highway Bridges (2) recommends that 'not less than 
125 in. 2 (81 mm2 ) of reinforcement per foot shall 
be placed in each direction of all concrete 
surfaces to resist the formation of temperature 
and shrinkage cracks'. This amounts to 
approximately ~-2 percent reinforcement for 178 mm 
(7.0 in.) sl'.l -~ with 38 mm (1.5 in.) cover, and is 
here recomme::ied as the maximum reinforcement 
required for :he deck slabs of composite I-beam 
bridges. Us :!1g O.? percent isotropic reinforcement 
rather than : :-.e conve?"Jtional orthotropic 
reinforcemen~ as in the prototype bridge, the 
reinforcement requirement is reduced by about 66 
percent . 

The tests of panels with 0.2 percent 
reinforcement are therefore of particular interest. 
The test punching loads of the four-beam bridge 
panel with 0.2 percent reinforcement are plotted 
against the measured effective depths to the 
bottom transve~se reinforcement in Figure 12. The 
line of regress ion ::if the punching load on the 
effective depth is shown. The scale of multiples 
of design wheel lJad sh~ws that a slab of design 
dimensions has a factor of safety of approximately 
12. Considering a wheel load of 71.2 kN (16 kips) 
and an impact factor of 0.3, the factor of safety 
is greater than 9. 

Thus the design of the deck slab of I-beam 
bridges can be made very simple because only the 
AASH'l'O requirements regarding the temperature and 
shrinkage reinforcement need be satisfied. 
Assuming a restraint factor of 0.50 the ultimate 
strength of any slab with a span to depth rat.in 
within the range of 14 to 21 of the tested panels 
can be estimated. Figure 13 shows a design curve, 
derived using the outlined theory, which relates 
punching loads and span to depth ratios of panels 
with 0.2 percent reinforcement. The punching loads 
were calculated assuming slabs of the following 
dimensions and properties: 

Slab thickness 
Slab effective depth 
Diameter of loaded area 
Slab diameter 2.44 to 

178 mm 
127 mm 
650 mm 

3.66 m 

( 7 in.) 
(5 in.) 
(25.6 in.) 
(96 to 144 in.) 



, 
. . Reinforcement 

Yield stress of reinforcement 
Compressive strength of concrete 
Restraint factor 

0. 2 percent 
310 MPa (45 ksi) 
34 MPa (5000 psi) 
0.50 
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Table 2. Restraint factors for panels of four-beam and three-beam bridges 

Four-beam Bridge Slabs 
Isotropic C/B = 3,7 
Reinforcement Number of q (average) vtest 

(%) Tests (average ) 
(kN) 

o.6 1 0 .055 23 .66 
o.4 5 0 .036 21. 57 
0 . 2 7 0.018 18.01 

zero 3 0 16. 50 

Note: a) Both slabs failed in flexure 
1 kN = 0.225 kip 

Figure 12. PlUlching load YS depth to reinforcement-
0. 2% isotropic reinforcement 
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The loaded area was assumed to be circular and 
of the same perimeter as the assumed elliptical 
tire contac~ area. The slab diameter was taken as 
equal to the bridge beam spacing. The design curve 
could be used to check the ultimate strength and 
the factor of safety against failure by plinching 
of any deck slab of comparable dimensions and with 
the required reinforcement of 0.2 percent. 

The preceding discussion does not apply to 
the exterior cantilevering portions of I-beam 
bridge deck slabs which should be designed by 
conventional methods. The discussion applies 
only to panels with adequate boundary restraint 
the development of which is ensured by the shear 
connectors, bridge beams, diaphragms, and by the 

'.:'h ree-be~~ Bridge Slabs 
C/B = 3.6 

Restraint ;/umber of q (average) vtest Restraint 
Factor 

o. 7L 
0 .66 
0 .60 
0 .57 

Tests (average) Factor 
(kN) 

2 0 . 05 l 0 . ~ 9 
2 0 .036 14.14 0.52 
2 0.018 13.48 0.55 
2a 0 

continuity of the slab itself. According to the 
AASHTO Specifications, "the maximum pitch of shear 
connectors shall not exceed 610 mm (24 in.), 
except over the interior supports of continuous 
beams where wider spacings may be used to avoid 
placing connectors at locations of high stresses 
in the tension flange". The maximum spacing of 
the shear connectors in the model bridges was 
102 mm (4 in.). It follows that theoretically for 
a prototype bridge, shear connectors at spacings 
of up to 810 mm ( 32 in. ) provide adequate restraint, 
and some reduction in the factor of safety for the 
bridge deck could result from shear connector 
spacings in excess of 810 mm (32 in.). Diaphragms 
may need to be provided to prevent spread of the 
bridge beams due to in-plane forces in the loaded 
deck slab, c.'1d it appears that the AASHTO 
requiremen- · are adequate. The end edges of the 
deck slab c::~·uld always be stiffened. 

Mid-de::~o1 reinforcement offers the advantage 
of ensuring ~aximum reinforcement cover but it 
does not sa~:sfy the A.ASHTO requirements regarding 
temperature and shrinkage reinforcement. If, 
despite this, mid-depth reinforcement is used to 
resist the formation of temperature and shrinkage 
cracks, the ultimate strength of the slab could 
be conservatively estimated by assuming it to be 
'.lnrei!l.:'orced. 

Concl'..lsions and Recomr.1endations fcor Further Research 

Con cl •_is ions 

The mechanical model used by Kinnunen and 
Nylander (7) can be modified to predict the 
punching strength of restrained slabs. This 
factor can be empirically determined for slabs of 
unknown boundary restraint. 

The current method of design of the deck slab 
of a steel/concrete composite bridge results in 
the wasteful use ::of reinforcement. The factor of 
safety against failure by punching under a single 
wheel load can be expected to be approximately 16. 
Under truck loading, beam failure can be 
anticipated before slab failure. The pllilching 
strengths of such slabs vary inversely with span 
and directly with reinforcement ratio and 
effective depth. 

The punching strength is not influenced 
significantly by the following factors: 

1. The posit ion of the load on the bridge 
deck slab. 

2. Previous failures of the slab in adjacent 
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panels. 
3. 
4. 
5. 

A hogging moment. 
Dead load stresses and deflections . 
The strength of the concrete of the slab. 

It has been shown that, theoretically, no 
reinforcement is required in the deck slabs of 
composite I-beam bridges if only the ultimate 
strength of the designed structure is considered. 
In view of the AASHTO requirements regarding 
temperature and shrinkage reinforcement in mind, 
0.2 percent isotropic top and bottom reinforcement 
is recommended as the maximUJD requirement. This 
amounts to a reduction of 66 percent of the current 
reinforcement requirements. For a deck of 
conventional dimensions with 0.2 percent 
reinforcement the factor of safety against failure 
by punching can be expected to be about 9. 

A restraint factor of 0.50 should be used for 
the calculation of the punching strength for design 
purposes. 
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