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Abstract 

An outline is given of the manner in which 
expressions for the buffeting forces of the wind, 
together with those for the self-excited aero
dynamic forces due to resulting bridge motion, may 
be used to predict the random response of a long
span bridge to the action of the natural wind. The 
problem is examined in terms of the individual 
responses of the several modes of the structure as 
they are randomly excited, both in space and in 
time, by wind gusts. The bridge deck modes in ques
tion are each considered to have vertical, torsional 
and lateral sway components. Recent formulations 
for wind horizontal and vertical gust spectra are 
employed. More complete literature references are 
cited for the details of the methodology used. 
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Introduction 

The wind-induced responses of suspended-span 
bridges include vortex-induced activity, flutter, 
galloping, and buffeting. Basically, the intrinsic 
character of each of these phenomena is determined 
in the first instance by the geometry of the deck 
cross-section, It has become the practice in the 
last ten years to abstract the measured unsteady 
aerodynamics characteristics of the deck- once 
its geometry is set- from its particular struct
ural characteristics. The two may then be reunited 
later in whatever way is dictated as appropriate 
by the structural dynamics of the full bridge. 

The aerodynamic forces consist of a) the steady 
forces, b) the gust, or buffeting forces, and 
c) the self-excited forces (related to motions of 
the bridge). Any analysis must provide for all of 
these. 

In modern bridges the vertical, torsional, and 
sway components of any given natural structural 
mode must all be considered; modes are not correctly 
characterized uniquely as being uncoupled in each 
of these motions. The motion in one component 
sense will engender structural and aerodynamic 
forces in one of the others, and these interact, 
Hence analytic provision must be made for all 
possible forces as a study progresses. 

While section models of bridges remain the 
investigatory method of choice, they should now 
be conceived of only as purely geometric sources 
of aerodynamic data, never as proper analogs of 
the full prototype. This is true because conditions 
under which a section model can be conceived of 
as truly representative of a prototype are indeed 
very restrictive: the bridge deck must be 
straight; bending and torsion modes must be strictly 
Ulll'.UU]Jleu, auu Ll1ey must possess ldentll'.al modal 
r ~ • • 
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a section model can be a misleading object of study. 
Further, section models should not be tested 
exclusively in laminar flow, but the effects of 
turbulence included (or considered) in order to 
verify its local effect up deck-section aerodynamic 
properties. 



Structural Modes 

It will be assumed here that a single, linear 
spanwise coordinate x suffices to define any point 
along the bridge span (even if the latter is 
curved in plan or elevation). Since the full 
bridge is three-dimensional, with displacement 
components h(x), a(x), p(x) in vertical, torsional, 
and sway directions, respectively, the total deck 
section displacement may be represented as a super
position of the components in modes i: 

h(x, t) l: hi (x) B ~i (t) (la) 
i 

a (x, t) l: ai (x) ~i(t) (lb) 
i 

p (x, t) l: pi(x) B ~i (t) (le) 
i 

where B, the deck width, is a reference length. 

Steady Aerodynamic Forces 

These are simply given for unit span by 

Lift: L = ..!. pU2 (B) CL (a) (2a) s 2 

Drag: D = ..!. pU2 A CD (a) (2b) s 2 

Moment: M = ..!. pU2 B2 
CM (a) (2c) s 2 

where A is projected area (normal to the 
horizontal wind) per unit span, p is air density, 
U is mean wind velocity (assumed normal to the 
span). 

Self-Excited Forces 

These are given [l] in linearized form (per 
unit span) by 

Lift: 1 2 * h 
= 2 pU (2B) [K H

1 
U +, L s.e. 

(3a) 

Drag: 1 2 * ;, 
= 2 pU (2B) [K Pl U] (3b) D 

s.e. 

Moment: M s.e. 
1 2 2 * h 

= z pU (2B ) [K A1 U +, 

K A* B~ + K2 A* ] 
2 U 3 a (3c) 

where K = Bw/U is reduced frequency parameter, 
and H~, A1, (i = 1,2,3) functions of K, are self
excited aerodynamic coefficients. 

In the case of vortex-induced oscillations, 
particularly, the above model may require up
grading by inclusion of nonlinear terms. Typical 
third-degree additional terms appropriate to lift 
and moment are 

Lift: 

Moment: 

(Ls.e.)n.f. = i pU
2

(2B) [K H:(%)
3

] (4a) 

(M ) = ..!.2 pU2 (2B 2) [K Ao* <Bu~) 3 ] (4b) s.e. · n.l. 
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These forces must be determined by recourse to 
model experiment, as described in Refs. [l], [2]. 

Buffeting Forces 

These are given [3] (per unit span) by the 
forms 

Lift: Lb(x,t) 

Drag: Db (x, t) 

Moment: ~(x,t) 

~] 
u 

a=a 
0 

(Sa) 

(Sb) 

(Sc) 

where a 0 is the steady net twist under the mean 
wind velocity U; CL, CD, CM (functions of bridge 
deck angle of attack a) are steady lift-, drag-, 
and moment-coefficients, respectively, and 
u(x,t), v(x,t) are respectively the horizontal 
and vertical gust components of the wind. 

Net Equations of Motion 

These take the form 

w. 
1 

where Mv, ML, I are the generalized inertias of 
mass m(x) and mass moment of inertia Ic.g.(x) 
about the deck e.g. calculated for the modal 
components h(x), p(x), a(x): 

(~)i f m(x) h~(x) dx 
1 

span 

(~)i f m(x) 
2 dx pi(x) 

span 

(I\ f I (x) a~ (x) dx 
e.g. 1 

span 

(6) 

(7a) 

(7b) 

(7c) 

and ~i is the mechanical (structural) damping in 
mode i, which has the natural circular frequency wi. 

The generalized force Qi is calculated by 
noting that 
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ow 

where 

oh hB 81;, 
l 

(9a) 

op pB oi;i (9b) 

oa aol;i (9c) 

The details of Qi involve intermodal coupling 
which may be ascribable to the aerodynamics. It 
is not fruitful here to reproduce full details on 
the form of Qi when several modes enter the 
response. Suffice it to give the flavor of Qi for 
the case when one mode alone is assumed to respond 
tentatively assuming negligible aerodynamic 
influences from other modes: 

Qi(t) Q(t) pU2B2 { [K H~ (K) Ghh +, 

* * K H2 (K) Gha + K A1 (K) Gha 

* * + K A
2

(K) G + K Gpp) 
Bl; P

1
(K) u Cl.Cl. 

+ [K
2 

H;(K) Gha 

+ f { [-cuh(x) 

span 

with the definitions 

G = J a
2 

(x) dx 
Cl.Cl. 

span 

c 
p 

=!c 
B D 

+ K2 * A
3

(Kl G )€; 
Cl.Cl. 

+ cM
1
a(x) + Cpp(x)] 

_u(x,t) 
u 

(10) 

Gha J a(x) h(x) dx 
span 

G pp 

C = 1.(dCL I + ! CD(ao)) 
v 2 da a=a B 

c __ _ =---
NL L Ult 

0 

I 
la=a 

0 

Comments on Aerodynamic Response 

In principle, with proper section model back
ground experiments, the entire gamut of responses 
to aerodynamic input can now be calculated, based 
on the above theory. This is being routinely done 
on several modern bridges. However, it is often 
possible, through initial model experiments, to 
establish bridge deck geometric shapes that are 
such as to minimize vortex shedding, incipient 
galloping and flutter [4]. When this type of 
modern attention to aerodynamic contour treatment 
is properly paid in the design stage, it typically 
results in deck sections having H~ < O, A~ < 0, 
*- *- *- *-Hz = O, H3 = 0, A

1 
= 0, A

3 
= 0 for wide ranges of 

the parameter K. This can considerably simplify 
the treatment. 

For example, the criterion for flutter in the 
single mode I; becomes 

eB4 * * ~ [" u + GhaH2 +, 
2[(~+M1) B

2
+I) 

LUhh "1 

* * * GhaAl + G ac/z + G pl} (11) 
pp 

* * w2en, by varying K, values of Hi' Ai (i=l,2) and 
P1 are determined such that the above is satisfied, 
flutter is present; however, note that if the 
criteria listed above are already achieved, flutter 
becomes an impossibility since the righthand side 
of (11) is intrinsically negative. 

There remains only the buffeting problem to 
examine. This problem remains pres·ent even for 
stable geometric configurations. Many modern 
bridges that are not flutter-prone have nonetheless 
not been examined analytically for buffeting. 
Theory given in [2], [3] and the present paper 
point out how this calculation can be carried out. 

Buffeting Responses 

Only the basic outline of this calculation 
will be reproduced here, the details lying 
beyond the scope of the present paper. We consider 
here only the case of buffeting wherein intermodal 
coupling is negligible. 

"Overall" damping~. including aerodynamic 
and structural, can be expressed in the form: 

and the (slightly) modified natural circular 
freauencv can be ~iven by 

-2 2 {l 
p84 * w w 

B2+I)i 
H3 Gha +, 

[ (1'\,H~) 

* Gaa]} A3 

(12) 

(13) 



Under these conventions, the power spectral density 
of response ~i is given by 

SI'; (w) 
i 

1 pU B 

[ 

2 2 ] 

(14) 

where 

J f [Du(xl) Du(x2) Su(xl,x2,w) 

span span 

+ 

In (15) the definitions are used: 

S (~) e 
u 

v 

16 n L c =--u-

-C(x1-x2)/L 

where L =span, w 211 n, and Su' Sv define 
"standard" wind spectra, 

(16) 

(_17} 

From (14) formulas can be derived (as in [3]) 
which enable the calculation of the variance of 
the displacement components h, a, or p. As an 
example the formula for the single-mode variance 
crfi(x) of the vertical displacement of a bridge 
curved in plan but with negligible sway is given 
as 

2 
oh (x) 

where 

GDu =.! 
L 

1 
GDv L 

11h 2 
(x) 
- 3-4 (211n) i; 

[c 2 
u Ghh ~ 2 CuCMl Gha 

2 
+ CMl 

(CV 2 ~h - 2 CvCM2 Gha + 
2 

CM2 

G ] 
aa (19a) 

G 
aa 

] (19b) 

Typical results for high excursions 3crh at the 
center of the hypothetical bridge are listed below 
for various mean wind velocities at bridge height: 

U(mph) 40 50 60 70 80 90 100 110 

3crh(ft) 0.43 0.64 0.89 1.27 1.56 l,86 2.26 2,68 

Full details on the example bridge being 
omitted, the above results are merely illustrative 
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as to trends. A very complete expose' of the 
methods described here, with additional commentary 
on stability under buffeting, is given in Ref. S. 

Summary 

The present paper has sketched, though 
extremely briefly, the methods and approaches 
available to the calculation of aerodynamic 
responses of suspended-span bridges. It has been 
pointed out how the necessary bases for analytical 
insights into the problem can be obtained and used. 
Intrinsic to the method is the postulated use of 
aerodynamic data developed from bridge deck 
section models. 

The point of the study is that if basic section 
model data of the proper sort are first made 
available, extensive prototype response calculations 
can be made reliably on a theoretical basis. 

The methods alluded to briefly herein permit 
of considerable extensions and generalizations 
beyond those mentioned. A notable one of these is 
to demonstrate the fact that flutter of a full 
bridge under turbulent flow may be delayed to a 
higher velocity when many modes participate, due 
to buffeting; and the general buffeting response 
will exhibit an evergrowing mean square amplitude 
with increasing mean velocity U. 
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