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Ohmishima Bridge, which is now under construction 
in Japan, is a steel highway bridge spanning 297 m 
(974.4ft.) of a half-through two-hinged solid rib 
arch stiffened by side ties. The two main arch 
ribs of box section are stiffened respectively, 
by two side ties. One end of each tie is fixed 
to the top of an abutment in both side spans. 
Bending moments and stresses due to live loads or 
wind loads in the arch ribs can be reduced by the 
stifftmin!!; LiO!i; more than those of ordinary two
hinged arches, and the steel weight of the ribs 
decreases considerably. Therefore, this new type 
arch is more economical than an ordinary two-hing
ed or fixed solid rib arch. Since the arch ribs 
become more slender, geometrical nonlinearity of 
the arch may be more remarkable. To investigate 
the geometrical and material nonlinearities of 
such a long-span and unusual type of steel arch 
bridge including overall inelastic instability, 
extensive experimental and analytical studies 
were carried out. In this paper, the results of 
the analytical study with discussions are report
ed. The combined nonlinear analyses are performed 
by a matrix method based on finite displacement 
theory for in-plane and out-of-plane instability. 
It was confirmed that the side ties for stiffening 
a two-hinged arch bridge are very effective for 
the reduction of stresses and geometrical non
linearities and for an increase of overall ulti
mate strength in-plane or out-of-plane of the arch. 

Orrnishima Bridge is now under construction in 
Japan as the first bridge of long-span bridge projects 
to connect the Mainland to Shikoku Island crossing 
the Seto Inland Sea. It is a half-through highway 
bridge spanning 297 m (974.4 ft.) of a two-hinged steel 
arch stiffened by side ties, which may be called a 
new type of arch bridge not experienced in the world. 

The first design proposed for Orrnishima Bridge 
was a fixed steel arch bridge(!), but it was changed 
into the present final design of a new type of two
hinged arch. Since smaller box sections can be used 
for its arch ribs due to reduced bending mo,oents, 
this type of bridge gives a more economical and 
rational design than a fixed arch bridge or an ordi
nary two-hinged arch bridge. However, its more 
slender arch ribs may cause greater nonlinear structur
al behaviors. 

In this paper, a theoretical study on this new 
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type of arch bridge modelling Olmishima Bridge will 
be presented(2). The geometrical nonlinear behaviors 
under design loads and the ultimate strength are in
vestigated in terms of in-plane and out-of-plane in
stability. First of all, the outline of analytical 
method by a matrix method based on finite displace
ment theory will be shown. Then, the calculation 
results will be discussed on the characteristics of 
structural behaviors. 

The three-dimensional nonlinear analy&is of 
framed structures considering finite rotations of 
displacement components has not been reported. Also, 
the elasto-plastic space analysis taking account of 
the effects of finite rotations and spread of plastic 
region in the whole members has not been applied to 
an actual bridge. Therefore, these effects are con
sidered as accurately as possible in numerical cal
culations by means of theoretical analysis and nu
merical computation. 

Summa ry of Nonlin.ea.r Analysis 

Nonlinear analyses of the arch are carried out by 
a matrix method based on finite displacement theory. 
An outline of analytical methods for space frames is 
given as follows, except the planer analysis. 

Assumptions 

The following assumptions are imposed in the com
bined nonlinear analysis of space frames: 

1. Members are straight thin-walled beams of a 
doubly symmetrical uniform cross-section. 

2. The longitudinal dimension of a beam is much 
larger than its lateral dimension. 

3. The middle line of thin walls in a cross sec
tion does not distort after the deformation of the 
beam. 

4. Thin walls deform under the Kirchhoff-Love 
hypothesis for thin shells. 

S. Warping of cross sections, shear distortion, 
overall buckling of members and local buckling of 
thin walls are ignored. 

6. The Mises yield condition and the Prandtl
Reuss equation are employed in plastic regions of 
walls. 

7. The stress-strain diagram of material is 
assumed to be linearly elastic-perfectly plastic. 

l 
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Finite Displacement of Beam 

Finite rotations in a three-dimensional space do 
not satisfy a co11111utative law, nevertheless they have 
been treated as a vector in most studies(3, 4). In 
space analysis, only Oran(S) pointed out the- above
mentioned misunderstanding-and used a rotation matrix 
which was called a joint orientation matrix in his 
paper. Kowever, the rotation matrix shown in his 
paper is one for a small rotation. 

A rotation matrix of a nodal point was formular
ized(6) with a coordinate transformation matrix of a 
membe~ taking account of finite rotations as well as 
finite translations. These matrices are mathematical
ly exact ones. 

Figure 1. Local coordinate systems of a member . 

By the use of this rotation matrix, the finite 
displacements u, v and w of an arbitrary point C on 
the middle surface of a thin wall are obtained under 
the assumption 3. They are expressed by omitting non
linear terms higher than the third order as follows: 

ii UO - v~y - w~Z 1 ¢ ( r-z o WoY v~z), (1) 

ij VO - ¢oz - l[qi2-
2 0 y + (v; )2 y + v;w;zJ, (2) 

w WO + ¢oY _ l[qi2-z 
2 0 + (w; )2 z + v;w; y] (3) 

where u 0 , v 0 , w0 are the displacement components and 
¢0 the torsional angle at the centroid 0 of a cross 
section having the coordinates (x, 0, 0) in a rectan
gular Cartesian coordiroate system (x, y, z). y and z 
are the coordinates of the point C, and the prime 
superscript indicates differentiation with respect 
to x. 

Strains of Thin Wall 

The strains and the stresses of a thin wall are 
expressed in a local system of orthogonal curvilinear 
coordinates (x, s, n) at the point C. 

Strain components are obtained by using the dis
placements of equations 1, 2 and 3 on the middle 
surface of the wall under the Kirchhoff-Love hypothe
sis (Z). 

The Lagrangian strain components of ess, enn, exn 
and esn may be ignored due to the assumptions 3 and 4: 

(4) 

The other components can be written in terms of 
the displacement components at the centroid 0 as 
follows: 

exx = u; - (v~'y + w~'z) + t[ (u;) 2 + (v; ) 2 + (w; ) 2
] 
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+ [(v~'sinS - w~'cosS) - ¢~'i'nln (5) 

- v; sinS) - u; (v; cosS + w; sinS)] (1 - n/R)- 1 

(6) 

where 6 is the angle between y-axis and t-axis which 
is the tangent at C to the curvilinear coordinates s; 
R is the radius of curvature of the wall in the di
rection n; and rs and rn are given by the following 
expressions: 

i's = ysinS - zcosS, i'n = ycosS + zsinS (7) 

According to the assumption of thinness of a wall, 
the nonlinear terms with respect to the n-axis are 
ignored in equations 5 and 6. 

Stresses of Thin Wall 

By virtue of the assumptions 3 and 4 about beam 
theory and thin-shell theory, respectively, only two 
strain components of equations 5 and 6 will be con
sidered in the nonlinear analysis of a thin-walled 
member and are expressed by the notations € and y, 
respectively. 

Let the stress components corresponding to the 
above strains be cr and T, the incremental stress
strain relations are expressed as follows: 

(8) 

where the notation 6 indicates the increments and D1 , 

D2 and D3 are given for elastic materials with 
Young's modulus E and shear modulus G 

(9) 

and for plastic materials under the assumptions 6 and 
7 (§) 

-3 EGcrT /Do' Do 

EGo 2 /Do, 

Ecr 2 + 9GT 2
• l (10) 

To take into account the spreading of plastic 
region in a member in the directions x and s in the 
elasto-plastic analysis of framed structures, a thin
walled member is divided into many small elements as 
shown in Figure 2. 

Figure 2. Elements of box beam. 

n 
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The incremental strain components in plastic 
regions have a combined effect as expressed by equa
tions 8 and 10. For a thin-walled beam of closed 
cross section, the incremental shearing stress is 
obtained by using the shear flow theory which assumes 
a constant shear flow q in the closed cross section. 

The nonlinear terms of the incremental shearing 
strain may be negligible and a thin-walled beam is 
assumed to have a box section. Then, the following 
expression is given by substituting the increments of 
strain components into equation 8 and by applying 
linear integration along the closed middle line of 
the cross section of an elasto-plastic member: 

f 6T ds = 6 ¢~ fD 2 rsds + fp D36e:ds 

where fp implies the integration with respect to 
plastic regions in the closed cross section. 

(11) 

Let the thickness of a thin wall be t, the incre
mental shear flow 6q is given by 

6q = t 6T , (12) 

so that the incremental stress 6Tj of the j-th element 
can be obtained by rewriting equation 11 as follows: 

~ (03 ll.e:6s)p 1 

~ ( ll.s/c}k tj 
(13) 

where f and ~ indicate the sunnnation over all elements 

and over plastic elements alone in a cross section, 
respectively. 

Equilibrium Equations 

Equilibrium equations of an elastic or an elasto
plastic member are formularized by the usual matrix 
method based on the principle of virtual work. 

The equations are expressed in terms of matrices 
as follows: 

6p - (f - p) (14) 

where 6k, 6d, 6p, p and f are the tangential stiffness 
martix, the incremental displacement vector, the 
incremental load vector, the total load vector and 
the internal force vector, respectively. 

The matrix 6k and the vector f can be divided 
into two parts as shown in the following expressions, 
respectively: 

6k = k* - l: kp 
i i 

f f* - L:f P 
i i 

(15) 

where the matrix k* and the vector f* are defined for 
an elastic member or for an elasto-plastic member, 
of which all elements are assumed to be elastic, and 

k~ and f~ are defined for the i-th plastic or unloaded 
element and respectively equal to a zero matrix and 
a zero vector for an elastic element. p p 

k* and f* are formularized and also ki and fi are 
calculated not by a numerical integration but by an 
analytical procedure, so that the computation may be 
very quick and the numerical solutions may be accurate. 

Numerical Procedure 

In the numerical analysis, the mixed method of 
combined Newton-Raphson method with an incremental 
load or displacement method is used in an elastic 
range. The increments of external loads or of a com
ponent of displacements at a nodal point to control 

the numerical calculation, are decided automatically 
in the program so that a few elastic elements in the 
whole members may yield. Since these increments will 
be very small quantities, modified incremental method 
with equilibrium check is used instead of the mixed 
method in an elasto-plastic range. 

The maximum load of a structure is defined by the 
condition that a structure becomes unstable when the 
tangential stiffness matrix of the system turns to a 
negative definite matrix. 

Structural Models 

Dimensions 

Ohmishima Bridge is a stiffening two-hinged solid 
rib arch as shown in Figure 3, and its overall rigidi
ty is increased by fixing both side ties to each 
abutment at both side spans. Namely, the arch ribs 
may be considered to be elastically supported at 
about one-sixth points of the arch span by triangular 
frames consisting of an arch rib, a side tie and an 
abutment. Therefore, the bending moments in the arch 
ribs can be reduced and improved structural behaviors 
may be expected at this modified two-hinged arch 
bridge as if the span length were shortened to two
thirds. 

Sectional dimensions of the arch ribs and the 
other members are shown in Figure 4. 

Figure 3. General pictures of Ohmishima Bridge. 
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Figure 4. Sectional dimensions of members. 
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Analytical Models 

For a model arch used for in-plane and out-of-plane 
analyses and elastic and elasto-plastic analyses, the 
same dimensions as the design of Ohmishima Bridge are 
used including the condition of supports, the arrange
ment of expansion joints, the rigidities of members, 
etc .. To make the calculation simpler, the rigidity 
of concrete-encased steel grating floor is neglected, 
eight stringers are replaced by one equivalent string
er, and the arrangement of lateral bracing members 
between two arch ribs is partly changed. As the re
sult, the model is provided with 139 nodal points and 
340 members and is constrainted with 52 degrees of 
freedom. 

In addition to this Model-1, Model- 2 is investi
gated, too, in which either of two side ties is not 
fixed to the abutment, but supported by a sliding shoe 
so that the tie is not subjected to any axial force. 
Moreover, Model-3 with an assumed initial imperfection 
due to the error of shape in Model-1 is employed in 
the in-plane ultimate strength analysis. 

Applied Loads 

In the in-plane analysis, the dead load(D), the 
live load(L) consisting of uniform load(p) and trailer 
truck load(TT), both including impact, and the earth
quake load(EQ) with the horizontal seismic coefficient 
of 0.2, are applied at numerical analyses. In the 
out-of-plane analysis, the dead load, the horizontal 
earthquake load and wind load(W) are employed. 

The intensities of the specific loads like elastic 
buckling load or ultimate strength load are expressed 
by a load multiple, a , considering design loads as 
standard loads, of which the intensities are given in 
Table l(~_). 

Table 1 . I ntensities of design loads. 

Design load Intensity Loaded member (kN/m) 

Dead load 43.5 arch rib 
94.8 center or side tie (D) 
84.8 stringer 

Li ve load (p) 20.9 stringer 
(L) (TT) 765.0 (kN) stringer 

Earthquake load 8. 7 arch rib 
19.0 center or side tie (EQ) 17.0 stringer 

Wind load 19.9 arch rib 
13.0 center or side tie (W) 3.2 post 

Note: 1 kN • 0.225 kip. 1 kN/m 68.5 lbf/ft . 

Geometrical Nonli near ity due to In-Plane Loads 

Influence Values 

To examine the nonlinearity due to live loads, 
the following five kinds of influence values are con
sidered: 

1. An ordinary linear influence value for a unit 
concentrated load. 

2. A linearized influence value for a concentrat
ed live load(TT-Load) obtained by a tangential stiff
ness matrix at the loading of dead loads. 
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3. A nonlinear influence value of the exact so
lution for the value of 2. 

4. A linearized influence value for TT-Load 
obtained by a tangential stiffness matrix at the load
ing of dead and half-span uniform live loads . 

5. A nonlinear influence value of the exac t so
lution for the value of 4. 

At the computation of the values of 2 to 5, the 
exact equilibrium state is obtained for dead loads or 
plus a uniform live load with the intensities of the 
design loads. Then, these influence values are calcu
lated not for a unit load, but for TT-Load as a moving 
concentrated load. At this time , the removal of the 
linearized errors is tried for bending moments or 
stresses with the values of 2 and 4. 

Nonlinearity due to TT-Load 

Figure 5 shows the maximum values of deflections 
due to a trailer truck load(TT-Load) for Model-1. 
Figure 6 shows the minimum values of fiber stresses 
due to TT-Load at the upper and lower flanges for 
Model-1. Since the linearized influence values of 2 
and 4 agree with the values of 3 and 5, respectively, 
they are not shown in the figures. Those figures 
indicate clearly the favourable effect of the side 
ties on the deflections and stresses . 

Figure 5. Maximum deflections due to TT-Load. 
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For the maximum or minimum values of deflection o, 
bending moment M and fiber stresses Ou and cri in the 
upper and lower flanges respectively, due to a concen
trated TT-Load, the increase ratios of the linearized 
or the nonlinear values of 2 - 5 to the linear value 
of 1 are shown in percent on the uppermost column in 
Table 2. 
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Table 2. Geometrical nonlinearities of various influ
ence values. 

Solution I max 6 maxM minM min oi 

Nonlinearity due to TT-Load (%) 

2 25.4 18.8 22.8 17.3 17.0 
3 26.4 19.2 22.5 17.8 18.7 
4 30.1 21. 3 26.3 19.5 19.6 
5 31. 3 21. 7 25 . 8 20.0 21.4 

Nonlinearity due to dead and live loads (%) 

2 6 . 6 13 . 4 10.6 4. 1 2.2 
3 6. 9 13. 7 10. 4 4.3 2.4 
4 13. 5 22 . 5 18.9 8 . 8 5.8 
5 13 . 7 22 . 7 18.8 8 .8 6.0 

Since each value shows about 20 - 30% nonlineari
ty, the linear values cannot be applied to the ana
lysis of the arch. But it may not be required to 
perform the exact nonlinear calculation for the con
centrated live load, as far as the linearized values 
with 1 - 2% errors are used. When the nonlinear 
effect due to a uniform live load is taken into ac
count, too, the increase of nonlinearity due to TT
Load is about 5% in deflections and about 2- 3% in 
stresses in comparison of the values of 2 with 4 or 
the values of 3 with 5. 

Nonlinearity due to Dead and Live Loads 

Large stresses due to dead loads are observed at 
a solid rib arch and more than 50% of the stresses 
are almost axial stresses without nonlinearity. 
Therefore, nonlinearities due to the dead load plus 
the live load are indicated on the 2nd column in 
Table 2, in which the values of 5 give the exact non
linear effects due to the dead and live loads at 
Ohmishima Bridge. 

Influence Line Analysis 

In case that geometrical nonlinearity due to live 
loads appears at a structure subjected to dead load, 
an influence line analysis based on the law of super
position cannot be strictly applied to its analysis. 
Then, an influence line analysis with the above
mentioned influence values of 2 or 3 is applied to 
the analysis of Model-1. 

Table 3. Errors of influence line analysis. 

Solution I max 6 I maxM I minM I minou min oi 

Error due to superposition (%) 

2 

I 
-2 . 2 

I 
-2. 0 

I 
-1.2 

I 
-1. 8 -2 . 2 

3 -1.3 -1. 3 -1. 2 -1.1 -0 . 9 

Error of influence line analysis (%) 

2 -1.6 -2. 0 -1. 3 - 0 .9 -0.9 
3 - 1.l - 1. 5 -1.4 -0. 6 -0 . 5 

The value of the uppermost column in Table 3 
indicate errors due to the application of the super
position law to the influence analyses of the arch 

subjected to a uniform live load(p), in terms of the 
relative errors against the exact values due to the 
uniform live load. 

Furthermore, the errors for the values due to the 
dead and the uniform live loads are shown on the 2nd 
column in the table. 

The negative signs on the both columns mean un
favorable values. 

Effect of Side Ties on Elastic Stability 

Load versus displacement curves obtained by a 
buckling analysis and by an exact finite displacement 
analysis are given in Figure 7 for the in-plane 
elastic stability of Model-1 and Model-2 in which the 
stiffening effect of one of the side ties is neglect
ed. The vertical axis shows load multiples for dead 
plus live loads and the horizontal axis shows the 
maximum deflections, both at the nodal point No. 10. 

As illustrated in Figure 7, a dynamic jump does 
not occur at the both models owing to the stiffening 
effect of the side ties. The comparison between 
Model-! and Model-2 shows that the ties have an effect 
on the constraint of geometrical nonlinearity of the 
arch. Particularly, the side ties are effective 
against a seismic load, because the nonlinearity of 
bending moments due to the dead load plus the seismic 
load is only 15 - 17% at Model-1, while 60 - 70% at 
Model-2. 

Figure 8 indicates the first mode of buckling due 
to dead load for Model-1 and -2, in which the left 
side tie alone is fixed to the abutment. In the 
fi g1rri;>, the vertical and horizontal axe11 11how r11lativ11 
displacements and nodal point Noe., respectively. 

Figure 7. Load ve rsus displacement curves for dead 
and live loads a (D + L). 
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Geometrical Nonlinearity due to Out-of-Plane Loads 

Geometrical Nonlinearity 

There have been few study reports on the nonlinear 
behavior of an arch bridge subjected to an out-of
plane load. In Table 4, the geometrical nonlineariti
es in displacements and internal forces in arch ribs 
due to design loads calculated by a three-dimensional 
finite displacement analysis for Model-1 of Ohmishima 
Bridge, are shown in percent of the linear values. 
Model-1* in the table is a model arch taking into 
account the in-plane and out-of-plane rigidities of 
slab. V and W are respectively vertical and horizon
tal displacements, N is axial force, and Mt, M ; M2 
are respectively torsional, in-plane, out-of-p1ane 
bending moments. It can be seen in Table 4, that the 
nonlinearities appear even at the design loads, par
ticularly remarkably in the in-plane moments . 

Table 4. Geometrical nonlinearities due to out-of
plane loads. (%) 

Model Load max V max W max N maxi Mt I maxi My I maxi Mz I 

EQ 5. 7 8.2 3.0 8.6 17.8 10.4 
D + EQ 5.6 3.2 1.1 4.8 16.0 9.9 

1 
w 4.9 8. 7 3.2 7.2 16.1 6.9 

D+W 4.9 3.4 1.1 4.5 8.8 6.9 

EQ 4.9 6.3 2.6 5.2 15 . 7 1. 2 
D + EQ 4.8 2. 7 0.8 3.0 8 . 2 1. 2 

l* 
w 4.3 7.5 3.0 4.5 14 .5 5.8 

D+ W 4.3 2.9 0.9 2.8 7. 7 5.9 

The comparison between the values for Model-1 and 
Model-1* shows that, if the rigidit y of the slab is 
considered at the calculations, the nonlinearities 
will be reduced considerably, but the axial force in 
side ties will increase about 50%. 

Elastic Buckling 

To examine the out-of-plane stability of Model-1 
and -2, a three-dimensional buckling analysis is 
carried out. The results are summarized in Table 5 in 
terms of <Xcr values which are load multiples based on 
the intensity of design dead load. Model-1* and -2* 
denote the cases that the slab rigidities are taken 
into account, respectively for Model-1 and -2. In 
Table 5, the third mode of buckling of Model-1 and -1* 
alone is related to the out-of-plane buckling, and 
all of the other modes are to the in-plane buckling. 
Since, at ordinary rib arches, the first mode appears 
at the in-plane buckling and the second mode appears 
at the out-of-plane buckling, a solid-rib arch with 
side ties shows different behavior from the ordinary 
solid-rib arch at the higher order of buckling mode. 

Table 5. Load multiples for out-of-plane buckling. 

Model 1st mode 2nd mode 3rd mode 

l 4.833 7.664 9.580 
l* 5.215 8.243 9.914 

2 2.677 5. 097 8.153 
2* 2.899 5.511 8 . 692 
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Ultimate Strength in In-Plane Loading 

Ultimate Strength Analysis 

By an elasto-plastic finite displacement analysis 
with a matrix method, the ultimate strength is calcu
lated for the models of which an arch rib is divided 
into 832 elements. To discuss the characteristics in 
the ultimate state, six combined loads are applied as 
shown in Table 6. The inelastic behaviors are pursu
ed in the numerical calculation until the unstable 
state. The yielding loads and the maximum loads ob
tained by the calculation are summarized in Table 6 
in terms of load multiples Cly and etmax. respectively. 

Table 6 . Load multiples for yielding and maximum 
loads. 

<XO a (D + L) D + a L 
Model 

<Xy <Xmax Cly °'max Cly <Xmax 

1 2.964 3 . 012 1. 787 1.929 3.261 4.354 
2 2.118 2.118 1. 434 1. 487 2.222 2. 764 

3 c10-•) 2.869 2.923 1. 760 1.903 3. 215 4.307 
3 (10 -3 ) 2. 359 2.424 1.560 1. 714 2. 821 3.901 

a (D + EQ) D + a EQ 1.3D+aEQ 
Model 

<Xy <Xmax Cly °'max Cly <Xmax 

1 2.328 2.656 2.378 4.609 2. 372 4.364 
2 1.412 1. 528 2.161 2.432 1.618 2.135 

1* 2.690 2. 723 4.199 6.050 4.120 4.737 
2* 1. 412 1. 528 2.217 2.970 1. 618 2.192 

The values in the parentheses of Model-3 with an 
assumed initial imperfection, indicate the ratio of 
the maximum initial imperfection to the span length. 
The initial imperfections are determined from the 
buckling mode shown in Figure 8, which may be the 
most unfavorable mode under a uniform load. Model-1* 
and -2* are modification of Model-1 and -2, respec
tively, in which the same steel of SM58 as the arch 
rib is used for ties, while at the actual bridge , 
SM50Y and SS41 are used for the ties. SM58, SM50Y 
and SS41 are structural steels specified at the 
Japanese Industrial Standards, respectively with the 
specified yielding point of 451, 353, 235 MPa (65.4, 
51.2, 34.l kipf/in ~), and the specified minimum 
tensile strength of 569, 490, 402 MPa (82.5, 71.1, 
58.3 kipf/in~). 

Characteristic in Ultimate State 

The comparison between the values for Model-1 and 
those for Model-2 in Table 6 proves the effectiveness 
of the side ties. If the arch is not provided with 
the both side ties, the arch will fail due to its 
elastic instability at a little greater load than the 
design dead load. The maximum values of initial im
perfections used for the calculations are 1/1000 and 
1/10000 of the span length corresponding to the 
amount of actual deflections of about 30 cm and 3 cm, 
respectively. Ohmishima Bridge will exhibit the 
amount of unavoidable initial imperfection between 
the both values. Table 6 shows that the reduction of 
ultimate strength due to the initial imperfections 
will be 2 to 3% for the case of 1/10000 and 10 to 11% 



252 

for the case of 1/1000, and also it will be 20% for 
the dead load alone. Therefore, the effect of initial 
imperfections on the ultimate strength of the actual 
bridge would be several percent and is much smaller 
than the one for an ordinary two-hinged solid-rib 
arch without side ties. 

The typical relations between maximum deflections 
and various loadings are shown in Figures 9 and 10 at 
the nodal point No. 10. Elastic displacement curves 
by a finite displacement analysis and by a linear 
analysis as well as load versus displacement curves 
obtained by an elasto-plastic analysis, are presented 
in the figures. The figures show that any sudden 
instability after the maximum load does not occur for 
any Models. When the Models are subjected to a seis
mic load as well as the dead load, the first yielding 
is observed at ties. Therefore, at Model-1* and -2* 
which have ties in a steel of higher yielding point, 
the ultimate strength may be relatively larger depend
ing on the loading, as proved in Table 6 and Figure 
10. 

Figure 9. Dead and live loads versus displacements 
(D +a L). 
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Figure 10. Dead and seismic loads versus displace
ments (D +a EQ). 
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Figures 11 and 12 present the spreading of plastic 
zone at the maximum load, but the members in which a 
plastic zone does not appear are omitted in the 
figures. In all of the loading cases, the arch rib 
fails due to its partial plastification, and particu
larly at Model-2, the arch rib fails without spread
ing of plastic zone after the yielding load has been 
reached. 

Figure 11. Plastification due to dead load only (aD). 
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Figure 12. Plastification due to dead load plus 
seismic load (D +a EQ). 
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Ultimate Str,ength b Out-of-Plane Loading 

At an elasto-plastic spatial analysis, the arch 
of Model-1 is divided into about 6000 elements and 
in addition to the dead load, wind load is applied to 
the arch rib, because it is dominant among possible 
out-of-plane loads. 

Two kinds of ultimate strength are calculated, 
as shown in Table 7, in terms of the load multiple, 
a, for the maximum wind load. The comparison of 
Case-1 with Case-2 shows that 30% increase of the 
dead load, D, reduces slightly the strength for the 
wind load, W, because the model arch has a great in
plane strength for the dead load as shown in Table 6. 

Table 7. Out-of-plane ultimate strength. 

Loading Case - 1 
(1. 0 D +a W) 

3.240 

Case - 2 
(1. 3 D +a W) 

3.110 

The relations between loads and out-of-plane dis
placements are given in Figure 13, in which the Nos. 
on the curves denote the nodal points of the leeward 
rib. The out-of-plane displacements at the nodal 
points of 31 and 33 differ about 2.5 times, although 
an interval between the both points is only two panel 
length. This difference is proper to an arch with 
side ties, because they constraint the out-of-plane 
displacements of arch ribs in side spans. Figure 15 
which shows the out-of-plane displacements of arch 
ribs and ties, too, demonstrates clearly the ef fec
tiveness of the side ties. 



Figure 13. Load versus displacement curves . 
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Figure 14. Load versus out-of-plane moment curves. 
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Figure 14 indicates the relations of loads versus 
out-of-plane bending moments, Ma , at nodal point No. 
31, at which the arch rib takes the maximum bending 
moment. The curves of out-of-plane bending moments 
in the rib do not show any remarkable nonlinear i t y as 
seen in Figure 14. Also, the nonlinearities in bend
ing moments at the other sect i ons are much smaller 
than those in displacements. The reason for these 
small nonlinearities in bending momments may be that, 
when the wind load reaches about 2.8 times as large 
as the design value, lateral braces between the arch 
ribs in the neighbourhood of the portal frames will 
yield and then the rapid displacements of the ribs 
will occur. Also, at the loading of CJ." 3.0, all of 
the sections of a great part of the side ties, too, 
yield, but at this time the greater parts of the r i bs 
remain to be elastic. 

Figure 15. Out-of-plane displacement distribution in 
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Figure 16 . Axial force distribution in arch rib for 
( 0 + a W) . 
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Figure 17. In-plane moment distribution in arch rib 
for (D +CJ. W). 

-50 -

- 40 J 

D + 1. 0 II (Linear) 
D + 1. 0 W (Nonlinear) 
0 + 3. 240W 

! Leeward 

-3o ~ /~ I _"' 
-20 • ~""- v Windward \ 

-w~~~: 
o~ ~ ~'ii\i~~ 

10 • ,_. - ·""' • - J ,_ _ _ . .rl I . / . ., ~ 

20 • '"- / _., .. ./ , j f 
30 • Windward y -.. - L e;ward '/'-. .......... .J 

j 
My (HN- m) 

Figure 18. Out-of-plane moment distribution in arch 
rib for (D + rt W) . 
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At the model arch with the dimensions of Ohmishima 
Bridge, the structure reaches its unstable state due 
to the yielding of side ties and lateral braces 
around the portal frames. The plastification of the 
members at the maximum load is illustrated in Figure 
19, but considerable portions of the members still 
remain ta be elastic . All of the braces in the both 
side spans at floor systems not shown in Figure 19 
will yield. If the plastic buckling of lateral 
braces between the ribs around the portal frames is 
taken into consideration in the numerical calcula
tions, the values of Omax in Table 7 will be reduced 
to about 2.5. 

f 1 
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Figure 19. Plaetification of members at maximum load 
for (D +a W). 
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Finally, it should be added that experimental 
studies were carried out at Osaka University(2), and 
that six models in steel of a reduced scale of 1/49.5 
for Ohmishima Bridge were tested to examine the in
plane and out-of-plane elasto-plastic behaviors and 
the ultimate strength. As the result, the ultimate 
strengths of the models by the theoretical analysis 
presented in this paper were verified quite well with 
1 - 4% errors in comparison with the experimental 
values. 

Conclusions 

The theoretical and experimental analyses of two
hinged solid-rib steel arches stiffened by side ties 
modelling Ohmishima Bridge with the span length of 
297m, reveal the following structural character
istics: 

1. The stiffening effects of side ties under in
plane loads are so remarkable that they can reduce 
the bending moments in arch ribs and also can con
straint the geometrical nonlinearities of the arch, 
resulting in an increase of the load-carrying capaci
ty of the overall structure. 

2. Since the side ties can constraint the out
of-plane displacements of the arch ribs, they can in
crease the overall ultimate strength under out-of
plane loads. 

3. Since it results that the span length of the 
arch rib has been shortened in appearance by the help 
of side ties, this new type of two-hinged arch will 
be more suitable for long-span arch bridges. 
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