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Functional Analysis of Mode Choice 
Robert J. Meyer, Department of Geography, and Irwin P. Levin, Institute of Urban 

and Regional Research, University of Iowa 
Jordan J. Louviere, Center for Behavioral Studies of the Institute for Policy Re­

search, University of Wyoming 

This paper develops a relatively new paradigm for mode-choice behavior 
modeling. The paradigm emphasizes functional form by establishing 
functions that relate subjective evaluations of transportation system at­
tributes to objective levels of these attributes and functions that relate 
observed mode choices and preferences to combinations of subjective 
impressions. These functions are derived from a theory of decision mak­
ing and behavior that views the decision maker as an integrator of infor­
mation. According to this theory, the overall evaluation of a given trans­
portation system can be represented as an algebraic combination of the 
traveler's evaluations of the various attributes of the system. Two exper­
iments were conducted to evaluate this paradigm. Questionnaires were 
distributed to respondents, who were asked to indicate their degree of 
preference for car or bus for each of a series of hypothetical mode­
choice situations. These situations were generated by combining vary­
ing levels of time difference favoring car over bus, cost difference favor· 
ing bus over car, and number of riders in the car. Each judgment thus 
required a trade-off of cost, time, and interpersonal factors. Cluster 
analysis was used to separate respondents into distinct subgroups of 
homogeneous decision makers. These subgroups differed in terms of 
overall preference for car or bus and the relative weighting or trade·off 
of factors. Actual mode choice for work trips was then predicted on 
the basis of preference responses to the hypothetical mode-choice situ­
ations, estimates of cost and time factors for individual respondents, and 
transportation availability constraints. A high level of predictive validity 
was attained in each experiment. It is suggested that the present paradigm 
may be useful for analyzing traveler decision processes, for estimating 
latent demand for alternative transportation opportunities, and for pre­
dicting responses to altered or new transportation systems. 

The purpose of this paper is to report an empirical 
evaluation of a new paradigm in behavioral transporta­
tion modeling. The paradigm is largely an outgrowth 
of a recent series of investigations into the proGesses 
of transportation mode choice that used the inform·ation 
integration (or functional measurement) theory of human 
judgment research (1). The general emphasis of the 
paradigm is on functional form-establishing functions 
that relate objective attributes to subjective impres­
sions and functions that relate subjective impressions 
to observed choice behavior. While its general struc­
ture has previously been outlined in some detail (2), 
the paradigm has yet to be fully evaluated empirically. 
It is toward the end of achieving such an evaluation that 
this research is directed. 

The first part of this paper reviews the paradigm in 
light of the current state of the art in disaggregate 
transportation modeling, and the second part reports 
the results of two investigations designed to relate 
abstract (hypothetical) mode preferences to actual 
mode choices for a sample of consumers. The paper 
concludes with a discussion of the advantages and 
limitations of the approach in predicting mode choice 
vis-a-vis existing capabilities. 

STATE OF THE ART: RANDOM 
UTILITY MODELS 

The literature on disaggregate modeling approaches to 
the study of mode-choice behavior is an extensive one. 
As a number of good reviews of this literature are 
available elsewhere (3), we shall provide only a rough 
sketch of the most salient directions evident in this 
literature in order to compare features of the proposed 
paradigm with those of the more traditional approaches. 

The most prevalent modeling paradigm to date in the 

analysis of mode-choice behavior has been the stochastic 
(random utility) model (3). In this model, individuals 
are thought to hold indei)endent utilities for each of N 
alternatives, and the probability that any alternative i 
will be chosen is the probability that the utility of al­
ternative i is greater than the utility of any of the other 
N - 1 alternatives. These utilities are thought to com­
prise two independent elements: a vector of strict (non­
stochastic) utilities reflecting observed characteristics 
of an alternative and an associated random component 
reflecting unobserved characteristics. The distribution 
function that best describes the random component is 
assumed on an a priori basis by a given investigator. 
Various model forms, such as the multinomial logit and 
probit models, are then generated by differing distribu­
tional assumptions. 

The vector of strict utilities of an alternative may be 
characterized in terms of a set of salient attributes 
(dimensions) of the alternative and a transformation or 
composition rule by which the multidimensional vector 
is mapped into a unidimensional overall utility. 

Until now there have existed few theoretical guide­
lines to assist the researcher in specifying either the 
components of the utility vector or the composition rule. 
Relevant attributes have commonly been assumed to 
be a set of objective measures of modes and users, 
such as observed mode travel time and user income 
(4), and the composition rule has traditionally been 
assumed to be linear-additive (5). 

Given the arbitrary nature of these assumptions, 
stochastic choice models have been greatly weakened 
as theoretical tools for the analysis of individual 
traveler behavior. As a result, traditional models 
have served mainly as static, descriptive devices .. 

In recent years, a considerable amount of research 
has been directed toward providing a firmer behavioral 
basis upon which to construct models of traveler mode 
choice. Specifically, this research has been char­
acterized by (a) attempts to identify relevant attributes 
in mode choices (6), (b) attempts to relate various 
attitudinal measures to mode choices (7), and (c) 
attempts to provide alternate conceptual frameworks 
for the analysis of traveler mode choice (8). While 
this research has served to introduce sets of meth­
odologies and constructs that may be useful in the 
analysis of traveler behavior, it has fallen somewhat 
short of the goal of providing sets of firm behavioral 
postulates from which models of traveler choice be­
havior might be derived. Many basic questions relating 
to the characteristics and composition rules of in­
dividual utility functions remain unanswered. 

An Alternate Paradigm 

we· shall advance an alternate paradigm to serve as a 
framework for analyzing travel behavior. Its most 
significant departure from other conceptualizations (8) 
is its emphasis on functional form-i.e., the relation:­
ships between decision attributes and observed choice 
behavior. Such functions permit better understanding 
of observed behavior within existing transportation 
systems and better prediction of likely responses to 
changes in such systems. 
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Louviere and others (2) outlined the general form of 
a paradigm from which a-behavior-based theory of travel 
behavior might emerge. It consists of a series of rela­
tionships thought to reflect how measurable attributes 
of travel modes are translated into individual choice 
behavior. Specifically, they defined S;k as the objective 
value of the ith attribute of mode k, Skas a vector of 
such attributes (S1k, Slk, ... , S;k), X;k1 as the subjective 
(perceived) value of the i th attribute of mode k for trip 
purpose 1, and xk1 as a vector of perceived attributes 
of mode k for purpose 1 (x1k1 , x2k,, ... , X;k1 ). Further, 
they defined Rkl as the unidimensional subjective value 
(utility) of mode k for trip purpose 1 and Tk1 as the ob­
served patronage of mode k for trip purpose 1. They 
then established the following recursive system. 

X1Jc1= F(Sik) 

Ri.:1 = G(Xk1) 

(I) 

(2) 

(3) 

(4) 

In other words, Louviere and others established a 
formal framework for examining the following relation­
ships: 

1. Function relating subjective perceptions of mode 
attributes to objective magnitudes; 

2. Function by which an i-dimensional vector of 
perceived attributes is transformed into a unidimensional 
subjective response space; 

3. Function relating such 9verall subjective re­
sponses to observed travel behavior; and 

4. Composite rule relating the original objective 
attribute values to observed choice behavior. 

Much of the traditional research in mode-choice 
modeling might be characterized as attempts to directly 
examine the relationship expressed in Equation 4. We, 
however, argue that such a relationship becomes mean­
ingful only when it is established in the context of a 
recursive system (such as outlined above). In addition, 
recent attitudinal research might also fit this frame­
work. Studies that have attempted to derive measures 
of the perceived quality of modal attributes (6) involve 
Equation 1, while studies that deal with the relationship 
between attitudes toward modal attributes and mode 
choices (7) involve Equation 3. 

The following section describes one approach for 
simultaneously establishing the functional forms ex­
pressf'.d in Equations 1-4 .. 

Functional Measurement 

Functional measurement is a method of describing the 
judgment and decision processes underlying behavioral 
data. If our data are derived from observations of 
human choices and preferences, then the processes or 
functions describing these choices and preferences can 
be investigated within this framework. While other 
approaches such as conjoint measurement have been 
suggested for deriving such functions, functional mea­
surement appears to provide the most flexible analytic 
tool because of its ability to diagnose alternative func -
tional forms (combination rules). Reviews of functional 
measurement and its applications to modeling choice 
and decision rules are available (1, 8). 

In this approach, each stimulus object is considered 
to be a combination of attributes. Algebraic rules or 
utility functions are used to describe the ways in which 
individuals trade off these combinations of attributes. 

The general form of the algebraic expression relating 
the overall evaluation or utility of a stimulus object 
(e.g., a transportation system) to the subjective values 
of its various attributes can be stated as R; = f(X 1;, 

X2;, ••• ,Xk;), where R; is the overall evaluation of stimulus 
combination j and X;; is the subjective value of attribute 
i on stimulus j. 

In many applications, Ri is a rating of the desir­
ability of stimulus j. The function f is estimated from 
goodness-of-fit tests of alternative model forms. The 
parameters X;J are estimated from responses to var­
ious stimulus combinations and can then be related to 
objective stimulus attribute levels, Si;· This relation­
ship between X;; and S;; corresponds to Equation 1 above. 

Equation 2 relating overall response to a combination 
of perceived attributes is typically obtained by an 
analysis of variance of responses in a factorial experi­
ment where each dimension of a multiattribute stimulus 
is varied over several levels. The crucial design 
feature of such an experiment is that respondents make 
a single evaluation of a complex system rather than 
separately evaluate single attributes in unspecified 
contexts. Analysis of variance provides a goodness­
of-fit test for alternative models. The reader is 
referred to Anderson (8) for a complete discussion of 
various model forms and how they are treated. 

The functional measurement technique has bee.n ap­
plied to the study of mode-choice decisions in a number 
of instances. For example, studies by Levin (1) em­
ployed functional measurement in the analysis of student 
mode preferences and generally uncovered decision 
rules that were nonlinear in form. These findings were 
significant in that they cast doubt upon the assumption 
of linearity in utility functions common in applications 
of existing mode-split models such as the multinomial 
logit. Although these studies were primarily concerned 
with diagnosing combination rules used in simulated 
mode-choice situations rather than with describing actual 
mode choices, some pilot work has tried to relate 
laboratory-derived models to actual mode choices. The 
results of these pilot studies suggested that habitual car 
drivers and bus riders have different trade-offs (com­
bination rules) in evaluating car and bus attributes. 
Such results are encouraging, because they help to em­
pirically define the relationships expressed in Equations 
3 and 4 of our recursive system-that is, the relation­
ships between subjective responses in a laboratory 
simulation setting and actual mode-choice behavior. 

The experiments described below follow this latter 
trend and employ the functional measurement approach 
to further explore the relationships given in Equations 
1-4. In addition, they expand the simple car-bus mode 
choice to include shared rides as well as solo car driv­
ing. The purpose of the experiments was to uncover 
the form of the algebraic utility or decision model 
underlying mode-choice trade-offs and to relate this 
model to actual mode-choice proportions. Also of 'in­
terest were (a) whether variations in utility functions 
across groups of consumers can be related to socioeco­
nomic, demographic, and situation characteristics, and 
(b) whether actual mode choices for work trips can be 
predicted on the basis of responses to hypothetical 
mode-choice situations. 

EXPERIMENT 1 

Responses to a questionnaire were obtained from a 
sample of 99 employees of the University of Iowa. The 
questionnaire included sections designed to assess the 
worker's personal background, work schedule, distance 
from work, present mode split and satisfaction level, 
estimates of transportation costs, and estimates of the 



importance of a variety of factors related to transporta­
tion. The most important section of the questionnaire 
was a series of mode-choice responses to various 
trade-off situations. The specifics of this key series 
are described below. Finally, in an effort to gain in­
formation about constraints that may have influenced 
actual mode choices, the following open-ended question 
was inserted at the end of the questionnaire: "What 
are the most compelling reasons why you personally 
choose the method of travel you use to get to and from 
work?" 

Specifics of Mode -Choice Questions 

Respondents were presented with descriptions of 27 
hypothetical trade-off situations described by these 
factors: (a) time difference (O, 15, or 45 min/d longer 
for bus than for car), (b) cost difference {O, 25, or 
75¢/d more for car than for bus), and (c) number of 
riders in the car with the driver {O, 1, or 3). This 
latter factor thus includes both ride sharing and solo 
driving as mode-choice alternatives. Each given 
situation was described by one level of each of two 
factors, (a) and (b), {a) and (c), or {b) and (c). One 
complete factorial design was formed for each pair of 
factors; three 3-x-3 factorial designs were formed 
overall. 

In the instructions, respondents were told to assume 
that both a car and a bus were available to them in each 
hypothetical situation and that, assuming these avail­
abilities, they were to respond on the basis of the in­
formation presented. 

The purpose of this instruction was to elicit a car­
bus propensity abstract from an availability constraint. 
For each hypothetical situation, the respondent was 
asked to rate the relative likelihood of taking the bus 
or car. A 20-point rating scale was used, where 0 
represented "certain to take car" and 20 represented 
"certain to take bus." Respondents were to use num­
bers between 0 and 20 to represent varying degrees of 
preference for car or bus. This car-bus preference 
scale was used previously (1) and provides information 
about degree of preference as well as binary mode 
choice. 

Results 

Description of the results will be divided into three 
phases. In phase 1, analyses of responses to the hy­
pothetical mode-choice situations will be presented. 
Phase 2 will explore the relationships between decision 
processes identified in phase 1 and group differences in 
socioeconomic, behavioral, and situational characteris­
tics. In phase 3, responses in the experimental task 
will be related to actual mode choices. 

Phase 1 

Because each respondent completed only one replication 
of the experiment, decision models could not be tested 
at the level of the individual respondent. However, by 
grouping respondents who exhibited similar arrays of 
responses into segments, inferences about individual 
decision-making processes could be made at a minimum 
risk of fallacy. 

In order to derive homogeneous decision-making seg­
ments, the raw responses of each of the 99 respondents 
in the experimental task were subjected to a cluster 
analysis. This appeared to provide the most reasonable 
grouping tool for this purpose by virtue of its ability to 
differentiate respondents based on both pattern and 
magnitude of response. Q-mode factor analysis, a 

3 

possible alternative, would differentiate purely on 
pattern. For example, an individual who would take the 
car under all trade-off situations could, quite conceiv­
ably, be grouped with one who would ride the bus under 
all situations. Because we were interested in relating the 
groups to actual mode ridership, this would clearly not 
be a desirable result. 

The results of the analysis suggested that the data set 
comprised three salient clusters of respondents, one 
with 30 members, one with 51 members, and one with 
18 members. The next stage of analysis was to identify 
each group in terms of differences in their revealed 
decision-making processes. 

To permit this identification, separate analyses of 
variance were performed for the responses of each 
group. Three two-way repeated measures analyses, 
corresponding to the three 3-x-3 designs contained in 
the experiment, were conducted for each segment. An 
examination of the grand mean across all cells for each 
analysis for each group provided a clear interpretation 
of the groupings. 

Group 1 {30 members) had a grand mean of 6.3; 
group 2 (51 members) had a grand mean of 10.5; group 
3 (18 members) had a grand mean of 15.3. Recalling 
that responses were recorded on a 20-point rating scale, 
we see clearly that group 1 was a car-biased group and 
group 3 was a bus-biased group. Group 2 was in the 
middle and, for reasons that will be made clear later, 
was defined as an unbiased group. 

Plots of mean values for each cell of the cost 
difference-time difference subdesign for each group 
are shown in Figure 1. Several things should be kept 
in mind when examining the three panels. Parallel or 
nearly parallel lines show that the two factors being 
plotted combine in an additive fashion to determine car­
bus preference ratings for that group. The slopes and 
separations of the lines reflect the relative degrees of 
importance or weights of the two factors. 

The comparative spacing of the lines in a given panel 
and the shape of each line (straight, negatively ac­
celerated, or positively accelerated) provide informa­
tion about the psychophysical functions, that is, the 
relationships between objective attribute values and 
their subjective counterparts (Equation 1). If the lines 
in a given panel converge at a particular level of the 
variable plotted on the abscissa, this shows differential 
weighting (nonadditivity), with that particular level hav­
ing greater weight than other levels of that variable. 

For all three groups, preference for the car in­
creased (approached the low end of the scale) as time 
savings for car over bus increased and preference for 
the car decreased as cost savings for bus over car in­
creased. 

For the car-biased group (Figure la) the nonparal­
lelism suggests a nonadditive combination rule for time 
differences and cost differences in determining car-bus 
preferences. This was confirmed by a significant in­
teraction in the analysis of variance. Convergence of 
the lines at a time difference of 45 min indicates that 
cost difference had less effect at high time differences 
than at low time differences. This finding replicates 
and extends the generality of the Levin study (1) and sup­
ports the interpretation that car-bus preferences are 
based on a weighted averaging (a common form of Equa­
tion 2) of cost and time factors, where respondents 
place greatest weight on those pieces of information that 
support their initial biases. Car-biased individuals 
thus tended to ignore the cost differences favoring the 
bus when time savings favoring the car were great. 

For the unbiased group (Figure lb), the curves are 
nearly parallel, which suggests that weight biases were 
not present in this group. The sizable spacings and 
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Figure 1. Time difference and cost difference interaction plots for three 
bias groups. 
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Table 1. Group means and standard deviations on questionnaire items. 

Car-Biased Unbiased Bus-Biased 
Group Group Group 

Item Mean SD Mean SD Mean SD 
, 

Age, years 37.4 10.5 36 .3 13 .9 39.1 13 . l 
Sex, 0 = female, 1 = male 0.47 0.5 0.49 0.5 0.61 0.5 
Income, 7 categories 5.3 1. 7 4.6 1.9 4.8 1.5 
Years employed at Uni- 8.5 8.3 5.5 13 . 7 8.9 6.5 

verslty of Iowa 
Home-to-work distance 3.8 3.4 7.8 9.6 2.5 3.2 
Home-to-bus-stop distance 0.96 2.9 4.40 9.4 0.93 3.3 
Variability of work shift, 0.57 0.5 0.45 0,5 0.28 0.4 

0"" no, I ~ yes 
Irnportancc ratinl-{S (20-

point scale\ 
Travel time 15.3 1.3 13 .0 3 ,6 11.5 3.5 
Cost 7.9 4.2 11.8 2.7 12.0 2.7 
Amenities 7.9 5.5 4.6 3.9 I. 1 0.5 
Convenience 13.6 3.1 9.7 4.6 6.7 5.4 
Privacy 12.6 2.9 12 .6 3.3 11. I 5.4 
Energy conservation 9.1 3.5 11 .2 3.8 12.6 4.5 

Satislaction with current 17.5 4.3 14. 9 4.7 17.4 3.2 
mode 

slopes of the curves suggest that the manipulated fac­
tors had large and systematic effects on the car-bus 
preferences of the unbiased group. Thus, the approxi­
mately neutral mean response of this group reflects a 
balancing or trade-off of factors rather than a lack of 
responsiveness to the variations . 

Finally, the plot for the bus-biaaed group (Figure le) 
reveals a small (but statistically significant) interaction 
between cost differences and time differences that is of 
opposite form to that observed for the car-biased group. 
Cost differences tended to have less effect at low time 
differences than at high time differences. 

The figure also shows how responses to multiattribute 
systems can be used to define the functions relating 
subjective perceptions of mode attributes to objective 
magnitudes (Equation 1). Car-bus preferences change 
little as time difference increases from 0 to 15 min, 
but preference for the car increases greatly as time 
difference increases from 15 to 45 min. The psycho­
physical function for time difference is thus positively 
accelerated for each group. 

The three groups identified by the cluster analysis 
differed in terms of the relative weighting of factors 
manipulated in the experiment. The car-biased and 
bus-biased groups differed considerably; the unbiased 
group showed some of the same effects as each of the 
other two groups, namely, a large time difference ef­
fect as the bus-biased group and a significant rider 
effect as the car-biased group. Only the bus-biased 
group was uninfluenced by the number of riders. The 
other two groups showed a decreased preference for 
the car as the number of riders increased. 

At first thought, it might seem counterintuitive that 
respondents who preferred the money-saving mode 
(bus) would be heavily influenced by time factors and 
that respondents who preferred the time-saving mode 
(car) would be heavily influenced by cost factors. 
However, what this means is that degree of preference 
for the bus by respondents in the bus-biased group was 
influenced by the amount of extra time involved in 
taking the bus, and degree of preference for the car by 
respondents in the car-biased group was influenced 
by the amount of added cost involved in driving a car. 
Viewed in terms of these trade-off processes, the re­
sults make sense. 

The next phase of data analysis examines the rela­
tionship between group differences found in phase 1 and 
differences in other factors measured in the experi­
mental questionnaire. 

Phase 2 

Table 1 summarizes res.ults for various parts of the 
questionnaire when respondents were divided into the 
groups identified in phase 1. In terms of the socioeco­
nomic variables, the key differences among groups 
were in terms of income, home to work distance, and 
work shift variability. 

As might be expected, the car-biased group tended 
to have a higher income and greater variability in work­
ing hours. The most pronounced difference was in 
terms of home to work distance, where the unbiased 
group lived considerably farther from place of em­
ployment than either of the other two groups. 

Ratings of importance of various factors differed 
among groups. As would be expected, amenities, con­
venience, and privacy were rated more important by 
car-biased respondents than by bus-biased respondents, 
while conserving energy was rated more important by 
bus-biased respondents. The high rating of privacy 
by the car-biased group is consistent with the large 
effect of number of riders observed for that group in 



phase 1. Travel time was rated more important by 
car-biased respondents, and cost was rated more im­
portant by bus-biased respondents. While this seems 
to be the opposite result of phase 1, these ratings were 
made in the abstract and did not actually involve trade­
offs of specified levels of competing factors. 

While car-biased respondents may presently choose 
car over bus because of time savings, this does not 
necessarily mean that they would be unresponsive to 
changes in cost factors. The functional measurement 
procedure used in phase 1 revealed trade-off relation­
ships that operate in car-bus preferences and would 
seem to provide more information about decision pro­
cesses underlying mode choice than would simple im­
portance ratings. In particular, the nonlinear functions 
obtained in the trade-off analyses show that cost and 
time factors increase in importance when they reach 
extreme values. 

Ratings for the unbiased group were generally in­
termediate to the other two groups. However, this 
group had lower ratings of satisfaction than did the 
others. This is consistent with responses to the open­
ended question at the end of the questionnaire. Respon­
dents in the unbiased group were most apt to indicate 
that they took their present mode only because it was the 
only one available. Results for this group suggest that 
it is composed of many respondents who are captives 
of their present mode but who would consider switching 
modes if transportation alternatives were offered. 

A regression analysis was then conducted to quantita­
tively relate the grouping assignments to the following 
socioeconomic measures, demographic characteristics, 
and transportation constraints obtained in the question­
naire: home to work distance, home to bus stop distance, 
work time (day versus night), type of work shift (fixed 
versus variable), variability of work schedule, business 
and personal needs (ratings) for car, convenience of 
parking at work place (rating), work place (code), age, 
sex, and income. 

The ability of a linear combination of these variables 
to predict group membership was measured by two 
statistics: the overall proportion of variance (R2

) of 
grouping explained by the linear combination and the 
proportion of cases correctly assigned to each bias 
group. The resulting overall regression was significant 
beyond the 0.01 level, but it explained only 27 percent 
(corresponding to R = 0. 52) of the variance in grouping. 
This corresponded to 67 percent of cases being cor­
rectly assigned to bias groups in a discriminant analysis. 
While this result is disappointing from the point of view 
of identifying bias groups on an a priori basis, it was not 
unexpected, since the effect of socioeconomic variables 
on attitudes is most likely one that operates over time. 
One might, then, expect the cross-sectional correlation 
to be low. 

Phase 3 

The next phase of analysis was the crucial one of relat­
ing responses in the experimental task to actual rnode­
choice behavior. Ideally, this would be done by taking 
a model of mode choice derived from hypothetical 
trade-offs for individuals and substituting in measures 
of the individuals' real-world transportation environ­
ment. Each of these one-point predictions would then 
be correlated with frequency of patronage of car and 
bus. In the present case, individual models were not 
available and a simplified alternative model was tested 
for the frequency of a given mode choice: 

I"';= f (5) 
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where f equals bias, home-to-work distance, most ex­
pensive mode, and bus availability. 

Bias was measured by the individual's mean response 
over all cells in the experimental design. The second 
factor, home-to-work distance, was a surrogate for the 
time difference factor manipulated in the experiment. 
The third factor, most expensi·1e mode, was a binary 
surrogate for the cost difference factor, because many 
respondents could not articulate their estimates of costs 
of various travel modes, but some respondents indicated 
that it was actually cheaper to drive a car than to take 
the bus. The last factor, bus availability, was inserted 
as a binary variable to reflect constraints on actual 
mode choice. 

It might be helpful at this point to briefly discuss the 
substantive meaning of the model being tested. It is 
hypothesized that, in an experimental situation, individuals 
carry with them and reflect in their responses the fac­
tors and attitudes relevant to them in their transporta­
tion decisions. These affect their overall bias in the 
experimental task and their weighting of factors manip­
ulated in the experiment. However, real-world con· 
straints may be removed in the controlled experimental 
task to simplify analysis of the decision processes, such 
as by specifying that both car and bus are available in the 
present case. Thus, the present model for predicting 
actual mode choice incorporates a measure of response, 
surrogates for the variables manipulated, and a classi­
fication of real-world constraints into the experimental 
task. 

The dependent variable, mode patronage, was mea­
sured in terms of the proportion of work trips by bus 
during the month prior to receipt of the questionnaire. 
As the questionnaire was administered during the sum­
mer, a number of respondents indicated that they either 
walked or rode a bike. However, in all but one of these 
cases, respondents added information about their non­
summer mode. This information was used to reassign 
nonmotor vehicle trips. The one exception was dropped 
from further analysis, as was one other respondent 
who indicated proportion of trips on the inner-campus 
bus system rather than home-to-work trips. Hence, 
the final sample size used for this analysis was 97. 

Specifically, the following regression of the factors 
defined in Equation 5 was used to predict bus patronage: 

Prop8 = [a(mean) + b(HWD) + c(min)] (avail)+ e 

where 

Propg 
mean 

HWD 
min 

avail 

proportion of bus trips, 
mean response to experimental task (20-
point scale), 
home to work distance, 

{
1 if car rated cheaper than bus or 
0 if otherwise, and 

{
O if no bus available or 
1 if otherwise. 

(6) 

The availahility factor was entered as a multiplier in the 
regression equation because, if it were at a 0 level, 
then frequency of bus patronage would be 0. 

The prediction was good and explained over 78 per­
cent (based on R = 0.885) of the variance in the propor­
tion of bus trips for different respondents. An ex­
amination of residuals revealed some tendency for 
overprediction of low values and underprediction of 
high values, but overall the model appears to provide 
a reasonable description of the data, especially in light 
of the crudity of measurement of some of the predictor 
variables. 

The single factor, bias (mean response on experi-
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mental task), accounted for over 70 percent of the 
variance in the number of bus trips. It is quite likely 
that, had actual travel time and cost difference measures 
been available, the overall predictive ability of the 
model would have been even higher. 

In order for the predictive ability of the present model 
to be compared to more traditional models such as the 
logit, r es pondents were divided into two groups, car 
riders and bus r iders, accor ding to the mos t frequently 
used mode . The present model was t hen applied in a 
discriminant analysis to deter mine its classificatory 
ability. The r esult was that 94 percent of tile cases 
were correctly classified. This result is comparable 
to those obtained in the more successful applications of 
logit-type analyses that have been reported (4). 

For a further comparison with traditionalmethods, 
a linear combination of importance ratings of various 
factors measured in the questionnaire was used in place 
of the bias measure in Equation 7 to predict bus patron­
age. The following importance ratings were used: 
travel time, cost, amenities, convenience, privacy, 
and energy conservation. The resulting regression 
model was highly significant, but the predictive ability 
of 59 percent was clearly less than that obtained with 
the bias measure from the experimental task. 

EXPERIMENT 2 

In an effort to provide further substantiation of the re­
sults obtained in the first experiment, a second ques­
tionnaire was designed and distributed to a random 
sample of 150 residents of Iowa City. 

Questions 

The form was similar to the first, with two major 
modifications: (a) the experiment included the factors 
travel time difference, cost difference, and number of 
riders in a 3-x-3-x-3 factorial design where each 
evaluation made by the respondent was based on all 
three factors (as compared to two factors for each 
evaluation in experiment 1); and (b) direct estimates 
were obtained for each respondent of actual car-bus 
travel time and cost differences, as well as number 
of auto riders. 

Results 

Of the original 150 questionnaires distributed, 72 were 
returned. As the focus of the investigation was on car­
bus modal split for work trips, nonworkers and indi­
viduals living a few blocks from their work places who 
indicated walking as the primary mode were deleted 
from the analysis. This reduced the total sample size 
to 48. 

Following the steps employed in the analysis of the 
first experiment, raw responses by each of the 48 in­
dividuals to the hypothetical mode-choice situations 
were first cluster analyzed. As in the first experi­
ment , three salient clusters of respondents were identi­
fied : a car-biased group (N = 14), a bus-biased group 
(N = 17), and an unbiased group (N = 17). Responses 
within each of these groups were then subjected to 
analysis of variance. 

Despite the small sample sizes, results bore a gen­
eral resemblance to those obtained in the first experi­
ment. For example, plots of the cost difference times 
time difference interaction revealed a noticeable con­
vergence of responses toward the lower end of the scale 
(indicating car preference) for the car-biased group at 
a time difference of 45 min. This, again, suggests a 
nonadditive combination rule fortime and cost differences 

for this group. The major dissimilarity between the 
two sets of results was an absence of response con­
centrations at extreme ends of the scale for the car-
and bus-biased groups. This would appear to be related 
to the nature of the new design-the rider factor was 
considered simultaneously with time and cost differences . 
Hence, the observed effects of time and cost reflect the 
averaging of a third factor that has a moderating in­
fluence. 

Actual mode-choice behavior was related to experi­
mental response in a fashion similar to that of the first 
experiment. In the new analysis, however, estimates 
of time and cost differences as provided by respondents 
were available. The model tested, therefore, was 

Prope = [a(mean) + b(cos dir) + c(tim dir) + d(riders)) 

x (avail)+ E (7) 

where 

mean 

cos dif 
tim dif 
riders 

avail 

mean response to experimental task (20-
point scale), 
estimate of actual car-bus cost difference, 
estimate of actual car-bus time difference, 

= number of riders who share (or would 
share) a work trip, and 

_ { 0 if no bus available or 
- 1 if otherwise. 

The level of prediction of the proportion of bus trips 
was similar to that reported for the first experiment. 
The resulting R2 was 0.77 (based on R = 0.88), which 
corresponded to 95 percent of respondents being cor­
rectly classified into predominantly bus or predominantly 
car groups in a discriminant analysis. 

DISCUSSION 

This paper has advanced and empirically assessed an 
alternate paradigm in the modeling of transportation 
mode choice. The approach departs from most tradi­
tional modeling paradigms in terms of its emphasis on 
deriving functional forms that best describe the pro­
cesses by which individuals arrive at transportation­
related judgments. 

Results of the reported studies produced two findings 
with respect to the utility of behavioral models of mode 
choice. First, they showed that mode-choice models 
derived in earlier laboratory studies with student 
populations can be generalized to nonstudent populations. 
In fact, cluster analysis of behavioral data led to a 
more meaningful system of classifying respondents than 
would a priori·population subdivisions. Second, they 
showed that the rating responses to hypothetical mode­
choice trade-off situations are related to actual mode 
choices. Specifically, a model that combined responses 
to an experimental task with situational constraints 
yielded high explanatory ability in the prediction of 
actual mode choices. The levels of prediction obtained 
with the simple regression models compared favorably 
with reported successful applications of traditional 
stochastic mode-choice models. 

A series of equations was outlined for developing a 
behavior-based theory of travel behavior. The experi­
mental task of the present study directly examined 
Equations 1 and 2, which deal with subjective evalua­
tions of mode attributes and the transformation and in­
tegration of subjective evaluations into an overall sub­
jective response. Equations 3 and 4, which deal with 
the relationships linking objective and subjective attrib­
ute values to actual choice behavior, were examined, 
at least in a preliminary manner, in the current at-



tempt to predict actual mode choice. 
The establishment of stronger links to actual choice 

behavior awaits further study in which trade-off factors 
manipulated in hypothetical mode-choice situations can 
be measured accurately for each individual in the sample 
and decision models can be calibrated for individual 
consumers. 

Once clear links are established between rating 
responses in abstract settings and actual mode-choice 
behavior, the stage will be set for the most useful ap­
plication of the behavior-modeling approach. The 
derivation of decision-making models through carefully 
designed experimental tasks can be used to predict future 
responses to changes in transportation systems. Exist­
ing stochastic demand models seem theoretically weak 
for such purposes. Behavioral models can be used to 
directly estimate latent demand for alternative trans­
portation opportunities. In the present study, for ex­
ample, the mode-choice model without the availability 
constraint might be thought of as measuring such de­
mand. 

The relative degree of success of this study in 
predicting mode choice directly from attitudinal data 
is noteworthy.· The functional measurement approach 
appears to be a means of side-stepping traditional 
issues related to the identification and measurement 
of all the relevant variables in mode-choice decision 
making. By combining experimental design and demo­
graphic analysis, a variety of variables affecting mode 
choice can be studied directly; other factors can also 
be shown to exert their influences through individual 
differences in response bias and the weighting of in­
formation. 

The general paradigm proposed in this paper is one 
that seeks to advance our understanding of human travel 
behavior through a concerted program of laboratory ex­
perimentation and real-world verification. If laboratory 
behavior in simulated transportation environments can 
be shown to be predictive of that observed outside the 
laboratory, then such simulation would provide a power­
ful tool in the testing and development of theories of 
travel behavior. 

This research provided some initial support for such 
a link. Nevertheless, the research program remains 
at an embryonic stage, and many basic questions related 
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to the utility of behavioral models in the prediction of 
travel behavior remain unanswered. We hope the re­
sults of this research will encourage additional efforts 
in this direction. 
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Incentives and Disincentives of Ride 
Sharing 
Joseph B. Margolin and Marion Ruth Misch, Program of Policy Studies in Science 

-and Technology, George Washington University, Washington, D.C. 
Mark Stahr, Urban Planning Division, Federal Highway Administration, 

U.S. Department of Transportation 

This research examines consumer motivation concerning ride sharing, par­
ticularly carpooling, according to a market segmentation approach. A se­
quential design permitted (al developing hypotheses about ride-sharing mo­
tivation based on qualitative data from intensive discussions in decision 
analysis panels, (bl testing those hypotheses by means of quantitative data 
obtained by survey, (cl developing program strategies on the basis of the 
results and pretesting those strategies with an additional series of decision 
analysis panels. The major market segmentation involved dividing the 
sample by commuting mode and pattern and by occupation type, al-

though additional independent variables were also utilized. This paper 
concentrates on the carpooling attitudes and perceptions of carpoolers 
versus solo drivers. Illustrative findings are also presented by occupation 
group, commute pattern, and sex to illustrate the power of the finer market 
segmentation. The factors discussed include, first, attitudes toward costs or 
interpersonal aspects of carpooling (including match methods), time varia­
bles, carpool routes, parking management and convenience issues and, 
second, demographic characteristics of the two types of commuters. A 
special analysis focuses on the attitudes of those solo drivers who stated that 
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they were interested in carpooling versus those who stated that they were 
not. The purpose is to highlight the motivation of a prime target group to· 
ward three carpool strategy areas: carpool match methods, parking man· 
agement, and dedicated carpool routes. Notable findings include the lim· 
ited appeal of external efficiency factors such as cost savings, the power 
of social aspects of carpooling that can act as either barriers or incentives, 
and the need for personalized carpool programs that also reach out to ac­
tively involve the potential pooler. Specific program strategies are offered. 

Despite some examples of successful ride-sharing pro­
grams, neither carpooling nor other forms of ride 
sharing have yet become widely popular. This study, 
which focused on social as well as economic aspects, 
provides evidence that a significantly larger portion of 
the population can be induced to share rides if attention 
is paid to the different needs, perceptions, lifestyles, 
resources, and values of various market segments 
within the population. 

The work has had three objectives: (a) to develop and 
refine methods for assessing the effects of given psy­
chological, social, and economic factors on mode 
choice, (b) to discover and explain ways in which these 
factors facilitate or inhibit carpooling, and (c) to devise 
carpool-promoting strategies based on traveler needs 
and attitudes and to obtain a traveler-based pretest of 
the effectiveness of these strategies. 

The investigation differs from previous studies, 
therefore, in terms of the scope of its objectives. It 
also differs in methodology, which, although it has been 
reported in detail previously (1), will be reviewed here 
briefly to provide context for fhe findings that follow. 

METHODOLOGY 

The special problem addressed in the study was the lack 
of sophisticated data about consumer attitudes. Little 
systematic, in-depth information existed about which 
specific and different behavioral incentives and disin­
centives affect different groups of transportation con­
sumers, and how these might affect ride sharing. A 
sequential in-depth study design was therefore devised 
and carried out in t~e Washington, D.C., metropolitan 
area. 

Phase 1 

The first step involved going to the consumer to listen 
to his or her preferences, complaints, problems, and 
the trade-offs he or she might or might not be willing to 
make in choosing to carpool. This was done in a series 
of open-ended discussions with small consumer groups 
(5-9· people), or decision analysis panels. The meth­
odology requires considerable expertise in managing and 
analyzing group dynamic process and does not focus dis­
cussion or limit findings to a predetermined set of is­
sues. It provided a hypothesis-generating phase for the 
study and yielded qualitative data about the perceptions, 
attitudes, and tr<msportation behavior of carefully seg­
mented groups of consumers. The 21 decision analysis 
panels were selected according to age, sex, occupation, 
commuting pattern, and other lifestyle variables. The 
findings were used to build a survey questionnaire for 
the second phase of the study. 

Phase 2 

In this hypothesis-testing phase, traveler attitudes dis­
covered in phase 1 were quantified. Five hundred and 
sixteen people were individually interviewed according 
to a stratified sampling process that provided the dis­
tribution shown in Table 1, where the blue- and white-

collar and managerial/executive/professional (MEP) 
workers are divided equally into three groups (33 .3 per­
cent each). Data were analyzed by multivariate analysis 
of variance in order to assess the significance of dif­
ferences between groups on intercorrelated measures 
(~. 

Phase 3 

The quantified results were then utilized to build two 
types of program strategies: (a) those having broad ap­
peal and (b) those having special strategies aimed at par­
ticular market segments of the population. Finally, 
these strategies were pretested with 25 new decision 
analysis panels. 

The selection of commuters for this last series of 
panels included a disaggregation by occupation and com­
muting pattern. However, their current mode choice 
differed from the survey. Four panels were made up of 
carpoolers, two of carpool rejectors (defined as people 
who had had an opportunity to carpool but who did not 
take it), and six of groups with mixed commuting modes, 

MOTIVATIONAL COMPARISON OF 
SOLO DRIVERS AND CARPOOLERS 

Demography of Carpoolers versus 
Solo Drivers 

Carpoolers tended to be older males with regular work 
hours from households where more than one adult was 
employed full time. They commuted a greater distance 
than the solo drivers, but total trip time averaged 
nearly the same, about half an hour. This was not nec­
essarily due to greater travel speed. 

Panel data had indicated a considerable emphasis by 
carpoolers on efficient driving and route selection. 
Women tended to drive alone more than men. The solo 
drivers tended to be younger, and from lower income 
households than carpoolers. As expected, more solo 
drivers worked at jobs with shift changes or with offi­
cially irregular work hours. 

So far, this picture is much like that of other studies. 
A new finding in our sample was that the delays of car­
pool matching services produced a significant negative 
effect, Among those who had participated in a carpool 
campaign, the solo drivers reported having had to wait 
longer for a response than carpoolers. 

In general, the most surprising finding was not in the 
ways that the two kinds of commuters differed, but in 
the similarity of their commuting resources. They both 
tended to show the same ratio of licensed drivers to cars 
in the household and availability of alternative ways to 
commute. On the average, both had lived at the same 
address and worked at the same address for the same 
length of time. Finally, less than a third of either type 
of commuter could say that they had ever been exposed 
in the past to a carpool campaign. 

Attitudinal Factors Affecting 
Mode Choice 

Cost 

Cost is often considered the most important appeal of 
carpool programs. This is understandable. It is clear 
that carpooling does cut commuting costs; carpoolers 
are often eager to talk about the money they save; car­
pool campaigns emphasize the bargain. Even the solo 
drivers in our sample perceived carpooling as a finan­
cial gain; in fact, they considered it a better bargain 
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than the carpoolers did. However, this research did 
not bear out the importance of cost as the most influen­
tial factor affecting the decision to carpool. This is 
particularly true for a large part of the solo driving 
population, with whom we are primarily concerned. 

We asked respondents a series of trade-off questions 
to rate the cost savings of carpooling against such draw­
backs as the time it takes to pick up members, not being 
free to run errands at will on the way home, etc. Re­
sults are presented in Table 2 (p = 0.001). 

Depending on the trade-off, approximately 67-85 per-

Table 1. Phase 2 survey sample 
design. Mode 
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cent of the carpoolers were in favor of the cost savings, 
as expected. The solo drivers were quite different. 
While half of them did agree that "the fact that carpooling 
is less expensive than driving alone to work makes it 
well worth the effort, " even this level dropped sharply 
with the mention of specific drawbacks. Only 38 per­
cent favored the cost saving ovei· the time it takes to 
pick up members, or over the desire to run errands on 
the way home. Only 34 percent thought the saving worth 
having to depend on other people, and a mere 23 percent 
considered that the money compensated for waiting for 

Carpoolers (49.6:') Solo Drivers {50.4:f,) 

Table 2. Cost savings opinions. 

Table 3. Cost savings and 
shifting to carpooling. 

Blue White Blue White 
Collar Collar MEP Collar Collar MEP 

Commuting Pattern {:') {:') {:') {:'l {:() {:') 

Suburb to central business district 5.5+ 5.5+ 5.5+ 5.5+ 5.5+ 5.5+ 
(33.3:') 

Suburb to congested suburb (66.'I:') 11.3- 11.3· 11.3- 11.3- 11.3- 11.3-

Travelers Favoring Cost Savings 

Total Sample Solo Drivers 

Opinion No . ~ No. 1' 

Carpooling Is cheaper and worth the effort {agreement) 515 68.0 257 50.6 
Insurance problems are a drawback (disagreement) 514 56.6 258 44 .5 
Pickup time Is not worth the saving (disagreement) 512 54.9 258 37.6 
Errands are more important than the saving (disagreement) 512 53.5 257 37.8 
Depending on others is not worth the saving (disagreement) 513 51.9 257 34.2 
Carpooling Is cheaper but not worth waiting for late mem- 514 46.7 258 22.7 

bers (disagreement) 

.Response 

Question Choices No . Difference 

How likely would you be to carpool If that way 
your share of the parking costs were 

Y, of what you now pay 191 46.3 6.6 (NS) 
y, of what you now pay 191 45.7 
Free 190 52.9 

Would you change to carpooling or the bus If your 
parking costs increased over what you pay now 
by 

$5/month 235 28.8 38.5 (p = 0.001) 
$10/month 234 43 .5 
$20/ month 234 67 .3 

Would you shift to carpooling or the bus if the 
price of gas went to 

$0.90/gal 257 56.7 20.6 (p = 0.001) 
$1.30/gal 255 71.0 
$2 .00/ gal 254 77.3 

Carpoolers 

No. .,, 

254 85.8 
252 69.0 
250 74.8 
251 70.1 
252 69.4 
252 66.6 

Table 4. Results of multivariate analysis of agreement on the significance of social factors in carpooling. 

ComlJinations of 
Mode, Occupation, Mode x Sex 
and Work Site 

Mode Occupation Solo Driver 
Mode x Site 

Solo Car- Blue White Car-
Total Driver pooler Collar Collar MEP CBD Suburbs Men Women poolers 

Opinion Statement Sample p ( () (4) p (4) (4) ('•) p (1) (4) p {<) (4) (p) 

Socializing is pleasant 73.2 <0.04 68 .2 78.3 82.2 73 . 7 63 .2 NS <0.04 70 .9 63.7 NS 
Talking shop Is 52.0 <0 .04 38.9 65.2 NS NS NS 

pleasant 
Carpooling Is worth 32.0 <0,04 23 .8 40.5 <0,04 42.3 28 .8 25.3 IB. 7 26.0 <0.004 28.4 24.1 NS 

personal disagree-
ments 

Dislike smoking 46 .7 NS <0.003 39.0 45.3 55.5 NS NS 
Dislike rule making 61.0 <0.04 64.3 57.3 76.3 60.1 47.0 NS NS 
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Table 5. Results of multivariate analysis of agreement on the significance of choosing carpoolers. 

Occupation 
Sex Sex Within 

Total Modes Blue White Mode 
Sample Combined Collar (4) Collar (4') MEP (<t} Men (i) Women (4) Combined" 

Opinion Statement (") (p) p (N = 169) (N = 179) (N = 166) (N = 321) (N = 192) (p) 

U I were joining a carpool now, it would be 86.8 NS NS 
important to be able to meet the people 
at least once before making definite ar-
rangements 

I would only carpool with people I already 38.7 NS <0.01 
know 

1 Numbets are 150 men and 103 women solo drivers and 168 men and 89 women carpoolers. 
bNo 1.st of stati,tical significance is yet available'; differences do not appear significant. 
c Although no Ceo1t of statistical significance is yet available, differem:ts appear to be significant. 

Table 6. Results of multivariate analysis 
of agreement on the significance of 
carpool match system preferences. 

NT' NT' NS 

42.2 42.2 32.0 3s.a· 42.5' NS 

Mode Occupation 

Total Solo Car- Blue White 
Sample Drivers poolers Collar Collar MEP 

Opinion Preference (4) 

Be contacted by a carpooler 71.4 
Helped by a neighborhood 68.8 

coorrllnator 
Have no help 68.2 
Use a carpool locator list 
Computerized system 

late carpool members. Before leaving this chart, we 
should note that even the carpooler's enthusiasm about 
cost as the prime factor cooled under the pressure of 
trade-off conditions. 

However, the disincentive of greatly increased com­
muting costs for solo drivers had more effect. As 
Table 3 indicates, substantial numbers of solo drivers 
(67 percent) said that they might switch from solo driv­
ing if parking costs increased by $20 a month, and 77 
percent said the same should gas prices rise to $2.00/ 
gal. 

56.3 
53.1 

It is important to note here that such predictions of 
future behavior change cannot be taken literally. People 
consistently overpredict their future behavior in the face 
of a hypothetical change of nearly any type. Despite 
this, these solo drivers did not predict a change in their 
commuting method for the reward of lower parking 
costs. Also, much less prediction of change occurred 
at lower levels of increased parking and gas costs-if 
gas went to $0.90 or $1.10/gal, for instance. During the 
decision analysis panels, cost had emerged as a more 
significant factor for blue-collar workers than for the 
othe1· groups. The survey confirmed this. Among solo 
drivers, the blue-collar workers (regardless of income 
level) were more concerned with costs and more willing 
to put up with possible carpool problems in order to save 
money than were other occupation groups. With this ex­
ception, however, the fact must be faced that, in this 
largely affluent society, cost savings alone cannot be 
relied on to make most people carpool. To confirm the 
finding, when people were asked what their major com­
muting problem is, only 5 percent mentioned any kind of 
economic factor. 

Interpersonal Aspects of Carpooling 

If the most commonly emphasized factor, cost, emerged 
to be of relatively low concern to many solo drivers, the 
most neglected aspect of carpooling programs was found 
to be the most important: the personal and social. 

Helping a neighbor or having company were common 
motivations to carpool. Disagreements or personal in­
compatibilities frequently caused carpools to break up. 
The very situation of being in a carpool is perceived as 

p (") {<) p (() (~) (4') 

NS <0.02 72.8 68.0 73.0 
NS NS 

<0.04 64.8 71. 7 <0.01 76 .9 62 .9 64.6 
NS <0.04 57.4 49 .4 63.5 
NS <0.01 70.6 64.8 64.8 

a combined business and personal arrangement, and one 
for which we do not have well-established social customs. 
Both carpoolers and solo drivers found the socializing 
that a carpool offers to be pleasant, but the solo drivers 
had more misgivings about handling specific problems. 
Because 65 percent of these solo drivers had been in a 
carpool at some time in the past, their misgivings can­
not simply be due to lack of experience. 

The results for a sampling of 516 people are pre­
sented in Table 4 (p = 0.001). Only 39 percent of the 
solo drivers thought talking shop during the ride would 
be pleasant, versus 66 percent of the carpoolers. Even 
fewer, only 24 percent, could say that the chance to so­
cialize was worth personal disagreements that might have 
to be ironed out (versus 41 percent of the carpoolers), 
and a strong 64 percent disliked the idea of rule making 
for the carpool (versus 57 percent of the carpoolers). 
The results for work site and sex were not significant. 

As an illustration of the power of analyzing these data 
by more finely drawn groups, among solo drivers, women 
were a little more wary than men about how pleasant the 
socializing might be and about having to handle disagree­
ments. Solo drivers who work in the suburbs are some­
what more willing to take on the disagreements than those 
commuting into town. There may be ari urban "hassle 
factor" that adds tension to the trip. 

Choosing Carpoolers 

Choosing carpool mates emerged as an extremely per­
sonal matter. Both types of commuters tended to re­
act the same way, as can be seen in Table 5. Some 87 
percent wanted to meet prospective members once be­
fore making any arrangements, and 39 percent felt 
they would actually have to know the people first, a con­
cern felt by more blue- and white-collar workers than 
MEPs. 

Carpoolers were more relaxed than solo drivers 
about riding with people who do not work at similar jobs, 
but this area is a sensitive one, because people tend to 
be reluctant to admit what might seem to be a prejudice. 
On the whole, male solo drivers were most vocal about 
wanting to ride with people at similar job levels; 43 per­
cent of the men versus 19 percent of the women solo 



drivers expressed this. There were, however, no sig­
nificant differences by occupation group. 

When 516 respondents were also asked to rate differ­
ent matching systems for carpooling, both carpoolers 
and solo drivers rank ordered the match methods in the 
same way (Table 6), favoring personal methods most. 
It is evident that the two most common systems used­
locator lists and computerized match systems-have the 
least appeal. Interest in (a) being contacted by a car­
pooler, (b) having the help of a neighborhood coordina­
tor, or (c) having no help at all is significantly greater 
(by chi-square analysis) than the response to either lo­
cator lists or computer matches. Expressed prefer­
ences for the latter two were not significantly different 
from chance. This is true at least as these methods 
now operate, that is, impersonally. The strongest pref­
erence was to be contacted by another commuter forming 
a pool (71 percent of the total sample); the next strongest 
was to be helped by a local neighborhood carpool coordi­
nator (69 percent); and the third choice was to have no 
help at all, which was the only match method where solo 
drivers and carpoolers differed. The solo drivers felt 
a little less confident about handling things alone; only 
65 percent of them endorsed this, versus 72 percent of 
the carpoolers. 

It_ is clear that people do not want to become involved 
with others they know nothing about. For several popu­
lation segments, it does not appear from the decision 
analysis panels to be the computerized matching in it­
self so much as the fact that the system does not include 
a person who could be contacted in the neighborhood or 
at work and who would know something about the specific 
individuals on the matching list or could offer advice 
about handling the combined personal and business situa­
tion of a carpool. However, there are also privacy is­
sues arising from computerization that have been dealt 
with in the full report (~). 

Commuting Time and Carpools 

Time was of great importance to all commuters inter­
viewed, but the big barrier carpooling time represents 
to solo drivers appears to be the perception that car­
pools make one late. Both types of commuters were 
actually getting to work in about the same amount of 
trip time. When the misperceptions about carpooling 
trip time were analyzed, one after another related to 
uncertainty about possible trip delays, rather than speed 
of travel. Carpooling is seen as fraught with potential 
time problems that are unnecessary if there are clear 
rules about how long to wait for late members, what to 
do when a driver cannot meet the pool, etc. 

Carpool Lanes and Parking Management 

These two important issues are presented together, be­
cause what the commuters in this study want is a 
smooth, hassle-free trip to work-a clear and open road 
and a place to park at the end of it. 

The single g;realesl complaint, and the only one ini­
tiated by a significant portion of the people sampled, was 
traffic congestion, the primary problem to 37 percent of 
those interviewed. Dedicated roadways open to multi­
occupancy vehicles (vanpools, carpools, and buses) re­
ceived a resounding endorsement by solo drivers, pro­
vided that the roadway is available for significant por­
tions of the trip {see the table below). 

Solo Drivers Who Would Carpool if Offered an 
Express Lane 
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Express Lane 
Proportion of 
Trip Unlikely to Carpool (%) Likely to Carpool (%) 

One-quarter 
One-half 
Three-quarters 

51 
41.3 
33.9 

37.1 
47.0 
57.9 

From the table, only 37 percent predicted they would 
carpool if a lane were available for a quarter of the trip, 
while 58 percent would do so for a lane available for 
three-fourths of the trip. Where dedicated routes were 
rated against carpool drawbacks, the pervasive unwill­
ingness of the solo driver to leave work at a fixed time 
each day was much less powerful; 56 percent of the solo 
drivers still rated the lane positively. It must be noted, 
however, that those commuting to the urban downtown 
still remained reluctant indeed to leave work at a fixed 
time each day, even for the incentive of a dedicated lane 
for "much of" the trip. Only 21 percent agreed. This 
probably relates to the congested trip time left before 
they get to their destination. The difference may sug­
gest that dedicated lanes on highways encircling cities 
may be even more powerful incentives than those on 
highways radiating from them. 

The strongest disincentive for using the dedicated 
routes was the need to depend on others, although even 
here 48 percent of the solo drivers thought the lane worth 
it. The finding may relate to the experience of the Wash­
ington, D. C., sample, who tend to think of carpool lanes 
in terms of the stringent requirement for four riders on 
the local Shirley Highway lane; that may be too many 
people to wait for. 

Parking at work was, of course, extremely important 
to both types of commuters. The effectiveness of pos­
sible employer bans on parking for solo occupant autos 
was widely admitted, but private employers interviewed 
in panels considered it impossible to implement because 
of the risk of losing the competition to hire and retain 
quality employees. 

People in the sample took parking for granted. Over 
70 percent parked free in employer lots. Few turned to 
commercial lots. Few worked at organizations where 
any incentive for carpooling was offered-either guaran­
teed parking, cheaper parking, or parking closer to the 
work entrance. 

In general, the solo drivers were very reluctant to 
accept carpooling, even if that were the only way to get 
a guaranteed parking space at work, when they considered 
it in relation to having to leave work at a fixed time each 
day (the single greatest time barrier to carpooling). 

However, the disincentives of the alternatives to 
guaranteed parking were more powerful, as shown in the 
following table. Only 21 percent of the solo drivers 
would be willing to hunt for a parking space for 20 min 
and only 10 percent for half an hour. A mere 6 percent 
would risk a ticket five times a month, and only 2 per­
cent would say they would run a daily risk of getting a 
ticket in order to park at work. 

Sample Percentage 
Disincentive Question for Solo Drivers Size Agreeing 

To continue driving alone to work, would you be 251 
willing to look for a parking space, if you had to, 
for 

10 min 45.0 
20 min 20.8 
30 min 10.4 

To continue driving alone to work, would you be 246 
will ing to risk getting a parking ticket 

Once a month 31.7 
5 times a month 5. 7 
Every day 2.0 
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Things Called "Convenience" 

It was necessary to ask highly specific questions under 
the heading of "convenience," because the panels had 
made clear tJ1at it has multiple meanings and tends to 
be used as shorthand or euphemism !or any difficulty 
that bothers a commuter. 

Solo drivers were altogether more concerned about 
convenience factors than carpoolers. A large majority-
76 percent-thought rearranging and adjusting schedules 
to suit the needs of other people a serious problem in 
carpooling, and 51 percent felt that there would not be 
enough room to carry and store packages. This con­
cerns the tool-carrying blue-collar and errand-running 
white-collar workers more than the MEPs. When car­
poolers and the 65 percent of solo drivers who had car­
pooled in the past were asked why they had carpooled, 
22 percent of the solo drivers versus only 14 percent of 
the carpoolers mentioned convenience factors. 

Solo drivers but not carpoolers perceived carpools as 
physically crowded. They thought the carpool ride less 
relaxing than carpoolers, and they worried about not 
being able to start the trip when they wanted to. They 
hesitated more than carpoolers in feeling they could rely 
on a cai·pool or have door-to-door service. 

MOTIVATING THE SOLO DRIVER 
TO CARPOOL 

The purpose of this section is to highlight the differences 
between those solo drivers who expressed some interest 
in carpooling and those who stated they had none. When 
solo drivers were asked "Are you interested in carpool­
ing to work?" 17 percent responded "Yes, definitely"; 
23 percent said "Yes, possibly"; 16 percent replied "Not 
sure"; and 43 percent said "No." With such a wide varia­
tion of interest, one high priority strategy would be to 
tailor carpool programs to the interested solo drivers. 
A special analysis was therefore performed concerning 
solo drivers' attitudes toward three important strategy 
or policy areas: carpool matching system, parking man­
agement, and dedicated carpool routes. 

A discriminant function procedure was chosen, since 
this technique highlights the differences between groups 
(4). It has been used successfully in transportation re­
search to predict mode choice from beliefs about buses, 
carpools, and single-occupant autos (5). Solo drivers 
were classified according to their interest in carpooling 
as a function of their attitudes toward the three policy 
areas. A high colinearity that would distort the results 
emerged among some variables in each area, so vari­
ables were first combined by classical factor analysis 
(6) into composite variables. 
- The solo drivers were grouped into two categories: 

those 40 percent interested in carpooling (definitely or 
possibly) and those 43 percent defu1itely not interested. 
The 16 percent who answered "not su.re" we1·e excluded 
from analysis. The range of responses indicated that 
a statistically necessru-y assumption that this group was 
in between the interested nnd not inte rested groups could 
not be made. The unsures, of course, are important to 
consider in future analyses since many might carpool if 
their particular needs were met. 

Carpool Matching 

The three composite variables were " advance knowledge 
of carpool mates, " "no assistance desired in forming 
carpools, " and "assistance desired." By far the most 
powerful discriminator was attitudes toward having as­
sistance. Those interested in carpooling desired help-

and by personal more than impersonal match systems­
although they tended to favor any help (discriminant func­
tion coefficient of 1.08 versus 0.20 and 0.21 on "advance 
knowledge" and "no assistance"). 

Those not interested in carpooling were far less posi­
tive about assistance, should they at some time want to 
become involved in a pool. Respolises to the questions 
relating to advance knowledge of carpool mates did not 
delineate the two groups; all solo drivers analyzed wanted 
to meet carpoolers in advance, although all did not nec­
essarily require people they already knew or job peers 
in a carpool. 

The "no assistance" variable also failed to discrimi­
nate. It was a split composite. All solo groups favored 
forming carpools without help, and all rated computer 
matching negatively. 

Parking Management 

Five composite variables involved either the incentives 
for carpooling or the disincentives for solo driving that 
follow. 

Incentives for Carpooling 
Carpooling favored for cost savings and conve­

nience 
Guaranteed parking worth carpooling time con­

cessions 

Disincentives for Solo Driving 
Carpooling favored over paying parking cost in­

creases 
Solo driving favored despite risk of parking tickets 
Solo driving favored despite parking space hunt 

The carpooling incentives distinguished the two groups 
(coefficients of 0.51 and 0.58, respectively), which ap­
pealed to those interested in carpooling. The disincen­
tives did not; all found them onerous. 

Carpool Lanes and Roads 

Two composite variables emerged: the "use of express 
lanes and roads considered in isolation" and "express 
routes versus dependence on others." The first was an 
excellent discriminator (discriminant function 0,86), 
which indicates that express routes considered by them­
selves appeal strongly to solo drivers interested in car­
pooling. However, the trading off of the use of such routes 
versus being tied to a fixed departure time and depending 
on others discriminated poorly (coefficient 0.21). Con­
cerns about departure times and about relying on others 
during one's commute appeared pervasive among all solo 
drivers. 

Combined Variables 

One last discriminant analysis combined all composite 
variables from all three policy areas. The two best 
discriminators were 

1. Guaranteed parking for carpoolers being worth 
fixed departure times, extra commuting time, and wait­
ing for late members (0.41) and 

2. Likelihood of carpooling if an express lane or road 
were available for a sizeable portion of the trip (0.39). 

Those interested in carpooling responded to these in­
centives and were best distinguished from those not in­
terested in carpooling by their responsiveness. 



Summary 

Clearly, in aiming programs at the most likely to car­
pool solo drivers, the incentives of guaranteed parking­
where parking is otherwise a problem-and express 
routes will tend to be high-payoff strategies, as will as­
sistance with personal match methods. It will also, of 
course, be vital for transportation planners to consider, 
in addition, the social dynamics and other elements dis­
cussed in previous sections. 

RECOMMENDATIONS 

The recommendations offered are based on the finding 
from panels that privately owned auto transportation is 
likely to continue to dominate personal travel in the 
foreseeable future. Carpooling can be a viable private 
means of dealing with transportation and energy prob­
lems, but, if it is to succeed, a long-range, well· 
planned, high-priority effort is required. In addition, 
a blend of economic and behavioral incentives will be 
required. Any effort to replace a highly valued activity 
has to employ equally powerful motivations. Disincen­
tives or purely economic incentives are insufficient in 
a nation of affluent and independent individuals who al­
ready have investments in the automobile. 

Several demographic characteristics have been con­
firmed as predisposing individuals to carpooling and so 
defining some preferred target populations: 

1. Those with long commutes, 
2. Drivers over 30 years old, 
3. Commuters living in multiperson households, 
4. Those with regular hours in the case of MEP and 

white-collar commuters to the central business district 
and blue-collar workers to congested suburban sites, 
and 

5. Availability of parking incentives. 

However, the strategies that follow are recommended 
for more ·resistant groups. Each has value with a broad 
range of population segments; each may also provide 
different incentives to different subgroups. 

In order to address the needs of different transporta­
tion program personnel, the full report deals with all 
the critical variables found, such as parking, cost, so­
cial factors, and convenience, and relates strategies 
concerning each to the needs of each specific popula­
tion segment. We will abbreviate the process here by 
describing the major recommendations and how they 
would motivate the particular subgroups to share rides. 
These recommendations emerge from an integration of 
findings from the decision analysis panels of phases 1 
and 3 and from the survey. 

Strategy 1: A Personalized System 

The most important recommendation is that the carpool­
ing formation system be personalized and that it offer 
a quick response and an active outreach program. Pas­
sive systems, such as lobby locator lists, place the bur­
den of understanding the system on the individual. They 
require the highly motivated to go through the various 
steps and to overcome obstacles required to form a car­
pool and to have the perseverance, understanding, and 
resources to achieve and maintain a compatible carpool. 
For example, there are large segments of the population 
who are interested in carpooling but who hesitate to tele­
phone a stranger. The reasons range from sheer timid­
ity to fear of becoming caught in an unpleasant situa-
tion that one could not comfortably terminate. This is 

a socially awkward situation for both women and men. 

Strategy 2: Appeal to Population 
Subsegments 
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It is critical that a carpool program concentrate on ap­
peals that are appropriate to particular subsegments of 
the population. We have described how motivation for 
and problems with carpooling vary according to occupa­
tion type and conditions, experience with carpooling, size 
of employment site, age, income, sex, length of com­
mute, and so on. Therefore, it is vital that the program 
planners know and be governed by the characteristics of 
the people in the community as well as its geography. 

Strategy 3: Local Carpool Coordinator 

One method for achieving these criteria is the use of 
the local carpool coordinator. Located at the work site 
or at the home end, whichever provides the best lever­
age, the local coordinator would serve the functions of 

1. Learning about his or her population's needs and 
nature, 

2. Providing information about carpooling, 
3. Initiating and coordinating personalizing strate­

gies, 
4. Assisting in forming new carpools via various sub­

strategies including bringing people together or employ­
ing existing groups, 

5. Assisting in enlarging current carpools, 
6. Providing early warning of trouble and helping to 

deal with problems in existing carpools, and 
7. Providing emergency service when carpools break 

down temporarily. 

The coordinators may eventually move into another 
transportation energy-saving activity, such as buspools 
to athletic or other events. 

It is important that the local coordinator understand 
the factors that motivate people to carpool and that con­
tribute to a good carpool. He or she must be taught that 
no single factor is preeminent but that an introduction of 
multiple factors such as distance, time, and especially 
social and personal dynamic factors produce an effective 
program. It is also important that the local coordinator 
become a resource to the community rather than a bur­
den. He or she must also learn to enlist existing en­
thusiasts or community leaders to achieve his or her 
objective rather than do things alone. In doing so, he 
or she obtains community consensus and pressure in 
behalf of ride sharing. A handbook for local coordina­
tors would be needed. 

A local coordinator is someone at the work site who 
relates well to people and has their confidence and can 
handle the concepts described. The benefit to the em­
ployer of assigning a good person will derive from in­
creased promptness, morale, and productivity (interest 
in workers by management), and possibly from land 
economics as less is needed for parking. 

At the home end, local coordinators may be retired 
or disabled persons with the need to continue productiv­
ity, housewives with limited mobility during the day 
but time to use the phone, or civic leaders with a desire 
to make a contribution and time to do so. 

The local coordinator can make use of computer 
printouts where computerized matching systems exist. 
These can be strengthened through his or her capacity 
for personalizing the match and taking the initiative. 

He or she can arrange special carpools, such as no 
smoking, "silent in the morning, " all one sex, or what-
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ever is required by the constituency. 
He or she can eliminate much of the hassle and doubt 

that interferes with ca rpool formation and can help solve 
the problems that result in carpools breaking up. 

The loca l coordinator' s s trategy would be dire cted to 
all potential ca rpool targets. However, it would be most 
effective with those populations where hesitancy, need 
for guidance, and assi stance with problem solving are 
important factors-in shor t, for the marginal carpoolers 
who constitute a s ignificant part of the population . Fur­
ther , the presence of such an energy- r elated agent in 
the commw1ity will provide direct evidence of the reality 
of the nationa l program . 

Strategy 4: Preparation of a Handbook 

Strategy 4 involves the preparation of a "how to carpool" 
handbook to be used as part of the enrollment cam­
paign and to contribute to a higher level of carpool con­
tinuation. This concept was very strongly endorsed by 
all phase 3 panels and would provide the information 
about carpooling, such as how to deal with problems and 
gripes, that this research and other sources have deter­
mined to be important. Once again, the target popula­
tion for this strategy is broad. It includes those who 
might be resistant to or puzzled by some aspects of the 
carpooling situation that they do not understand or have 
misconceptions about. 

Strategy 5: Parking Strategies 

Parking is not a problem for a large part of the popula­
tion examined. However, effective strategies can be 
addressed to blue-collar workers who have difficulty 
finding parking spaces and are least able to risk parking 
tickets. Here parking for carpools will have value. For 
white-collar populations (largely women in this sample), 
the avoidance of frightening walks on dark winter eve­
nings may motivate carpool formations. Close-in, 
covered, guaranteed parking is also likely to motivate 
the status-conscious executive to carpool. 

Strategy 6: Personal Safety 

The survey and decision analysis panels suggest that 
blue-collar workers and female white-collar workers 
were both concerned about waiting for carpools at the 
work end on streets or roads that were often unsafe . In 
other cases, such rendezvous points as fringe parking 
lots were frightening. Secure meeting points will be 
valuable. 

Strategy 7: Cost Incentives 

This is not the critical variable it was assumed to be, 
but it i·emains Important to some segments of the popu­
lation . Car pooling as a mone y saver will appeal to the 
lowest end of the i ncome distribut ion. However, these 
ue largely blue- collar and low-level white- collar 
worl<er s Io r whom carpooling also has a spec ial draw­
back: they are frequently docked in pay or m ay soon los e 
their jobs lI they are late. Special adjustments to meet 
this pr oblem will have to be made in coope r ation with 
employe rs. 

Str ategy 8: Familiarization Methods 

In conjunction with the activities of the local coordinator, 
neighborhood or work meetings before forming carpools 
are particularly important to blue- and white-collar 
workers. This is particularly true of women, who want 

to know more about potential carpool mates before com­
mitting themselves. 

Strategy 9: Carpool Lanes as Powerful 
Incentives 

Despite the fact that the MEP group was the least re­
sponsive of the three occupation types, this incentive is 
strong enough to lure many managerial personnel away 
from their "unpredictable hours" excuse for not car­
pooling. Blue-collar workers are the strongest advo­
cates of the carpool lane, probably because of their fear 
of being made late by congestion with subsequent loss of 
wages. There is reason to believe that carpool lanes on 
ring roads would be even more powerful incentives and 
would address the majority of commuters. 

OCCUPATION GROUPS 

Blue- collar workers have high potential for ride sharing, 
with sociability factors at the fore . They have little need 
to achieve mastery by controlling their own transporta­
tion mode . There are two large subgroups, one con­
cerned with cost and another involved in long commutes. 
Particular care is needed in legitimizing the · setting of 
rules for a carpool. Because blue-collar workers tend 
to drive the more unreliable, older autos, the avail­
ability of standby cars via the carpool becomes an asset. 

White-collar workers are a high potential group for 
carpooling but have many special needs. These include 
knowing a great deal in advance about whom one may 
carpool with and arrangements for shopping at lunch 
hour and on the way home. Particular care must be 
taken in m aking it legitimate to s et r ules for a carpool. 
White-collar workers will respond well to outreach pro­
gr ams, to meetings where difficult ies can be aired, and, 
fo r the large proportion who ar e women, to the oppor­
tunity to talk with women cur rently carpooling i n orde2· 
to understand in what ways it can be workable . 

MEP s form a high dominance group with many status 
and master y needs, and desires for flexibi lity in terms 
of departure time at the end of the work day. T hey 
would be responsive as a g roup to carpools with s tag­
ger ed hours, to the opportunity to be part of an advisory 
board that sets up the carpooling program at a work site 
or in a neighborhood civic association, and to carpools 
limited to medium-sized and larger cars. 
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M ultiattribute Transportation 
Decisions 
Michael A. Johnson, Institute of Transportation Studies, University 

of California, Berkeley 

This report describes a study of the relative importance of various travel 
attributes as influences on commuters' choices among car, bus, and Bay 
Area Rapid Transit (BART) for traveling to work in the San Francisco 
Bay area. A sample of commuters were interviewed, and each was asked 
to rate his or her satisfaction with car, bus, and BART on each of the at­
tributes studied. The relative importance of the attributes was inferred 
by examining these ratings and the relationships between the ratings and 
the usual choice of travel mode. The study differed from previous similar 
research in that attribute importance was measured with a statistic that 
estimated how much each attribute contributed to differences in utility 
among the choice alternatives. Most previous research failed to consider 
an essential component of the quantity measured by this statistic, namely, 
average differences in utility among alternatives caused by average differ-· 
ences among alternatives in the levels of each attribute. Among the at­
tributes judged to be most important were safety from crime, seat avail­
ability, and dependable arrival, which are ordinarily not included in quan­
titative planning procedures such as travel demand forecasting and cost· 
benefit analysis. 

To a large extent, the experience of urban travel by any 
method can be described in the abstract as a composite 
of varying travel attributes. This paper describes a 
study of ten different travel attributes and their relative 
importance as influences on commuters' choices among 
car, bus, and Bay Area Rapid Transit (BART) for trav­
eling to work in the San Francisco Bay area. The at­
tributes were (a) cost, (b) total travel time, (c) depend­
ability, (d) relaxation, (e) safety from accidents, (f) 
time use while traveling, (g) flexibility, (h) seat avail­
ability, (i) safety from crime, and (j) waiting time. 

A sample of commuters were interviewed and each 
was asked to rate his or her satisfaction with car, bus, 
and BART on each of the ten attributes. The relative 
importance of the attributes was inferred by examining 
these ratings and the relationships between the ratings 
and the usual choice of travel mode. 

The research was intended to have some immediate 
applications as a general diagnostic tool in transporta­
tion planning for evaluating the relative importance of 
various attributes that might otherwise be misjudged or 
overlooked. Primarily, however, the research was con­
sidered exploratory, the first stage in a multistage re­
search strategy. Applications to quantitatively detailed 
planning procedures-such as travel demand forecasting 

or cost-benefit analysis-require additional research to 
identify policy variables that underlie the attributes iden­
tified as important and to determine how these policy 
variables are related to utility and behavior (1), 

In basic objectives and methodology, this research 
was similar to a number of recent studies (2, 3, 4, 5, 6, 
7, 8). The study differed from previous researCh,-how­
ever, in that attribute importance was measured with 
a statistic that estimated how much each attribute con­
tributed to differences in utility among the choice alter­
natives, for the people in the study sample. Most pre­
vious research has failed to consider an essential com­
ponent of the quantity measured by this statistic, 
namely, average differences in utility among alterna­
tives caused by average differences among alternatives 
in the levels of each attribute. 

To demonstrate the importance of this difference, 
one must consider some theoretical and methodological 
issues in detail. This is done in the following section 
of the report. Readers interested primarily in the sub­
stantive conclusions of the research could skip to the 
section on data collection without loss of continuity. 

MEANING AND MEASUREMENT OF 
ATTRIBUTE IMPORTANCE 

The theoretical concepts underlying this study can be 
summarized in the form of a linear utility model. For 
a detailed discussion of linear utility models and their 
applications to research on travel behavior see 
Domencich and McFadden ~). The model is 

Umk = LB;X;mk + Cmk 

I 

where 

U •k = utility of travel mode m for person k, 

(I) 

Xl•k = measured value of attribute j for mode m and 
person k, 

B3 = coefficient representing the infl.uence on utility 
of attribute j as measured with variable XJ., 
an cl 
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e_k = stochastic error term influencing the utility of 
mode m for person k. 

The fundamental, virtually tautological axiom under­
lying the use of this model is that, given a choice among 
two or more alternatives, an individual will select the 
one with the greatest utility. 

Given the assumptions embodied in the linear utility 
model and having estimated the utility coefficients Bl' 
it is possible to calculate one or more importance sta­
tistic for each attribute variable. These statistics 
would indicate the extent to which each attribute influ­
ences the utilities of and consequently choices among 
the alternatives in the choice set (10). 

A simple importance statistic can be defined, in 
terms of a choice made by a particular individual be­
tween two alternatives, as 

(2) 

This importance statistic reflects the extent to which 
the phenomena measured by variable j contribute to 
differences in utility between alternatives m and n for 
person k. 

Note that the importance statistic in Equation 2 is 
calculated as the product of two factors: first, the util­
ity coefficient, which indicates the extent to which one 
unit of the variable is related to utility, and, second, 
the number of units of the variable by which the two al­
ternatives differ. As the value of either of these two 
factors increases, the value of the importance coeffi­
cient increases. If either factor has a zero value-i.e., 
either the variable has no influence on utility or the al­
ternatives do not differ on the variable-the value of the 
importance coefficient is zero. 

A General Importance Coefficient 

The simple importance statistic (Equation 2) can be 
generalized to apply to choices made by any number of 
people among any number of alternatives. To generalize 
the statistic to samples of more than one person, the 
average value of the statistic can be calculated over all 
people in the sample. Similarly, to generalize the sta­
tistic to choices among more than two alternatives, the 
average of the two-alternative statistics can be calcu­
lated over all possible pairs of alternatives in the choice 
set. Finally, to simplify the calculations, averages of 
absolute value terms can be approximated with root mean 
squares. Thus an aggregate importance statistic for 
variable j for choices made by k individuals among P 
alternatives is: 

(3) 

Comparisons of this statistic for different attributes 
indicate, for the study sample, the relative extent to 
which each attribute contributes to differences in utility 
among the set of alternatives investigated (car, bus, and 
BART). 

Components of the Importance Statistic 

The aggregate importance statistic (Equation 3) can be 
partitioned into two components, IJ = CJ'+ CJ2, where 

(4) 

(5) 

Thus 

and 

The second of the two importance components, C J2• 
is a standardized utility coefficient, which, for any vari­
able, equals the utility coefficient that would be esti­
mated if the variable were transformed such that the 
mean variance of the differences in variable values be­
tween pairs of alternatives was 1.0. 

The standardized utility coefficient can be interpreted 
as a measure of partial attribute importance. It reflects 
the extent to which a change of one standard deviation in 
the attribute difference variable causes a change in the 
utility difference between two alternatives and, conse­
quently, a change in the choice probabilities for the two 
alternatives. It indicates how much the attribute con­
tributes to variations over the sample in the utility dif­
ferences between alternatives. However, unlike the 
total importance coefficient (Equation 3), the standard­
ized utility coefficient is not sensitive to the average 
utility differences between alternatives caused by the 
attribute. For example, the standardized utility coef­
ficient would not reflect the extent to which choices 
among car, bus, and BART were influenced by average 
differences in travel time among the three modes. 

This failure to reflect average differences also holds 
for two other statistics-t-statistics and correlation co­
efficients-that are commonly interpreted as measures 
of importance for variables in linear utility models. 

Johnson (10, 11) discusses the properties of standard­
ized utility coefficients, t-eoefficients, and correla­
tion coefficients, and derived their relationships to the 
coefficient of total importance for a simple case. 

DATA COLLECTION 

The Survey 

The study was based on data obtained in the spring of 
1975 from 258 people in the San Francisco-Oakland area. 
The sample was designed to consist of potential transit 
commuters living and working in areas well served by 
bus and BART. Operationally, this meant people who 
lived in areas accessible to bus and BART service and 
who worked in San Francisco, Oakland, or Berkeley­
all cities well served by bus and BART. 

At the time of the survey the BART system was op­
erating on all lines of the system during the day on 
weekdays but had no evening or weekend service. The 
people in the study sample were interviewed by tele­
phone. The sample was selected by using random tele­
phone dialing (12). 

As indicated in the following table, the characteris­
tics of the study sample were generally comparable to 
census statistics (1970 census) for workers in the San 
Francisco-Oakland area. However, as expected from 
the sample design, the sample had a higher proportion 
of transit commuters than did the metropolitan area as 
a whole (24 percent versus 15 percent). 



Workers in 
Study San Francisco-
Sample Oakland 

Variable (%) Area(%) 

Sex 
Male 56 61 

Race 
White 74 84 

Age 
Under45 69 63 
45-64 29 35 
Over 64 2 3 

Income 
Under $8000 23 23 
$8000-$14 999 36 40 
Over $14 999 41 36 

Autos in household 
0 13 8 
1 39 42 
2 or more 48 50 

Usual mode to work 
Drive auto 61 65 
Ride auto 5 9 
Transit 24 15 

Attribute Ratings 

Survey respondents were asked to indicate their per­
ceptions of commuting by car, bus, and BART by rating 
each of the modes available for their work trip on the 
ten attributes of interest. The rating categories were 
good, fair, and poor. 

The wordings used to describe the attributes were 

1. Cost: ''the cost," 
2. Total travel time: ''the total travel time door to 

door," 
3. Dependability: ''knowing you can get to work on 

time," 
4. Relaxation: "how much you can relax," 
5. Safety from accidents: "safety from accidents," 
6. Time use: "the chance to do useful or pleasant 

things while traveling," 
7. Flexibility: "being able to travel when and where 

you want to, " 
8. Seat availability: "your chances of getting a 

seat," 
9. Safety from crime: "safety from crime and being 

annoyed by the unpleasant behavior of other people," and 
10. Waiting time: "the time you spend waiting." 

Respondents were not asked to rate modes that they 
reported to be impossible to use in commuting. 

The ratings were ordered by modes within attributes; 
i.e., all available modes were rated on cost, and then 
all available modes were rated on total travel time, etc. 

Three of the attributes-seat availability, safety from 
crime, and waiting time-were rated only for bus and 
BART. Because of a misunderstanding of the interview 
instructions, ratings of these three attributes were made 
only if both bus and BART were reported to be possible 
for the respondent's trip. Consequently, the rating data 
on these attributes were available for a sample smaller 
than the one for data on the other attributes. 

DATA ANALYSIS 

Interrelationships Among Attribute 
Variables 

The first step in the data analysis was to examine the 
intercorrelations among the attribute rating variables 
in order to identify any groups of highly intercorrelated 
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variables. Matrices of Pearson correlation coefficients 
were calculated separately for the set of attribute rating 
variables for each of the three modes. Each matrix was 
then analyzed with a factor analysis procedure consisting 
of an image analysis (13) followed by an oblique Oblimin 
rotation (14). -

The correlation matrices and ~actor analysis results 
were very similar for each of the three modes and iden­
tified three groups of highly intercorrelated variables: 
(a) time, dependability, waiting time, and, to a lesser 
extent, flexibility; (b) relaxation, time use, and, to a 
lesser extent, safety from accidents and seat availabil­
ity; and (c) safety from crime and waiting time. 

The correlation of transit ratings to safety from 
crime and waiting time is interesting. It suggests either 
a coincidental correlation of different underlying deter­
minants-Le., bus waits may tend to be longer in more 
dangerous areas-or the possibility that the ratings of 
both attributes reflect the common influence of perceived 
danger, meaning that a more dangerous situation may 
make waiting seem longer. For these three groups of 
variables and for selected subsets of these groups the 
average intercorrelations were calculated. The results 
are presented in the table below (attributes in the car 
column marked with a hyphen were not rated). 

Rated Mode 

Attribute Groups Car Bus BART 

Time, dependability 0.44 0.54 0.56 
Time, waiting time 0.63 0.36 
Time, dependability, flexibility 0.37 0.49 0.42 
Time, dependability, waiting time 0.54 0.42 
Time, dependability, waiting time, flexibility 0.48 0.38 
Relaxation, time use 0.50 0.54 0.28 
Relaxation, time use, seat availability 0.50 0.23 
Relaxation, time use, safety from accidents 0.42 0.45 0.30 
Relaxation, time use, seat availability, safety 
from accidents 0.42 0.25 

Safety from crime, waiting time 0.45 0.34 
First seven attributes 0.26 0.35 0.21 
All attributes 0.35 0.23 

None of the groups of variables was sufficiently in­
tercorrelated to suggest that the variables measured 
entirely the same phenomena. Nevertheless, the inter­
relationships among the attribute variables should be 
kept in mind when evaluating the results of subsequent 
analyses. It is possible that for intercorrelated vari­
ables the relationships to behavior may reflect the in­
fluence of a common set of underlying policy variables. 
Johnson (11) has discussed the problem of evaluating at­
tribute importance when attribute variables are inter­
correlated and has considered the advantages and dis­
advantages of several alternative methods of analysis. 

Average Attribute Ratings 

The next step in the data analysis was to compute the 
average rating of each attribute for car, bus, and BART. 
Other things being equal, the more alternatives differ, 
on the average, with respect to an attribute, the more 
influence the attribute has on preferences among the 
alternatives. The average ratings are illustrated in 
Figure 1. 

On the average, the car was rated as far superior 
to bus and BART on total travel time, dependability, and 
flexibility. On the other attributes, car commuting was 
rated as slightly inferior to transit travel, especially 
with respect to safety from accidents. The average 
ratings for bus and BART commuting were generally 
similar, the major differences being that BART com­
muting was rated as slightly better in terms of safety 
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Figure 1. Average attribute ratings of car, A'l"l'RIBIJTE' 
bus, and BART for commuting to work. 
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from crime, waiting time, and relaxation. 
Seat availability, crime safety, and waiting time were 

not rated for car travel. However, assuming, as seems 
reasonable, that car would have been rated good on these 
attributes, the differences in evaluations between the 
car and the two transit modes are substantial. 

Relationships Between Attributes 
and Behavior 

To evaluate the extent to which the average differences . 
in ratings reflected average differences in utility and to 
estimate the other components of attribute importance, 
it was necessary to analyze the relationships, over the 
study sample, between the attribute ratings and pref­
erences among the rated modes. 

Graphs 

As a preliminary step in the analyses and as a conve­
nient means of visualizing the relationships between the 
attribute ratings and behavior, graphs were constructed 
by relating the probability of choosing among alternative 
modes to differences in attribute ratings for the modes. 
A separate graph was calculated for each attribute. 

To simplify the graphical presentation and to increase 
the size of the sample reflected in each graph, the in­
forrn ation on bus and BART modes was condensed to 
create a single "preferred'' transit mode for each indi­
vidual. If the person regularly commuted by one of the 
transit modes or if only one mode was possible, it was 
considered the preferred mode. Otherwise, the pre­
ferred mode was determined by a question in the inter­
view on which mode the person would prefer to use if 
he or she did not drive to work. The graph for each at­
tribute related the probability of choosing transit over 
auto to differences in attribute ratings for the two alter­
natives. 

The graphs are presented in Figure 2. They indicate 
that the ratings for all the attributes were strongly re-

lated to reported behavior. For most of the attributes 
the sample proportions using transit ranged from be­
tween 0 and 10 percent when the differences value was 
minus two (auto rated good, transit rated poor) to about 
50 percent when the difference value was plus two (auto 
rated poor, transit rated good). The relationships were 
somewhat weaker for the attributes of relaxation, time 
use, and safety from accidents, however. 

Logit Analyses 

To provide a more sensitive and theoretically appropri­
ate analysis of the relationships between the attribute 
ratings and behavior, maximum likelihood logit analy­
ses (15) were done that related the attribute ratings to 
the choices among car, bus, and BART over the study 
sample. The analyses were carried out on the QUAIL 
system of computer programs (16). 

The results are shown in thefollowing table, where 
B, is the standardized utility coefficient and LRI is the 
likelihood ratio index of "pseudo r 2 

." 

Statistic 

Attribute ~ t LAI Correct(%) df -
Cost 0.89 4.22 0.34 75 218 
Time 1.26 5.34 0.40 78 218 
Dependability 1.37 4.97 0.40 78 218 
Re laxat io n 0.63 3.25 0.30 76 218 
Safety from acc idents 0.60 3.09 0.30 74 218 
Time use 0.35 1.91 0.27 76 218 
Flexibility 0.49 2.54 0.28 74 218 
Seat availability 0.79 2.35 0.28 68 138 
Safety from crime 1.19 3.39 0.34 70 138 
Waiting time 1.51 3.84 0.38 71 138 
All attributes 0.57 79 129 

Although the primary purpose of the logit analyses was 
to obtain a utility coefficient for each attribute, as an 
input to calculating attribute importance coefficients, 
the logit results also included values of the LRI, which 
reflected the strength of the relationship between the 



Figure 2. Relationships between travel mode choice and 
attribute ratings. 
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For the individual attributes, the values of the LRI 
ranged from 0.27 to 0.40. For a multiple logit analysis 
using the entire set of variables simultaneously, the 
value of the index was 0.57. These LRI values are 
equal to or larger than most values that have been re­
ported for similar research on travel mode choice, 
using either subjective or objective data. The logit re­
sults thus corroborate the evidence, shown in the 
graphs, that the attribute ratings were substantially re­
lated to reported behavior. 

Importance Coefficients 

For each attribute, the estimated utility coefficient was 
combined with values of the attribute ratings, over the 
sample, into an importance coefficient, based on Equa-
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tion 3 above, that reflected the extent to which the at­
tribute contributed to differences in utility among the 
alternative travel modes. Waiting time, safety from 
crime, and seat availability were not rated for the car 
alternative, so calculation of the importance coefficients 
was based on the assumption that car would have been 
rated good on these attributes by all respondents. 

Three sets of importance coefficients were calculated 
in order to see how the importance of each attribute as 
an influence on choice is reflected among the three pairs 
of modes (car-bus, car-BART, and bus-BART). An ad­
ditional set of coefficients was calculated to reflect the 
overall importance of each attribute, for choices among 
all three modes. The importance coefficients are pre­
sented below. 
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Sets of Travel Modes 

Car-Bus-
Attribute Car-Bus Car-BART Bus-BART BART 

Cost 0.95 0.98 0.74 0.91 
Time 1.78 1.74 1.44 1.69 
Dependability 1.83 1.82 1.56 1.76 
Relaxation 0.67 0.68 0.51 0.64 
Safety from accidents 0.61 0.71 0.57 0.63 
Time use 0.37 0.40 0.25 0.36 
Flexibility 0.97 1.10 0.64 0.94 
Seat availability 0.89 1.01 0.95 0.95 
Safety from crime 2.01 1.27 1.53 1.64 
Waiting time 2.30 1.78 1.92 2.02 

In terms of overall importance and considering 
choices among all three modes, the attributes seemed 
to cluster into several groups having roughly equal im­
portance statistics. Waiting time, dependability, total 
time, and safety from crime appeared to be the most 
important attributes. Cost, seat availability, and flexi­
bility appeared to be next in importance, followed by 
rela.xation and safety from accidents. Time use ap­
peared to be the least important attribute. 

For choices among the different pairs of alternatives, 
the relative importance of the attributes appeared to be 
about the same as for choices among all three modes. 
The major differences were that waiting time and safety 
from .crime appeared relatively less important for 
choices between car and BART, that flexibility appeared 
relatively less important for choices between bus and 
BART, and that seat availability appeared relatively 
less important for choices between car and BART. 

CONCLUSIONS 

Most of the attributes investigated in this study appeared 
to be important influences on travel mode choice. Re­
spondents tended to rate the modes differently for most 
attributes, and the differences were strongly related to 
reported behavior. Among the attributes judged to be 
important were safety from crime, dependability, and 
seat availability, which are not typically included in 
quantitative planning procedures, such as travel demand 
forecasting or cost-benefit analysis. 

The results suggest that these attributes should be 
taken more into account in transportation policy deci­
sions. However, the conclusions must be qualified by 
the uncertainties discussed above regarding the extent 
to which the observed relationships to behavior of the 
different attribute variables actually reflected the in­
fluence of different underlying policy variables. 

As discussed at the beginning of this paper, the con­
clusions from this research may have some immediate 
policy implications as general diagnoses. For example, 
safety from crime appears to be an important in.0.uence 
on choices between car a.nd bus travel and may have 
some direct policy implications to transit managers 
serving the studied population {or similar populations 
elsewhere). Primarily, however, the research should 
be viewed as the first stage in a multistage research 
strategy. Subsequent research stages should identify 
policy variables that underlie the attributes identified as 
important and should determine how these policy vari­
ables are related to utility and behavior. The results 
of these later stages can be applied to more quantitively 
detailed planning procedures. 

The major benefit of first-stage research on attribute 
importance is that it allows the relatively expensive and 
time-consuming .research on objective policy variables 
to be focused on the most essential attributes. 

For some travel attributes- such as safety from 
crime or social status-it may not be possible to iden-

tify a manageable set of policy variables underlying the 
attribute ratings. To evaluate the consequences of poli­
cies with respect to such attributes, subjective methods 
could be used in which people were asked to indicate the 
influence of contemplated changes on their attribute 
ratings. The changes in ratings could then be used to 
evaluate consequent changes in utility and behavior, 
using previously determined utility coefficients for the 
rating variables. A disadvantage of this procedure is 
that it requires a special research effort to estimate 
rating changes for every contemplated policy change. 
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Intercity Rail Travel Models 
Gerald S. Cohen, Nathan S. Erlbaum, and David T. Hartgen, 

Planning Research Unit, New York State Department of 
Transportation 

Using a 1975 aggregate data base of 31 pairs of cities, forecasu are made 
of 1975-1980 rail patronage in the New York City-Buffalo corridor. A 
two-stage modeling process is used to estimate total city-pair volume by 
purpose, using gravity formulations relating annual volume to city size, 
government employment, and hotel and motel sales receipts. Binary 
logit models are then developed in which rail competes differentially with 
air, auto, and bus in order to avoid independent irrelevant alternatives as­
sumptions. Rail service and terminal quality variables are included with 
time, cost, and frequency. The total rail share is then determined alge­
braically from the binary models. Pivot-point analysis is used to increase 
the accuracy of the forecasts. Results show that rail competes differently 
with each mode. Against air, the key variables are frequency and time 
ratios; against auto, the frequency, cost, and time ratios and terminal 
quality are important; against bus, train service quality, frequency ratio, 
and time difference are important. Elasticities of demand vary consider· 
ably by mode and distance. Forecasts show that if train, track, service, 
and terminal improvements are implemented as planned in the corridor 
over the next 5 years, 1980 link volumes will increase 58-105 percent 

· over 1975 levels, with most diversion coming from short-distance auto 
trips. The net effect of this diversion will be to reduce 1980 corridor 
energy requirements by 9 percent over 1975. 

The Planning Research Unit of the New York State De­
partment of Transportation (NYSDOT) recently coop­
erated with Union College to study the energy efficiency 
of train service in the New York City (NYC)-Buffalo 
corridor. NYSDOT's role was to develop a workable 
model of train passenger demand and to analyze energy 
and passenger-kilometer efficiencies of alternative 
train, track, and service improvements in the cor­
ridor. This report summarizes the rail passenger 
demand models developed in the study. It briefly de­
scribes the data used, the developed models, and the 
pivot-point and normalization procedures used to in­
crease the accuracy of forecasts. Rail demand fore­
casts and the potential for modal energy savings in the 
corridor are also discussed. 

DATA 

The data collection effort (1) concentrated on cities 
within the NYC-Buffalo corridor (Figure 1), with 
selected other city pairs included for continuity or 
availability or both of data. In total, 31 city pairs 
were included in the data base. Each city pair is de­
scribed by a wide range of data elements (1) that in­
clude city size and spatial separation variables and 
modal service variables such as travel times, costs, 
and frequencies. In addition, the following quality-of­
service data describing train and terminal service 
characteristics were also included: 

Quality of rail service-snack car availability, 
sleeper car availability, lounge car availability, bag­
gage service, package express, on-time performance, 
schedule match, dining car availability, and car type. 

Terminal quality-parking availability, number of 
spaces, parking fee, parking lot lighting, terminal 
snack bar, local transportation, distance to downtown, 
and modernness of terminal. 

Three central findings of the preliminary research 
conducted for the study (1, 2) were as follows. First, 
when all factors are conSlaered, a hybrid modeling 
approach-forecasting total intercity volume and then 
separate modal shares-appears to be the most produc­
tive. Second, care must be taken to avoid formulations 
that contain the so-called independence of irrelevant 
alternatives assumptions (IIA assumptions). Third, 
since quality of service influences modal choice, models 
developed should consider quality-oriented data on the 
rail system, including rail terminals. Ideally, such 
data should also be available for the other modes. 

These principles led to the development of a new ap­
proach to intercity rail passenger demand modeling, 
which has been fully documented (3). The approach is 
to use two total travel models thaCforecast travel via 
all four modes between each city pair. These were de­
veloped for business and nonbusiness travel. The 
models have a simple gravity format. Estimates of 
total volume, however, will not replicate observed 
total volume because of residual errors caused by in­
complete model specification. The slippage between 
estimated and true total volume in the base year (1975) 
can be eliminated for future forecasts, using pivot­
point procedures. 

Within each trip purpose, three separate competition 
models are developed for rail versus air, auto, and bus. 
The model form is binary logit. Each model includes 
only those variables relevant to the binary choice, for 
example, rail versus bus. These models are then used 
to derive a consistent estimate of the rail share. These 
rail shares, however, will not replicate the observed 
rail shares because of residual errors caused by in­
complete model specification. The slippage between 
estimated and true rail shares in the base year (1975) 
can also be eliminated using pivot-point analysis. 

The future modal volumes, in particular the rail 
volumes, are then obtained by multiplying the total 
volumes (as computed by the total models) by the modal 
share (as computed by the share models). Pivot-point 
analysis, described later, is used to reduce forecasting 
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Figure 1. NYC-Buffalo rail corridor. 
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from the residual error between the estimated and 
actual observations, which is contained in the calibrated 
models. 

When forecasts of rail volume are made, the future 
modal shares, estimated with pivot-point, will no longer 
total 1.0. To ensure that they do, a normalization 
factor must be applied to all forecasts. 

One reason for using this step-down approach, rather 
than the alternative approach of constructing direct­
demand modal models such as the Kraft-Sare or Baumol­
Quandt, is that, although city attractiveness and city­
pair impedance measures are generally the variables 
that influence the total travel volume, they are not the 
primary variables influencing mode choice. The con­
struction of a sequence of models thus enables the 
analyst to better isolate the effects of changes in many 
variables on both total travel and mode usage. 

TOTAL TRAVEL 

Gravity-like models were constructed separately for 
business and nonbusiness travel. These models are of 
the form 

Total annual trips;;= [K(attractiveness of i and j)"] 

0 (travd impedance of i and j)b 

Some of the several different measures tested are 

pl pl 
In 1InJ 

Gov P1 Pi 

= population product; 
= median income product; 
= (Gov 1 P1 )(GovJ Pi); that is, population 

product weighted by percentage of 
~overnment employment; 

:: (Inc 25+1 P1)(Inc 25+1 P1 ); that is, popula­
tion product weighted by the percentage 
of families earning 5!2 5 000+; 

= (Auto1 P 1)(Auto, PJ); that is, population 
product weighted by the percentage of 

families owning an auto; 
Hot P1 Pi = (Hot 1 P 1)(HotJ PJ); that is, population 

product weighted by the percentage of 
total receipts that are from hotels and 
motels; 

D = distance; 
ATT = air travel time; 
AUT = auto travel time; 
BTT bus travel time; 
RTT rail travel time; 

Avg BT average business travel time; and 
Avg NBT average nonbusiness travel time. 

The last two variables are volume-weighted averages 
of the travel time by all modes. 

AU models were calibrated by using the aggregate 
data documented in (1). Stepwise linear regression 
techniques (BMD02R) were used for estimating coef­
ficients. Results are more fully documented elsewhere (3). 

The use of the variables (Hot P1 Pi) and (Gov P 1P 1) -

generallI resulted in models with a slightly (0.05) 
higher .R than the other attractiveness measures. In 
addition, they permit additional analysis of the effect 
of changes in variables other than merely city size. In 
most cases there was little difference in model strength 
for different travel impedance measures. Generally 
the strongest models contained bus travel time, but only 
slightly weaker models were obtained using auto time, 
rail time, or over-the-road distance. Average business 
time produced significantly weaker models than average 
nonbusiness time, and the models using air travel time 
as the measure of travel impedance were far weaker 
than the other models. This is because of the combined 
effects of (a) a high proportion of air traffic in the 
business market and (b) the much faster air speeds for 
longer trips, which results in an anomaly that long­
distance interchanges (e.g., Buffalo-Albany) may 
actually have a shorter average business travel time 
than shorter distance interchanges (e .g., Albany­
Rochester). Average nonbusiness travel t ime, how­
ever, is generally monotonic with distance, is area­
sonable proxy of intercity spatial separation, and per­
mits policy analysis. The models finally selected were 

T = 37.15 (Gov P1P/'70(Avg NBT)-M7 

F (58.97) (64.77) 
R

2 
"' 0.758 

for business trips and 

T 12.88 (Hot P 1PJ)0
'
94 (Avg NBT)-2-69 

F (55.92) (59.36) 
R2 0.746 

for nonbusiness trips. Here, Tis in hundreds of trips, 
Gov P1Pi and Hot P 1PJ are in thousands, and Avg NBT is 
in hours. These models were chosen for several rea­
sons. 

The attractiveness measures have intuitive appeal. It 
seems reasonable that business trip volume should be 
influenced by both the populations of the cities and the 
proportion of government workers. For example, 
Albany and Washington have a mu.ch greater volume of 
business travel between them than might be expected if 
one merely considered their population and distance. 
Similarly, the percentage of hotel and motel receipts 
partially reflects a high proportion of tourist trips in 
nonbusiness travel. 

The travel impedance measure used, average non­
business travel time, also had several virtues. Unlike 
distance, it is policy sensitive, since travel-time 
changes in a given mode will influence the overall city 



separation. The implied elasticities are more reason­
able; for example, if one considers the best business 
model using rail time as an impedance measure, it 
appears that a 1 percent decrease in rail travel time 
will result in an increase in total volume of 1.8 percent. 
This is clearly an unrealistic level of induced travel. 
In contrast, if one considers the best business model 
using average nonbusiness travel time, a 1 percent de­
crease in rail travel time will result in an increased 
volume equal to 2.57 times the rail share (mean value 
~o.02), or 0.051 percent. 

Although the R2 values of the recommended models 
are not the largest obtained, the proportion of variation 
explained is only slightly lower. The R2 values of most 
of the models obtained have approximately the same 
magnitude as those of the recommended models. 

MODE CHOICE 

There are several reasons for the use of binary logit 
competition models. By developing binary competition 
models the planner can obtain additional insight into the 
variables that influence particular mode choices. For 
example, the results suggest that rail can best compete 
with bus by concentrating on improving the amenities it 
offers but can best compete with auto by improving 
travel time. 

The approach appears to reduce the problems caused 
by the independence of irrelevant alternatives axiom. 

The models can be readily calibrated by using a 
standard stepwise linear regression program (BMD02R). 
Thus, a greater insight into the relative importance of 
the variables in the model can be obtained. Present 
multilogit models do not offer stepwise selection of 
variables. 

Direct demand models such as Kraft-Sare are less 
suitable when 0-1 dummy variables representing avail­
ability of service items are used. 

Although the model is not a constant elasticity model, 
the formula for determining the elasticity of demand 
with respect to a particular independent variable does 
have a simple intuitive form and is analytically tract­
able. 

The general form of the models is a binary logit model 
describing the mode choice between rail and one other 
mode. For example, using the typical logit form, the 
competition of rail versus air may be expressed as 

LN {!rail volume/(rail +air volume)] 

+ [( 1 - rail volume)/(rail +air volume) l} = G.;, = an +a 1 X1 +.. . (I) 

where G,;, is calibrated by using linear regression tech­
niques and the x's are variables describing the rail-air 
trade-off. The rail versus auto and rail versus bus 
competitions are similarly calibrated. These three 
equations can then be solved simultaneously, resulting 
in the principal equation used for forecasting the rail 
share. 

P.,;1 =I mil/( rail+ air+ auto+ bus) I 
= [ 1 /ce·Cair + l.! .(;nulo + c·l;hus + 1) I (2) 

where the total rail modal volumes can then be estimated 
by 

rail volume= [prob (rail)! (total volume. from total models) (3) 

Many variables were considered as potential predic­
tors of mode choice, including relative travel times, 
costs, and frequencies for all four modes. Various 
forms of these variables were considered, including 
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costs per kilometer, relative times, costs and fre­
quencies, and time differences. The only successful 
combination for the cost variables was relative cost. 
Generally, the cost variables proved unsatisfactory, 
since the cost and cost per kilometer variables for all 
four modes are generally highly positively correlated 
with trip length and hence negatiYely correlated with 
rail share. 

Other variables considered were rail quality vari­
ables. These variables included terminal descriptors 
such as the nature of restaurant and parking facilities 
and train or system descriptors such as on-time per­
formance and proportion of trains with snack cars. As 
was the case with cost variables, the use of cross­
sectional data resulted in the need to discard certain 
potential variables because their correlations with the 
dependent variable had the wrong (illogical) sign. For 
example, sleeping cars are generally used on partic­
ularly long routes. It is on these routes that rail is 
least competitive with air. Thus, the data show that, 
as the percentage of sleeping cars increases, the 
proportion of rail use to air use decreases. There­
fore, a variable such as percentage of sleeping cars 
will not be a useful variable for making policy-sensitive 
forecasts, since its introduction will result in absurd 
forecasts. 

Preliminary calibration efforts showed that, in 
several cases, variables describing rail terminal char­
acteristics would provide more insight into choice 
decisions if they were combined into an index of terminal 
quality. When possible, indexes were evaluated on the 
basis of logic, contribution to model strength, and ease 
of forecasting. The most effective index proved to be 

index I = park +dine - dist. 

where 

park 

dine 

dist. 

a 0-1-2 variable describing parking condi­
tions at each terminal [described in (2)], 
a 0-1 variable describing dining facilities, 
and - -· 
distance (kilometers) from rail terminal to 
downtown. 

(4) 

Table 1 summarizes the models. The air versus rail 
com petition models generally had the highest R2

• In 
both the business and the nonbusiness models, most of 
the variance was explained by the ratios of air-to-rail 
time and air-to-rail frequency. Train quality-of­
service variables were not important in the business 
model. We hypothesize that air already holds a very 
significant competitive edge. For nonbusiness trips, 
terminal characteristics also appear to be a significant 
predictor of mode choice, as indicated by the presence 
of index 1. 

The F-statistics suggest that frequency appears to 
be more significant for business trips, and time for 
nonbusiness trips. The business and nonbusiness auto­
rail competition models were similar. Rail frequency, 
however, was a strong variable for business trips but 
did not appear in the nonbusiness model. In contrast, 
index 1 (terminal quality) was a more significant vari­
able in the nonbusiness model. 

The elasticities for relative time are quite large in 
both models, undoubtedly due to the numerous short­
distance interchanges in the corridor. This suggests 
that a significant increase in rail speeds would greatly 
increase rail's ability to compete with auto. 

The G(x)'s for both business and nonbusiness bus­
rail competition models are functions of relative fre-
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Table 1. Modal competition 
share models for rail versus air, 
auto, and bus. 

Model G(xl 

Rail versus air 
0.79 -4.14 - 0.39 (alr:rail freq) + 5.33 (air:rail time) 

29. 74 11.13 
~.46 ~.fil 

F 
Elasticity 

0.80 -4.02 - 0.25 (alr:rail freq)+ 0.30 (index 1) + 6.46 (air:rail time) 
F 
Elasticity 

Rall versus auto 

17.77 3.63 23.37 
-0.10 0.69 0.26 

0.67 -15.27 + 0.008 (rail freq) + 0.235 (index 1) + 1.99 (auto:rail cost)+ 7.67 (auto:rail time) 
F 
Elasticity 

14.41 2.21 9.0 17.23 
0.39 0.40 1.92 4.99 

0.66 -15.32 + 0.32 (index 1) + 1.60 (auto:rail cost)+ 9.56 (auto:rail time) 
F 
Elasticity 

Rail versus bus 

5.03 7.18 33.77 
0.69 1.78 7.16 

0.71 -9.21+10.54 (food) - 0.23 (bus:rall freq)+ 0.45 (bus:rail time) 
F 
Elasticity 

11. 74 46.25 15.27 
0.15 -0.03 0.004 

0.62 -11.60 + 11.09 (food) - 0.094 (bus:rail freq)+ 0.55 (bus:rail time) 
F 
Elasticity 

quency, travel time differences, and a measure of rail 
service amenities. This measure of rail amenities is 
the variable "food service," which is the proportion of 
trains that have either a snack bar or a dining car. All 
variables have large F-values, but the R2 -values for 
both models are moderate. This suggests that the un­
explained variance is in large part attributable to a 
specification error; i.e., some of the factors that in­
fluence the mode choice between rail and bus are not 
included in the model. 

Some of these factors that were not included in our 
study are bus service quality variables, relative pro­
portion of advertising expenditures, and bus terminal 
characteristics. 

PIVOT-POINT 

Pivot-point is a procedure for adjusting a forecast so 
that it does not contain the residual error between the 
estimated and the actual observation, which is contained 
in the calibrated model. To illustrate, consider model 
Y = a + b(x), representing the best-fitting line that can 
be drawn through the data. 

Let (x0 , y0 ) be a11 actual observation used to calibrate 
the model. Now, Y0 =a+ bx0 is the estimated value of 
Y0 • In an actual forecast the pivot-point argument rea­
sons that the best estimate for Y, is 

(5) 

Note that the pivot-point line is not parallel to the best­
fitting line. Rather than preserve the slope, the method 
preserves the elasticity of Y with respect to x. 

FORECASTS 

To determine the future condition of rail service, ex­
tensive use was made of the Amtrak 5-year plan, New 
York's statewide master plan for transportation, and 
the proposed uses of the funds available form the recent 
New York State Railroad Bond Issue. 

The statewide master plan and the New York State 
Railroad Bond Issue provide for a gradual improvement 
in rail service over the next decade. Rail costs (fares) 
are forecast to increase at a rate of approximately 5 
percent per annum, and auto costs are projected using a 
transportation price index developed by the U.S. Depart­
ment of Commerce (also projected to grow at about a 5 
percent rate). 

Generally it is anticipated that there will be a gradual 
turnover of trains, with Turbotrain and then Amfleet 

8.45 9.94 13.05 
0.67 -0.05 0.02 

rolling stock being substituted for conventional equip­
ment. Rail frequency is not anticipated to be increased 
in proportion to ridership increases in the next decade. 

Travel times will increase somewhat between 1975 
and 1977, chiefly because of slow orders imposed by 
reconstruction of sections of deteriorating track. After 
1977, however, travel times are expected to decrease 
by 7-15 percent by 1980, with more significant improve­
ments between 1980 and 1985. For example, it is 
anticipated that the travel time between NYC and Albany 
will decrease by about 20 min (-10.6 percent) between 
1975 and 1980. These improved travel times reflect 
equipment and track improvements anticipated in the 
next decade (Table 2). 

Forecasts of intercity rail traffic are made by adjust­
ing an initial forecast by the pivot-point and normalization 
factors. The results of this calculation give city-pair 
volumes for the future year and are then added to ob­
tain link forecasts. The effect of service improve­
ments on ridership is clearly shown in Table 2 and in 
Figure 2. 

For most links, the lowest rail volume occurred in 
1977. The drop ranged from 29 percent for the NYC­
Albany link to 2 percent for the Rochester-Buffalo link. 
By 1978, however, the situation will have improved: 
rail travel times will have greatly decreased and fre­
quency will have increased or remained the same, but 
rail costs will be up. The effect of these improvements 
is to increase rail ridership substantially over 1975 
levels, for most links. The trend will then continue in 
1979 and 1980. 

. In terms of energy, the effect of this growth is shown 
in Table 3. The net effect is to reduce the total 1975 
corridor energy requirements by 9 percent in 1980. The 
bulk of this energy savings comes from a 15 percent 
reduction in auto energy consumption, as a direct result 
of auto patronage shifts to rail. The increase in rail 
energy accounts for only 2 percent of corridor energy, 
while air and bus account for 31 and 5 percent respec­
tively. Thus, the improvements would generate a ten­
to-one energy savings: for every joule added to rail 
energy, about ten are saved from auto. It is clear that 
the proposed improvements to rail, which cause only 
small increases in total rail energy themselves, reap 
large reductions in total corridor energy consumption. 
This finding is consistent with most published opinions 
on modal energy consumption, in that the greatest energy 
savings can be accrued by those policies or acts that 
divert auto travel to other modes. 



Tabla 2. 1980 NYC-Buffalo rail corridor percentage of use for 1975. 

Service (1) 

Frequency 
of Travel Rall Patronage 

Link Service Time Cost Forecasts ( f,) 

NYC-Albany 14.3 -10.6 50.0 57.8 
Albany- Utica 25.0 - 7.8 42.9 79.0 
Utica-Syracuse 25.0 -11.8 63.6 84.5 
Syracuse-Rochester 33.3 -14.8 40.0 105.6 
Rochester-Buffalo 33.3 -9 .6 43.8 93.0 

Total corridor 66.8 

Figura 2. Intrastate link volumes. 
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Table 3. Corridor energy consumption . 

1975 Rate 1980 Rate 
Difference Change 

Mode (GJ) (~) (GI) (~) (GJ) (\t) 

Air 9 825 24.2 9 831 26.7 2.1 +0 .02 
Auto 28 948 71.2 24 685 67.1 -4263 -14. 73 
Bus 1 646 4. 1 1 647 4. 5 1.0 +0.06 
Rall 199 0. 5 -2B.. 1. 7 423 +212. 11 

Total' 40 623 100.0 36 787 100.0 -3836 -9.44 

Note: 1 GJ • 9.47, 109 . 

1 These totals i,.vere converted from BTUs 11BTUs1 05 kJI and are therefore not the actual 
column totals, which were given in billion BTUs. 
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CONCLUSION 

The analysis shows that planned rail service improve­
ments in the NYC-Buffalo corridor will have a sub­
stantial effect on rail patronage in the corridor over 
the 1977-1980 period. Rail traffic in this corridor is 
particularly sensitive to relative travel time (rail versus 
the other three modes), because the generally short­
distance interchanges now favor auto use. If improve­
ments in rail travel time are made, diversions will 
come primarily from auto. 

Improvements in the quality and relative frequency 
and relative cost of rail service will also encourage 
diversion but will generally have a smaller impact than 
increase in travel time. As a result, rail patronage is 
expected to increase substantially, resulting in a 9 per­
cent reduction in the 1975 corridor energy requirements 
by 1980. 

This means that the best policies for improving rail 
.passenger service and increasing energy efficiency are 
likely to be those that seek to significantly attract 
diverted patronage through improved travel times. 
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Forecasting Travel Demand in Small 
Areas by Using Disaggregate 
Behavioral Models 
Michael A. Johnson and Aaron Adiv, Institute of Transportation Studies, University 

of California, Berkeley 

A study was done to forecast the patronage of a new transit system pro· 
posed for a suburban city in the San Francisco Bay Area, using disaggre­
gate behavioral models of transportation choice. The results suggested 
that behavioral models of the type used in the study can be applied to 
travel demand forecasting in small urban areas but that additional devel­
opment and testing of the models should be done before they are used 
for policy decisions. The time and expense required for data collection 
and analysis were within reasonable limits for general application. Al· 
though implementation of the forecasting methodologies was quite suc­
cessful, results of tests of the predictive accuracy of the behavioral mod­
els were disappointing. 

T.his report describes a study on forecasting patronage 
of a new transit system proposed for a suburban city in 
the San Francisco Bay Area. The forecasting was done 
with disaggregate transportation choice models, which 
describe the travel behavior of individual people rather 
than aggregate populations. 

The general forecasting method was (a) to collect 
survey and transportation supply data for a sample of 
the people the transit system was intended to serve, (b) 
to use individual choice models to forecast the probabil­
ity that each person in the sample would use the system 
under a variety of policy alternatives, and (c) to aggre­
gate these individual forecasts to obtain general fore­
casts for the population of potential users, weighting as 
necessary to correct for disproportionate sampling of 
different population segments. 

TRAVEL DEMAND FORECASTING 
IN SMALL AREAS 

The study was an example of travel demand forecasting 
for policies that affect small geographical areas. Typi­
cally, such forecasting cannot be done satisfactorily with 
the data bases and forecasting methods used by metro­
politan planning organizations, which are ordinarily in­
tended to investigate policies having impacts on an entire 
metropolitan region or on large transportation corridors 
within a region and are on a scale too large to be ade­
quately sensitive to local policy changes. 

On the other hand, when policies impact only a small 
geographical area, it is often feasible to collect data and 
make forecasts on an ad hoc basis at a level of detail ap­
propriate to the particular policy issues. Disaggregate 
modes of transportation choice are easily adapted to such 
applications. 

Several previous studies have been reported in which 
individual choice models were used to forecast travel 
demand in small geographical areas (1, 2, 3). A detailed 
review of this research has been presented in a separate 
paper (4). This study differs from most previous re­
search of this type in several important respects: first 
in the number of different transportation alternatives 
considered, second in the detail and accuracy of the 
transportation supply data used as inputs to the fore­
casting models, and third in the use of analyses to test 
and compare the accuracy of the probabilities estimated 
by different behavioral models, using data available be-

fore the bus system was running. 
These differences are explained in the remainder of 

the report. 

STUDY SITE: WALNUT CREEK 

The site of the study was the city of Walnut Creek, Cal­
ifornia, an upper-middle-class suburban community of 
50 000 people located approximately 32 km (20 miles) 
from San Francisco along the route of the Bay Area 
Rapid Transit (BART) system. 

The proposed bus system was designed primarily as 
a feeder service for peak-hour BART commuters. An 
additional goal was to serve people traveling to work in 
downtown Walnut Creek from outlying sections of the city. 
During the midday off-peak hours, limited service was 
being considered to serve local nonwork trips, particu­
larly for those for whom automobile travel was not pos­
sible. In recent years, similar local transit systems 
have been started or expanded in a number of suburban 
communities in the Bay Area. 

The methods used in the study were designed to fore­
cast the patronage for the new transit system under dif­
ferent fares, headways, routes, and hours of service. 
The patronage forecasts made in the study considered 
only work trips, since this was the primary intended 
purpose of the system and since choice of travel mode 
for work trips was the primary research topic for the 
larger research project of which this study was a com­
ponent. 

MODELS OF TRANSPORTATION 
CHOICE 

The basis for the forecasts made in this study was made 
up of two models developed as part of the Urban Travel 
Demand Forecasting Project (UTDFP), which described 
how individuals chose among seven alternative travel 
modes for commuting to work. The travel modes were 
driving alone, carpooling, bus with walking access, bus 
with car access, BART with walking access, BART with 
bus access, and BART with car access. The substance 
of each model was a set of linear utility expressions that 
estimated the utility of each of the seven travel modes 
as a weighted sum of measured variables. The expres­
sions took the form 

Yim= L BkmZikm 

k 

where 

(!) 

V;m = the estimated utility of travel mode m for indi­
vidual i, 

Bkm = coefficient reflecting the estimated influence of 
variable k on the utility of mode m, and 

Z;km = measured value of variable k for individual i 
and modem. 



The estimated utilities for each alternative were re­
lated to choice probabilities by a logistic function 

(2) ... 
where p(m/S)1 equals the estimated probability that in­
dividual i will choose alternative m from a choice set S 
of available alternatives. Domencich and McFadden (5) 
have discussed in detail the underlying assumptions, -
properties, and estimation techniques for models hav­
ing this general form. 

The particular models used in this study were pre­
sented in an earlier report (6) that included a description 
of their derivation. Tv:o mcidels were used, both of 
which included the same explanatory variables shown 
below (the numbers in parentheses indicate the following 
modes to which the variables were assigned: 1 =driving 
alone, 2 =bus with walking access, 3 =bus with car ac­
cess, 4 =BART with walking access, 5 =BART with bus 
access, 6 = BART with car access, 7 = carpooling): 

1. Travel cost divided by post-tax wage, in cents 
divided by cents per minute (1-7), 

2. Auto on-vehicle time (1, 3, 6, 7), 
3. Transit on-vehicle time (2-6), 
4. Walking time (2-6), 
5. Transfer waiting time (2-6), 
6. Headway of first transit carrier (2-6) 
7. Family Income with ceiling of $ 7500 (1), 
8. Family income under $7500, with floor of $0 and 

ceiling of $ 3000 (1), 
9. Family income under $7500, with floor of $0 and 

ceiling of $ 5000 (1), 
10. Number of drivers in household (separate coef­

ficients estimated for 1, 3 and 6, 5, 7), 
11. Two-valued variable indicating whether or not 

the traveler is the head of household (1), 
12. Employment density at the traveler's work loca­

tion (1), 
13. Three-valued variable indicating whether the 

traveler's household was in the central business district 
(CBD), near the CBD, or otherwise (1), 

14. Number of autos owned per household driver, 
with a ceiling of one (separate coefficients estimated for 
1, 3 and 6, 5, 7), and 

15. Constant term (separate coefficients estimated 
for 1, 3-7). 

The two models used in this study differed only with 
respect to the coefficients assigned to some of the vari­
ables. In the first model, the calibration of the coeffi­
cients did not take into account differences between urban 
and suburban residents. A single set of coefficients was 
estimated to apply to a general sample of Bay Area urban 
and suburban commuters. In the second model, the cal­
ibration of coefficients did take into account differences 
between urban and suburban residents. For selected 
variables (the first four \"ariables in the list above), sep­
arate coefficients were estimated for urban and suburban 
residents. The coefficients calibrated for the suburban 
residents were used in this study. 

SURVEY DATA 

The study used data from two interview surveys: a tele­
phone interview survey of a random sampling of Walnut 
Creek households and a questionnaire survey of a ran­
dom sampling of BART users contacted at the two sta­
tions to be served by the proposed local bus system. 
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Walnut Creek Telephone Survey 

The telephone interview survey was conducted in the fall 
of 1975 and was designed to include specified numbers 
of households from each of five geographical areas of 
the city of Walnut Creek. In each area, households to 
be called were selected randomly from a reverse tele­
phone directory. 

If available when the call was completed, the head of 
the household was interviewed; otherwise, any available 
household member was interviewed. This sampling 
strategy was intended to compensate for the tendencies 
of heads of household to be home and to answer the phone 
less frequently than other household' adults. 

Interviews were completed with 511 respondents rep­
resenting 75 percent of the households selected for the 
sample. Of these respondents, 236 worked at least 20 h 
a week outside the home. Only data for this subsample 
of workers were used in this study. On the average, the 
interviews lasted approximately 15 min. A more com­
plete description of this survey, including a reproduction 
of the interview questionnaire, has been reported else­
where(.!_,~. 

BART Passenger Survey 

The BART passenger survey was also conducted in the 
fall of 1975. A sample of BART users was contacted at 
each station of the BART system. 

Data were collected with a check-answer question­
naire. Interviewers administered the first few questions 
orally to obtain information about trip origin, destina­
tion, and purpose and then handed the partially com­
pleted questionnaires to patrons for completion during 
the trip on BART. 

The 529 completed questionnaires represented a 76 
percent rate of response when returned by the BART ·· 
users contacted at the two stations to be served by the 
proposed Walnut Creek bus system. 

Of the people who returned their questionnaires, 156 
provided traceable home and work addresses, allowing 
calculation of transportation supply data, lived within 
the area to be served by the new bus system, and were 
using BART for going to work. Data from this subsample 
were used in the present study. 

A more detailed description of the BART passenger 
survey, including a reproduction of the survey question­
naire, is contained in a 1976 report by the Metropolitan 
Transportation Commission(~. 

TRANSPORTATION SUPPLY DATA 

To forecast the patronage of the new bus system, it was 
necessary to supplement the interview data with trans­
portation supply data describing the time and cost char­
acteristics of work travel for each person in the supply 
sample. A separate set of supply variables was calcu­
lated for each of the travel modes represented in the 
forecasting models. 

For lhe purposes of calculating lhe supply data, each 
work trip was separated into two segments: the portion 
inside Walnut Creek (the area served by the proposed 
bus system) and the portion outside Walnut Creek. Cal­
culations for the two trip segments are described sepa­
rately. 

Trip Segments Outside Walnut Creek 

For the trip portion outside Walnut Creek, calculations 
were based on existing transportation network data, de­
scribing travel between all pairs of 440 transportation 
zones into which the region was partitioned. 
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These data were obtained from the Metropolitan 
Transportation Commission, which is the regional trans­
portation planning agency in the San Francisco Bay Area. 
The supply data for portions of trips outside Walnut 
Creek described, for each person, typical trips by auto 
and BART between the transportation zone in which the 
person's home was located and the transportation zone 
in which his or her work place was located. 

To increase the accuracy of the auto trip data, zonal 
averages of parking costs at work were replaced by the 
parking costs reported by each person in the telephone 
interview. The latter change was done only for the tele­
phone survey sample; no question on parking cost at work 
was included in the BART-user sample. 

Trip Segments Within Walnut Creek 

The supply calculations for trip portions within Walnut 
Creek were based on a set of bus routes contained in a 
transit plan developed by the Walnut Creek Transporta­
tion Commission. 

Supply Calculations 

The supply calculations were done with a specially de­
vised procedure, based on hand-calculated data, which 
included map measurements of the walking distance to 
and from the new bus system for each person in the study 
sample. The procedure was intended to provide highly 
accurate supply data with a minimum of map measure­
ment. The calculations for transit travel were based 
on the specified system of routes for the new bus system. 
The calculations for auto travel were based on the exist­
ing system of roads. 

The procedure was essentially a miniature version 
of a regional transportation network. A system of ap­
proximately 30 transportation nodes covering the city 
was connected to five major destinations within the city, 
two of which were BART stations. The characteristics 
of travel from each node to each major destination were 
calculated by hand for both auto and transit. 

In addition to node-to-destination travel characteris­
tics, transit trip calculations included the walking dis­
tance from home to the appropriate bus line, based on 
individual map measurements for each person in the 
sample. For each person who worked within Walnut 
Creek, the calculations also included the walking distance 
measured from the person's work place to the nearest 
major destination. 

When an individual's work trip could be made by more 
than one route within Walnut Creek (i.e., more than one 
node to major destination pair) a simple minimum path 
procedure was used to select a single best route on 
which the supply calculations were based. A computer 
was used to combine the individually measured walk dis­
tances with the node-to-major-destination travel char­
acteristics and to calculate the minimum path routes. 

For the total sample of 369 persons, the map mea­
surements for the supply data calculations required 60 h 
or approximately 10 min/person. 

Aggregate Forecasts 

The survey and supply data provided values for the var­
iables in the seven-alternative models of travel mode 
choice for each person in the study sample. The models 
were then used to estimate a probability of bus use for 
each person in the study sample. To convert these es­
timated probabilities to aggregate forecasts of bus pa­
tronage for the city population, it was necessary to as­
sign a weight to each person in the sample and to calcu­
late a weighted sum of the estimated probabilities. 

For the people in the Walnut Creek telephone survey, 
the weights assigned were used (a) to adjust for differ­
ences between the size of the sample and the size of the 
city population, (b) to adjust for the undersampling of 
workers living in households with more than one adult­
since only one adult per household was interviewed, per­
sons from multiadult households were underrepresented­
and (c) to correct for differences in socioeconomic char­
acteristics between the study sample and the city popu­
lation. 

The weighting procedure involved the use of an iter­
ative proportional fitting algorithm and was described 
in an earlier report (8). 

For the people interviewed in the BART station sur­
vey, the aggregation weights assigned were used to cor­
rect for differences between the size of the sample and 
the size of the population of BART users at the two sta­
tions of interest and to adjust for different sampling ra­
tios of interview respondents to total patrons at these 
stations during different periods of the day. 

The weighting procedure was straightforward; the de­
tails are discussed in the report by the Metropolitan 
Transportation Commission (~). 

TESTS OF THE SEVEN-ALTERNATIVE 
MODELS 

Before the patronage of the new transit system was fore­
cast, tests were carried out to evaluate and compare the 
predictive validity of the two seven-alternative models. 
The tests were used to select one of them for use in 
making the forecasts and to make a rough evaluation of 
the expected accuracy of the forecasts. 

Selecting the most accurate forecasting model from 
a set of available models is a problem commonly faced 
in travel demand forecasting. Although information ob­
tained during the calibration of the models provides some 
indication of relative accuracy, it is often difficult to de­
termine the extent to which the calibration results gen­
eralize to a particular forecasting application. 

One set of tests used in this study evaluated the abil­
ity of each model to predict the travel modes currently 
used by the study sample for work commuting. A second 
set of tests compared people's intentions to use the bus 
system, as reported in the Walnut Creek telephone sur­
vey, to the estimated probabilities of using the bus, as 
calculated with each of the seven-alternative models. 
Both types of tests were carried out on a person-by­
person basis. The two types of tests are described sep­
arately below. 

Prediction of Current Mode Choice 

For each person interviewed in the Walnut Creek tele­
phone survey, both seven-alternative models were used 
to estimate the probability of going to work by each of 
the modes available at the time of the survey: driving, 
carpooling, BART with walking access, and BART with 
car access. Then an analysis was done to examine the 
relationship of these estimated probabilities to actual 
behavior. 

The results of these analyses are summarized in 
Table 1 for the general model and in Table 2 for the sub­
urban model. Each table contains, for each travel mode, 
the average estimated probabilities for the people who 
usually commuted by that mode. Because only four peo­
ple in the sample usually commuted by BART with walk­
ing access, the results for this mode were combined 
with the results for BART with car access into a single 
set of results for BART users. 

If the models had predicted current behavior per­
fectly, the tables would contain ones in the diagonal cells 



Table 1. General demand model averages of estimated probabilities of 
commuting by available modes. 

Actual Mode Predicted Mode Probability 

Usual Mode No. 
"' 

Driving Alone Ca'l'oollng BART 

Ori vlng alone 143 67 0.77 0.19 0.04 
Carpooling 43 20 0.67 0.19 0.14 
BART 27 13 0.61 0.17 0.22 

Total 213 100 0.73 0.19 0.08 

Table 2. Aggregate suburban demand model averages of estimated 
probabilities of commuting by available modes. 

Sample Size Predicted Mode Probability 

Usual Mode No. ( Driving Alone Ca'l'ooling BART 

Driving alone 143 67 0.74 0.19 0.07 
Carpooling 43 20 0.61 0.18 0.21 
BART 27 13 0.54 0.14 0.32 

Total 213 100 0.69 0 .18 0.13 

Total 

1.00 
1.00 
1.00 

1.00 

Total 

1.00 
1.00 
1.00 

1.00 

and zeros elsewhere, indicating that for the modes usually 
used the average estimated probabilities were one and 
that for the modes not usually used the average estimated 
probabilities were zero. If, on the other hand, the prob­
abilities estimated for each person had been unrelated to 
the mode usually used, the tables would contain the same 
entries in each column. Based on this reasoning, a suit­
able statistic to measure model accuracy is the propor­
tion of the estimated probabilities in a table that are in 
the diagonal cells. If a model predicted perfectly, this 
proportion would be one. On the other hand, if the es­
timated probabilities had had no relationship to behavior, 
this proportion would be equal to 1/K, where K is the 
number of available modes (three in this case). 

As Tables 1 and 2 indicate, both models performed 
poorly. In Table 1, for the general model, only 39 per­
cent of the estimated probabilities are in the diagonal 
cells, only slightly more than the figure of 33 percent 
that would have occurred if the estimated probabilities 
had had no relationship to the modes usually used. On 
an aggregate basis the general model underestimated 
BART use by a substantial amount; 8 percent of the 
sample were predicted to commute regularly by BART, 
while 13 percent actually did. 

In Table 2, for the suburban model, the results are 
only slightly better: 41 percent of the estimated proba­
bilities are in the diagonal cells. On an aggregate basis, 
however, the suburban model was more accurate than 
the general model. In particular, the proportion of the 
sample predicted to commute regularly by BART agreed 
with the observed proportion of 13 percent. 

Comparisons With Reported Intentions 

The second set of tests compared the estimated prob­
abilities that individuals in the study sample would use 
the proposed bus system as calculated by the two models 
with the individuals' intentions of using the system as 
reported in the Walnut Creek telephone survey. Inten­
tions were measured by asking each respondent in the 
survey how likely he or she would be to use the proposed 
bus system as part of his trip to work under each of a 
variety of service combinations. The response cate­
gories were "definitely," "probably," "might," "probably 
not," and "definitely not." The service combinations con­
sisted of different levels of fares (15, 25, and 35 cents), 
walking distances from home to the bus stop (two, three, 
and four blocks), and headways between buses (10, 15, 
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20, and 30 min). Slightly different question formats 
were used, as appropriate, for respondents who worked 
within Walnut Creek, worked outside Walnut Creek, and 
currently commuted by BART. 

For each service combination for which reported in~ 
tentions were obtained, probabilities of bus use were 
estimated by using each seven-alt<:!rnative model. Then, 
for each service combination, the relationships between 
the estimated probabilities and reported intentions were 
examined to see if people reporting greater subjective 
likelihoods of using the system tended to have higher es­
timated probabilities. In essence, the reported inten­
tions were used as proxies for subsequent behavior to 
evaluate the accuracy of the probabilities estimated by 
the model. 

This analysis was based on the assumption that re­
ported intentions have substantial predictive validity, 
that is, there is a substantial relationship between what 
people say they will do in response to a hypothetical 
question and what they actually do in a real situation. 
This assumption requires some justification. 

Over the years many researchers have concluded that 
the predictive validity of reported intentions is low. In 
particular, when reported intentions have been used to 
forecast changes in travel behavior, follow-up studies 
have sometimes found a substantial "non-commitment 
bias" (10), an apparent tendency of people to overesti­
mate the likelihood of changing their behavior when they 
are under no commitment to actually do so. 

In contrast to these findings, Fishbein and Azjen (11, 
Chapter 8), after a careful review of numerous studies 
in which data on reported intentions were related to sub­
sequent behavior on a person-by-person basis, concluded 
that reported intentions are ordinarily a highly accurate 
method of predicting specific behavior. They summa­
rized their review by stating that "prediction of single­
act criteria is not only possible ... it is relatively easy. 
. .. the best predictor of a person's behavior is his in­
tention to perform the behavior." 

Fishbein and Azjen' s conclusions applied to studies 
in which the expressed intentions and the follow-up ex­
amination of behavior were both concerned with the same 
specific and clearly defined set of circumstances and 
corresponding actions. These conditions have frequently 
not been met in research examining the predictive valid~ 
ity of reported intentions; this includes research con­
cerning changes in travel behavior. 

It should be stressed that the appropriateness of the 
comparisons done in this study did not require that the 
reported intentions be totally free of error in general or 
of noncommitment bias in particular. It was merely 
necessary that the reported intentions have a substan­
tially positive relationship to behavior change, for ex­
ample·, that people who say that they will definitely use 
the proposed bus under a specific set of circumstances 
are more likely to actually do so than people who say 
that they probably, might, or will definitely not do so. 
Existing evidence seems to indicate that reported inten­
tions are sufficiently accurate for this application. 

To measure the relationship between the reported in­
tentions and estimated probabilities, for each of eight 
service combinations, product-moment correlation co­
efficients were calculated. For the purposes of these 
calculations, the response categories for the intentions 
were assigned consecutive values of from five to one. 
A zero value was assigned to people for whom BART 
was impossible (that is, a value of zero was assigned 
to people who said they could not use the bus as a means 
of getting to BART because going to work by BART was 
not possible for them). The results are shown in Table 
3. The correlations were low and nearly identical for 
the two models, ranr:-ing from 0.21to0.29 for both models. 
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Similar sets of coefficients, also shown in Table 3, 
were calculated with the people who said BART was im­
possible omitted from the data set. Again, the pattern 
of correlations was nearly identical for the models; in 
this case, however, none of the correlations for either 
model was statistically significantly greater than zero; 

Table 3. Product-moment correlations between estimated probabilities 
and reported intentions of bus use. 

Sample 

Service Characteristics All Cases BART Possible Only 

Fare Wait Walk General Suburban General Suburban 
(¢) (min) (blocks) Model Model Model Model 

25 20 3 0.27 0.28 -0.02 -0.01 
15 20 3 0.24 0.25 -0.08 -0.08 
35 20 3 0.21 0.21 -0.06 -0.05 
25 10 3 0.29 0.29 -0.07 -0.06 
25 15 3 0.26 0.26 -0.09 -0.08 
25 30 3 0.24 0.23 -0.00 -0.01 
25 20 4 0.24 0.24 -0.10 -0.10 
25 20 4 0.22 0.23 -0.03 -0.02 

Table 4. Estimated aggregate bus use based on reported intentions 
and mathematical models. 

Estimation Method 
Service Characteristics 

Reported Reported Log It 
Fare Wait Walk Intention Intention Mathematical 
(¢) (min) (blocks) Composite "De!initely" Model 

25 20 3 0.31 0.14 0.15 
15 20 3 0.35 0.18 0.15 
35 20 3 0.20 0.08 0.15 
25 10 3 0.36 0.19 0.20 
25 15 3 0.35 0.18 0.17 
25 30 3 0.15 0.04 0.11 
25 20 2 0.35 0.18 0.16 
25 20 4 0.17 0.05 0.14 

Table 5. Estimated probabilities of current BART 
commuters using local bus. 

Service Characterlstics 

Fare(¢) Wait (min) 

15 10 
15 
20 
30 

25 10 
15 
20 
30 

3S 10 
15 
20 
30 

Table 6. Estimated probabilities of current car 
commuters using local bus. 

::>erv1ce Characteristics 

Fare(¢) Wait (min) 

15 10 
15 
20 
30 

25 10 
15 
20 
30 

35 10 
15 
20 
30 

in fact, the correlations were slightly negative. 
Thus, the correlations shown in Table 3 indicate that 

there was very little relationship between the reported 
intentions and the probabilities estimated by either of 
the two models. Except for the people for whom BART 
was impossible, the average estimated probabilities 
were approximately the same reg'3.rdless of the intention 
reported. Actually, the correlation coefficients reflect 
only linear relationships between the reported intentions 
and estimated probabilities; however, related analyses, 
not shown in the table, indicated the absence of any sub­
stantial nonlinear relationships as well. 

Another perspective from which the reported inten­
tions and estimated probabilities were compared was the 
sensitivity of the aggregate predictions to changes in the 
policy variables. To examine this, statistics were cal­
culated to estimate the overall proportion of the sample 
who would use the bus system under each of the eight 
service combinations. 

For the reported intentions data, two such statistics 
were calculated. One was the proportion of the sample 
who said they would "definitely" use the bus. The other 
was an average probability obtained by assigning a 
probability value to each person based on reported 
intention and then averaging these values over the pop­
ulation. The values assigned were 1.00 for definitely, 
0.75 for probably, 0.50 for might, 0.25 for probably not, 
0.00 for definitely not, and 0.00 for people working out­
side Walnut Creek who said commuting by BART was 
impossible for them. 

For each of the seven-alternative models, the sta­
tistic calculated to indicate aggregate prediction was the 
average estimated probability of bus use, over the 
sample. 

The values of the aggregate prediction statistics for 
each of the eight service combinations are presented in 
Table 4. As the table indicates, the aggregate predic­
tions of bus use based on the reported intentions data 

Current Mode 

BART/Walk BART/CAR BART/Total 
(N = 32) (N = 124) (N: 156) 

Probability Total Probability Total Probability Total 

0.26 297 0.28 1154 0.27 1451 
0.25 276 0.26 1071 0.26 1347 
0.23 254 0.24 983 0.23 1237 
0.19 208 0.19 801 0.19 1009 
0.26 294 0.27 1143 0.27 1436 
0.24 273 0.26 1058 0.25 1331 
0.22 250 0.21 970 0.23 1221 
0.18 204 0.19 789 0.19 992 
0.26 290 0.27 1131 0.27 1421 
0.24 269 0.25 1046 0.25 1315 
0.22 246 0.23 958 0.23 1204 
0.18 199 0.19 776 0.18 975 

Work Location 

Within Walnut Outside Walnut 
Creek IN c 36) Creek (N = 150/ Total lN = 186) 

Probability Total Probability Total Probability Total 

0.09 216 0.14 1403 0.13 1619 
0.07 174 0.12 1215 0.11 1390 
0.06 139 0.10 1046 0.09 ll85 
0.03 87 0,08 756 0.07 842 
0.08 205 0.14 1373 0,13 1578 
0.07 165 0.12 1189 0.11 1354 
0.05 131 0.10 1022 0.09 ll53 
0.03 82 0.07 736 0.07 818 
0.08 194 0.13 1345 0.12 1539 
0.06 156 0.12 ll63 0.11 1319 
0.05 124 0.10 998 0.09 1122 
0.03 77 0 .07 717 0 .06 794 



were noticeably more sensitive to variations in policy 
variables than were the aggregate predictions based on 
either of the seven-alternative models. For example, 
for the three transit fares of 15, 25, and 35 cents the 
average probabilities estimated by the models had the 
same values, 0.15 for the general model and 0.19 for 
the suburban model, while the proportion of the sample 
who said they would definitely use the bus varied from 
0.08 to 0.18. 

Overall, like the attempts to predict current be­
havior, the tests of the seven-alternative models using 
reported intentions data were disappointing. On an in­
dividual basis, the probabilities estimated by the models 
showed little relationship to people's reported intentions. 
On an aggregate basis, the estimated probabilities did 
not reflect the sensitivity to changes in policy variables 
revealed by the reported intentions data. To the extent 
that the reported intentions data can be interpreted as 
proxies for measures of subsequent behavior, these 
analyses indicate that the probabilities estimated by the 
models in this study had questionable validity. 

FORECASTING 

The analyses just described created doubts regarding 
the accuracy of the probabilities of bus use calculated 
by using either of the seven-alternative models. Never­
theless, forecasts of aggregate patronage for the new 
bus system, for various combinations of service levels, 
were made using the methods of data analysis described 
previously in the report. Because the suburban model 
was slightly more accurate in the first of the two types 
of accuracy tests-predicting which of the currently 
available travel modes were usually used by the people 
in the study sample-the suburban model was selected 
for use in forecasting the patronage of the new bus sys­
tem. Separate patronage forecasts were made for dif­
ferent combinations of fares (either 15, 25, or 35 cents) 
and headways (either 10, 15, 20, or 30 min). 

The results are shown in Tables 5 and 6. The fore­
casts indicated a substantial latent demand for local bus 
service, especially as a feeder service for people cur­
rently commuting by BART. The proportions of cur­
rent BART commuters projected to use the bus feeder 
ranged from 18 to 27 percent, depending on the fares and 
headways selected. For current drivers, the proportions 
were lower, ranging from 6 to 13 percent. The variation 
in the forecasts was chiefly a function of the headway be­
tween buses. The forecasts showed little sensitivity to 
the specified differences in fares. 

CONCLUSIONS 

One purpose of the case study was to test the forecasting 
methodologies to determine their feasibility for making 
travel demand forecasts in small geographical areas. 
In general, the implementation of the methodologies was 
quite successful. The time and expense required for 
data collection and analysis seemed within reasonable 
limits for widespread application. Furthermore, the 
Walnut Creek telephone interviews and the supply vari­
able calculations provided a variety of useful data in ad­
dition to that needed for the work-trip forecasts done in 
this study. 

A second purpose of the case study was to evaluate 
the predictive accuracy of the behavioral models that 
were used. The tests of predictive accuracy were dis­
appointing. The estimated probabilities of using cur­
rently available modes had little relationship to current 
behavior, and the estimated probabilities of using the 
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proposed bus system bore little similarity to people's 
reported intentions. 

Overall, the results suggest that behavioral models 
of the type used in this study can be feasibly applied to 
travel demand forecasting in small geographical areas 
but that additional development and testing of the models 
should be done before they are used as a basis for policy 
decisions in such situations. 
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Manual Techniques and Transferable 
Parameters for Urban 
Transportation Planning 
Arthur B. Sosslau and Maurice M. Carter, COMSIS Corporation, Wheaton, Maryland 
Amin B. Hassam, *Peat, Marwick, Mitchell and Company, Washington, D.C. 

This paper summarizes research conducted under the National Cooper­
ative Highway Research Program to identify contemporary transportation 
policy issues and to evaluate current travel estimation models and pro­
cedures in terms of their abilities to respond to such issues. A set of 
manual techniques and transferable parameters corresponding to the 
commonly used four-step transportation planning process is described. 
Brief descriptions are provided for trip generation, trip distribution, mode 
choice, traffic assignment, time-of-day characteristics, car occupancy fac­
tors, capacity analysis, and land development and highway spacing rela­
tionships. The travel estimation material developed has been organized 
in the form of a user's guide, which also includes applications to three 
scenarios of realistic situations. The manual methods are more advan­
tageous than the computer methods in that transferable parameters allow 
for quick response in terms of the time required to collect and process 
local information. 

Much of the emphasis of past urban transportation plan­
ning has been put on the development of long-range 
transportation plans such as the Chicago Area Trans­
portation Study (CATS) of the late 1950s and early 1960s 
(1). The complex travel-estimating procedures in use 
then (and now) were designed primarily to evaluate re­
gional transportation systems, in particular highway 
systems, and to ultimately provide design volumes. 

Most initial studies or major updates proceed on a 
2- to 3-year time schedule; much of this time is taken 
up by very costly data collection, data processing, and 
model calibration. These long-range data-intensive 
planning processes have often been criticized; their 
relevance has been questioned; and recommendations 
have been made for alternative approaches to planning 
(2, 3). 
- Recently, however, issues such as energy considera­

tions and the promotion of public tra~sportation modes 
have taken a much larger role in the planning process. 
Also, ever-increasing input to the planning process from 
citizens and elected officials, preparation of environ­
mental impact statements, corridor hearings, and con­
sideration of low-capital and no-build options all demand 
that the planning process be able to provide analytical 
support to decision makers in a very short time frame. 

Concurrently, emphasis is beginning to shift away 
from long-range planning to relatively shorter time 
horizons. Recent papers by Heanue (4) and Manheim (5) 
have highlighted such a shift in planning strategies. -

In light of these trends, it is quite evident that exist­
ing planning procedures often fail to permit an analytical 
response to the various policy issues within the desired 
time and cost constraints. What is needed are simplified 
planning methodologies that are easy to understand, rela­
tively inexpensive to apply, and, above all, responsive 
to the policy issues of the day. It is quite possible to 
simplify the conventional planning procedures so that 
more resources can be devoted to other areas of con­
cern (6). Typical improvements on these very involved 
planning techniques might 

1. Avoid dependence on computerized models and 
instead use manual estimation techniques; 

2. Reduce data-collection efforts by utilizing readily 
available data, transferable parameters, or synthetic 
models; 

3. Analyze regional plans at the district rather than 
the zone level and focus planning efforts on corridor and 
subareas; and 

4. Estimate travel for only one purpose, and then 
expand these trips to obtain total travel. 

Much work has already been done along these lines. 
A fair degree of success has been attained, for both 
highway and transit analysis (7, 8, 9, 10, 11, 12). If such 
modifications can be applied to the-existing planning 
structures, it would be possible to achieve quicker re­
sponse capabilities for the travel estimation techniques. 
This in turn would enable simplified but rapid evaluation 
of transportation policy alternatives. 

On this basis, the National Cooperative Highway Re­
search Program (NCHRP) contracted with the COMSIS 
Corporation and the Metropolitan Washington Council of 
Governments to undertake a research and development 
study to develop manual techniques and transferable 
parameters for quick response to urban policy issues. 
The research approach is summarized below. 

RESEARCH APPROACH 

The study was conducted in two separately funded phases. 
Specific objectives, tasks, and results for each phase 
were as follows . 

Phase 1 

The phase 1 research effort involved completion of the 
following objectives: 

1. Objective 1-A: Identification and categorization 
of contemporary urban policy issues for which travel 
estimates are required. 

2. Objective 1-B: Evaluation of current and emerg­
ing travel estimation models and procedures with respect 
to their ability to satisfy the requirements of policy is­
sues. 

3. Objective 1-C: Preparation, on the basis of ob­
jectives A and B, of a fully supported set of recommen­
dations for the subsequent phase of the project. 

The research approach and results of the phase 1 
study have been fully documented (13l. 

Phase 2 

The results of phase 2 are the focus of this paper. The 
phase 2 research effort required the following objectives: 

1. Objective 2-A: Development of a user's guide to 
describe transferable parameters and their use with 
manual and computer techniques for providing quick re­
sponse travel estimation. 



2. Objective 2-B: Identification of areas of poten­
tial high payoff for development efforts beyond the scope 
of the current study. 

Details of the phase 2 study are contained in the user's 
guide (14). 

MANUAL TECHNIQUES AND 
TRANSFERABLE PARAMETERS 
DEVELOPED 

A set of manual, noncomputerized techniques was de­
veloped as a main feature of the phase 2 research proj­
ect. This set of techniques parallels the classical four­
step transportation planning elements of trip generation, 
trip distribution, mode choice, and trip assignment. The 
corresponding elements are very similar to procedures 
used by most transportation planners. However, sev­
eral shortcuts were made to these elements. To cite a 
few, model calibration has been eliminated through the 
use of selected parameters produced from past research 
studies (e.g., trip rates and friction factors). In some 
instances, various input data have been minimized by 
providing estimates from simple nomographs such as 
zone-to-zone travel times. Overall, the level of ap­
plicational effort has been minimized through the pro­
vision of step-by-step instructions and simplified work 
sheets for calculations. 

In addition to the four-step components, transferable 
parameters were provided for the analysis of automobile 
occupancy, the determination of directional distribution 
of traffic by time of day, the analysis of highway volume 
and capacity, and the estimation of facility spacing re­
quirements for alternative land development densities. 

General Capabilities of the Manual 
Techniques 

It is intended that a transportation planner or analyst 
with a 2- to 3-year experience level can apply the tech­
niques contained in the user's guide. The user can fol­
low these procedures without referring to other sources 
and with nothing more sophisticated than a hand-held 
electronic calculator. It is also possible to train a tech­
nician to use portions or all of the methods. Ideally, 
the procedures are most suitable for small-scale trans­
portation projects or localized land-use impacts. Spe­
cific projects might include the evaluation of system 
needs within a single corridor, the assessment of im­
pacts of a transit route extension, or the analysis of in­
creased frequency of transit service. Also, the manual 
techniques have been designed to adequately address the 
traffic impacts of a proposed major development on the 
surrounding street system. 

The techniques are also capable of allowing a trans­
portation analysis at the regional level. If a regional 
analysis is contemplated, it is recommended that the 
number of analysis areas (zones) be limited to allow ap­
plication within a reasonable time frame. 

The manual methods have proved manageable in ap­
plication, and it has been found possible to produce rea­
sonable results quite rapidly for many applications (14). 
For example, the transit demand potential on a single 
route was estimated in a few hours; spacing requirements 
based on alternate land development policies were de­
termined within two to three person-days. Further, the 
transportation impacts of a major residential site were 
calculated within a week, and a proposed improvement 
in a corridor was evaluated in about the same time. 

In order to fully realize the potential of the manual 
techniques, it is necessary that the user-planner modify 
conventional ideas about the planning processes. First, 
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it must be understood that since the manual methods pro­
vided are quick and simple, clerical and technical help 
can be substituted for the computer and computer spe­
cialist. Therefore, manual analysis can be very cost­
effective. Also, it is anticipated that in most practical 
cases, through application of the methods, the user 
would acquire a deeper understanding of the circum­
stances surrounding the problems than if all comparable 
work were done by computer. Consequently, his or her 
ability to clearly present the process and results to 
clients, elected officials, and the public would be en­
hanced. Finally, the manual approach stresses sim­
plicity rather than precision in its application and out­
put, thus enabling a larger degree of flexibility and 
versatility than the computerized planning process does. 
It must be pointed out, however, that the manual methods 
are not offered as a replacement for the computer mod­
els but rather as an extension of existing analysis tech­
niques. 

Use of Transferable Parameters 

Recent transportation research has revealed that certain 
parameters, factors, and relationships from one study 
area can quite satisfactorily suffice when transferred to 
another area having similar characteristics (8, 10, 15, 16). 
In the NCHRP project study, therefore, everyeffortwas 
made to capitalize on these conclusions. A large array 
of transportation data was compiled for use as "default" 
values. Where more pertinent local information is not 
available, or where collection of new data is not war­
ranted, these transferable values can be useful in man­
ual and computer applications. This material, which 
has been supplied in the user's guide, is in the form of 
tables, charts, nomographs, and formulas. In the de­
velopment of such manually applicable information, data 
consistency was maintained throughout. That is, wher­
ever possible and appropriate, the parameters have been 
grouped together and reported for the four urban popula­
tion groups-50 000 to 100 000 people, 100 000 to 250 000 
people, 250 000 to 750 000 people, and 750 000 to 
2 000 000 people-and the three trip purposes-home­
based work (HBW) trip, home-based nonwork (HBNW) 
trip, and non-home-based (NHB) trip. 

MANUAL TECHNIQUES AND 
TRANSFERABLE PARAMETERS 

As mentioned above, the manual techniques and trans­
ferable parameters developed have·been documented in 
the user's guide (14). The following sections highlight 
the capabilities oIThe major travel estimation compo­
nents of the transportation planning process contained 
in the user's guide. 

Trip Generation 

Numerous reference sources (15, 16, 17, 18, 19, 20) were 
used to develop the trip-generationcharacteristics pro­
vided in the user's guide. The information retrieved 
from this review was compiled into tables and graphs 
representing (a) average vehicle trip rates and other 
trip characteristics of generators, (b) detailed trip­
generation characteristics by household income (Table 1), 
and (c) generalized trip-generation parameters for trip 
productions and attractions. 

By knowing the percentage of households by income 
group or auto ownership per household (for an analy­
sis zone), it is possible to arrive at the estimate of 
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Table 1. Trip11eneration characteristics 
Average for an urban population of 100 000· Daily 

250 000. Average Person 
Income, Autos Trips 
1970 Per Per 
($000s) Household Household 

0-3 0.49 4.0 
3-4 0.72 6.8 
4-5 0 .81 8.4 
5-6 0.94 10.2 
6-7 1.01 11.7 
7-8 1.14 13.6 
8-9 1.25 15.3 
9-10 1.34 16.2 
10-12.5 1. 50 17.3 
12.5-15 1.65 18. 7 
15-20 1.85 19.6 
20-25 2.01 20.4 
25+ 2.07 20.6 

Weighted 
average 1.55 14.5 

'Source is Baerwa1d (41} , 

the average daily person-trips by purpose for that 
zone by using Table 1, for the 100 000-250 000 urban 
population group. 

Trip Distribution 

Various trip-distribution methods were investigated for 
transformation to manual application (21, 22, 23). Since 
the gravity model (GM) has been the mostwi.clely used 
technique, the model was structured to operate l.n a 
manual environment. The conversion required a 
streamlining of its mode of operation-for instance, 
calibration of the model friction factors for the four 
urban population groups and the three trip purposes was 
totally eliminated by using other information (24). Also, 
the socioeconomic (K) factors in the computer GM for­
mulation were discarded altogether, since these cannot 
be handled efficiently manually. One major assumption 
was that the interzonal travel-time matrix, which has to 
be developed for input to the GM, is triangular; that is, 
the travel time from zone i to zone j is the same as that 
from j to i. 

Input data to the GM consist of the balanced produc­
tions and attractions by zone, the interzonal travel times 
obtained from the travel-time matrix, and the corre­
sponding friction factors. In order to perform the GM 
calculations efficiently, a simplified work sheet was de­
signed. To assess the time requirements for conducting 
trip distribution at the regional level, the manual GM 
was tested at a 34 x 34-district "real" example for At­
lanta, Georgia. The entire trip distribution process 
(i.e., developing the interdistrict and intradistrict travel 
times and the corresponding friction factors, and under­
going two iterations) required approximately 26 person­
hours to complete using an electronic desk calculator 
with memory. 

The manual GM was also applied in a 19 x 19-district, 
three-purpose "site development impact scenario" for 
Boise, Idaho, and an 18 x 18-zone, two-purpose "cor­
ridor analysis scenario" for Columbus, Ohio. The Boise 
scenario required 14 person-hours for the HBW trip 
distribution, and a total of 19 person-hours for the HBNW 
and NHB distribution. The Columbus HBW trip distribu­
tion was completed in approximately 20 person-hours. 

An empirical relationship was formulated between the 
time required to carry out manual trip distribution ver­
sus the number of analysis areas. This was done to 
allow the user-planner to estimate the applicational time 
requirements. 

Manual trip distribution probably constitutes the most 
time-consuming element of the manual procedures pro-

Households Average Daily Person 
Owning No. of Trips Per Household by Average Dally Person 
Autos(~) No. of Autos Trips by Pulllose' ( 1J 

0 2 3+ 0 2 3+ HBW HBNW NHB 

57 37 6 o 1.0 7.5 10.5 13.8 20 63 17 
36 56 8 o 1. 7 9.2 13.3 16.4 22 60 18 
29 61 10 o 2.5 10.2 14.5 17.6 22 58 20 
21 65 13 1 3.5 11.4 14.5 19.0 22 58 20 
17 66 16 1 4.5 12.5 15.6 20.5 20 58 22 
12 65 21 2 5.4 13.8 17.0 22.2 20 57 23 
9 61 28 2 5.8 15.0 17.5 23.0 20 57 23 
6 58 33 3 6.3 15.8 18.0 23.5 19 57 24 
4 50 40 6 6.8 16.0 19.0 24.5 19 57 24 
2 40 51 7 7.0 16.0 20.4 25.0 19 56 25 
2 28 57 13 7.2 15.0 21.0 25.5 18 56 26 
1 20 61 18 7.5 15.0 21.0 25.5 18 55 27 
1 19 59 21 7.5 15.0 21.0 25.2 18 55 27 

14 48 33 6 5.4 13.7 18.4 22.4 20 57 23 

vided in the user's guide. But, overall, manual trip 
distribution was found to be quite manageable and ac­
curate and compares reasonably well with computerized 
applications. Manual trip distribution is recommended 
for up to 50 analysis areas. 

Other important and useful material developed and 
provided in the user's guide for the trip distribution 
phase included nomographs for the development of zone­
to-zone travel-time and friction-factor matrixes for the 
four population groups (Figure 1), gravity model travel­
time exponents for three urban population groups and 
five trip purposes, a method for distributing trips around 
a site by reversing productions and attractions, the use 
of accessibility indexes (once computed from a manual 
GM application) for quick determination of interzonal 
trip interchanges, and trip-distribution patterns for se­
lected generator sites. 

The use of the travel-time and friction-factor nomo­
graphs warrants some discussion. Essentially, in­
vehicle travel times can be derived by first measuring 
the zone centroid-to-centroid airline distance on a map, 
then estimating the proportion of travel on arterials or 
freeways, next determining the distances traveled in 
each subregion (CBD or central city or suburbs), and 
last entering nomographs such as the one illustrated in 
Figure 1. Appropriate nomographs must be selected ac­
cording to whether the travel is totally within a subregion 
or across two or three subregions. The nomographs 
also provide the origin-destination (O-D) terminal times, 
which, when added to the in-vehicle travel time, result 
in the total 0-D travel time. The user can then read 
the corresponding friction factors for each of the three 
trip purposes (HBW, HBNW, NHB). 

In summary, these nomographs constitute a set of 
practical tools for determining the travel-time and 
friction-factor matrix. The user's guide provides in­
structions for the planner to allow construction of these 
nomographs to suit particular local conditions, if so de­
sired. 

Mode Choice 

A thorough literature review (25, 26, 27) was undertaken 
to identify mode-choice modelshavingpotential for man­
ual conversion. Ultimately, the Urban Mass Transpor­
tation Administration default model contained in the pro­
gram UMODEL (14) was selected for transformation to 
the manual format. The default model is a simulta­
neous logit model for trip distribution and modal split. 

The transformation described in the user's guide and 
by Carter (28) converts the logit model into a very sim-
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Figure 1. Airline distance versus travel time versus distribution factors by trip purpose for an urban population of 100 000·250 000. 
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MStCln = [I~/(l~ + !~)) 100 

where 

MS,c1n = market share percentage on transit for any 
ij zone pair, 

I. = auto impedance for the ij zone pair, 
It = transit impedance for the ij zone pair, and 
b = exponent of time (similar to gravity model 

travel-time exponents). 

(I) 

The user's guide provides a nomograph based on 
Equation 1 for each of the three trip purposes (see Fig­
ure 2 for HBW trips). Once the auto and transit im­
pedances have been calculated for any ij pair, the nomo­
graph can be entered to arrive at the market share per­
centage of transit. The -user has an option of using 
localized values of b for the specific urban area under 
study. The auto and transit impedances are computed 
by using special nomographs drawn from procedures 
used elsewhere (12). Basic input information such as 
highway and transit airline distances and auto-operating 
and parking speeds is necessary for the application of 
these graphs. 

Some other practical tools supplied in the user's guide 
for mode-choice analysis include a nomograph for con­
verting highway airline distances to average operating 
speed, simplified worksheets for calculating auto and 
transit trips, and simple rules of thumb for quick esti­
mates of transit demand. 

The mode-choice technique was tested using travel 
data from Washington, D.C., and Atlanta, Georgia. Good 

50 GO 70 00 9C 

results were obtained and have been documented (28). 
The overall success of the manual mode-choice proce­
dure prompted San Diego to incorporate the technique 
for nonwork travel analysis in a current transportation 
study. Also, Atlanta has replaced its previous mode 
split models with a computerized procedure using this 
technique. 

Auto Occupancy 

Two major data sources utilized for auto occupancy fac­
tors and relationships are found elsewhere (28, 29). In 
addition, numerous urban transportation studies were 
reviewed. A series of tables delineating the variations 
in average daily auto occupancy rates with resoect to 
other exogenous factors was developed. Typical tables 
included in the user's guide deal with auto occupancy 
rates by each of the four urbanized area population 
groups and by trip purpose (Table 2), auto occupancy 
rates by income level of trip maker and parking cost at 
trip destination, auto occupancy rates by urban popula­
tion and land use at destination, auto occupancy adjust­
ment factors by time of day, and auto occupancy adjust­
ment factors by trip length. 

The user's guide also presents several illustrative 
examples to accustom the user to the application of the 
tables. 

Time-of-Day Distribution 

The majority of the manual techniques and parameters 
contained in the user's guide are based on average daily 
travel conditions. For an analysis of particular highway 
facilities, transit routes, and other related work, peak-
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period or specified hour demand estimation is often nec­
essary. The time-of-day analysis information provided 
permits various types of conversion. 

The material, in the form of tables, explicitly recog­
nizes the characteri stics of travel by time of day accord­
ing to location within the study area (CBD, central city, 
or suburb) and to orientation of the facility in relation to 
the core a.rea (radial or cross-town). Facilities con­
sidered are freeways and expressways, arterials, and 
collectors. Much of the material developed here has 
been obtained from another study (30). 

For example, the following relationships and pro­
cedures have been incorporated in the user's guide: 

hourly distribution (a) of internal driver travel by each of 
the four urban population groups and by trip purpose, (b) 
of internal driver and total vehicle travel by urban pop­
ulation, and (c) of total travel on various highway facili­
ties by urbanized area population; and conversion factors 
(a) for critical time periods of internal person travel by 
urban population (see Table 3) and ~b) for critical time 
periods of transit patronage. 

These factors might prove particularly handy for 
traffic impact analyses, trip-purpose mix studies, and, 
in view of the critical role of transportation system man­
agement (TSM) requirements, for such a management 
study. 

Figure 2. Mode-choice nomograph. 
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Table 2. Average daily auto occupancy rates by urban Trip Purpose 
area and trip purpose (m. 

HB 
Urban HB Social- HB 
Population HBW Shopping Recreational Other HBNW' NHB 

50 000-100 000 1.38 1.57 2.31 1. 52 1.82 1.43 
100 000-2 50 000 1.37 l.57 2.31 1.52 1.81 1.43 
250 000-750 000 1.35 t . 57 2.30 1.52 1.77 1.43 
750 000-2 000 000 1.33 1.58 2.29 I. 51 1.74 1.43 

aweighted average of auto occupancy rates for HB Shop, HB Social· Recreational, and HB Other trip purposes. 
hWeighted a11erage of auto occupancy rates for all trip purposes. 

All 
Purposes' 

1.50 
1.50 
1.50 
1.51 
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Table 3. Conversion factors for 
critical periods of internal auto 

Travel Hours 

travel for urban population of Peak· Combined Morning Evening Peak· 
100 000-250 000. Total Combined Hour Peak-Period Peak-Period Peak-Period Hour 

Travel Type Total Work" Peak Period Total Work Work Work Work 

Total 0.200 0.322 0.099 0.116 0.062 0.053 0.039 
Total work 5.000 1.610 0.495 0.579 0.312 0.267 0.195 
Combined 

peak-period 
total 3.106 0.621 0.307 0.360 0.194 0.166 0.121 

Peak-nour 
total 10.101 2.020 3.253 1.170 0.630 0.539 0.394 

Combined 
peak-period 
work 8.621 1.727 2.781 0 .855 0. 539 0.461 0.337 

Morning 
peak-period 
work 16.026 3.205 5.160 1.587 1.856 0.856 0.625 

Evening 
peak-period 
work 18. 727 3.745 6.029 1.854 2.169 1.169 0 .730 

Peak-nour 
work 25.641 5.128 8.256 2.536 2.969 1.600 1.369 

'Work refers to HBW trips. Total is (HBW + HBNW + NHBI trips. See text for definitions of travel for the various time periods~ 

Trip Assignment 

After a comprehensive literature review on existing trip 
assignment methodologies, three manual assignment 
techniques were selected for inclusion in the user's 
guide. The first is the traditional all-or-nothing assign­
ment process (7, 31, 32). Major modifications of this 
commonly usedmethod included the assumption that 
minimum time paths can be selected by judgment; then, 
a procedure for smoothing assigned volumes between a 
set of parallel facilities (33) was provided. Finally, 
simplified work sheets were designed to systematically 
keep track of the resulting trip volumes. 

The second method was generally guided by a report 
by Gruen Associates (34). This method enables the es­
timation of traffic generation and attenuation and the cor­
responding highway facility requirements such as num­
ber of lanes and spacing. Improvements on this method 
permit the use of more specific estimates of generated 
trips, for example, by employing Table 1, by using a 
more responsive decay function, and by providing di­
rectional sensitivity. 

The third procedure is based upon the multiroute 
probabilistic process developed by Dial (35). The man­
ual formulation presented in the user's guide provides a 
means of determining the probable shifts (divisions) in 
volumes between competing facilities in a corridor. 

Examples of some of the products resulting from 
these three techniques include simplified assignment 
work sheets, a series of charts for estimating street 
requirements based on land use, and a graph for deter­
mining traffic shifts between facilities in a corridor. 

Capacity Analysis 

Capacity analysis addresses the question of how much 
system is required to satisfy the estimated travel de­
mand or how much traffic the existing street system can 
accommodate before intolerable congestion develops. 
Two types of techniques are included in the user's guide 
for analyzing capacity. First, a corridor analysis pro­
cedure is described to investigate volume -to-capacity 
(V / Cl conditions within a highway corridor and to profile 
these relationships along a corridor route and, second, 
an intersection analysis procedure to evaluate vehicle 
movements through intersections (36). 

The corridor approach draws upon and extends exist­
ing procedures for analysis at screenlines and cutlines. 
The approach is to analyze V I C conditions in an aggre-

gate sense at key points along a corridor. 
The intersection analysis method utilizes turning and 

through lane movements to determine the critical volume 
of an intersection. It is presumed that such an inter­
section capacity analysis would be used if a user were 
investigating the impacts of a site on local street con· 
ditions. The technique requires trip assignment, includ­
ing the tabulation of turning movements at an intersection. 

Using capacity information (37), several manually ap­
plicable tables and nomographs were constructed for use 
in the V /C analysis. Examples of some are generalized 
capacity measures for freeways, expressways and ar­
terials and capacity nomographs for one- or two-way 
streets, with or without parking. 

Land Development Density and Highway 
Spacing Analysis 

The basic purpose of the land-use and highway spacing 
relationships described in the user's guide is to permit 
the rapid development of a "first-cut" estimate of future 
highway needs based on a desired level of highway ser­
vice. Given a distribution of land use in a study area, 
either in terms of activities (people, households, jobs) 
or subarea by type of use, and given the presence of an 
existing highway system, future vehicle trip ends are 
computed and then adjusted for improved transit service. 
Next, the average trip distance is computed from counts 
or from curves provided and adjusted for the future. 

Average arterial volumes, by subarea, for a given 
spacing of freeways and arterials can then be determined 
from the computation of vehicle-kilometers of travel and 
the level of service provided. A comparison of the level 
of service with a desired level gives a measure of high­
way needs for the study area. A description of the 
method in flowchart form is shown in Figure 3. 

Some of the analytic techniques in the form of graphs 
and charts, based on other sources (38, 39, 40), include 
a graph for least-cost volumes for various facilities, 
graphs for determining freeway and arterial spacing 
based on the magnitude of travel, and information on 
level-of-service volumes for various facilities. 

SCENARIO APPLICATION OF THE 
MANUAL ESTIMATION TECHNIQUES 

To ascertain the capabilities of the manual methodologies 
and transferable parameters described in the user's 
guide, extensive applications were made to three differ-
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ent types of transportation scenarios. Each of these 
scenarios was based on authentic field conditions and 
data input obtained from the three study areas: Boise, 
Idaho; Columbus, Ohio; and Fairfax County, Virginia. 
The choice of these study areas was dictated by and 
based on their population variations (small, medium, 
and large, respectively) and their geographical distri­
bution. 

The Boise scenario was based on the investigation, 
for the year 2000, of traffic impacts on the surrounding 
highway system of a proposed residential development 
and a large shopping center. Almost all of the manual 
techniques contained in the user's guide were put to use 
to quantify these effects. All three trip purposes were 
analyzed, the analysis itself yielding satisfactory re­
sults. The entire investigation-trip generation through 
trip assignment and capacity analysis-required a total 
of 60 person-hours. It was estimated that if only HBW 
trips were developed and then expanded to total trips 
(using factors such as those contained in Table 3), the 
work effort would have been reduced to about 40 person­
hours . 

The object of the Columbus scenario was to determine, 
for the year 2000, the impacts of a proposed corridor 
development located on the outskirts of the region and 
the current growth. Again, most of the manual estima­
tion techniques described above were used for the cor­
ridor impact analysis. The scenario was conducted in 
about 66 person-hours and produced output that was in 

reasonable agreement with local forecasts. 
The Fairfax County scenario determined the base 

year and future year (1985\ levels of service provided 
by the current and planned transportation systems in the 
county. The manual techniques described in the user's 
guide were used to estimate present and future travel, 
to allocate this travel by subarea to freeway and arterial 
facilities, and then to compute the resulting levels of 
service. The scenario required approximately 22 
person-hours and produced acceptable results. 

CONCLUSIONS 

This paper has presented a brief summary of the re­
search effort undertaken to identify contemporary urban 
policy issues, to evaluate currently available methods 
and procedures, and to develop manual travel estimation 
techniques and transferable parameters. On the basis 
of the test applications, it is believed that these manual 
methods are applicable to many transportation planning 
problems. Further, the manual methods will result in 
time and cost savings for various applications when com­
pared to computer-oriented solutions. 

Since the final report (14) was only recently dis­
tributed, the manual techniques have not yet undergone 
widespread testing and application. We hope this will 
occur as the techniques are put to use. Plans are under 
way to develop instructional material for use in training 
sessions. These sessions, similar in nature to the 



Highway Capacity Manual workshops, will be conducted 
to assist state and local planners in the application of 
the numerous techniques contained in the user's guide. 
The Transportation Center of the University of Ten­
nessee will assist COMSIS in the implementation of this 
phase. 

For the manual procedures to achieve full potential 
and acceptance, additional experimentation is needed. 
It would also be worthwhile to extend the analytic and 
estimation features of the techniques summarized in this 
paper, and to conduct further research to develop other 
noncomputerized transportation planning techniques for 
which a need exists. Such techniques could prove use­
ful in responding to the ever-changing issues of the day 
in shorter time frames. 
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Tabulating Demand Elasticities for 
Urban Travel Forecasting 
Y. Chan and F. L. Ou, Pennsylvania Transportation Institute, Pennsylvania 

State University, University Park 

This paper presents a compendium of demand elasticities in a tabulated 
form in order to facilitate urban travel forecasting. A number of elas· 
ticity estimates have been reported for a variety of cities over the past 
decade, but the scenarios or base conditions differ from one site to 
another. In order to systematically tabulate these disparate estimates, 
demand elasticities were pooled into four cells according to urban size 
(large versus mediuml and urban structure (core-concentrated versus 
multinucleatedl. Such a ciassification has been verified to stratify cities 
into groups sharing common socioeconomic and travel patterns. Demand 
elasticities can be divided into two categories: empirical elasticities and 
calibrated elasticities. The former were measured in the field before and 
after notable incidents such as a fare increase in the transit system, while 
the latter were derived from demand models. The elasticities can be 
further identified as either aggregate or disaggregate depending on 
whether they are calculated from areawide or subarea data. All these 
result in a collection of elasticities that have rather different values. This 
paper tries to explain some of these differences to gain insights into the 
general characteristics of elasticities for urban areas of different sizes and 
structures. The elasticity tabulation and the general properties of the 
elasticities provide both practitioners and researchers with factual in­
formation for estimating urban travel demand simply and systematically. 

Demand elasticities are often used in conjunction with 
urban travel forecasting. They have been applied fre­
quently, however, under circumstances that are incon­
sistent with the assumptions under which they were de­
rived. The purpose of this paper is to resolve some of 
these inconsistencies and to provide some guidelines­
including a systematic tabulation of the available elas­
ticities-for their consistent application in demand es­
timation. 

There are three areas where inconsistencies may be 
introduced. First, elasticities are often applied in a 
scenario very different from the base conditions from 

which they were empirically developed. For example, 
a fare elasticity of -0 .13 measured during the New York 
subway fare increase of January 1970 refers specifically 
to the base conditions that existed at that time, including 
the patronage and fare level. To apply the elasticity in­
discriminately for other fare and patronage levels is a 
futile exercise at best. Unfortunately we found many 
cases where elasticities are cited out of context and, 
hence, erroneous inferences are drawn. 

Demand elasticities found in a large metropolis such 
as New York City provide little information on other 
cities either smaller or of similar size, since they may 
have drastically different urban structures. Very limited 
research .has been performed in relating elasticities to 
cities classified according to size and other urban char­
acteristics. Until a better understanding of such a re­
lationship is gained, our knowledge about elasticities in 
specific sites cannot help us in demand forecasting in 
other cities. 

The measurement of elasticities was performed by 
using methods ranging from areawide empirical tabula­
tions to disaggregate demand modeling. These various 
levels of aggregation can often lead to very different es­
timates of demand elasticities for the same study area. 
A case study in Chicago, for example, shows that the 
difference between areawide and household elasticities 
can be as high as 40 percent, depending on the homo­
geneity of travel behavior among households in the area 
(1, Appendix 8). Citing an elasticity without specifying 
the level of aggregation can therefore result in estimates 
significantly out of kilter with reality. All these condi­
tions point to the fact that guidelines for applying demand 
elasticities need to be found. The way the elasticities 
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are compiled and categorized in this paper is, in our 
judgment, a step in this direction (Figure 1). 

TRANSFERABILITY OF ELASTICITIES 

Since elasticity measures are defined for a particular 
base condition, they cannot be directly applied to a sce­
nario with a different base condition unless steps are 
taken to guarantee their transferability. In order to ap­
ply elasticities to travel forecasting, a group of elas­
ticities must be compiled for cities that share common 
socioeconomic and travel characteristics. Such a strat­
ification may explain some of the variations in elastici­
ties among areas. 

Spatial Transferability 

A stratification scheme according to city size is intui­
tively appealing, since the travel patterns are found to 
be different among large, medium, and small cities. 
Travel demand is also found to be affected by the urban 
structure. For example, the number of trips is probably 
greater when employment and shopping centers are dis­
persed than when they are concentrated (which results 
in a major flow of traffic to and from the city center). A 
stratification of cities into multinucleated versus core­
concentrated categories is therefore advisable when ex­
plaining the variations in travel demand. 

We s et up a hypothes is to group the U.S . cities with 
at least 50 000 population into four cells: (a) large core­
concentrated, (b) large multinucleated, (c) medium core­
concentrated, and (d) medium multinucleated. 

Several experiments conducted {l) to verify or im­
prove such a hypothesis have utilized techniques such as 
cluster analysis, factor analysis, regressions, and lin­
ear goal programming. The results indicate that such 
a classification scheme, for the data assembled from 
55 percent of the U.S. cities, is statistically significant 
in explaining the variations in the base travel conditions 
among the cities within the same cell. When 800 000 

x 

Spatial 
Transferability 
across Cells 

population is used as a demarkation between large and 
medium cities, cities in the same cell of the classifica­
tion are found to share common relationships on a key 
urban travel parameter : person-trip hours of travel 
(PHTJ. This finding is rather gratifying, since PHT, 
aside from being a measurement of travel intensity, is 
the product of travel volume and trip impedance that 
captures the base conditions for which an elasticity is 
defined. [Demand elasticity, or the percentage of 
change in travel in response to 1 percent change .in 
such travel impedance as trip time or cost, is defined 
as (A volume/base volume)/(.A impedance/base imped­
ance) .] Such a result leads us to believe that the travel 
responses, or elasticities, are similar among the city 
groups under the taxonomy scheme. In the following 
sections, then, we shall discuss the outcomes of clas­
sifying elasticities according to city size and urban 
structure as defined in our city stratification scheme. 

Temporal Transferability 

The four-cell stratification may guarantee spatial trans­
ferability of elasticities among cities in the same cell, 
enabling the elasticities from one city to be applied in 
another city (belonging to the same group). However, 
there is still another major consideration before a table 
of elasticities can be used in a meaningful way, and that 
is the problem of temporal transferability (Figure 1), 
which we explain below. 

The use of tabulated elasticities as a measurement 
of demand changes, with respect to changes in travel 
time and travel cost, is predicated on the hypothesis that 
these elasticities are stable over time. If we define 'l7b 
as the demand elasticity of base year b, and Tlr for the 
forecast year f, the assumption of temporal transfera­
bility amounts to equating 'l7b with Tlr · Obviously such an 
assumption needs to be verified. 

As pointed out earlier, demand elasticities are de­
rived for a specified volume of demand and trip imped­
ance (or level of service), which are collectively re-
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ferred to as the base travel conditions . Kannel and 
Heathington (2) examined the form of household travel 
relations to determine the stability of these relations 
over time. The results indicate that the trip-making 
volumes estimated from the 1964 data could successfully 
predict household travel in 1971. 

A study by Voorhees (3) indicates that t ravel imped­
ances such as trip time can be estimated from city pop­
ulation as a temporally stable r elationship. Examina­
tions by Chan of the time ser ies data collected from 1956 
through 1976 for 55 percent of the U.S. cities show rea­
sonable temporal stability among both travel volume and 
travel impedance as represented by trip time (1). 

An intuitive explanation of these stability properties 
can also be offered. Recent investigations into travel 
decisions and time budgets suggest that an individual 
spends a relatively constant percentage of his normal 
day on travel, which implies that the PHT (frequency 
and duration of trip making) are relatively stable. 

Aside from the base conditions, temporal transfer­
ability is also reported for demand elasticities. Mc­
Fadden (4) and Train (5), in their works with the San 
Francisco Bay Area Rapid Transit (BART), calibrated 
modal choice models before the implementation of the 
rapid transit system in order to forecast BART rider­
ship. All the predicted shares turned out to be within 
one standard error of the corresponding observed shares 
after the implementation of BART. The forecasting er­
ror in total BART patronage amounts to only 2.3 percent. 
The research by Atherton and Ben-Akiva (6) provides 
more evidence of temporal transferability Tn the time 
span from 1963 to 1968. While the details of the findings 
may vary, however, we feel that there is enough evidence 
of temporal and spatial transferability of elasticities 
using the proposed urban size and structure stratifica­
tion to warrant more detailed investigation. 

ELASTICITY TABULATIONS 

Having established a way to group cities, let us tabulate 
the elasticities reported in the literature. These can be 
classified into two major categories: empirical elas­
ticities and calibrated elasticities. Empirical elastici­
ties are obtained from field measurements before and 
after a notable incident such as a fare increase. Cali­
brated elasticities, on the other hand, are derived from 
various types of demand models. 

According to the methodology and data used for the 
computation, elasticities can also be divided into two 
categories: aggregate versus disaggregate, where the 
latter approach is founded on more detailed data (such 
as an individual or household unit of analysis), while the 
former approach is based on coarser data (such as the 
areawide geographic unit). Empirical elasticities, mea­
sured typically on a corridor or areawide basis, are 
therefore more aggregate than calibrated elasticities, 
often on a zone or household level basis. 

According to the above taxonomy, elasticities can be 
classified as (a) those callbrated by aggr egate data using 
aggregate methodology (17 • .) and (b) those calibrated by 
di:;a,ggregate data us ing a disaggr egate methodology (7700 ). 

It is hypothesized that Tl•• t ends to overestimate the 
magnitude of demand response, while 11 .. will underes­
timate demand elasticities , on the average. The rela­
tiouship can be expressed by the following inequality: 

I 1)1rn I > I 1),.111 I :- 11) AA I (I) 

The reason for the above relationship is that observation 
errors tend to impart downward bias to aggregate pa­
rameters, while the elasticity obtained by aggregating 
over 7100 is likely to yield higher values ('!_). Without 

further empirical studies one cannot know precisely the 
quantitative nature of the inequality. It is one of the 
objectives of this paper to address this issue by report­
ing on some preliminary findings on a limited set of em­
pirical (areawide) and calibrated (subareal) elasticities. 

In the following tabulations, both aggregate and dis­
aggregate demand elasticities will be further stratified 
by trip purpose (whether it be working, shopping, social 
and recreational, or others) and a variety of impedance 
or level-of-service attributes such as time and cost. 
For example, an excess time elasticity may be defined 
for work trips, while a fare elasticity may be defined 
for nonwork travel. 

Empirical Elasticities 

An empirically derived set of elasticities is compiled 
for the transit ridership experiences of 19 cities in the 
United States. For each city, the elasticities over the 
years corresponding to the various fare increases (such 
as in New York City) are recorded. Some of the mea­
surements are performed during the peak hours and 
some during off-peak hours (such as in St. Louis), but 
most of the numbers are reported for overall trips with­
out stratification into trip purposes. 

The variation in these empirical measurements ranges 
from -0 .07 to -3.80, although all of them are transit de­
mand elasticities with respect to the levels of service. 
An arrangement of these elasticities according to the 
four-cell stratification scheme is shown in Tables 1 and 
2 (8, 9, 10 , 11, 12, 13 , 14, 15) . After the site and level-of-
s ervfC eattrihutesare specified, the largest variation 
in each of the entries is from -0.63 to -3.8, which is the 
range recorded for the excess time elasticities in large 
core-concentrated cities. This represents a substantial 
improvement over the -0.07 to -3.BO range found in the 
original data before classification. We view this as a 
partial illustration of the effectiveness of the stratifica­
tion scheme for our elasticity tabulation. 

Calibrated Elasticities 

Two groups of calibrated elasticities will be compiled: 
those calibrated using zone data models and those cali­
brated using household data models. Shown in Table 3 
(16) and Table 4(6,17, 18, 19, 20, 21, 22, 23, 24) are the 
value ranges of the calibratedeiasticities obtained by 
using zone direct-demand models and household modal­
split models. It should be noted that among all trip 
purposes, only the most complete data set, work elas­
ticities, is reported here for conciseness. Elasticities 
for other trip purposes are reported elsewhere (1) and 
will not be reproduced here . -

The usefulness of Tables 3 and 4 (and for that matter 
Tables 1 and 2) can be illustrated via a simple example. 
The linehaul time elasticity for bus patronage, for in­
stance, ranges from -0. 78 to -0.30 for a large core­
concentrated city, which may be interpreted to say that, 
in general, the ridership goes down by about -0 .54 per­
cent (the average of the two extremes) in response to a 
one percent rise of the linehaul travel time. -

The r eader is r eminded that some of these rather 
wide ranges of the elasticity values as shown in Tables 
1-4 can be attributed to several factors. First, they are 
obtained from different cities with disparate bas e levels 
of s ervice and travel volumes . Second, they are ob­
tained from both areawide and subarea (zone or house­
hold) estimations that may yield rather different elas­
ticities even for the same study area . Thus fa r, we have 
had some success in explaining the variations among 
cities by us ing the city classification s cheme. The vari­
ations due to the level of aggregation, however , remain 
to be explained. 



Comparison Between Calibrated and 
Empirical Elasticities 

The ad hoc manner in which empirical elasticities were 
compiled and the severe limitations of the data base 
make a rigorous comparison with the calibrated values 
difficult. The fact that these two sets of elasticities are 
generally compiled for different trip purposes (overall 
versus work, respectively) further complicates the mat­
ter . Finally, the different data base (before and after 
versus cross-sectional, areawide versus subarea) con­
stitutes the last straw. However, a discussion is still 
useful as a check as long as we keep in mind that work 
demand elasticities are more inelastic by nature than 
elasticities for overall trip purposes. 

Amid these complications an experimental relation­
ship between the empirical (areawide) elasticity 770 and 
the calibrated (subarea) elasticity 7700 was discerned. It 
is encouraging to find that the magnitude of the corre­
sponding numbers in Tables 1-4 confirms our initial 
conjecture (Equation 1) that elasticities estimated from 
a set of more disaggregate data are higher in value than 
those estimates from a more aggregate set, as can be 
explained below. 

In Figure 2, the same elasticities estimated from 
empirical versus model calibra tions are put on the same 
plot. It appears that the calibrated elasticities show up 
consistently higher in value than the empirical ones. 
While there may be several factors that contribute to 
this, the level of aggregation could be the dominant fac-

Table 1. Range of empirical transit demand elasticities for overall 
trips for medium cities. 

Medium Medium Core-
Multinucleated Cities Concentrated 
Transit' Cities Transit ' 

Item Total Bus Rall Total Bus Rail 

Total 
Llnehaul time NA NA NA NA NA NA 
Excess time NA NA NA NA NA NA 
Cost NA NA NA NA NA NA 

Bus 
Linehaul time NA NA NA NA NA NA 
Excess time NA NA NA NA -0.83 NA 
Cost NA -0.12 - NA NA -0.25 - NA 

-0.34 -0.65 
Rail 

Linehaul lime NA NA NA NA NA NA 
Excess time NA NA NA NA NA NA 
Cos t NA NA NA NA NA NA 

'Salt Lake City and Springfield, Massachusetts. 
bChesapeake, Virginia; Portland, Maine; Tulsa; and York, Pennlylvania. 

Large 
Table 2. Range of empirical 
transit demand elasticities for 
overall trips for large cities. 

Multlnucleated Cities 
Transit• 

Item Total Bus 

Total 
Linehaul time NA NA 
Excoss tim e NA NA 
Cost -0.30(5) NA 

Bus 
Llnehaul time NA J-0.55 
Excess time NA -0 .20 -

-0.60 
Cost NA -0.11 -

-0.64 
Rail 

Linehaul time NA NA 
Excess time NA NA 
Cost NA NA 

43 

tor . The reason is that preliminary analysis shows that 
the ratios of work to overall elasticity range from 1.0 
to 1.3, with the average of the two extremes being 1.15. 
The slope of regression line is 1.97 in Figure 2. The 
difference between 1.97 and 1.15 has to be attributed to 
the level of data aggregation. 

GENERAL CHARACTERISTICS OF 
ELASTICITIES 

When one regards urban transportation as a service to 
the consumer, one can assign a generalized price to 
purchasing such a service in terms of cost and time. 
Since demand elasticity is a measure of the percentage 
of responsiveness of travel demand to 1 percent change 
in the level of service, it evaluates the marginal demand 
contributions of a change in cost or time. It is found in 
our tabulations that, while individual travel demand elas­
ticities in a class of urban areas often share some com­
mon characteristics, the elasticities among groups of 
cities are disparate. The difference between demand 
elasticities among different groups of urban areas can 
be explained below. 

Saturation of Demand 

According to the theory of demand, the marginal utility 
of additional trips tends to diminish when demanded trips 
approach served trips. This explains why, in the larger 
urban areas where served trips often fall short of de­
manded trips, demand is highly sensitive to change in 
level of service. The results of three case studies in 
Boston (17), Chicago (18), and Louisville (16) strongly 
support this theory. Bus demand elasticities with re­
spect to linehaul time, excess time, and cost are -1.10, 
-1.84, and -0.51, respectively, for a large city such as 
Chicago and -0.19, -0 .38, and -0.40, respectively, for 
a s maller city such as Louisville. The comparison of 
auto demand elasticity with respect to its own linehaul 
time and cost between a large city and a medium city 
also shows this tendency. For instance, auto linehaul 
time and cost elasticities for Boston are -0. 82 and -0 .494, 
while for Louisville they are -0.39 and -0.12. 

Level-of-Service Attributes 

According to consumer behavior, when the price of a 
commodity or a service is high, the response of demand 
to a change in price is more elastic. This leads to a 
corollary that states that elasticities are lower in value 
where level of service is high. In smaller cities where 

Large Core-
Concentrated 
Cities Transit' 

Rail Total Bus Rall 

NA NA NA 
-0.~CJI 10) NA NA 
NA NA NA 

NA NA NA 
NA -0.63 - NA 

-3.8 
NA -0.08 - NA 

-0.60 

NA NA NA 
NA NA -0.24 
NA NA -0.07 -

-0 . 19 

a Atlanta , Boston, Detroit, Philadelphia, San Diego, and S<Jn Franc1sr.u 
bBaltirnore, Cincinnati, Milwaukee, New York, and St , Louis~ 
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Table 3. Range of calibrated 
work-trip elasticities for medium 

Medium Multinucleated City• Medium Core-Concentrated City' 

cities. Transportation Transit Transit 
System Para- Para-
Variable transit Total Bus Rail Auto transit Total Bus Rail Auto 

Para transit 
Linehaul time NA NA -0.315 0.194 0.194 
Excess time NA NA -0.189 \J.117 0.117 
Cost NA NA -0.057 0.035 0.035 

Total 
Linehaul time NA NA NA NA NA 
Excess time NA NA NA NA NA 
Cost NA NA NA NA NA 

Bus 

Linehaul time }-2.80 )1.11 0.022 -0.19 - 0.022 
(Total time) -0.373 

Excess time NA NA 0.092 -0.38 - 0.092 
-1.55 

Cost -0.51 0.06 0.05 -0.40 - 0.05 -
-0 .852 0.15 

Rail 
Linehaul time NA NA NA NA NA 
Excess time NA NA NA NA NA 
Cost NA NA NA NA NA 

Auto 
Linehaul time )2.81 J-1.11 0.173 0.173 -0.138 -

(Total time) -0.39 
Excess time NA NA 0 .173 0.173 -0 .138 
Cost 1.39 -0.55 0.115 0.115 -0.092 -

-0.12 

aRichmond, Virginia. b Louisville, Kentucky. 

Table 4. Range of calibrated work-trip elasticities for large cities. 

Large Multlnucleated Cities' Large Core-Concentrated City' 

Transportation Transit Transit 
System Para- Para-
Variable transit Total Bus Rail Auto transit Total Bus Rall Auto 

Paratransit 
Llnehaul time -0.02 - NA -0.27 NA NA -0.59 0.22 NA NA 

-0.664 
Excess time -0.122 NA NA NA NA -0.28 0.10 NA 
Cost -0.01 - NA -0 .06 NA NA -0.10 0.04 NA 

-0.092 
Total 

Linehaul time NA -0.20 - NA NA NA NA NA NA 
-0.39 

Excess time NA -0.69 - NA NA NA NA NA NA 
-0. 709 

Cost NA -0.09 - NA NA NA NA NA NA 
-0.58 

Bus 
Linehaul time 0.04 NA -0.46 - 0.23 0.04 - NA -0.30 - 0.25 

-1.10 0.14 -0.78 
Excess time 0.10 NA -0.17 - 0- 0.05 - NA -0.94 0.30 

-2.28 0.06 0}1_!· 
Cos~ 0.03 NA -0.1 - 0- ~ 0.0 ~ ) NA -0.12 - 0 .06 

-0.58 0.28 ,, 0.138 -0.20 
Rail 

Linehaul time NA NA 0.13 - -0.60 - 0.10 NA NA NA 
1.02 -0.80 

Excess time NA NA 0.03 - -0 . 12 - 0.02 NA NA NA 
1.15 -2.06 

Cost NA NA 0-
0.25 -0.86 - 0.13 NA NA NA 

-1.80 
Auto 

Linehaul time NA 0- 0.36- 0.27 - -0.02 - NA 0 .17! NA -0 .18 
0.37 0.39 0.41 -0.82 -0.53 

Excess time NA 0 NA NA -0.027 - NA 0.33 NA -0.35 
-1.437 

Co•t NA 0- 0.06 - 0.06 - -0.01 - NA 0. 15 NA -0 . 16 
0.80 0.97 0.97 -0 .494 

aaoston. Chicago, San Francisco, Los Angeles, San Diego, Minneapolis-St. Paul, bWashington, D.C. 

the level of service is generally higher (meaning that the 
travel time is shorter and the travel cost is lower), de­
mands are therefore less elastic. However, for head­
way elasticities where the headway is longer (hence the 
level of service lower) for smaller cities the reverse 

mand support this assertion. Additional evidence can be 
found in the case studies on bus demand elasticities in 
New Bedford, Massachusetts; San Francisco; Washington, 
D.C.; and Los Angeles (1, 22), where the bus ridership 

is true. 
The examples used in explaining the saturation of de-

in large cities is more Sensitive to changes in travel 
time. 

Another example of transit schedule frequency can be 



Figure 2. Comparison of mean values and empirical and -2.0 
calibrated elasticities. 
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cited. Large cities generally have higher levels of ser­
vice in terms of schedule frequency. The headway 
change of buses from 5 to 10 min has less impact on 
ridership compared to the same percentage of change in 
medium cities from 15 to 30 min. This is shown in the 
empirical findings of Chesapeake, Virginia, a medium­
sized city, and several large cities such as Boston, New 
York, and Detroit (but not Milwaukee). The headway 
elasticity for the former is -0.83, and the headway elas­
ticities for the latter are -0.60, -0.20, and -0.63. This 
reasoning is further supported by empirical findings in 
New York, where ridership impacts corresponding to 
changes in the schedule frequencies of buses and sub­
ways were measured (Tables 1 and 2). The bus (with 
lower level of service) has an elasticity of -0.63, while 
the subway (with higher level of service) has an elasticity 
of -0.24. 

New Mode 

Based on modal choice theory, the demand elasticities 
are more elastic if the trip maker has more than one 
choice of mode. This is shown in two sets of observa­
tions. In the BART study (22), the bus demand elastici­
ties for linehaul time, excess time, and cost are -0.46, 
-0.17, and -0.45 respectively for pre-BART, and -0.60, 
-0.19, and -0.58 for post-BART, while the auto demand 
elasticities with respect to changes in linehaul time and 
cost are -0.13, -0.32, and -0.22, -0.47 corresponding 
to two different points in time. 

Summary 

Due to the difference of social and economic backgrounds, 
different areas have different levels of saturation of de­
mand, levels of service, mode choices, and other vari­
ables. These lead to the variation of demand elasticities 
among areas. To some extent, the city classification 
scheme employed in our analysis accounts for a number 
of these factors and helps to explain some of the elas-
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ticity variations. The size of the city is used to group 
cities into different levels of demand saturation and level 
of service. The urban structure, on the other hand, 
separates core-concentrated cities (where there are gen­
erally more choices of mode) from multinucleated cities 
(where there are fewer mode choices). 

If one examines the elasticities in each of the four 
groups of cities, he or she will notice that, generally 
speaking, the numerical values are larger in large cities 
and sites with a core-concentrated urban structure. This 
constitutes a verification of the two-way classification 
scheme. 

CONCLUSIONS 

The main purpose of this paper is to translate all of the 
reported demand elasticities into a consistent form that 
will be useful in demand forecasting. Of special concern 
are the spatial and temporal transferabilities of these 
elasticities, in which the former means that parameters 
calibrated in one area can be applied to other areas, 
while the latter implies that parameters are stable over 
time. 

We emphasize that demand elasticity alone, being a 
point estimate, cannot be used to forecast effectively. 
This is because elasticity is defined only for a particular 
base condition, which is often characterized by a par­
ticular level of service and traffic volume. In order to 
apply the elasticities obtained in one city to another, one 
should group cities according to similar socioeconomic 
and travel patterns. The patterns are collectively re­
ferred to as the base conditions. 

An analysis was performed to uncover some of the 
base conditions under which the elasticities were derived, 
and a city classification scheme was found for grouping 
cities into generic cells within which elasticities may be 
transferable. Elasticities were then tabulated for the 
respective cells according to the stratification of modes 
and level-of-service attributes. It was found that a good 
deal of the variations among the time and cost elasticities 
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can be explained by the city classification scheme, which 
groups cities according to their level of demand satura­
tion, level of service, and choice of modes. 

At the same time, the variations among the values 
obtained for the same elasticity may be attributed to the 
different level of data aggregation. Empirical elasticities, 
which a.re measured from areawide or corridor data, 
provide the lower bound estimate, while calibrated elas­
ticities, which are obtained from zone or household data, 
give the upper bound estimate. The true value of elas­
ticities lies somewhere in between the two extremes. 

Like many other studies of this nature, this research 
can be refined by expanding t he data base and continuing 
the methodological inves tigations. In the interim, there 
are some very positive contributions reported in this 
paper. For the practitioners, it provides a handbook of 
elasticities, thus reducing the replication of demand 
forecasting model calibration efforts, and serves as a 
tool to perform travel estimation in a fast and consis­
tent manner using the available elasticity tabulations. 
For the researchers, it offers some insights into the 
general properties of elasticity measurement in Ameri­
can cities of different urban size and urban structure. 
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Technique for Determining Travel 
Choices for a Model of Nonwork 
Travel 
Thomas E. Parody, Charles River Associates, Cambridge, Massachusetts 

In transportation corridor studies, it is not always clear whether the ef­
fects of non,moda-choice decisions for discretionary travel demand should 
be considered in detailed analyses. This paper presents a manual approach 
that can be used by planners to determine quickly whether time-of-day, 
trip frequency, or destination choice affects can be neglected early in 
the planning process. The approach relies on demand elasticities ob­
tained from disaggregate travel demand models. Demand models that 
capture the causal structure of shopping trip decisions were first intro­
duced in 1972 in a study performed by Charles River Associates for the 
Federal Highway Administration. To simplify the modeling approach, 
the study developed the concept of inclusive price. This paper presents 
a revised specification of the inclusive price variables and identifies the 
resulting new elasticity equations for separable discretionary travel de­
mand models. The differences between the previous and revised defini­
tions of elasticity with respect to travelers' responses to changes in trans­
portation level of service are highlighted. 

Until recently, most studies of disaggregate travel de­
mand examined only mode-choice behavior for the work 
trip. At the present time, however, disaggregate de­
mand models have been calibrated and evaluated for 
discretionary or shopping trip travel behavior. These 
models indicate that changes in level of transportation 
service (e.g., travel times or travel costs) will gen­
erally affect choice of time of day, destination, and trip 
frequency as well as choice of mode. Thus, these 
models are able to capture the causal structure due to 
changes in one or more of the transportation level-of­
service (LOS) variables. 

In certain instances, however, a proposed modifica­
tion to the transportation system may only affect mode 
choice. Consequently, time of day, trip frequency (or 
generation), and destination can be neglected. This 
assumption is routinely made for certain trip purposes 
such as for trips to work. But for other nonwork travel 
decisions it is not always obvious when a planner should 
concentrate just on shopping mode choice without also 
having to examine destination, frequency, and time-of­
day decisions. Clearly, when these other choices can 
be ignored (without introducing a significant error), the 
analysis will be simplified, resulting in quicker and less 
costly studies. 

For some policies the type of analysis under con­
sideration will indicate a priori when time-of-day, 
destination, or frequency choices can be omitted. As 
an example, a change in tolls that increases travel 
costs to an airport may not cause shifting among des­
tinations or to other times of the day. We would ex­
pect, however, to observe shifts of modes. Given a 
large enough increase in the toll, some reductions may 
also occur in the frequency of travel. On the other 
hand, an improvement in travel service along a single 
corridor may attract trips from other destinations, 
especially if the change is significantly large and in­
volves a sensitive variable that changes travel be­
havior. As a consequence of this policy, additional 
choice decisions over and above mode should be ex­
plicitly considered in the analysis. The question is 
how large a change must occur in an independent LOS 
variable before alternative times of day, destinations, 
or trip frequencies must be evaluated, in addition to 

modes. When a priori theory and intuitive judgment 
are uncertain as to the degree of traveler response for 
a particular policy, what decision criterion should be 
employed? 

This paper presents a manual approach that can be 
used by planners to determine quickly whether time-of­
day, trip frequency, or destination choice effects can 
be neglected at an early stage in the planning process. 
The approach relies on demand elasticities obtained 
from disaggregate travel demand models. If the time­
of-day, destination, and frequency elasticities are 
sufficiently inelastic, then it is possible that some or 
all of these elements of choice can be dropped from 
further analysis. After the responsiveness of each 
element of choice is evaluated using elasticity mea­
sures, the appropriate choice functions remaining can 
be subjected to a more thorough analysis using dis­
aggregate demand models (~, §_). 

ELASTICITY DEFINITIONS 

Elasticities have been widely reported in many of the 
previous aggregate and disaggregate demand studies 
in order to indicate the sensitivity of a model with 
respect to a fixed percentage change in one of the in­
dependent variables. Often elasticities become a 
means of comparing the responsiveness of a recently 
developed model to other models already cited in the 
literature. 

Elasticities are also used to make quick estimates 
or forecasts for policy analysis when budget or time 
considerations prohibit using a more sophisticated de­
mand model. For example, the Simpson-Curtin rule 
is a widely known fare elasticity that suggests a 0.33 
percent decrease in transit patronage for every 1 per­
cent increase in transit fares. 

Until recently, elasticities (both direct and cross) 
were mainly reported in relation to changes in mode 
choice because most models were concerned specifically 
with this aspect of travel behavior. This was true for 
disaggregate demand models until 1972 when Charles 
River Associates (CRA) (2) reported on the develop­
ment of disaggregate nonwork models for travel choices 
such as shopping time of day, destination, and trip 
frequency. 

To reduce the complexity of estimating the sequence 
of models after mode choice, the concept of an in­
clusive price was introduced. This allowed the various 
mode attributes of a trip to be combined into a single, 
generalized variable. As a result, a substantial sav­
ings was realized in the number of parameters that had 
to be estimated for any given model formulation. 

Inclusive price for a particular mode was defined as 
the sum of the attributes for that mode weighted by the 
calibration coefficients from the mode-choice function 
for the trip purpose under consideration. That is, 

IP:,, = -1: °'•Xm• 
all t.. 

(I) 
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where 

IP:.. inclusive price for mode m for traveler t, 
Xmk the value of the kth attribute for mode m, and 

a k the estimated coefficient for the kth attribute. 

The assumption of an inclusive price implies that 
the relationships or marginal rates of substitution be­
tween certain variables (notably time and cost) remain 
constant over different choice functions (i.e., destina­
tion, time of day, and trip frequency). However, the 
relative effect of a group of variables that appears in 
more than one model can differ among choices. In fact, 
this is accounted for by the coefficient of the inclusive 
price variable. 

As employed by CRA (2) and Domencich and McFadden 
(7) the inclusive price in the time-of-day model, for ex­
ample, was summed over all modes m, at the time 
period h, to destination d, given that a trip is made 
(f = 1), using as weights the expected conditional prob­
ability, P(m/hdf), of selecting each mode. That is, 

IPt = ~ IP:.. x P(m/hdt) (2) 
1llm 

Based on an assessment of model assumptions (3, 
p. C-143) associated with the above linear composition 
of inclusive price, a revised formulation has been de­
veloped and is presented in a later section of this paper. 
With the new inclusive price formulation it can be shown 
that the conditional or separable probability models will, 

Figure 1. Sample alternatives and choice 
probabilities. 

LtCJ11nd 

destination 2 

under certain assumptions, yield results similar to the 
joint probability model of shopping demand. Specifically, 
if the coefficients of the inclusive price variables are 
restricted to one, then the separable models will be 
mathematically equivalent to the joint model. 

Because of the change in the definition of inclusive 
price, the elasticity formulas originally presented in 
the 1972 report will also change. We shall develop the 
proper elasticity equations for the separable disaggregate 
demand models and compare the resulting change in 
elasticities to those based on the old definition of in­
clusive price. 

SAMPLE APPLICATION 

The following illustrative but typical example (Figure 1) 
is presented to show how demand elasticities can be used 
to identify, a priori, the approximate magnitude of 
change in discretionary travel behavior, given a proposed 
policy that affects transportation level of service. The 
objective will be to determine when time of day, destina­
tion, and frequency effects should be modeled or when 
they can be ignored when a change will occur in one of 
the independent variables influencing demand. 

In this example it is assumed that for a given traveler 
three alternative shopping destinations are available: 
one may be the CBD and the other two may be regional 
shopping centers. The example could conceivably be a 
group of individuals stratified by a market segmentation 
category. Each destination is served by both auto and 
transit, but, because of service differentials, the mode-

destination 3 

LOS Data 

Mod l - • auto lal 
11,m 

............ • transit ltl 

Time of I 
Oav,h 

m • mixed period trip1 

o • off PHk trips 

off peak transit travel time 0 -1 • 20 min. 
off peak transit travel time 0-2 • 25 min . 
off peak transit travel time 0-3 • 30 min. 

Choice Probabilities 

Pa/m,1 • .30 

pa/m,2 • .4o 

pa/m,3 •.SO 

Modes [P mlh,d] 

Pa/o ,1 • .4o Pt/o,1 = .60 

Pa/o,2 •.SO pt/o,2 • .5o 

Pa/o,3 • .60 Pt/o,J • .40 

Frequencies (Pf) 

pf=O = .33 

pt/m, 1 " .70 

pt/m,2" .SO 

Pt/m,3 = .SO 

Destinations [" dlf] 

P1/t•l = 1/3 

p2/f•1 • 1/3 

PJ/f=l = 1/3 

Time of Day [Ph!d] 

po/d • 2/3 

Pm/d = 1/3 



choice probabilities vary with destination and time of 
day. Figure 1 presents the proposed alternatives under 
consideration and the choice probabilities for an in­
dividual traveler. 

Basically, the example assumes that the traveler is 
twice as likely to make a home-shop-home round trip 
in a given 24-h time period than not (i.e., Pr=i is twice 
Pr=~ ). If he or she does make a shopping trip, the odds 
of having both legs of the shopping tour occur in the 
off-peak period are twice as likely as having one of the 
legs take place in a peak period and the other in an off­
peak-what is referred to as a mixed -peak t r ip (i.e., 
P 01d is twice Pm1d). It is assumed that the number of 
shopping trips that have both segments of the sojourn 
in the peak period is negligible. For a given shopping 
trip, each possible destination has an equal likelihood of 
being selected. If, in the off-peak period, destination 1 
is selected, the traveler is more likely to travel by 
transit, while for destination 2 either mode is equally 
likely. Last, for destination 3, the odds indicate that 
the traveler is more likely to choose auto. For mixed­
peak shopping trips the odds suggest more transit use, 
possibly because of arterial roadway congestion. With 
a high probability that transit will be chosen for destina­
tion 1, this may be thought of as a radial corridor to the 
central business district (CBD) that has very goodtransit 
service. 

In the example, it is assumed that a proposed policy 
will alter off-peak transit service in the corridor to 
destination 3 such that linehaul transit times will be 
affected. The transit manager would like to obtain the 
increase that may be expected in off-peak ridership 
levels. For this example, the increased transit patron­
age could (a) be diverted from the auto users already 
traveling to destination 3, (b) result in travelers chang­
ing their time-of-day decisions for shopping, (c) result 
from more trips in corrider 3 that were attracted from 
destinations 1 and 2, and (d) be the consequence of 
newly generated trips (see corresponding letters and 
arrows in Figure 1). The question thus becomes what 
conditions will require all four of the above effects to 
be modeled rather than a subset of the choice functions 
to be examined. By being able to confidently reduce 
the number of decisions to be analyzed, savings can be 
realized in time and cost. 

The first step in the analysis is to compute the transit 
direct elasticities for mode , time of day, destination, 
and trip frequency. The required elasticities for a 
range of base travel time and travel cost characteristics 
are shown in Table 1. The actual calculations of the 
elasticities (1) only have to be performed once. 

By examinlng the elasticities shown in Table 1, a 
few observations are evident. First, under most con­
ditions the demand for transit travel is inelastic with 
respect to transit travel time and cost. This applies 
to time-of-day, destination, and trip frequency elastici­
ties, in addition to those for mode choice. It is im­
mediately obvious from the very inelastic frequency 
elasticity of demand that infinitesimally small changes 
in generated shopping travel will occur given a change 
in transit travel time or costs. Thus, this aspect of 

49 

choice can be confidently omitted from further analysis 
in this particular application. Also, because the ex­
ample is concerned with changes in transit travel times, 
the remaining discussion will focus on transit time 
elasticities calculated at the existing condition of 30 min. 

Although the remaining three elasticities for mode, 
time of day, and destination suggest inelastic behavior, 
the expected percentage change in the independent vari­
able is computed next, since a change of significant 
magnitude in transit travel time could cause a measur­
able response in modal, temporal, or destination 
choices. For this example, we consider the effects of 
a 5-min reduction in the roundtrip off-peak transit 
travel time only to destination 3 caused, for example, by 
a bus signalization scheme's being introduced. 

As prev iously pres ented, the t r aveler's c urr ent 
r oundtrip in-vehicle t ransit tr avel time during the off­
peak to destination 3 is 30 min. Cons equently, a reduc­
tion in travel time from 30 to 25 min r epresents a 
-16.67 percent change (5/30 = 16.67 percent) in the in­
dependent variable. The transit mode elasticity is 
-0. 72 from Table 1 based on a 1 percent change in 
transit travel time. Thus, for a -16.67 percent reduc­
tion in travel time, the percentage increase in transit 
modal split to destination 3 may be approximated by 
taking the product of elasticity and the appropriate per­
centage change, -0.72 x -16.67, which equals a 12 per­
cent increase. 

The time-of-day direct elasticity with respect to off­
peak transit travel time is -0.107. The percentage in­
crease in off-peak shopping trips can, therefore, be 
computed as the product of -0.107 and -16.67 or +1.78 
percent. 

In a similar fashion, the destination choice direct 
elasticity for destination 3 with respect to transit travel 
time is -0.15. Thus, the percentage increase in trips 
diverted to destination 3 is -0.15 x -16.67 or 2.5 per­
cent. 

The new choice probability for destination 3 is now 
(1 + 0.025) x 0.33 or 0.342. Since it is an implicit 
property of the logit model that the cross elasticities 
are equal for all other alternatives, the percentage 
reduction in travel to the other destinations is the same 
for each and equal to one-half the increase to destina­
tion 3. Thus, the probability of selecting either destina­
tion 1 or destination 2 is now equal to approximately 
0.329. Consequently, whereas each destination had an 
equal chance of being selected (i.e., p = Y:i ) before the 
proposed change in LOS, these preliminary forecast 
destination shares, because of the change in the trans­
portation system, are 0.329, 0.329, and 0.342 (the sum= 
1.0) for destinations 1, 2, and 3 respectively. 

It would appear at first glance that the time-of~ay 
and destination effects are minimal. However, the 
final step of the analysis computes the increase in 
modal shares attributable to travelers changing times 
of day and destination. 

The initial modal shares to destination 3 during the 
off-peak were 0.6 for auto and 0.4 for transit. As we 
have determined from travelers who shift modes given 
that a trip is made to destination 3 in the off-peak 

Table 1. Off-peak transit demand elasticities 
to destination 3 . Travel Time (min) Tra vel Cos t($)' 

Travel 
Component 15 30 45 60 .25 .50 1.00 2.00 

Mode -0 .36 -0 .72 -1.08 -1.44 - 0.25 -0 .51 -1.01 -2 .02 
Time oC day -0 .05 -0 . 107 -0.16 -0 .21 -0 .04 -0 .08 -0 .15 -0 .30 
Des tination -0 .08 -0 . 15 -0. 23 -0.30 -0.05 -0.11 -0.21 -0.42 
Frequency -0.002 -0 .004 -0.005 -0.007 -0.001 -0 .002 -0.005 -0.01 

•calculated based on an average household income o l $8000 ( 1967). 
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Table 2. Numbers of travel changes for a 5·min 
reduction in transit LOS in corridor 3. Off-Peak Hour Peak Hour 

Travel 
Component Transit 

Base 2400 
Changes in 

destination 2460 
Changes in 

time of day 2505 
Changes in 

mode 2805 

Table 3. Increase in off·peak transit ridership to 
destination 3. 

Incremental Percent Percent 
Travel Ridership Increase Total 
Component Increase (2400 base) Increase 

Base 0 0 0 
Destinations 60 2.5 15 
Time of day 45 1.9 11 
Modes 300 12.5 74 

Total 405 16.9 100 

period, transit demand will increase by 12 percent. 
This results in a new transit share of 0.4 x 1.12 = 44.8 
percent. Based on the time-of-day elasticity, 1.78 per­
cent more shopping trips will be taken in the off-peak 
rather than in mixed-peak periods. From the destina­
tion analysis we now have 2.5 percent more trips di­
verted to destination 3 from other destinations. 

From the mode-choice analysis it is anticipated that 
the transit mode would attract about 45 percent of the 
new trips made in the off-peak period. Likewise, about 
this same fraction of the new travelers attracted to 
destination 3 will select the transit mode. The summary 
results of the entire analysis can be presented more 
clearly in tabular form (see Table 2). 

For this example, it is assumed that the zone where 
trips originate has a population of 40 500 (see Figure 1). 
Of these individuals, two-thirds make a home-shop­
home trip on a given day, resulting in 27 000 shopping 
trips that leave the origin zone. The probabilities 
presented in Figure 1 indicate that one-third {9000) of 
these trips are destined for destination 3. Of these 
trips, two-thirds (6000) are taken during the off-peak 
time periods. The remaining 3000 trips are mixed­
period trips having one leg of the trip fall in a peak 
period and the other in an off-peak period. As previ­
ously stated, the assumption is made that a negligible 
number of shopping trips with both legs of the trip 
in peak periods occur. 

Referring to Table 2, the number of trips in the base 
(or before) case is allocated to the auto and transit 
modes based on the modal split probabilities presented 
in Figure 1. Thus, for example, of the 6000 trips taken 
to destination 3 in the off-peak, 40 percent or 2400 are 
made by transit and 60 percent or 3600 by auto. For 
the mixed period, 1500 trips are made by each mode, 
since it has been postulated that a traveler has an equal 
probability of selecting the auto or bus mode in the 
mixed-peak time period. 

From the elasticity analysis, a 16 .6 percent decrease 
in off-peak transit travel time resulted in the number of 
trips to destination 3 increasing by 2.5 percent to 9227. 
Two-thirds or 6151 of these trips occur in the off-peak, 
while the remaining one-third or 3076 are taken in the 
mixed-peak period. Because of changes in the time of 
day when trips are made, 1. 78 percent of the travelers 
(1.0178 x 6151 = 6261) switch to the off-peak period. 

Auto Subtotal Transit Auto Subtotal Total 

3600 6000 1500 1500 3000 9000 

3691 6151 1538 1538 3076 9227 

3756 6261 1483 1483 2966 9227 

3456 6261 1483 1483 2966 9227 

The total number of trips in the corridor remains con­
stant at 9227. 

Last, the decrease in off-peak transit travel fime to 
destination 3 results in a 12 percent increase in transit 
trips to 2805 (1.12 x 2505). Again, the total trips in the 
corridor remain constant as well as the number of trips 
in each time-of-day period. 

Table 3 presents the absolute and relative increases 
in transit ridership that can be attributed to each 
separate component of travel behavior. As can be seen 
from the table, change in modes has the greatest effect 
on ridership, while time-of-day choice has the least 
effect. From this example it could be concluded that 
since three-quarters (300/405) of the increase in 
transit ridership is the result of changes in mode, only 
mode-choice effects should be examined with the more 
sensitive disaggregate modeling techniques. Given 
larger changes in transit travel time, however, destina­
tion and time-of-day effects may have to be considered, 
as they account for 15 and 11 percent of the increase in 
the transit ridership, respectively, depending on the 
final accuracy desired. 

SE PARABLE SHOPPING DEMAND 
MODELS 

In this section we present the mode-choice disaggregate 
demand model and the revised specification of inclusive 
price for the shopping trip purpose. A complete, de­
tailed review of all the separable choice models is not 
repeated here; rather, reference is made to the Phase 
II report (_!). The mode-choice model is 

P~fhdr = e"Xmhdrk/ ~ e"Xmhdrk 

allm 

where 

(3) 

p~/hdr = probability that traveler t will select mode 
m given that a trip is made (f = 1) to des­
tination d at time period h, 

a. = 

a vector of k variables for mode m given 
that a trip is made to destination d at time 
period h, and 
a vector of parameter coefficients. 

The new inclusive price is defined as 

111 :::: In L e i. Xm11Lllk 

:111 111 

where 

(4) 

r. = inclusive price of travel in time period h sum­
med over all modes m in general, the proce­
dure for computing the inclusive price is some­
times called the "log of the denominator"; in 
this instance the denominator would be in ref-
erence to Equation 3 and 

ln natural logarithm. 



SHOPPING ELASTICITIES 

Direct and cross elasticities are presented in this sec­
tion for each of the separable shopping travel demand 
models. The relationships are derived based on the 
theoretical definition of point elasticity of demand. 

Mode Choice 

The mode-choice model is not affected by the revised 
definition of inclusive price. Therefore, the elasticities 
are identical to those previously reported. In particular, 

(5) 

where 

Pmfhdt 
- mode m direct elasticity for traveler t with 

E xmhdfk - respect to variable k of the vector Xmhdfk· 

The direct elasticity in the above expression varies 
from zero, when Pm/hM = 1, to akXmhdlk• when Pm/hdr = 0. 
In other words, the larger the choice probability be­
comes, the smaller will be an individual's direct 
elasticity of demand, all else being equal. 

In a similar manner, the cross elasticity (m ';im) 
can be defined as 

= -ak x Xm'hdfk x Pm'/hdf 

where 

(6) 

pm/hdf 

EXm'hdfk 
mode m cross elasticity for traveler t with 
respect to variable k of the vector X m'hdfk. 

Notice that the elasticities can only be calculated with 
respect to changes in mode characteristics of the in­
dependent variables (e.g., changes in auto time or 
transit cost) for the destination d and the frequency level 
f iinder consideration. Therefore, if transit travel cost 
changes to another destination, say d', this is assumed 
to have no impact on the modal splits for destination d. 
Consequently, 

(7) 

The direct and cross elasticities presented so far can 
be expressed in a combination form as 

Pm/hdf 
E = Cl'.k Xm'tullk (/imm' - Pm'/hdf) 

Xm'hlilk 

where 

{ 
1 if m = m' (a direct elasticity) or 

O mm' = O if m I m' (a cross elasticity). 

Time-of-Day Choice 

(8) 

In the following sections the elasticity identities will be 
presented in their reduced form using notation consistent 
with preceding equations. Only elasticities with respect 
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to variables that appear in the mode-choice model are 
presented here; other elasticities are given in the 
Phase II report (!)· 

ph/df 
E = tflakXmh'dfk IPm/h'drl [llhh' -Ph'/drl 

Xmh'dlk 
(9) 

where 

ph/df - time period h elasticity for traveler t with 
E Xmh'drk - respect to variable k of the vector X xmh'dfk. 

Destination Choice 

where 

pd/I 

E mh'drk 

(10) 

destination d elasticity for traveler t with 
respect to variable k of the vector X mhd'fk . 

Frequency Choice 

where 

Pr 

Exrnhdf'k 

(I I) 

the f = 1 frequency elasticity for traveler t 
with respect to variable k of the vector 
Xmhdl'k · 

COMPARISON OF DEMAND 
ELASTICITIES 

The demand elasticity equations above, which were 
derived on the basis of the revised definition of the in­
clusive price variable, are compared in this section 
with the elasticities presented in the original CRA study 
of 1972 (2). The objective is to provide an indication of 
the change in magnitude of the new elasticities and to 
outline the appropriate relationships between the 
elasticities in each of the separable shopping demand 
models. 

The 1972 CRA study, by employing a linear additive 
form for generalized prices, appeared to indicate that 
direct elasticities of demand may increase for each 
succeeding higher order of choice decisions from mode 
to time of day to destination and, last, to trip frequency. 
The resulting inference was that frequency and destina­
tion shopping travel choices were as sensitive as or 
even more sensitive than choice of mode to changes 
in transportation level·of-service characteristics. This 
finding, which appears inconsistent with a priori ex­
pectation, is corrected with the revised definition of 
inclusive price. 

The effect that the new inclusive price definition has 
on elasticity can be illustrated very succinctly by ex­
amining the differences in the old and new formulations 
for frequency elasticity of demand. With the old linear, 
additive specification of inclusive price, the frequency 
demand elasticity can (using the same notation as pre­
viously defined) be represented as 

(12) 
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which is an outdated formulation, or, with the revised 
definition of inclusive price based on a nonlinear sum­
mation of the explanatory variables, as 

Pr 
E -= Xlir/lDlkX,,,hdrk P m/hdf x Ph/dr x P d/r (I - Pr) 

Xmhdfk --------------
(13) 

Al.ldltiono.I Parameters 

which is the revised formulation. 
As highlighted above, the new parameters in the 

revised frequency elasticity equation are three condi­
tional probabilities. Since, by definition, these prob­
abilities assume values between zero and one, the 
product of these three probabilities will be a joint 
probability whose value will generally be much less 
than one. Consequently, the new frequency elasticities 
will almost always be much smaller than those calculated 
using the old elasticity formulation (12). 

To illustrate the change in elasticities based on the 
revised definition of inclusive price, consider the ex­
ample used above, where we estimated transit travel 
time elasticities for a traveler whose transit time is 
30 min. The coefficient values are taken from the 
CRA (2) and Phase I (3) reports. The same data from 
Pittsburgh were used Tn estimating the models for both 
studies. The conditional probabilities used are Pm/hdr = 
0.40, Ph/dr = 0.67, and P~ 1r = 0.033, which are approxi­
mately equal to the aggregate choice shares observed 
in the calibration data set. The resulting transit time 
elasticities for both definitions of inclusive price are 

Linear Log 
Inclusive Inclusive 

Travel Choice Price Price 

Mode -1.17 -0.72 
Time of day -1 .35 -0.107 
Destination -2.88 -0.15 
Frequency -2.47 -0.0035 

From this example it is very apparent that the re­
sponsiveness or sensitivity of time-of-day, destination, 
and frequency choices to changes in transport level of 
service is much more inelastic than was previously in­
dicated with models based on the linear inclusive price 
definition. We should note further, however, that the 
inelastic frequency elasticity is due in part to the small 
and statistically insignificant coefficient observed for 
the frequency inclusive price variable. 

One additional comparison between the old and new 
elasticities concerns the magnitude of each direct 
elasticity as the hierarchy of shopping travel choice 
decisions proceeds from mode to time of day to destina­
tion and to frequency choice. For the analysis to be 
tractable it is assumed that inclusive price coefficients 
are near or at unity. (A unitary value is an inherent 
assumption in a joint-choice model, for example.) 

With the original elasticity definitions, a subsequent 
choice elasticity could increase or decrease depending 
simply on whether the choice probability in the follow­
ing choice model increased or decreased. Although 
highly unlikely, if the conditional probabilities for 
mode, time-of-day, destination, and frequency choice 
were identical, the previous elasticity formulations 
would indicate that all direct elasticities for a given 
LOS variable for m, h, d, and f would be the same. 

Alternatively, with the revised specification of in­
clusive price, demand elasticities generally (but not 
always) decrease for each succeeding choice function, 
since an additional probability is introduced into each 
following computation. Using the supposition of 
identical choice probabilities given above, with P1 = 
0.5, each subsequent elasticity would be one-half the 

value of the preceding elasticity. For instance, if the 
auto mode-choice elasticity with respect to one of the 
auto independent variables is -1.0, then the time·of­
day direct elasticity would be -0.5 (i.e., -1.0 x0.5); 
destination elasticity would be -0.25 (i.e., -0.5 x0.5); 
and frequency elasticity would be -0.125 (i.e., -0.25 x 
0.5). 

The one instance in which an elasticity of a following 
choice decision can be larger than a preceding elas­
ticity occurs when the first conditional choice prob­
ability is somewhat higher than the subsequent choice 
probability. A situation where this occurs can be found 
in the application reported in an earlier section of this 
paper. 

Although demand elasticities for each of the sub­
sequent shopping choice models do not necessarily 
decrease monotonically, it is possible to conclude that, 
in general, subsequent demand elasticities tend to 
decrease in magnitude and that, in particular, they are 
much more inelastic than those demand elasticities 
previously calculated based on a linear inclusive price 
formulation. 

SUMMARY 

To ascertain whether all dimensions of shopping travel 
behavior, in addition to mode choice, are important, a 
planner must clearly understand the full implications of 
the policy being analyzed. One very simple and rapid 
procedure is to compute demand elasticities for each 
component of travel choice. For a more complete 
appreciation of the approximate magnitudes of each 
change in travel behavior, it is useful to continue the 
preliminary analysis further than just an examination 
of demand elasticities. In particular, an explanatory 
variable that indicates inelastic behavior could have a 
significant impact on travel choice, given that a large 
enough change will be made in its value. Therefore, 
the decision criterion must consider both the elasticity 
and the magnitude of the proposed change in an inde­
pendent variable. As in most analyses, a final decision 
must consider weighting time and cost considerations 
against the desired accuracy required of the final pre­
dictions. 

Throughout the preceding example, only direct 
elasticities were computed. The impression should 
not remain, however, that these are the only type of 
elasticities that need to be computed to analyze every 
policy. For instance, consider the same example 
above except assume that auto (rather than transit) 
travel time will be reduced by a given amount by a 
signalization scheme. The analyst is still interested 
in the effect on bus ridership. Under these conditions 
the bus cross elasticity of demand with respect to auto 
travel time would be calculated. 

In instances where the auto is the dominant mode, 
this cross elasticity can assume values much larger 
than the direct auto time elasticity (!, _!!, ~). For ex­
ample, if the auto and transit shares are 90 and 100 
and an auto disincentive policy decreases the amount 
of auto travel to 85 (a relatively modest 5.5 percent 
reduction), bus modal shares will increase to 15, which, 
consequently, represents a rather substantial 50 per­
cent increase in transit usage. 
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Characteristics of Urban Transportation 
Demand: A New Data Bank 
Herbert S. Levinson, Wilbur Smith and Associates, New Haven 

The Characteristics of Urban Transportation Demand is the third manual 
in an ongoing Urban Mass Transportation Administration-Federal High­
way Administration series designed to provide real-world information for 
practicing transportation professionals. The manual is a single reference 
source on the characteristics of urban transportation demand. This paper 
reviews the manual's objectives, sources, content, and structure and illus­
trates how it can be used for inputs to and cross-<:hecks of the long­
range urban transportation planning process. The manual sets forth im­
portant controls for the number, type, and length of trips, as well as for 
freeway and rail transit use. Rail transit ridership, for example, relies 
closely on the number of people crossing the downtown cordon and on 
the number of workers in the central business district. 

The need for practical transportation planning tools 
underlies ongoing research activities of the Urban Mass 
Transportation Administration and the Federal Highway 
Administration. Two publications-The Characteristics 
of Urban Transportation Systems and Traveler Response 
to Transportation System Changes-have already enjoyed 
widespread distribution. The third manual in this series, 
Characteristics of Urban Transportation Demand, was 
designed as a single reference source on demand char­
acteristics. 

This paper describes the objectives, content, and use 
of this demand manual. It also contains representative 
exhibits that illustrate how key demand-related steps in 
the transportation planning process can be checked. 

OBJECTIVES AND SOURCES 

The manual provides a compendium of information on 
urban travel behavior and transportation system use. It 
is intended to guide practicing professionals in the fol­
lowing tasks: 

1. Assessing demands for urban highway and transit 
systems, 

2. Applying and validating transportation planning 
techniques, and 

3, Achieving realistic and reasonable decisions on 
urban transportation improvements and investments. 

Toward these objectives, the manual contains inputs to 
and cross-checks of the conventional transportation plan­
ning process, It suggests simplified procedures for es­
timating or verifying urban transportation demand-es­
pecially for sketch planning. The manual also presents 
urban area aggregate and disaggregate transportation 
demand data and sets forth key parameters for urban 
transportation demand analyses. Finally, it contains 
summary characteristics of urban transportation systems . 

The information contained in the manual was assem­
bled from a wide variety of existing sources, including 
transit ridership statistics, urban traffic volume counts, 
U.S. Census journey-to-work and employment data, and 
comprehensive metropolitan area transportation planning 
studies. An attempt was made to develop comparable 
information on a facility-by-facility and city-by-city 
basis. However, many variations in reporting systems 
were found among locations, area units, definitions, and 
survey years. Despite these variations, this information 
provides a comprehensive picture of the dimensions and 
nature of urban travel behavior in both city-specific and 
comparative contexts. 

ORGANlZA TION AND USE 

The manual is organized for easy use by practicing 
transportation planners, engineers, and administrators 
who are selecting parameters, analyzing system per­
formance, and establishing sound transportation plan­
ning decisions. Five chapters, each with a correspond­
ing appendix, are keyed to the various steps of the com­
prehensive urban transportation planning process. The 
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chapters contain general information and corresponding 
appendixes that contain more detailed, city-specific ex­
hibits. 

Chapter 1 presents the manual's objectives, organi­
zation, and use and discusses the nature of urban trans­
portation demand. Demand is shown to reflect the mag­
nitude, location and intensity of urban land use; social 
and economic characteristics of urban residents; supply, 
attractiveness, and price of urban transportation sys­
tems; and public policy decisions relating to land use, 
transport investment, and travel costs. 

Chapter 2 contains guidelines for transportation de­
mand analysis. It presents an overview of the long-range 
transportation planning process and sets forth inputs, 
parameters, and cross-checks for principal steps in 
this process: population, employment, and land use; 
car ownership; trip generation; trip distribution; and 
transportation systems assignments . 

Chapter 3 contains detailed urban travel character­
istics that were derived from more than 60 comprehen­
sive metropolitan area transportation studies conducted 
over the past several decades. Ten sections on trip 
rates, trip lengths, and travel variations are keyed to 
the transportation planning process. These sections in­
clude urban travel summaries and trends, trip produc­
tion parameters, trip generation parameters, trip pur­
pose and car occupancy, truck travel, taxi travel, urban 
person travel, vehicle trip lengths, trip times, and 
hourly variations. 

Chapter 4 sets forth floor space, employment , and 
travel characteristics for U.S. and Canadian city centers. 
The various measures of central business district (CBD) 
intensity are especially significant in assessing or val­
idating demands for major transit improvements. Four 
basic sections contain information on employment; floor 
space, area, travel, and cordon crossings; trip purpose; 
and parking and pedestrian characteristics. Principal 
tabulations include all urban areas of over 1 000 000. 

The exhibits show a highly skewed distribution of 
CBD intensity; the top U.S. city centers measured by em­
ployment, person destinations, peak-hour cordon cross­
ings, and relative transit use are New York, Chicago, 
Washington, San Francisco, Boston, and Philadelphia. 
These six far outstrip other U.S. city centers. 

Chapter 5 presents use characteristics for existing 
rail, bus, and highway transportation facilities. These 
measures provide important checks of highway and tran­
sit system assignments. Five sections contain exhibits 
pertaining to overall urban transit use, rail transit, bus 
transit, highway transportation, and traveler response 
to system supply changes. 

These materials provide a sense of scale for existing 
and future use. Transit fleets of over 1500 vehicles are 
found only in New York, Chicago, Philadelphia, Wash­
ington, Boston, Los Angeles, Montreal, and Toronto; 
rail transit line volumes of over 200 000 occur only in 
New York and Toronto. Freeway volumes of over 
200 000 vehicles per day are found only in Chicago, 
Los Angeles, and New York. 

The manual may be used to compare travel parame­
ters for a given community with those for other cities, 
thereby providing a basis for cross-checking and refine­
ment. Similarly, figures for transportation use can be 
compared with those for comparable systems and cross­
checked for reasonableness. The manual provides in­
puts where information is lacking and contains broad 
macro-measures for use by decision makers and ad­
ministrators . It can be used to obtain or verify parame­
ters pertaining to trip generation, purpose, length, and 
distribution and to assignment steps of the demand­
forecasting process. 

The manual is intended as a guide and must be used 

as such. The various relationships represent specific 
communities at given points in time. Care, therefore, 
should be taken in applying it to specific situations and 
sound judgment should be exercised. Judiciously used, 
the manual should provide a guide to achieving sound 
urban transportation decisions. 

CHECKING RESULTS 

The manual's approach to checking the urban transporta­
tion planning process illustrates its scope and potential 
application. The need to check transportation demand 
forecasts and systems assignments is extremely im­
portant, not only in assessment of the cost effectiveness 
of new systems but also in the context of resource allo­
cation. 

The following questions should be addressed in any 
check for reasonableness. Are the methods used con­
sistent with established procedures? Are the assump­
tions and parameters used reasonable in view of past 
trends, base-year conditions , and projected growth 
rates ? Are the results of the forecasts realistic when 
compared with actual experiences in the same urban 
area and in other urban areas of similar size, structure, 
and economy? 

The following parameters should be checked in de­
veloping and analyzing demand forecasts: 

1. Number of trips (including trips per dwelling unit 
and trips per capita), 

2. Types of trips, 
3. Length of trips, 
4. Person-hours per capita, 
5. Person-kilometers per capita, 
6. Vehicle-kilometers (VKMT) or vehicle-miles 

(VMT of travel per capita and per registered car, 
7. CBD modal split versus CBD cordon counts, 
8. Rapid transit ridership, and 
9. Freeway volumes . 

Areawide Guidelines 

General guidelines for cross-checking urban transporta­
tion demands are given in Table 1. This table lists some 
20 factors, identifies their basic functions, gives ranges 
in key parameters, and sets forth an illustrative applica­
tion. Supporting tables are cross-referenced in the 
manual itself. 

Figure 1 shows how these guidelines can be used to 
develop macro-estimates or cross-checks for a typical 
urban area of 1 000 000 population. For example, such 
an urban area is likely to contain 400 000 dwelling units 
and 360 000 cars and to provide employment for 400 000 . 
Residents of the area can be expected to generate 
2 500 000 person-trips each weekday: 600 000 for wor~ 
and 1 900 000 for other reasons. Approximately 10 per­
cent, or 200 000, would probably be made by public 
transport. The 2 300 000 trips by car would yield about 
1 530 000 auto-driver trips, and there would be another 
270 000 truck trips, resulting in some 1 800 000 vehicle 
trips . 

The 1 000 000 residents would generate about 15.1 
VKMT (9.4 VMT) per capita resulting in 151 280 000 
daily over- the - road VKMT (9 400 000 daily over-the­
road VMT) based on 41.9 VKMT (26.0 VMT) per regis­
tered car; this results in a trip length of about 8.1 km 
(5.0 miles). 

Cross-Check Factors 

A more detailed explanation of the various factors fol­
lows. 
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Table 1. Guidelines for checking transportation planning process. 

Item 

Population 

Dwelling units 

Employment 

Developed land area 

Population density 

Family income 

Car owners hip 

Total person-trips per 
day (within study areal 

Work trips per person 
per day (production) 

Nonwork trips (produc­
tion! 

Trip attraction 

Truck trips 

Truck travel 

Trip distribution 

Person-hours of travel 

Person-kilometers of 
travel (over-the­
road) 

Vehicle trip length­
kllometers (over-the­
road) 

Vehicle kilometers per 
registered car 

Car occupancy 

Modal split 

Note: 1 km =< 0.62 mile. 

Population 

Function-Input 

Input for employment , land 
use, and trip generation 

Input for employment, land 
use, and trip generation 

Input for trip attraction 

Input for density and trip 
attraction 

Input for systems planning 
and trip generation 

Input for car ownership and 
trip production 

Trip production and modal 
split 

Modal analysis and system 
assignment 

Trip distribution and modal 
analysis 

Trip distribution and modal 
analysis 

Trip distribution and modal 
analysis 

Identify sources of truck 
travel and trip distribution 
and assignment 

Trip distribution and assign­
ment 

Connect trip productions and 
attractions 

Check and control of distribu­
tion 

Check for control of distribu­
tion 

Check for control of distribu­
tion 

Check for control of distribu­
tion 

Obtain vehicle trips 

Allocate tra\'el among car, 
bus, and rail 

Parameters 

Income, density, and dwelling­
unit size, where available 

Income and car ownership 

Population 

Income a nd car ownership 

Employment, floor space, 
and students 

Population, land use, and 
floor space 

Population 

Zonal-d istances, times 

Population 

Population and system speed 

Population and urban struc­
ture 

Car registration and popula­
tion 

Varies with trip purpose 

Car ownership, travel dis­
utilities: develop models on 
a disaggregate basis 

Guidelines 

U.S. Census 

3.0-3.5 persons/ dwelling unit 
In U.S. cities 

U.S. Census, participation 
ratio of 0 .35-0.40 

Developed urban land will In­
crease more rapidly than 
population 

Density gradient will Increase 
more with time ; compute den­
sity from first four items 

U.S. Census or special surveys 

Will Increase more rapidly than 
population 

About 1.0-1.2 / dwelling unit 
1975, overall 

Trips increase faster than total 
population In urban area, 2.5-
3.0 trips/person is reasonable 
range for futur e conditions 

Work trips remain consistent 
at about 0.6-0 . 7 trips/ 
person / d 

Nonwork trips Increase faster 
than work trips 

Approximately 15-20 percent 
of all vehicle trips 

Assume 0.8-1.2 VMT/capita/ d 

Use weighted time-distance (or 
else constrain future system 
speeds) 

Friction factors check by com­
paring with existing frequency 
distribution 

Person-hours per person 
should remain relatively 
constant at 0. 75-0.85/d 

About 10-15 1975, 12-19 future 
year 

Generally 4-6 miles in 
2 50 000-3 000 000 population 
range 

Generallv 24-28 miles in 
250 000-3 000 000 population 
l'ange, 10-15 VMT/capita 
reasonable ran~e 

1.4-1.6 persons ' car reasonable 
ranf.{e for 1975 conditions 

As an areawide guide, 10-15 
percent transit (including 
school bus) represents a rea­
sonable upper limit for most 
areas 

Illustrative Application to 
Figure 1 

Assume 1 000 000 population 

Assume 3.3 persons/ dwelling 
unit 

Assume ratio of 0 .40 

Assume 1.2/dwelllng unit 
overall 

2.5 trlps/ person/ d for 2.75/ 
persons/ car 

Assume 0.6 work 

Assume I. 9 trips/ person/d 

Trucks represent I~ percent 
of all vehicle trips ; care + 
0. 85 = total vehicle trips 

Assume 1.61 vehicle-km 
(1 VMTl per capita/ d 

Assume 20 person-km (13.0 
person-miles) per person/ 
8 km 

Assume 8 km (5 .0 miles) per 
trip 

Assume 42 vehicle-km (26 
VMTl per day 

Assume 1.5 persons/car 

Assume 10 percent of all 
person-trips 

Population forecas ter s should r ecognize that consider­
able portions of future urban a reas often a r e already 

regional or zonal basis based on 1970-1975 conditions. 
In the future, the number of persons per dwelling unit 
is likely to decrease slightly because of the increased 
elderly in the population and the reduced family size. 

in place. Because major growth is not likely in these 
built-up areas, radical changes in pas t growth generally 
should be avoided. This is certainly relevant in view of 
the decreas ing birt h rates. 

Land Consumption 

Land used for urba n purposes should generally increase 
fas ter than population, assuming current land-use poli­
cies and energy availability. This implies that the den­
sity gradient-i.e., the rate at which net residential 
density decreases with increasing time-distance from 
the city center-will generally flatten over time. 

Dwelling Units 

A range of 3.0-3.5 persons/dwelling is common on a 

Employment 

The participation ratio for U.S. urban areas generally 
represents 35-40 percent of the population. Values out­
s ide thi s range should be reviewed for reasonableness. 
CBD employment generally will represent less than 20 
percent of the region's total, except in small cities. 
Employment in Manhattan south of 59th Street accounts 
for about 25 percent of the New York Tri-State region's 
total. 

Car Ownership 

Car ownership relates to family size, income, and pop­
ulation density. Typical relationships, based on the 
1970 Nationwide Personal Transportation Study, are 
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Figure 1. Typical regional travel analysis. 
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Table 2. Estimated relationships among car ownership, income, and 
population density. 

Percentage of Dwelling Units per 
Number of Cars 

Income 0 3+ 
Density ($000 000) Car Car Cars Cars Total 

Medium 4 30 60 10 0 100 
8 7 60 30 3 100 

12 2 45 45 8 100 
16 1 33 53 13 100 
20+ 0 25 57 18 100 

High (more than 4 35 65 5 0 100 
30 persons/acre) 8 9 62 27 2 100 

12 4 49 41 6 100 
16 1 42 47 10 100 
20+ 0 34 52 14 100 

Low (less than 4 30 60 10 0 100 
10 persons/acre) 8 7 60 30 3 100 

12 2 41 48 9 100 
16 1 30 55 14 100 
20+ 0 22 59 19 100 

shown in Table 2 and can serve as a planning guide (1). 
A value of 1.0 to 1.2 cars/dwelling unit reflects 1975-: 
1977 conditions. 

Trip Rates and Purposes 

Person-trip production rates are primarily a function of 
car ownership, which in turn depends largely upon family 
income. The average urban resident makes 3 trips/d 
where car ownership averages 2.0 persons/car. This 
rate drops to 2.0 person-trips/ct where car ownership 
averages 4.0 persons/car. Members of zero-car dwelling 
units make about 1.0 person-trips/ct, as compared with 
about 2.0-2.5 and 2.5-3.5 person-trips/ct for members of 
single and multicar dwelling units respectively. 

Table 3. Car ownership and trip purpose. 

Trip Purpose 

Home-based work 
Home-based shopping 
Home-based social recreational 
Home-based school 
Home-based other 

Subtotal 

Nonhome based 

Total' 

Trips per dwelling unit per day 
Home-based work trips per dwelling unit 

Percentage Distribution 
per Number of Cars 
per Dwelling Unit 

0 Car 1 Car 2+ Cars 

35 26 21 
19 16 14 
15 17 18 
9 7 9 

12 13 14 

90 79 76 

10 21 24 

100 100 100 

1.8 7.0 12.0 
1.8 2.5 

.. Totals reflect averages for 14 cities. Purpose distribution was based on an urban trans­
portation study of 1965. 

The number of work trips has remained constant at 
about 0.60-0. 70/person over the past several decades. 
For example, according to the Washington Council of 
Governments in Washington, D. C., the work trips per 
capita decreased from 0.71in1942 to 0.69 in 1955, and 
0.63 in 1968. This implies that the greatest increase in 
future trips will be for nonwork purposes. 

General guidelines for estimating trip purposes for 
zero-car, one-car, and multicar dwelling units are 
shown in Table 3. For example, in a one-car unit, 
there are about 1.8 trips daily, of which about 0.6 is 
for work; in a multicar unit there are about 12.0 trips/d, 
of which 2.5 are for work purposes. 

Truck Trips 

The number of truck trips will vary among urban areas, 
depending upon the extent to which light trucks (i.e., 
panels and pick-ups) are used as second passenger cars. 
Resident goods-vehicle guidelines for a typical medium­
sized urban area are 28 registered goods vehicles per 
1000 residents, about 10 daily trips per truck, about 
43 daily VKMT (27 daily VMT) per vehicle [about 1. 6 
VKMT (1 VMT) per resident], and about 4.3 km (2. 7 
miles) per truck trip. 

Trip Distribution 

Trip distribution procedures should avoid the overstate­
ment of future person and vehicle travel common to the 
gravity model. This condition can be alleviated by using 
realistic travel time assumptions for peak and off-peak 
periods with system speeds reflecting capacity restraints 
or by using a utility function that weights time and dis­
tance in model calibration. Airline person-kilometers of 
travel based on 1970-1975 conditions should range from 
16 to 24 km (from 10 to 15 miles) per capita per day. 
Over-the-road kilometers would be about 25-35 percent 
greater. Approximately 0.75 to 0.85 person-hour per 
capita is spent in travel each day. 

Vehicle-Miles of Travel 

Over-the-road kilometers and vehicle trip lengths pro­
vide a valuable cross-check of the reasonableness of 
traffic forecasts. Regression analysis based on data 
for some 30 urban areas produced the following relation­
ships (in miles): 

log(VMT/cars) = 0.99 + 0.07 x (log pop.) r = 0.66 Sy= 0.04 (I) 

log [average vehicle trip length (miles) I = 0.39 = 0.18 x (log pop.) 

r = 0.85 Sy = 0.06 (2) 



Vehicle trip length and vehicle-kilometers of travel 
guidelines (for 15 percent of trucks included but calcu­
lated in miles) based on these formulas are summarized 
below. 

Urban Population 

100 000 
250 000 
500 000 

1000000 
2 000 000 
5 000 000 

10 000 000 

Total VMT/ 
Total Cars 

22.0 
24.0 
25.0 
26.0 
29.5 
29.0 
31 .0 

Vehicle Trip Length 
(over-the-road 
kilometers) 

5.5 
6.3 
7.1 
8.1 
9.0 

10.5 
11 .8 

Total daily kilometer travel per car should be less than 
48 (30 miles) except in the largest metropolitan areas. 
Similarly, average vehicle trip lengths should not ex­
ceed 9. 7 km (6 miles), except where the urban popula­
tion exceeds 3 000 000. 

CBD Travel and Transportation Systems 
Assignments 

Results of transportation assignments, both systemwide 
and on an individual facility basis, should be reviewed 
for reasonableness. Comparisons with base-year con­
ditions in the same community are a point of departure. 
Design-year projections also should be compared with 
use factors for existing facilities in urban areas of com­
parable size. 

Guidelines for assessing CBD travel characteristics 
and systems assignments are set forth in Table 4. These 
exhibits are based on a review of existing CBD travel 
patterns, rail transit ridership, and freeway volumes 
in American cities. They provide analogy cross-checks 
for design-year system assignments. 

CBD and Non-CBD Travel Comparisons 

Table 5 shows typical travel demand indexes for urban 
areas of 100 000 and 1 000 000 population, respectively. 
It also presents detailed employment, cordon crossings, 

Table 4. CBD travel and systems assignment guidelines. 

Item 

CBD employment 

CBD peak cordon 
crossings and 
modal split 

Rapid transit 
ridership 

Rapid transit 
ridership and 
CBD orientation 

Modes of arrival 
at stations 

Freeway volumes 

Function Input Parameters 

CBD trip attractions; 
check modal distribu­
tion and transit assign­
ments 

Check highway and transit Employment, density, car 
system assignments ownership, disutillty 

Cost-effectiveness Result of systems assign-
evaluation ment; check by CBD em­

ployment and cordon 
crossinf.!S 

Cost-eflcctive evaluation Systems extent configura-
tion; VMT, urban popula­
tion 
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and destinations for centralized downtown areas. These 
values represent a reasonable upper limit of what might 
occur in the typical U.S. city center. It may be seen 
that, as an urban population rises, the central business 
district will usually grow relatively more slowly than the 
region as a whole in terms of floor space, employment, 
and trip generation. An urban pC'pulation area of 
1 000 000 would generate about 9 times the person 
trips, 12 times the person-kilometers, and about 3 
times the CBD cordon crossings that would be generated 
by a community of 100 000. 

CBD Cordon Counts and Rapid Transit 
Ridership 

Peak-hour travel demands in radial corridors approach­
ing a centralized CBD are shown in Table 6 (2, 3). This 
tabulation is based on analyses of cordon count data that 
include modal and submodal splits in existing U.S. and 
Canadian cities_ In cities of over 2 000 000 with exten­
sive rail transit systems (excluding New York City) 
about 50-80 percent of the total transit ridership is off­
street (3). A 65 percent distribution of rail-to-total 
transit,-therefore, appears reasonable as an upper limit 
on rail transit potentials in large cities. 

For an urban area of 1 000 000 persons, a maximum 
corridor one-way express transit volume of almost 3000 
persons / h can be anticipated. For an urban area of 
2 000 000, the heaviest corridor would generate a poten­
tial rail transit one-way volume from 4400 to 13 800 per­
sons. This would correspond to a daily two-way rider­
ship of 30 000-90 000, assuming that the one-way peak 
is 5 percent of the daily two-way total travel. 

Rapid Transit Ridership 

The relations between rapid transit-commuter rail rider­
ship and CBD employment are shown in Tables 7 and 8. 
Overall, daily system ridership ranges from 0.5 to 2.6/ 
CBD employee, New York City and Toronto excluded, 
depending upon the extent of the system. For Toronto, 
the factor is 3.4; for New York it is 2.5 based on Man­
hattan south of 59th Street and 4.4 based on midtown and 
downtown alone. These relationships are generally con-

Guidelines and Sources 

CBD employment will become a smaller 
proportion of metropolitan area employ­
ment: for a large urban area it should 
generally be less than 15 percent of the 
total 

Peak-cordon volumes of over 100 000 will 
be limited to urban areas of over 
2 000 000; transit will not generally ex­
ceed 65 percent of peak in heaviest 
cordon 

Divide by 15 percent to obtain daily two­
way volumes 

Reasonable assumptions that peak auto 
trips tr> cno will remain co11st1111l, wilh 
no capacity increase: allocate i;rowth to 
CBD cordon to rapid and surface transit 

System ridership generally from 1-2 .4 
times CBD employment, depending upon 
extent of system: maximum line rider­
ship about 0.4 employment 

65-80 percent of ridership ha• origin or 
destination in CBD 

25-35 percent are likely to walk to and 
Crom stations: may reduce to 15-25 per­
cent In suburban-oriented systems 

Maximum load point on system under 
200 000 unless urban population exceeds 
2 000 000, when it may reach 250 000 

lllustrative Application 

For 1 000 000, a strong CBD 
would have 15 percent of 
60 000 

CBD cordon crossings in peak 
would approximate 54 000 up 
to 2 7 000 by transit 

Maximum corridor one-way 
ridership for urban areas 
I 000 000 : 3 000/ h 

Maximum line in urban area of 
1 000 000 with 60 000 CBD jobs 
about 24 000/d 

Range in maximum load point for 
urban population o( 1 000 000 ls 
60 000-150 000 
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sistent, although not as precise, as those found by Push­
karev and Zupan (4, p. 28), who found that office floor 
space relates closely to commuter rail and rapid transit 
ridership on a logarithmic scale. " 

It is clear that the intensity of downtown development 
has important bearing on rail transit ridership and pro­
vides an important cross-check for evaluating system 
assignments. 

Ranges for the maximum rail transit line ridership 
are shown below. 

Urban Population 

250 000 
500 000 

, 000 000 
2 000 000 
3 000 000 
4 000 000 
5 000 000 

10 000 000 

Range ADT (rounded) 

35 000·60 000 
40 000· 100 000 
60 000-150 000 
80 000-200 000 
100 000-210 000 
110 000-220 000 
120 000-230 000 
180 000-250 000 

Table 5. Demand indexes for urban areas. 

Urban Population 

Item 100 000 

Daily person trips (all modes) 270 000 
Daily person-kilometers of travel 1 770 000 
Vehicle-kilometers of travel I 320 000 
CBD area (square kilometers) 0.78 
CBD employment 10 000 
CBD floor space (thousands of square 418 

meters) 
CBD cordon entrants per 12 h 100 000 

(persons) 
CBD cordon crossings (persons out- 20 000 

bound in peak hour) 
CBD maximum person accumulation 25 000 
CBD person destinations 35 000 
Percent to work 30-35 
CBD parking 

Total 4 200 
Off-street spaces 2 500 
On-street spaces I 700 
Daily parkers 14 000 

Note: 1km=0,62 mile, 1km2 =0.39 mile2 , and 1m2 =10.76 fr" . 

Table 7. Macroanalysis of rapid 
transit ridership. 

City 

New York 

Chicago 
Philadelphia 

Boston 

I 000 000 Ratio 

2 500 000 9.2 
15 000 000 11.B 
15 100 000 11.5 
1.86 2.4 
60 000 6.0 
232 5.6 

270 000 2. 7 

54 000 2.7 

75 000 3.0 
135 000 3.9 
50-55 

18 000 
16 000 
2 000 
38 000 

I. 7 

4.3 
6.4 
1.2 
2.7 

Daily Travel 

Rapid Transit 

3 717 000 
155 000 
17 000 

512 000 
350 000 

25 000 
41 000 

420 000 
San Francisco 120 000 

100 000 
42 000 Cleveland 
17 000 

Toronto 682 000 

This table shows ridership of 0. 3-0. 5 times the CBD 
employment for U.S. cities (1973-1975 conditions). Thus, 
a broad cross-check of maximum line ridership might 
approximate 40 percent of the downtown employment. 
This results in a maximum load-point daily volume of 
40 000-60 000 where CBD employment is under 150 000. 
These values would compare with t.he 30 000-90 000 
daily ridership figures implied in Table 7. Maximum 
line volumes of over 100 000 should be rechecked for 
reasonableness in evaluating ridership potentials of new 
rapid transit systems. 

The additional factors that should be taken into ac­
count in evaluating rapid transit ridership projections 
are, first, that approximately 65-85 percent of the trips 
will have either origin or destination in the CBD, de­
pending on CBD size and system configuration. For ex­
ample, over 80 percent of all rail transit trips in New 

Table 6. Peak-hour demand on main corridors to a centralized CBD. 

Item 

CBD destinations per day 
(personsl 

PM peak-hour outbound 
across cordon (persons) 

Heaviest corridor 25-35 per­
cent (persons) 

Percent transit 
Number of transit passen­

gers 
Percent express bus or rail 

transit of total transit 
Express transit 

Equivalent express buses (50 
passengers/bus) 

Equivalent rail cars (JOO 
passengers/earl 

Urban Population 

2 50 000 500 000 I 000 000 2 000 000 

40 000 BO 000 135 000 225 000 

16 000 32 000 54 000 JOO 000 

4 000- 0 ooo-
5 600 11 000 

10-15 25-35 
400-800 2 000-

3 300 
10-15 15-20 

40-120 300-660 

1-3 6-12 

-

13 500-
19 000 

40-50 
5 400-

8 500 
25-35 

1 350-
2 900 

27-58 

14-29 

25 000-
33 000 

50-65 
12 500-

21 300 
35-50-65" 

4 400-
10 600-
13 800 

88-212' 

44-106-
138 

a For existing cities with extensive rail transit, this percentage ranges from about 50-80 (New 
York excluded I. A 65 percent factor therefore appears reasonable in estimating rail system 
potentials in large cities. 

bOutside domain or buses 
coutside domain of rail. 

Total Travelers 
No. of Divided by 

Commuter Rail Total CBD Employed CBD Employed 

536 000 4 425 000 { 1 777 ooo· 
I 000 000 

{ 2.5 
4.4 

269 000 781 000 300 000 2.6 

114 000 530 000 225 000 2.4 

42 000 462 000 263 000 1.8 
18 000 238 000 282 000 0.8 

59 000 117 000 0.5 

25 000 707 000 210 ooo• 3.4 

oiManhattan south of 59th Street. bCentral area south of Bloor, 

Table 8. Rapid transit volumes 
versus CBD employed (1974-1975) . City Line 

New York Lexington Ave. Express and Local 
Queens nlvd. Express (two tracks) 

Chic~o NS-North Side 
Philadelphia Market Franford west or north of CDD 
Bo.ston Green west o! CBD 
San Francisco Surface cars (LRTl 

BART Transbay 
Cleveland West Side 
U.S. range 
Toronto Yonge 

JTotal riders on maximum line; maximum load pomt ndership would be less. 

No. o[ CDD 
No. of Riders Employed Rides per Employee 

524 000 { I 000 000 }' 0 .39-0.54 
375 000 I 777 000 0.21-0.38 
120 000 300 000 0.40 
103 000 225 000 0.46 
110 000 263 000 0.42 
100 ooo· 282 000 0.36 
04 ooo· 282 000 0.30 
34 000 117 000 0.29 

0.29-0.54 
265 000 210 000 1.26 

11 Manhattan south of 59th Slreel 



York City are to or from Manhattan south of 59th Street. 
Corresponding figures are 84 percent for Boston; about 
70 percent for Chicago, Toronto, Cleveland, and Phila­
delphia; and 64 percent for BART in San Francisco. 
Second, approximately 20-35 percent of all riders walk 
to and from stations on most existing systems (New 
York excluded). This range may reduce to 15-25 per­
cent for proposed suburban-oriented systems. 

Freeway Volumes 

Freeway use depends upon the extent of the system and 
the size of the urban area. The proportion of vehicle­
kilometers on freeways increases in general proportion 
to the relative amount of total capacity provided by free­
ways. For example (1 km = 0.62 mile): 

Percent Freeway 
Capacity 

20 
40 

Percent Vehicle-Kilometers on 
Freeways for Population 

50 000-200 000 1 000 000+ 

7 
20 

12 
30 

From the ranges in observed maximum freeway vol­
umes for urban areas of various sizes, it is clear that 
forecast daily volumes of over 200 000 should be care­
fully rechecked, since these are found only in a few very 
large cities today, on roadways with more than eight 
lanes. 

OVERVIEW 

This paper has set forth a summary of a broader re­
search effort undertaken to provide meaningful guide-
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lines and parameters for use in inputs to or verification 
of the demand forecasting process. The paper and the 
manual from which it has been extracted provide an im­
portant data resource for contemporary urban planning 
efforts. 

Plans call for distribution of the manual to various 
transportation agencies for their use and review. This 
will be followed by progressive updating of the manual's 
250 tables and charts as new data become available. In 
this way, the manual will be able to respond to ongoing 
needs and priorities. 
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Minimizing Error in Aggregate 
Predictions From Disaggregate Models 
Fred A. Reid, University of California, Berkeley 

This paper presents empirical tests of aggregated prediction error on a 
sample of work-trip mode choices for the San Francisco area and sys­
tematic criteria for choosing classification variables. It introduces a 
more efficient utility scale classification criterion for aggregated predic· 
tion. Aggregation error is found to be much larger than previous tests 
have indicated. The choice of classification variables that produces the 
smallest error is found to vary with the scale of the prediction aggre­
gates. Level-of-service variables are more important for large aggregates, 
socioeconomic variables for smaller. Classification of the sample based 
on the scales of the total utility of the explanatory variables in each al· 
ternative is found to be much more efficient in error reduction than 
classification by individual variables. 

A number of papers have developed the theory of making 
aggregate predictions from disaggregate (individual) de­
mand models (1, 2, 3, 4). Koppelman (1) integrated these 
theories into generil guidelines for aggregate prediction 
and tested the relative accuracy of different proposed 
approaches by Monte Carlo simulation and with empirical 
data for one situation-the demand for different travel 
modes by Washington, D.C., commuters. He developed 

the classification method as the most accurate approxi­
mate method for aggregate prediction and encouraged 
classification based on "choice-set availability" vari­
ables such as the number of cars per driver in a trav­
eler's household. This contrasted strikingly with the 
traditional approach to data aggregation-classification 
on the basis of geographic groups-an approach shown 
to produce biased results. 

Dunbar (5) and Koppelman and Ben-Akiva (6) have 
further proiiioted prediction based on cross-classification 
by the values of the most influential variables in choice. 

There are two important problems with these results. 
The classification developments, although clearly emerg­
ing in principle to define relatively homogeneous choice 
segments, leave practitioners with no systematic method 
of choosing the type and number of classification vari­
ables, especially considering the difference in the rela­
tive variance of the variables at different geographic 
levels of aggregation. Koppelman's tests show that the 
number of cars per driver is the most important classi­
fier for small geographic aggregates. Dunbar's and my 
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results show that level-of-service variables are more 
important classifiers for large aggregate forecasting. 
The empirical variability of these results and the new­
ness of the procedures to planners suggest that system­
atic methods are needed. 

A second problem is that the Koppelman study-the 
only empirical results isolating the error of the different 
approximate methods for aggregation-is based on only 
one choice model and setting and then for an optimistic 
case. His data were for work-trip mode choice re­
stricted to one destination, the Washington, D.C., cen­
tral business district (CED). The data also happened to 
have nearly equal choice shares over the full sample 
(the zero aggregation bias condition). Thus aggregation 
error, at least for regional mode choice, should be 
higher than shown by Koppelman. 

This paper gives aggregation tests by different meth­
ods on San Francisco region commuter data, presents a 
more systematic criterion for identifying the disaggre­
gate data (variables) most important for low error, and 
shows that a classification method based on the total 
utility scales of the choice alternatives, rather than on 
the values of the individual variables, is much more ac­
curate and efficient for aggregation. 

AGGREGATION ERROR TESTS 

I have used the models and data from the urban travel 
demand forecasting project at the University of Cali­
fornia, Berkeley, to perform tests isolating error by 
different methods in different situations (7, 8, 9). 

The tests of this study were done on a sample of 771 
workers drawn from about half of the San Francisco Bay 
Area. Their individual mode-choice probabilities for 
commuting to work were described by the four­
alternative logit model 

(I) 

where (:JJ k are model coefficients of the K variables z Jk 
for the j th alternative. These are shown in the table 
below, where 1 is auto alone (429 people), 2 is bus with 
walking access (134 people), 3 is bus with auto access 
(30 people), and 4 is carpooling (178 people). Each in­
dependent variable takes the described value in the al­
ternatives listed in parentheses and zero in unlisted al­
ternatives. 

Estimated t-
Independent Variable Coefficient Statistic 

Cost divided by post-tax wage, in cents ·0.019 06 (-2.646) 
divided by cents per minute ( 1-4) 

Auto on-vehicle time, in minutes ( 1, 3, 4) -0.059 86 (-5.24) 
Transit on-vehicle time, in minutes (2, 3) -0.024 17 (-2.751) 
Walking time, in minutes (2, 3) -0.068 92 (-5.301) 
Transfer waiting time, in minutes (2, 3) -0.055 99 (-2.361) 
Number of transfers (2, 3) -0.060 39 (-0.442 9) 
Headway of first bus, in minutes (2, 3) -0.029 51 (-2.997) 
Family income with ceiling of $7500, in 0.000 006 238 (0.070 16) 
dollars per year ( 1) 

Family income minus $7500 with floor -0.000 066 25 (-0.492 0) 
of $0 and ceiling of $3000, in dollars 
per year (1) 

Family income minus $10 500 with a -0.000 029 11 (-0.475 0) 
floor of $0 and a ceiling of $5000, in 
dollars per year ( 1) 

Number of persons in household who 0.989 4 (4.667) 
drive (1) 

Number of persons in household who 0.975 6 (3.272) 
drive (3) 

Number of persons in household who 0.859 3 (4.223) 
drive (4) 

Dummy if person is head of household ( 1) 
Employment density at work location (1) 
Home location in or near CBO (2 is in 
CBD, 1 is near CBD, 0 is otherwise ( 1) 

Autos per driver with a ceiling of one ( 1) 
Autos per driver with a ceiling of one (3) 
Autos per driver with a ceiling of one (4) 
Auto alone alternative dummy ( 1) 
Bus with auto access dummy (3) 
Carpooling alternative dummy (4) 

0.716 4 
-0.002 888 
-0.454 6 

4.992 
2.333 
2.385 
-5.210 
-5.584 
-3.795 

(3.736) 
(-3.945) 
(-3.694) 

(9.600) 
(2.769) 
(5.315) 
(·5.868) 
(-5.476) 
(-6.333) 

The goodness-of-fit statistics are 0.4484 for the likeli­
hood ratio index, -1069 .0 for the log likelihood at zero, 
and - 589. 6 for the log likelihood at convergence. All 
cost and time variables were calculated for round trips. 
The dependent variable is the alternative chosen (value 
of one for chosen alternative, zero otherwise). 

The overall exact mode shares were 55. 6 percent 
auto alone, 17.4 percent bus with walking access, 3.9 
percent bus with auto access, and 23.1 percent carpool­
ing. The data were from household surveys and trans­
portation network minimum-path simulations, modified 
to produce trip attributes temporally and spatially dis­
aggregated to the commuters' schedules and trip ends. 

Exact aggregate choice shares are obtained by sum­
ming the probabilities Equation 1 over the individual Zit 

values for the prediction aggregate of interest (the enu­
meration method). Other (approximate) methods are 
motivated by the large data and computation requirements 
of this enumeration in practice. The extreme approxi­
mation-the "naive" method-assumes that Equation 1 
represents aggregate shares when the zJk are simply the 
average values for the prediction group. 

The measure of aggregation error in the tests here 
is the percent root mean square (RMS) of choice shares: 

(2) 

where 

J = set of choice alternatives, 
P J = aggregate share of alternative j estimated by the 

tested method, and 
P J = aggregate share by enumeration. 

The percentages of error from the naive aggregation 
method applied at three geographic levels on our sample 
are shown below. Predictions are all for the total 
region. The input data were the averages in the geo­
graphic aggregates shown. Thus, results represent 
either of two forecasting situations: geographic classi­
fication for full region predictions or the average ab­
solute errors when making separate predictions for all 
the cells at a geographic (classification scale) level. 
These errors are approximately 

Classification Scale 

Region 
Cities 
Traffic analysis zones 

No. of Cells Percent Error 

1 40.0 
17 17.9 

150 13.8 

The errors are large. It is obvious that geographic 
classification alone is not an adequate aggregation method 
for this region and model. Errors decrease with geo­
graphic scale . Smaller area samples apparently do have 
less choice variability. Since classification-aggregation 
was done on the basis of residential district only, these 
results do not represent what would be expected from 
trip interchange forecasts. It is expected that average 
interdistrict aggregation errors would be about half those 
shown. Individual interdistrict aggregate errors would 
be worse. 



Koppelman' s results were lower in magnitude and did 
not vary with geographic scale. He showed an 8.5 per­
cent error for a superdistrict scale similar to our cities, 
which show 17.9 percent. The regional errors were 10.4 
and 40 percent, respectively. Several reasons account 
for this difference: he had a CBD-trip-oriented sample 
only; his average shares were nearly equal; the choice 
model he used was simpler; and the level-of-service 
data were less disaggregate (lOl. 

Both tests aggregated (classified) the input data based 
only upon the origin of residence. Other sources of in­
comparability-the number of choice alternatives and the 
nonlinearity of the measure-are not large for these data. 
A much simpler model, equivalent to Koppelman's vari­
able set, was found to produce 80 percent of the naive 
error on otherwise equivalent conditions for this data 
set (9, Chapter 6). 

The error on our sample shown by five available 
methods of aggregation is 

Method 

Naive 
Taylor series 
Classification by city 
Classification by auto ownership 
Classification by utility scale 

No. of Cells Percent Error 

40.0 
121.0 

17 17.9 
4 21.7 
4 3.1 

Choice share prediction is again for the total (regional) 
sample. The naive method and the geographic classifica­
tion method are the same as for the previous table. The 
Taylor series method is that of Talvitie (10). The by­
variable value classification method is Koppelman's (1). 
The utility classification method is described later. -

All of the methods except the Taylor series reduce 
error below that of the naive procedure. These results 
confirm earlier tests that the Taylor series approxima­
tion produces counterproductive results due to its poor 
convergence properties on large variance data. Un­
fortunately, it is in such data that the correction is im­
portant. Geographic classification, as shown above, is 
very inefficient in reducing aggregation error. 

The predictions by classes of auto ownership also only 
reduce about half the naive error, giving unacceptable 
accuracy at the regional scale of forecasting. Koppelman 
showed auto availability classification to reduce a 
smaller regional naive error by two-thirds, with a re­
sult of 3 percent. Granting that the variable cars per 
driver will reduce two-thirds of the naive error, this 
classifier would still leave an unacceptable error in 
general regional aggregate travel predictions (for trips 
to all destinations and with unequal shares). Choice set 
availability classifiers used on predictions for subcity 
or city interchange level aggregates may yield more ac­
ceptable errors (below a third of 18 percent). 

The method of utility classification gives a much 
greater reduction relative to naive error than the other 
methods. Only four class cells were used. This method 
is discussed below. 

UTILITY SCALE CLASSIFICATION 

Although classification by the values of one or two vari­
ables gives unacceptable error for large aggregate pre­
dictions, the error can be made small by cross­
classification of more of the variables in a model. How­
ever, if more than a few variables contribute signifi­
cantly to the variance of the utility of the choices, the 
number of cross-classifications must be large to achieve 
small error. 

A more efficient method of classification is possible 
for the category of simply scalable models such as those 
of the logit form. Cross-classification between indi-
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victual variables includes much information that does not 
matter to simple scales. The essential information 
needed to predict each individual's choice in these models 
is contained in the J utility scales of the attributes of the 
J alternatives of choice. Cross-classification between 
the utilities of the different alternatives picks up the 
full-scale variances and between-scale covariances, 
thus describing the full distribution of individual choice 
factors in an aggregate prediction sample. Regardless 
of scale complexity, this procedure bypasses those in­
dividual variable cross-classification trade-offs, which 
do not change the scale values. 

Thus, the procedure requires fewer classes. Classi­
fication on the total utility includes the variances of the 
minor variables, not just the variance of the limited 
number of interactions feasible in classification by a 
subset of model variables. This further increases its 
efficiency. 

To define relatively homogeneous classes of utility 
combinations across modes is to probe the essence of 
the classification approach: the grouping of individuals 
with uniform choice situations. Since the procedure op­
erates on the utility scales, it is termed the utility scale 
classification method of aggregation. 

utility class sizes and boundaries cannot be defined 
in the same way as can individual variable classifica­
tions. Utilities are not discrete, and intuition does not 
give the guide on thresholds of utility in choice that it 
does on a variable such as walking time to a bus in mode 
choice. However, utility values are clearly related to 
choice function thresholds. For the binary logit case, 
the optimum divisions would differentiate utilities near 
the maximum nonlinearity of the choice function (±1.6 
on the utility difference scale). For multiple-choice 
logit model classification, the criteria should concen­
trate on pairs of alternatives with these same differences 
of utilities. 

Cluster analysis techniques could be employed to 
achieve general isolation of classes (11, 12). The tests 
here and in supporting research show that ad hoc class 
divisions are adequate and more appropriate, consider­
ing the above nonlinearities and the press of obtaining 
predictions (9). 

One such procedure is the successive division of an 
aggregate sample about the median (or mean) values of 
the differences of the utilities of pairs of alternatives, 
starting with the pair with the largest variance in utility 
difference. The procedure cycles through all pairs of 
utilities, further subdividing the first pairs if the vari· 
ance of utility differences in the resulting classes are 
still large. The variance criteria for desired accuracy 
can be estimated with the covariance analysis procedure 
discussed in the next section. 

The utility ranges gave a much smaller error than any 
of the individual variable or geographic classifications 
considered in the tests in the tables with only two util­
ity classes on a four-alternative model. Clearly this 
method is more efficient in error reduction than the 
others. This is to be expected at the regional level, 
where the total utility variance of all of the variables 
is present. It would also be true for predictions for small 
aggregates unless only a minor subset of model variables 
dominated the variability of these subsamples. Sue his not 
the case for within-city aggregates, as will be seen in the 
following percentages of aggregation error by cell count. 

Class Cell Count 

1 (naive method I 
2 
4 
6 
8 

Percent Error 

38.4 
6.4 
2.3 
2.6 
0.5 
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This shows the variation in aggregation error with the 
number of class cells used in the utility classification 
method. These results are shown for a three-alternative 
subset of the four-mode choice model used in the pre­
vious tests (auto alone, bus with walking access, and 
carpooling). The cell definition criteria were those 
above. The errors seem acceptable with only four cells. 
With eight cells error becomes negligible. The insta­
bility in error reduction with cell count is due partly to 
the ad hoc cell definition criteria used but also to the 
nonlinearity of the RMS measure. An error measure 
composed of a linear sum of absolute errors in each 
alternative decreased monotonically with cell count (9). 

Since utility scale classification does not differentTate 
the joint distributions of all variables in a model, it does 
not apply to general models that are not simply scalable. 
Probit models and others that allow estimation of dif­
ferent coefficients for the same variable in different al­
ternatives are examples (13, 14). Aggregate predictions 
with these, in general, require individual variable cross­
classification or covariance procedures (see the paper 
by Bouthelier and Daganzo in this Record). However, 
even non-simply-scalable models are not likely to es­
timate cross-alternative coefficients for many variables. 

In view of the laborious nature of cross-classification 
and the efficiency of utility classes on the simple scales, 
the latter may be the most effective even in this case. 
Alternatively, it may be efficient to cross-classify util­
ity classes with an important cross-alternative variable. 

The focus of this aggregation method on the total util­
ity value need not preclude the retention and association 
of the values of specific explanatory variables with the 
classes. This makes it possible to intuitively interpret 
the cells, analyze the effects of policy changes on 
choices, and predict subsegment choices. These can 
all be accommodated by characterizing each class cell 
by the average value of any desired model variable or 
socioeconomic descriptor, in addition to the average 
value of the J total utilities of its members. Together 
with the values of the underlying model scale coefficients, 
the mean utilities may be adjusted for policy changes on 
specific variables to simply analyze their effects on ag­
gregate choices. Population subgroup shares may be 
predicted by summing the products of the proportions of 
these groups and the shares in each cell. A complete 
description and examples of the use of utility classifica­
tion method in subsegmented regional travel prediction 
and policy analysis are given in a related report (15). 

This, like any accurate classification method, requires 
that individual choice-maker data observations be avail­
able to compute the cell mean values. Hence, the prin­
cipal advantage of the method is in the efficiency of the 
predictive calculations, given the data. This is no small 
advantage, since predictions can require exponentiation 
over many choices for each individual in large samples 
or they may be desired for numerous policy (input) 
changes. Once the disaggregate data information is 
reduced to cell means and parameters, predictions for 
different policies or output segments or both are simple 
enough to make hand calculation feasible ( 15). 

It is tempting to believe that by-variable-value class 
means are simply available from aggregated planning or 
census data. However, data cannot be directly collected 
in autos per driver classes or other cross-classes nec­
essary for accurate aggregation. These require indi­
vidual observations. This method may also indirectly 
aid the data-collection process. By identifying the min­
imum amount of information necessary for prediction, 
it focuses on these requirements. What is necessary 
for logit models are only the utility scale variances, not 
the unique within-alternative distributions of variable 
values. It may be possible to directly extract the utility 

scale distribution information in a sample directly from 
census cross-tabulations (9, 16) or from minor subsets 
of the model variables. The latter approach is discussed 
in the next section. 

COVARIANCE MATRIX ANALYSIS OF 
THE EXPLANATORY VARIABLES 

Whatever the method of aggregation, the requirement 
for disaggregate data against a past experience of aggre­
gate data collection suggests that data collection may 
have to focus on the major sources of error. Thus, it 
is necessary to know which variables in a model con­
tribute the greatest part of the covariances of the utili­
ties within any prediction aggregate. Precedent and 
intuition have shown the importance of some variables 
such as socioeconomic descriptors and transit access 
variables in mode choice. The problem is that the im­
portant variables for classification vary with the geo­
graphic scale of the aggregate predictions and, to the 
extent that there is no universal model of behavior, with 
the model being used. The limited precedents available 
may be for the wrong cases. It is unreasonable to ex­
pect expert judgment or research-level optimization of 
aggregation accuracy in practical planning situations. 

For effective use of cross-classification methods, 
where necessary, one must have knowledge of the vari­
ables contributing the most to utility covariances at the 
level of aggregation. 

A systematic picture of priorities of individual vari­
able data can be gained by looking at the covariance 
matrixes of the within-aggregate variation of the ex­
planatory variables at the desired level of aggregation. 
Binary choice aggregation theory has established the 
direct relationship between this matrix and aggregate 
shares for probit models (7). I have shown that this 
simplified analytic form orthe aggregation method for 
probit models and normally distributed explanatory 
models can be extended from probit to an approximate 
relation for logit models with an error less than 1.2 
percent of total shares (17). 

S; / N =I + exp ( (V; - V;)/l [I +Var (V; - V;)/'.?. .79] v, I) (3) 

where 

SJ/N = choice share of the alter­
native j, 

VJ and V1 = utilities of the two choices, 
and 

V1 - VJ and Var(V1 - VJ) =mean and variance of their 
difference in the aggregate 
of N travelers. 

The assumption of normality need apply only to the 
scale utility difference, not to each explanatory variable. 
Tests have shown this assumption to contribute 4.0 per­
cent error for regional aggregate predictions that had 
43 percent error by the naive method, suggesting that 
normality is a reasonable assumption (9). The method 
is still limited to binary choice. -

Although only a more complicated relationship of this 
type exists in the multiple choice case, the covariance 
matrixes are still better indicators of which variables 
are appropriate classifiers than a priori knowledge, es­
pecially if these vary with aggregate level. 

Table 1 shows a normalized covariance matrix of the 
intracity aggregate values of the major explanatory vari­
ables in two alternatives of a prediction model. The 
model used was shown at the beginning of the paper. The 
covariance elements are normalized by dividing the larg­
est of their values (in this case it is the variance of the 
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Table 1. Normalized covariance matrix of explanatory variables for intracity portions of individual observations. 

Cars/ Auto On- No. of Employment Cost- Bus With Bus On- Transfer 
Variable' Driver Vehicle Time Drivers Density Auto Walking Access Vehicle Time Headway Waiting Time 

Cars/driver 1.0 0.14 <' < < 
Auto on-vehicle time 0 .14 0.59 < 0.10 0.10 -0.09 0.27 0.06 
No. of drivers < < 0.25 < < < 
Employment density < 0.10 < 0.11 -0.05 
Cost-auto < 0.10 0.04 
Bus with walking access -0.09 -0.05 0.98 0 ,38 0.05 
Bus on-vehicle time < 0.27 < < < 0.38 0.25 0.07 
Headway < < 0.05 < 0.07 
Transfer waiting time < 0.06 < 0 .07 0.15 

"C~~arianc~ values are normal~zed by _multiplying the varianc_~ of the variab~es by their respective model coefficients and dividing by the maximum such utility component flJoS&oPo) in this case the 
ut1h~y v~nance of cars per driver having the value 1.92. lnd1v1dual observations are minus the mean variable values for all travelers in sample with work trins between the same cities of ong 1n and 
dest1nat1on. 

b< indicates the element is less than 0.04 (0,08 unnormalized); blank indicates the value was not computed but judged to be less than 0.04. 

utility of cars/drivers in the traveler's household) in 
order to give a picture of the ranking of the contributions 
of each variable to the overall utility variance. 

The underlying model is a logit function, linear in its 
explanatory variables. Hence, each element in the ma­
trix is the product of the covariances of the individual 
variables and their corresponding model coefficient is 

where 

K and l = matrix indexes of the K variables in the 
model (1 ,;; k, l ,;; K), 

(4) 

P..f11 = linear utility coefficients for the k th and l th 
variables, and 

{JoSgofJo = corresponding utility variance for the larg­
est matrix element. 

These elements are called "utility. component covari­
ances," since each expresses the part of the total sample 
variance of the linear utility for one mode contributed by 
a single variable (diagonal variance elements) or pairs 
of variables (covariance elements). The sum of the 
matrix elements for any mode equals the total variance 
of the utility for that mode. 

For binary logit choice models the relationship be­
tween these covariances and aggregation error is under­
stood under the assumption of a normal distribution of 
the utility scale of the explanatory variables (Equation 3). 
Thus Table 1 provides a convenient way to rank the indi­
vidual variables, and their combinations, by their im­
portance for reducing aggregation error for binary 
choice. 

The larger the variance of the difference of utilities 
between the two modes, the larger the aggregation error. 

Since most of the variables in this model are unique 
to a mode, variances of intermodal utility differences 
nearly equal the individual modal elements. Where the 
same variables appear in the utility expression for two 
modes, the differences of utilities can be obtained from 
the table by this expression for the variance of such a 
difference: Var (X - Y) = Var X + Var Y - 2 Cov (X, Y). 

The variables that have the individual values most 
important for reducing aggregation are the ones with the 
largest variance values in Table 1, such as bus with 
walking access, cars/driver, and auto on-vehicle time. 
The intermodal covariances show the relative impor­
tance of pairs of variables in aggregation. However, 
since intermodal elements contribute to the variance of 
binary utility difference with negative sign, it is the neg­
ative values such as that between cars/driver and bus 
with walking access that increase the aggregation cor­
rection. Positive values indicate a compensating re-

duction in aggregation error. 
The amount of aggregation error that will result in a 

forecast using the individual values of only selected vari­
ables can be estimated by comparing Equation 3 with and 
without the unnormalized values of the sum of the matrix 
elements for the variables considered. [Only the indi­
vidual values of some variables or their variance may 
be available in a forecasting situation. In some cases, 
variances are possible to obtain or estimate where co­
variances are not (10).] 

Inspection of Table 1 shows that a large part of the 
variance of the utilities, and hence aggregation correc­
tion, can be recovered by considering only a few of the 
variables in the model. For example, three of the eleven 
variables in the model used here-cars/driver, bus with 
walking access, and bus on-vehicle time-constitute 64 
percent of the utility variance. When only their indi­
vidual values are used for binary prediction, they cor­
rect for 80 percent of the aggregation error produced by 
the naive method. Auto on-vehicle time, in contrast, 
contributes nothing to the correction of aggregation error 
by its inclusion with this set, since its covariance with 
bus with walking access cancels out its variance con­
tribution alone. 

The covariance matrix also contains the information 
for guiding the classification method in its implied cor­
relations between the classifier variable(s) and the 
others. The additional power of a classifier from this 
effect is given by the sum of the product of covariances 
and correlation coefficients of all variables correlated 
to the classifier. With this procedure, one can mini­
mize aggregation error, given limits on the number of 
classification variables, or minimize the number of 
classifiers, given tolerable limits on error. This is 
systematically outlined elsewhere (11). 

This analysis is only simply applicable to binary 
choice. For multiple choice it requires a relationship 
analagous to Equation 3 between covariances and choice. 
The only example of this is the approximate formulas of 
Bouthelier and Daganzo for probit models. 

In principle, it is possible to use any of the above ef­
fective subsets of disaggregate variable data for aggre­
gation accuracy using these formulas and covariances 
between all pairn of alternatives. In practice, or if the 
model in question is not multinomial probit, simpler ap­
proximate guides to the important aggregation variables 
can be gained by observing the covariance matrixes of 
major pairs of the alternatives. These should be al­
ternatives that have aggregates different from 1/ J and 
considerably different from one another. 

The procedure also does not account for skewed util­
ity distributions. Skewedness will weaken the analysis. 
This does not appear to be a problem in the tests on this 
data set (9). 

Covarfance analysis on a small population sample for 
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which policy-forecasting data are received can guide the 
subsequent cost-effective emphasis on which variables 
to focus collection of individual observations in the larger 
forecasting sample. 

CONCLUSIONS 

On the basis of the above exposition, I have drawn the 
following seven conclusions. 

1. The tests show that aggregation error by all meth­
ods is larger than previously revealed. Naive method 
error can be larger than other errors in prediction, 
such as model specification or data measurement. 

2. The relative ranking of the accuracy of existing 
approximate aggregation methods by Koppelman is con­
firmed. However, error is found to grow substantially 
with aggregate size. Previous studies have underesti­
mated this and general error level because their samples 
had limited trip types, choice share ranges, and data 
disaggregation. 

3. None of the existing simple approximation meth­
ods gives even marginally acceptable (s:l3 percent) error 
at the urban regional scale of mode-choice aggregation 
using multinomial logit models. 

4. The method of classifying on the differences of 
utility scales of major choice alternatives gives at least 
a five times lower error to class cell-count ratio than 
other classification criteria. It can reduce naive error 
by a factor of 77 (to 0.5 percent) with only eight cells. 

5. The choice homogeneity of utility classification 
cells eliminates the need to collect data and make sepa­
rate aggregations for each sector of a population for 
which share predictions are desired. It replaces such 
repetitive choice function evaluation with a smaller num­
ber of class segment proportion calculations. 

6. Analysis of the covariance matrix of the utility 
components of the individual model variables answers 
the question of which variables should be stressed in 
disaggregate data collection. Doing this on a small 
sample for the prediction population of interest can guide 
the subsequent data collection to the subset of variables 
that gives the least accuracy return. This analysis can 
also give systematic guidance to the selection of by­
variable classification methods for predictions with non­
simply scalable models. 

7. Predictions, even for large aggregates, can be 
made accurately with disaggregate data on only a minor 
subset of critical variance variables. Aggregation can 
be accomplished with the minimum of choice function 
computations using utility classification on the full data 
sample rather than by-variable classification on every 
prediction segment. 

Classification methods of prediction, especially those 
based on selecting homogeneous utility or choice groups, 
realize the full potential for efficiency of disaggregate 
models that was first seen when it was found that they 
could be calibrated on a fraction of the observations 
necessary for aggregate models. Now prediction can 
also be done on samples large enough to identify only a 
limited number of utility classes, that is, homogeneous 
choice markets. 

Predictions for subaggregates require larger samples 
but are simply a process of determining the relative 
numbers of the population in each of these classes. The 
prediction problem has been reduced from one of com­
puting choice shares for great numbers of aggregate 
outputs to locating the proportions of these aggregate 
cases in a small number of behavioral market segments. 
Selected disaggregate data are necessary to gain the ac­
curacy of behavioral models, but predictive computations 

are greatly reduced. Reid (9) and Reid and Harvey (15) 
discuss these aggregation methods and their application 
to policy analysis in greater depth. 
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Disaggregate Demand Model for 
Nonwork Travel 
Joel Horowitz, U.S. Environmental Protection Agency 

Daily nonwork travel by urban households frequently involves visits to 
several destinations during a single roundtrip from home or several round 
trips. This paper describes a disaggregate approach to modeling the de­
mand for nonwork travel, including multidestination travel. The ap­
proach is presented in two parts. First, a theoretical framework for mod· 
eling the demand for nonwork travel is developed that uses tours (i.e., 
round trips from home) and sojourns (i.e., visits to nonwork destinations) 
as the basic units of travel, and relates tour frequency, sojourn frequency, 
and destination choice to household characteristics, destination charac· 
teristics, and transportation level of service. An empirical model of non· 
work travel demand that is based upon the theoretical framework is then 
presented. The empirical model enables tour and sojourn frequencies, 
destination choice, and nonwork vehicle·kilometers traveled to be com· 
puted as functions of household characteristics, destination characteris· 
tics, and transportation level of service. Several tests of the validity of 
the empirical model are described. The model was found to perform 
well. 

One of the problems that must be addressed in modeling 
the demand for urban nonwork travel is that of incor­
porating multidestination travel into the modeling 
framework. Current operational models of nonwork 
travel demand use one of two methods to treat multi­
destination travel. In the first, only two nonwork travel 
options are explicitly modeled: the option of doing no 
nonwork travel during a day and the option of taking a 
single round trip between home and nonwork destination 
during a day. Multidestination travel is ignored or 
its effects are approximated through relatively crude 
factoring procedures. This method is used fre-
quently in connection with disaggregate models of non­
work travel demand (!,; ~). 

The other method of treating multidestination travel 
uses individual trip links as the basic units of travel and 
models the demand for these links. Effects of multi­
destination travel are represented by changes in the de­
mand for home-baaed and non-home-based trip links. 
This method is used in conventional aggregate demand 
models (4) and in at least one disaggregate demand 
model (see the paper by Ben-Akiva, Sherman, and 
Kullman in this Record). It also is used in Markovian 
activity sequencing models (5, 6, 7). The method im­
plicitly assumes that travelers' decisions are based 
only on the characteristics of individual trip links with­
out regard to the characteristics of groups of links or 
travel patterns. Distortions that this assumption causes 
in travel demand models are described elsewhere (!!, ~). 

Neither of the foregoing methods provides a satis­
factory treatment of multidestination travel: the first 
virtually ignores multidestination travel, and the second 
ignores rel:ttionships between the trip links that make 
up multidestination travel patterns. 

Two other approaches to treating multidestination 
travel have been suggested as means of overcoming 
these difficulties. In one of these approaches complete 
travel patterns of households during 24-h periods are 
used as the basic units of travel, and the demand for 
individual travel patterns is modeled (8). This approach 
offers a theoretical framework in which travel decisions 
depend on relationships between trip links as well as on 
characteristics of individual links. However, it pro­
vides no means of distinguishing between the set of travel 
patterns actually considered by households in the pro­
cess of making travel decisions and the virtually in­
finite set of travel patterns that are, in principle, 
available for consideration. 

The second approach uses the tour and the sojourn 
as the basic units of travel (10). A sojourn is a visit 
to a place other than home orwork. A tour is a move­
ment that begins and ends at home or work and includes 
one or more sojourns. The approach consists of 
modeling the demand for tours and sojourns. The de­
tailed sequence of sojourns within tours is not modeled, 
thus avoiding the need to consider a potentially infinite 
variety of tour structures. On the other hand, because 
the tour is a multidestination unit of travel, it is not 
necessary to assume that travel decisions are made 
without regard to collective characteristics of trip links. 

This paper describes a disaggregate model of the 
demand for nonwork tours and sojourns. The model 
is presented in two parts. First, using the household 
as the basic decision-making unit, a theoretical frame­
work is developed that relates tour frequency, sojourn 
frequency, and destination choice to household char­
acteristics, destination characteristics, and trans­
portation level of service. An empirical model of 
nonwork travel demand that is based upon the theoretical 
framework is then presented. The empirical model, 
which was estimated using travel data from the Washing­
ton, D.C ., area, enables tour and sojourn frequencies, 
destination choice, and nonwork vehicle-kilometers 
traveled to be computed as functions of household char­
acteristics, destination characteristics, and trans­
portation level of service. 
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The modeling approach that is presented here is in­
tended to be prototypical rather than operational. In 
keeping with this orientation, certain aspects of nonwork 
travel demand are not treated. Tours that originate or 
terminate at work are not dealt with, and it is assumed 
that the automobile is the only available mode for non­
work travel. Only automobile driver tours and sojourns 
are represented explicitly in the framework. These can 
be converted to person tours and sojourns if exogenous 
information on automobile occupancy is available, but 
this is not done here. These limitations are not in­
trinsic to the modeling approach, but they greatly sim­
plify its development and application. With the exception 
of the exclusion of transit travel from the framework, 
the limitations are present in most operational dis­
aggregate models of nonwork travel. Means of re­
moving the limitations are discussed at the end of this 
paper. 

THEORETICAL FRAMEWORK 

A theoretical framework for modeling nonwork travel 
demand is presented in this section. The principal as­
sumptions of the framework are described in the dis­
cussion that begins in the next paragraph and ends with 
Equation 2. The mathematical derivation of a demand 
model based on these assumptions follows Equation 2. 
The presentation and interpretation of the resulting 
model begin with Equation 43. 

Households are assumed to be the basic decision­
making units. Let A be the set of nonwork destinations 
available to a household. A is defined to include home. 
Lett be the time of day, and let At be a time interval 
sufficiently short that the household can begin at most 
one automobile driver trip in the period t to t + At. 
Finally, let At ~ A be the set of nonwork destinations 
to which the household members can begin travel during 
t tot + ti.t. Ai will not necessarily contain all of the 
elements of A. For example, if all members of the 
household are at nonwork destination i at time t, then 
i<AbutifAt. 

The travel choices available to the household during 
t tot+ ti.tare 

1. An automobile driver, possibly accompanied by 
others, begins a trip to destination i < At (i I- home) as 
part of a tour from home to one or more nonwork des­
tinations to home. Destination i is not necessarily the 
fir st destination of the tour. 

2. An automobile driver, possibly accompanied by 
others, begins a trip from a nonwork destination to 
home. This option is available only if home is in At. 

3. No trips of the above types are begun. 

The following utilities are associated with each of these 
options: 

Option 1. U1 (x, s, z, N0 , t, ti.t) + E'i 

Option 2. uh (s, N •• t, ,6.t) + Eh 

Option 3. U0 (s, N0 , t, 6.t) + €0 

where 

U deterministic component of utility, 
< = random component of utility, 
x = vector of transportation level-of-service vari­

ables relevant to the choice of destination i, 
s = vector of household characteristics, 
z = vector of destination characteristics other than 

transportation level of service relevant to the 
choice of destination i, and 

N0 = number of automobile driver trips to nonwork 

destinations other than home that begin at 
times other than t to t + '1t. 

N0 is included in the utility functions on the hypothesis 
that a household has limited travel resources (e.g., 
time, money, automobiles) and, hence, that the decision 
to begin a trip during t to t + ti.t mr..y depend on the 
number of trips taken at other times of day. The model 
thereby incorporates the concept that a household con­
siders both its past travel decisions and future travel 
plans when making current travel decisions. 

It is assumed that the distribution properties of the 
E' 's are such that the probabilities of the various travel 
options can be represented by the multinomial logit 
model (1). Then the probability of beginning travel to 
i € A1 (i= home) during t tot+ At is 

p(i IN0 ,t,t.t,A1) = exp(U;)/[exp(U0 ) + 2:: exp(U;)l 
)•At 

(I) 

and the probability of beginning travel to home if home 
is in At is 

p(h IN0 ,t,t.t,At) = exp(Uh)/[exp(U0 ) + 2:: exp(U;)) 
jeAt 

(2) 

The members of a household can make only a 
finite number of trips during a day. Thus, it is rea­
sonable to suppose that as 6.t approaches zero, the 
probability of travel during t to t + ti.t also approaches 
zero and that for small At the probability of travel is 
proportional to ti.t 

p(i I N0 ,t,t.t,A,) = p(i I N0 ,t,At) t.t 

p(h I N0 ,t,t.t,A1 ) = p(h I N0 ,t,A,) t.t 

This implies that for small 6.t 

Thus for small 6.t Equations 1 and 2 become 

p(ilN0 ,t,At) t.t = [exp(V;-V0 )] t.t 

p(h IN0 ,t,A1) t.t = [exp(Vh -V0 )] t.t 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

The dependence of the travel probability Equations 8 
and 9 on At now is removed by forming the following 
marginal travel probabilities: 

p(i I N0 , t) t.t = 2:: P(A1) p(i I N.,t,At) t.t 
At 
iEAt 

p(h I N,, ,t) t. t = L P( A,) p(h I N,,,t.A,) t.t 
At 
hEAt 

(10) 

(11) 

where P(At) is the probability that Ai is the set of avail­
able travel options during t to t + '1t. Substituting 
Equations 8 and 9 into Equations 10 and 11 yields 

p(i I N,,.t) t.t = [cxp(Y; - V0 )] t.t L P(At) 
At 
iEAI 

(12) 



p(hlN0 ,t) t.t = [exp(Vh - Vo)] t.t L P(A1) 

Ar 
h~At 

(13) 

The summations in Equations 12 and 13 respectively 
are the probabilities that destinations i and home are 
available to the household during t to t + .6.t. These 
probabilities can be absorbed into Vt and Vb through 
the transformations 

V1 - V1 +In L P(A1) 

At 
It At 

vh - vh +In L P(A,) 
At 
h•At 

to yield the following travel probabilities: 

p(ilN0 ,t) t.t • [exp(V1- V0 )] t.t _ ieA 

p(hlN0 ,t) At"' [exp(Vh - V0 )l t.t 

(14) 

(15) 

(16) 

(17) 

The conditioning of the travel probabilities on N0 now 
is removed by forming the marginal probabilities 

p(i It) At= L P(N0 ) p(i I N0 ,t) t.t (18) 
No 

p(h It) t.t = ~ P(N0 ) p(h IN0 ,t) t.t (19) 
No 

where P(N0 ) is the probability that N0 trips to nonwork 
destinations other than home start during times other 
than t tot+ .6.t. Substituting Equations 16 and 17 into 
Equations 18 and 19 yields 

p(i It) t.t = ~ P(N0) [ exp(V1 - V 0) I t.t (20) 
No 

p(h It) At=~ P(N0) [exp(Vh - V 0)1 t.t (21) 
No 

At this point it is useful to be more specific about 
the structure of the utility functions. Let V1 - V0 and 
V 11 - V 0 have the following functional forms: 

V1 - V0 = F;(x,s,z) + G(N0 ,s) + L(t) 

Then Equat~ons 20 and 21 become 

p(i It) t.t = exp[F;(X,s,z) + L(t)] t.t L P(N0 ) exp[G(N0 ,s) I 
No 

p(h It) t.t = expK(t) t.t L P(N0 ) expH(N0 ,s) 
No 

(22) 

(23) 

(24) 

(25) 

Note that expH(O, s) = 0. A trip to home during t tot + 
~t cannot take place unless there was travel to a non­
work destination away from home during a previous time 
period . N0 = 0 implies that no such travel occurred. 

The N0 dependence of expG(No, s) now is approxi­
mated by a first order Maclurin's series in N0 : 

cxpG(N0 ,s) = cxpG(O,s) + [ ()G (O ,s)/a~] [cxpG(O,s) l N0 (26) 

To develop an analogous approximation for expH(N0 , s), 
it is necessary to express expH(N0 , s) in a manner that 
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explicitly represents its behavior at No = 0. This can 
be done by defining J(N0 , s) such that 

Assuming that ~J/~N. is continuous N0 = 0, the first 
order approximation to expH(No, s) is 

(27) 

expH(N0 ,s) = N0 J(O,s) (28) 

Now define N. to be the average value of N0 : 

Then Equations 24-29 imply that 

p(i It) t.t =exp[ F1 + L + G(O,s) I I I + N0 oG(O,s)/aN0 ] t.t 

p(hlt) t.t = N0 J(O,s) [expK(t)] At 

(29) 

(30) 

(31) 

As .6.t approaches zero, N0 approaches N, the average 
number of automobile driver trips per day to nonwork 
destinations other than home. Thus, Equations 30 and 
31 can be written 

p(i It) t.t = exp[ F1 + L + G(O,s) l [I + N aG(O,s) /aN0 I t.t 

p(h It) t.t = NJ (0,s) (expK) At 

(32) 

(33) 

Because ~t is defined to be an interval of time suf­
ficiently short that at most one automobile driver trip 
can begin during t tot+ ~t, p(ijt).6.t and p(hjt) .6.t re­
spectively are equal to the average number of auto­
mobile driver trips to destination i and to home that 
start during t to t + ~t. The average number of auto­
mobile driver trips per day to destination i and to home, 
N1 and Nh respectively, therefore can be obtained by 
integration: 

N1 = f p(ilt) dt 

Nh = fp(h It) dt 

where the integrals are over a day. Define 

expP = f[expL(t)] dt 

expK* = f[ expK(t)] dt 

Then 

N; =exp[ F; + L* + G(O,s) l [I + N aG(O,s) /aN0 ] 

Nh = NJ(O,s)expK• 

The terms expL* and expK* respectively can be ab­
sorbed into G(O, s) and J(O, s) to yield 

N; = cxp[F1 + G<O.sl I [I+ N aG(O,s)/aN0 ] 

N11 = NJ<05J 

Note that 

N= ~ N· 
I ' 

(34) 

(35) 

(36) 

cm 

(38) 

(39) 

(40) 

(41) 

(42) 

This, together with Equations 40 and 41, implies the 
following system of equations: 

(43) 
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N; = exp[F; + G(O,s)]/ {1 - (aG(O,s)/aN0 J ~ exp(Fk + G(O,s) 1} (44) 

N = 7 exp[F; + G(O,s)] /{1- [aG(O,s)/aN0 ] f exp[Fk + G(O,s)]} (45) 

Nh = NJ(O,s) (46) 

Equation 43 gives the probability that a nonwork auto­
mobile driver trip goes to destination i if a nonwork 
automobile driver trip is made. Equation 44 gives the 
average number of automobile driver trips per day to 
destination i. Equation 45 gives the average number 
of nonwork automobile driver trips per day to all non­
work destinations, and Equation 46 gives the average 
number of automobile driver trips per day from non­
work destinations to home. However, the average 
number of trips per day to a nonwork destination i 
equals the average number of sojourns per day at that 
destination, and the average number of trips from non­
work destinations to home equals the average number 
of tours from home to nonwork destinations to home. 
Thus, Equations 43-46 constitute a model of destination 
choice, sojourn frequency, and tour frequency for non­
work automobile driver travel. 

Because increasing the number of trips begun at 
times other than t to t + .6.t will tend to reduce the prob­
ability that an additional trip starts during t to t + .6.t, 
owing to the hypothesized limitations on the travel re­
sources available to households, it is expected that 

aG(O,s) /(aN0 ) ~ 0 (47) 

Thus, the denominators of Equations 44 and 45 are 
positive. Similarly, increasing the number of trips 
begun at times other than t to t + .:it will tend to increase 
the probability that a trip to home begins during t to t + 
.6.t. Hence,J(O, s) and Nh are both positive . 

Equation 43 is the disaggregate analog of a conven­
tional trip distribution model. Equations 44 and 45 are 
analogous to trip generation models. However, they 
differ from conventional trip generation models in two 
important ways. First, they incorporate the concept 
that current travel decisions depend both on past travel 
decisions and future travel plans. This is a consequence 
of the hypothesized limitations on households' travel 
resources. Second, the sojourn freq uencies implied 
by Equations 44 and 45 ar e se nsitive to both transporta­
tion levels of service and measures of the attractiveness 
of potential nonwork destinations. 

Equation 46 has no analog in conventional models. 
This is because the concept of a tour is not present in 
conventional models. 

Equations 43-45, combined, imply that increasing the 
attractiveness of travel to a particular destination, 
other things being equal, causes average daily sojourns 
at that destination to increase. The increased sojourns 
are due, in part, to new travel and, in part, to travel 
diverted from other destinations . As a consequence of 
the new travel, the average values of total sojourns per 
day and tours per day both increase. 

Equation 46 implies that the average number of 
sojourns per tour is independent of transportation level­
of-service variables. This is a consequence of in­
cluding only the first-order term in the Equation 28 ap­
proximation for expH(N 0 , s). If higher order terms were 
included in the approximation, then average sojourns 
per tour would not be independent of transportation level 
of service. However, the approximation that average 
sojourns per tour and transportation level of service 
are independent does not appear to be severe. Several 
studies have indicated that average sojourns per tour 
and level of service are either independent or only 
weakly related (.!!, !!_). 

EMPffiICAL MODEL 

To illustrate and test the theoretical framework, an 
empirical model of nonwork travel demand based on 
Equations 43-46 has been estimated. The data used to 
estimate the model were obtained from the 1968 Wash­
ington, D.C., area transportation survey. The estima­
tion data set consisted of 890 households located in 13 
traffic districts around the Washington area. The 890 
households were selected randomly from the surveyed 
households in the 13 districts. Each household was 
assigned a set of destination choice alternatives con­
sisting of the traffic zones visited for nonwork purposes 
by members of the households in its traffic district. 
The sets of destination choice alternatives thus con­
structed contained an average of 25 destinations per 
household. 

Three types of exogenous variables are included in 
the empirical model: household characteristics, des­
tination attraction variables, and travel times and 
costs. The variables specifying household characteris­
tics are household size, number of cars owned, and 
income. The destination attraction variables are retail 
employment, service employment, and population, all 
according to traffic zone. The first of these variables 
is used to characterize attraction for shopping trips; 
the other two characterize attraction for nonshopping 
trips. The choice of attraction variables was strongly 
influenced by the contents of the Washington survey, 
zone level employment and population data being the 
only information pertaining to attraction contained in 
the survey. 

The travel time and cost variables used in the model 
are the travel times and automobile operating costs as­
sociated with trips from home to the nonwork destina­
tions available to households. The automobile operating 
cost variable excludes parking costs, as the trips in 
the estimation data set had free parking. Variables 
characterizing the travel times and costs associated 
with trips between nonwork destinations are not in­
cluded. Although these travel times and costs pre­
sumably influence travel decisions involving multi­
destination tours and can be accommodated readily 
within the theoretical framework, their inclusion in the 
empirical model would have severely complicated the 
statistical estimation of the model. Statistical tests 
described later in this paper suggest that the damage 
done to the model by the omission of non-home-based 
travel times and costs ma'y not be serious. 

The functions F, G, and J in Equations 43-46 were 
specified as linear-in-parameters forms involving 
either the exogenous variables or simple transforma­
tions of the exogenous variables. The function F, which 
determines destination choice, was specified as 

F; = l: C;Xji 
j 

(48) 

where the c 's are coefficients to be estimated and the 
x's represent travel time, travel costs, and destination 
attraction variables for a destination i. The functions 
G and J of Equations 44-46 were specified as follows: 

G(N0 ,s) = a0 + l: a;s; - N0 (a;, + l: ajs;) (49) 

J(O,s) = b0 + l: b;s; (50) 

where the a 's and b's are coefficients to be estimated, 
N0 is defined as in Equation 22, and the s 1 represents 
the household characteristics variables . 

Using Equations 49 and 50 and defining 



(51) 

Equations 45 and 46 respectively can be rewritten as 

Equations 52 and 53 are the specifications of the sojourn 
and tour frequency equations that were used in estimating 
the model. 

The model was estimated in three stages. First, the 
coefficients of the function F were estimated by using 
Equation 43 and the method of maximum likelihood. The 
estimated coefficients were substituted into Equation 51, 
and W was computed for each household in the estimation 
data set . The coefficients of Equation 52 then were esti­
mated using nonlinear regression. The resulting coef­
ficients were substituted back into Equation 52, and N 
was computed for each household in the data set. Finally, 
the coefficients of Equation 53 were estimated by using 
ordinary least squares. 

The estimation results for the destination choice 
model are shown in Table 1. All coefficients have the 
expected signs. The travel time, retail employment, 
and population coefficients are statistically significantly 
different from zero at the 1 percent level. The coef­
ficient of automobile operating cost is not significantly 
different from zero. Moreover, a 25 percent change in 
automobile operating cost has roughly the same effect as 
a 1 percent change in travel time when the time and cost 
variables have their mean values. Thus, nonwork 
travelers appear to be relatively insensitive to varia­
tions in automobile operating costs at the cost levels 
represented in the estimation data set (roughly $0.10 
to $0.30 per trip). Insensitivity of travelers to auto­
mobile operating costs has been reported previously 
for bath nonwork and work travel (10, 11). 

Estimation results for the sojourn and tour frequency 
models (Equations 52 and 53) are shown in Table 2. 
Because Equation 52 is highly nonlinear in parameters 
in the vicinity of the estimated values of the coefficients, 
it is not possible to develop useful estimates of the 
standard deviations of the coefficients or to perform 

Table 1. Coefficients for destination choice model. 
Variable 
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t-tests of hypotheses concerning the coefficients (12). 
However, asymptotic tests of hypotheses concerning 
the coefficients can be performed using a chi-square 
test based upon ratios of error sums of squares. Let 
S(eH) be the error sum of squares when the coefficients 
have their hypothesized values, S(e) be the uncon­
strained nonlinear regression estimates of the coef­
ficients, n be the sample size, and p be the number of 
constrained parameters in eH. Then nln [S(eH)/ S(e)] 
is asymptotically distributed as chi-square with p 
degrees of freedom. Using this test, all of the coef­
ficients of the sojourn frequency model were found to 
be statistically significantly different from zero at the 
1 percent level. 

The statistical significance of the a' coefficients in 
Equation 52 is particularly noteworthy. These coef­
ficients result from the hypothesis that households have 
limited travel resources and, therefore, must consider 
both past travel decisions and future travel plans when 
making current travel decisions . The finding that the 
a' coefficients are statistically significantly different 
from zero tends to confirm the hypothesis. 

The positive coefficient of household size in Equation 
52 indicates that increases in household size lead to in­
creases in average sojourn frequency. The negative 
value of the a' coefficient of automobile ownership 
indicates that increases in automobile ownership in­
crease households' travel resources. The signs of 
the two automobile ownership coefficients are such 
that increases in automobile ownership lead to in­
creases in sojourn frequency. The negative value of 
the a' coefficient for income indicates that high-income 
households have greater travel resources than low-in­
come ones. This may indicate that high-income house­
holds are better able to afford the activities that gen­
erate nonwork travel or that high-income households 
have more time for nonwork travel than low-income 
households. However, because the a coefficient for 
income is also negative, increases in income do not 
necessarily lead to increases in sojourn frequency. 
Rather, the sign of the effect of income on sojourn 
frequency depends on household characteristics. In­
creases in income tend to decrease sojourn frequency 
for households of sizes one and two and tend to increase 
sojourn frequency for other households. 

CoeCficlent t-Statlsttc 

Cost In cents divided by household income indicator' 
Logarithm of home-lo-destination travel lime In minutes 
Logarithm of retail employment In destination zone 
Population In destination zone 

-0.016 13 
-1.207 8 

0.077 36 
2.801 x 10"' 
7.738 x 10·• 

-0.6272 
-7.649 

3.027 
2.395 
1.042 

Table 2. Coefficients for sojourn ( R2 = 0. 0061) and 
tour ( R2 = 0.078) frequency models . 

Service employment in destination zone · 

Note: p 2 • 0.066. 5'0observations. and 12 985 alternatives. 

•The household income data consisted of the following indicators of annual income (1968 dollars): ( 11 0·2999, 
121 3000-3999, 131 4000-5999. (41 6000-7999, 151 8000-9999, (61 10 000-11 999, 171 12 000-14 999, 181 15 000-
19 999, 191 20 OOQ.24 999, ( 10125000 or more. 

Variable 

Constant 
Household size 
Cars owned 
Household Income indicator 
Constant 
Cars owned 
Household income indicator' 

Note: 690 observations_ 

•Defined in Equation 52. 

CoeHicJ.enl 
Type 

a 
a 
a 
' a. 

a 
a 

Tour 
Sojourn 
Coefllcient' Coelflcient ' t-Slatlstlc 

0.7923 28.66 
1.497 
0.860 3 

-0.488 4 
1.511 

-0 . 150 4 
-0.068 99 

hBlanks are missing coeHicients founrl not fo be stat1st1cally s1yr11ficanlly dillerent from ~~ro and thererore c.Jropped 
lroni the specification. 

c Defim'!d in Table 1. 
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ESTIMATING VEHICLE-KILOMETERS 
TRAVELED 

Let p1 be the probability that a nonwork trip goes to 
destination i, given that a nonwork trip is made (i.e., 
p1 is the dependent variable in Equation 43), and let d1 
be the distance from home to nonwork destination i. 
Let D be the average distance from home to the nonwork 
destinations visited by a household. Then 

D= :!:p;d; (54) 

An estimate of the average length, V, of a nonwork tour 
that incll!-des S sojourns is 

V = 2D + (S- I )r (55) 

where r is the average distance between the destinations 
of multidestination tours. An estimate of a household's 
daily vehicle-kilometers traveled on nonwork tours 
(VKMT) can be formed by summing Equation55 over all 
tours made by the household. If Nh is the number of 
nonwork tours and N is the number of sojourns on these 
tours, then 

(56) 

Because p 1, N, and Nh are estimated in Equations 43, 
52, and 53, Equation 56 provides an endogenous estimate 
of households' average daily vehicle-kilometers traveled 
on nonwork tours. The estimated form of this equation 
is 

VKMT = 2DNh + 6.061 (N - Nh) R2 = 0.55 
(9.256) 

(57) 

The quantity in parentheses, 9.256, is the t-statistic. 

TESTS OF THE VALIDITY OF 
THE MODEL 

If the empirical model and the theoretical framework 
upon which it is based are valid, then reestimation of 
the model using a data set different from the original 
estimation data set should produce coefficient estimates 
that are not statistically significantly different from the 
original estimates. Therefore, the model was re­
estimated using a data set consisting of 878 households 

Table 3. Coefficients for destination choice model 
using DS-2 sample. Variable 

that were selected randomly from 14 traffic districts in 
the Washington, D.C ., area. These 14 districts were 
distinct from the districts represented in the original 
estimation data set. In the following discussion, the 
data set used in reestimating the model is referred to 
as DS-2, and the original estimation data set as DS-1. 

Table 3 shows the DS-2 estimatP.s of the coefficients 
of Fin the destination choice Equation 43. Although the 
coefficients of automobile operating cost and service 
employment have signs that are contrary both to ex­
pectation and to the DS-1 results, none of the pairwise 
differences between DS-1 and DS-2 coefficients is 
statistically significant at the 10 percent level. More­
over, a chi-square test of the hypothesis that the com­
plete vectors of DS-1 and DS-2 coefficients are equal 
accepted the hypothesis at the 10 percent significance 
level. These results support the validity of the destina­
tion choice model. 

The DS-2 estimates of the coefficients of Equation 52 
for sojourn frequency and Equation 53 for tour frequency 
are shown in Table 4. The values of W in Equation 52 
were computed by using the DS-1 estimates of the coef­
ficients of F. Similarly, the values of Nin Equation 53 
were computed by using the DS-1 estimates of the coef­
ficients in Equation 52. These procedures were neces­
sary to ensure that the independent variables W and N in 
Equations 52 and 53 respectively would have the same 
definitions in both the DS-1 and the DS-2 estimates of 
these equations, thus making comparisons of the DS-1 
and DS-2 estimates of the coefficients in the two equa­
tions possible. A comparison of these estimates (Equa­
tion 52) is conditional on the correctness of Equation 
43, and their comparison in Equation 53 is conditional 
on the correctness of Equation 52. Subject to these con­
ditions, chi-square tests of the hypotheses that the vec­
tors of DS-1 and DS-2 coefficients in Equation 53 are 
equal were performed. Both hypotheses were accepted 
at the 10 percent significance level. These results 
support the validity of the sojourn and tour frequency 
models. 

The DS-2 estimate of Equation 56 for average daily 
nonwork vehicle-kilometers traveled is 

VKMT = 2DNh + 8.477 (N- Nh) R2 = 0.46 
(10.7) 

(58) 

A test of the hypothesis that the DS-1 and DS-2 coef­
ficients of (N - Nb) are equal resulted in rejection of 

Coefficient I-Statistic 

Cost in cents divided by household income indicator' 
Logarithm of home-to-destination travel time in minutes 
Logarithm of retail employment in destination zone 
Population In destination zone 

0.2870 
-1.488 

0.1437 
9.995 • 10-• 

-3.197 • 10-• 

1.490 
-10.68 

4.882 
0.736 8 

-0.054 82 

Table 4. Coefficients for sojourn (R 2 = 0.056) and 
tour (R 2 = 0.035) frequency models using DS·2 
sample. 

Service employment in destination zone 

Note: p2 = 0.086, 578 observations, and 10 656 alternatives. 

•Defined in Table 1. 

Variable 

Constant 
Household size 
Cars owned 
Household Income indicator' 
Constant 
Cars owned 
Household income indicator' 

Coefficient 
Type' 

a 
a 
a 
a, 
a 
a 

Note: 878 observations. 

•Defined in equal ion 52. b Defined in Table 1, 

Tour 
Sojourn 
Coefficient Coefficient !-Statistic 

0.7923 26.96 
0. 724 5 
1.302 

-0.370 8 
1.039 

-0.065 88 
-0.037 04 



the hypothesis at the 10 percent significance level and 
acceptance at the 1 percent level. Thus the equality of 
the DS-1 and DS-2 coefficients and the statistical 
validity of the equation for vehicle-kilometers traveled 
are questionable, although they cannot be conclusively 
rejected. However, when Equations 52 and 53 are used 
to estimate N and Nh, the forecasts of average daily 
nonwork vehicle-kilometers traveled produced by the 
DS-1 and DS-2 versions of Equation 56 differ by less 
than 9 percent. Thus, the DS-1 and DS-2 versions of 
Equation 56 appear to be operationally equivalent, 
despite the possibility of their not being statistically 
equivalent. 

CONCLUSIONS 

Nonwork travel patterns that include several visits to 
nonwork destinations during a tour or several nonwork 
tours during a day account for much of urban nonwork 
travel. These multidestination travel patterns are not 
treated well in current travel demand models. The 
modeling approach that has been presented here pro­
vides several encouraging, although not final steps 
toward the development of improved means of incor­
porating multidestination travel patterns into models 
of nonwork travel demand. A theoretical framework 
for dealing with nonwork travel that includes multi­
destination travel has been developed . An empirical 
model based upon the theoretical framework has been 
estimated. This model relates nonwork tour frequency, 
sojourn frequency, destination choice, and daily 
vehicle-kilometers traveled to variables describing 
household characteristics, destination characteristics, 
and transportation level of service. The empirical 
model has been found to perform well in several tests 
of its validity. 

There is, of course, a variety of ways in which the 
model and its approach presented here could be further 
developed, for example through the addition of explan­
atory variables that characterize the travel times and 
costs associated with trips between nonwork destina­
tions. These travel times and costs presumably in­
fluence travel decisions concerning multidestination 
tours. One way of incorporating them into the model 
would be to include in the utility function for travel to 
each destination a variable equal to the expected utility 
of travel from that destination to other destinations. 
The principal obstacle to doing this, and the reason for 
not doing it in the current empirical model, is that it 
would cause the function F in the destination choice 
Equation 43 to be nonlinear in parameters and, there­
fore, difficult to estimate. This obstacle might be 
overcome by developing a suitable linear-in-parameters 
approximation to the expected utility of travel between 
one nonwork destination and others. 

Another way of improving the modeling approach 
would be to broaden the range of travel options it treats. 

Much of this broadening could be accomplished within 
the current theoretical framework. For example, 
transit travel could be incorporated into the framework 
by redefining the set of available travel options so as 
to represent transit and automobile travel to a given 
destination as separate options with separate utility 
functions. A similar approach could be used to treat 
nonwork sojourns on tours that originate or terminate 
at work. 

The approach also could be broadened by developing 
a means of estimating the demand for individual trip 
links. This might be done by constructing a matrix of 
probabilities of travel between specific origins and 
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destinations. These travel probabilities could depend 
on variables characterizing households' daily travel 
patterns as well as on variables characterizing the 
specific origin-destination links, thereby avoiding the 
Markovian assumption that travelers' decisions depend 
only on the characteristics of individual trip links and 
not on the characteristics of tours or daily travel pat­
terns. 
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Modeling the Choice of 
Residential Location 
Daniel McFadden, Department of Economics, Massachusetts Institute of 

Technology, Cambridge 

The problem of translating the theory of economic choice behavior into 
concrete models suitable for analyzing housing location is discussed. The 
analysis is based on the premise that the classical, economically rational 
consumer will choose a residential location by weighing the attributes of 
each available alternative and by selecting the alternative that maximizes 
utility. The assumption of independence in the commonly used multi· 
nomial logit model of choice Is relaxed to permit a structure of perceived 
similarities among alternatives. In this analysis, choice is described by 
a multinomial logit model for aggregates of similar alternatives. Also 
discussed are methods for controlling the size of data collection and 
estimation tasks by sampling alternatives from the full set of alterna­
tives. 

The classical, economically rational consumer will 
choose a residential location by weighing the attributes 
of each available alternative-accessibility to work 
place, shopping, and schools; quality of neighborhood 
life and availability of public services; costs, including 
price, taxes, and ti·avel costs; and dwelling character­
istics, such as age, number of rooms, type of appli­
ances-and by choosing the alternative that maximizes 
utility. 

This paper considers the problem of translating the 
theory of economic choice behavior into concrete models 
suitable for the empirical analysis of housing location. 
We are concerned particularly with two problems in the 
modeling of individual, or disaggregate, choice among 
residential locations. First, there may be a structure 
of perceived similarities among alternatives that invali­
dates the commonly used joint multinomial logit model 
of choice. We treat individual dwelling units as the 
basic alternatives among which choice is made. Each 
unit will have a list of attributes, observed and unob­
served, to which the individual responds. We assume 
that the space of attributes, including unobserved attri­
butes, is sufficiently ric.h so that each physical dwelling 
unit is represented by a unique point in attribute space. 
Of course, the individual may perceive two dwellings 
that are similar in some attributes as quite similar 
overall; it is the impact of such perceptions on choice 
that I wish to model. 

I shall introduce a family of probabilistic choice 
models, of which the joint multinomial logit model is a 
special case, that has the property of aggregating 
dwelling units perceived as similar. The weight given 
to an aggregate of alternatives in the choice process 
will depend on the degree of perceived similarity. 

At one extreme, the elements of the aggregate will 
be perceived as independent, and choice will be de­
scribed by a multinomial logit model with individual 
dwellings as alternatives. At the other extreme, all 
dwellings with the same observed attributes will be per­
ceived as virtually the same, and choice will be de­
scribed by a multinomial logit model with dwelling 
types, which are distinguished by observed attributes, as 
the alternatives. The family of models introduced here 
permits empirical estimation of the degree of perceived 
similarity and tests of the two extreme cases men­
tioned above. 

The second problem treated in this paper is that of 
estimation of individual choice models when the number 
of elemental alternatives is impractically large. The 

section on limiting the number of alternatives establishes 
that, if choice among a set of alternatives is described 
by a multinomial logit model, then the model can be 
estimated by sampling from the full set of alternatives, 
with appropriate adjustment in the estimation mecha­
nism. Thus, estimation can be carried out with limited 
data collection and computation. 

The solutions I give to the two problems above will be 
applied to empirical studies of housing location by 
Quigley (!) and Lerman ~). 

THEORY OF HOUSING LOCATION 
CHOICE 

Assume the classical model of the rational, utility­
maximizing consumer. Suppose the consumer faces a 
residential location decision, with a choice of communi­
ties indexed c = 1, ... , C and dwellings indexed 
n = 1, ... , N0 in community c. The consumer will have 
a utility U00 for alternative en, which is a function of the 
attributes of this alternative, including accessibility, 
quality of public services, neighborhood and dwelling 
characteristics, etc., as well as a function of the con­
sumer's characteristics, such as age, family size, and 
income. The consumer will choose the alternative that 
maximizes his utility. 

Not all attributes of alternatives will be observed. 
The unobserved variables will have some probability 
distribution in the population, conditioned on the value 
of the observed variables. If the observer knows the 
form of the utility function and the probability distribu­
tion of unobserved variables, then probabilistic state­
ments can be made about the expected distribution of 
choices: 

Pen = Prob [Ucn > Ubm for bm ,;. en I (I) 

where Pen denotes the probability of choice en and the 
probability on the right side is defined with respect to 
the distribution of unobserved variables. The econo­
metric approach to this problem is to specify, as a 
maintained hypothesis, a class of utility forms and dis­
tributions from which one member can be statistically 
identified. 

Consider the decomposition u •• = v •• + Eon of utility 
into a term v •• that is a function specified up to a finite 
vector of unknown parameters, of observed variables, 
and a term fen summarizing the contribution of unob­
served variables. Hereafter, v •• will be called the 
strict utility of en. Let e: denote the vector (<11, .. ., 
€1N1• ••• ' fc1, .•• , €cN) and let F(~) denote the cumula­
tive distribution function of ~ Then Equation 1 can be 
written 

(2) 

where Fen denotes the derivative of F with respect to its 
en argument, and (V •• + '•• - V 40 ) denotes a vector with 
components indexed by dm. An econometric model of 
choice is specified by choosing a parametric form for 



V do and a parametric distribution F. 

MULTINOMIAL LOGIT MODEL 

An empirically important specialization of Equation 2 
is the multinomial logit model, 

(3) 

obtained by assuming the ~. to be independently and 
identically distributed with the extreme value distribu­
tion, 

Prob (fen .; f) = exp(-e"•) (4) 

This model was proposed as a theory of psychological 
choice behavior by Luce (3). Its econometric analysis 
has been investigated by McFadden (4, 5) and Nerlove 
and Press (6). A particular structural-feature of this 
model, termed independence from irrelevant alterna­
tives by Luce, is that the relative odds for any two al­
ternatives are independent of the attributes, or even 
the availability, of any other alternative. This prop­
erty is extremely useful in simplifying econometric esti­
mation and forecasting (7) but can be shown to be im-

. plausible for choice probi.ems where it is unreasonable 
to assume that the ~. are statistically independent (8, 9). 

For later analysis, it will be useful to rewrite the -
joint choice Equation 3 in terms of a conditional choice 
probability Pnlo for dwelling, given community, and a 
marginal choice probability P 0 for community. The 
strict utility Va. can often be expressed in an additively 
separable, linear-in-parameters form 

Yen =ff Xcn +ex' Ye (5) 

where Xo• is a vector of observed attributes that vary 
with both community and dwelling (e.g., work-place ac­
cessibility), Ye is a vector of observed attributes that 
vary only with community (e.g., availability of commu­
nity recreation facilities), and a and 8 are vectors of 
unknown parameters. Hereafter, we assume the struc­
ture of Equation 5. From Equations 3 and 5, one ob­
tains the formulas 

I Ne I N 
Pnjc = exp(Ycn) ~l exp(Vcm) =exp(.ll'Xcn) ~l exp({J' Xcm) (6) 

Define an inclusive value 

(8) 

Then, Equations 6 and 7 can be rewritten 

Pnj c = exp((J' Xcn)/cxp(lc) (9) 

Pc= cxp(a'yc +le)/ t exp(cx'yb +lb) 
b=I 

(10) 

One method of estimating the joint model (Equation 
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3) is to first estimate the parameters B from the con­
ditional choice model (Equation 6). Next define Io using 
the log of the denominator of the estimated equation. 
Finally, estimate the parameters a from the marginal 
probability model (Equation 10), given Io. This sequen­
tial approach to estimation economizes on the number 
of alternatives and the number nf parameters considered 
at each stage of estimation, with some loss of efficiency 
relative to direct estimation of the joint model (Equation 
3). 

NESTED LOGIT MODEL 

An empirical generalization of the multinomial logit 
model in the form of Equations 9 and 10 is obtained by 
allowing the inclusive value Io in the latter to have a co­
efficient other than one: 

Pc= exp[a'yc +(I - a)lcl/ t exp[a'yb +(I - a)lb I I b=l 

(I I) 

where (1 - a) is a parameter. The model represented 
by Equations 9 and 11, termed the "nested logit model," 
was first used with the estimation procedure described 
above, but with an unsatisfactory definition of inclusive 
value (9). Ben-Akiva has suggested the correct defini­
tion (Equation 8) of inclusive value and explored the im­
plications of fitting the joint model or various nested 
models. Amemiya (10) corrects an error in the formula 
used in the earlier studies to compute the standard 
errors of estimates in the last stage of the sequential 
estimation procedure [see also McFadden (!_!)]. 

GENERALIZED EXTREME VALUE 
MODEL 

I shall now introduce a family of choice models, derived 
from stochastic utility maximization, that includes multi­
nomial and nested logit. This family allows a general 
pattern of dependence among the unobserved attributes 
of alternatives and yields an analytically tractable closed 
form for the choice probabilities. The following result 
characterizes the family. 

Suppose G(y1, ... , yJ) is a nonnegative, homogeneous­
of-degree-one function of (y1, ... , yJ) ~ 0. Suppose 
G- 00 if y 1- 00 for each i, and for k distinct components 
ii, ... , i1., akG/ay1 ... y1k is nonnegative if k is odd and 
nonpositive if k is even. Then 

defines a probabilistic choice model from alternatives 
i = 1, ... , J, which· is consistent with utility maximiza­
tion. Further, expected maximum utility, defined by 

(13) 

(with f the density for F), satisfies 

U =log G[exp(V1 ), ... , exp(V1)] + 'Y (14) 

where y = 0.57721 is Euler's constant, and 

(15) 

I have proved this result (11). J 

The special case G(yi, --:--:- . , yJ) = !: YJ yields the 
J=l 

multinomial logit model. An example of a more general 
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G function satisfying the hypotheses of the theorem is 

M 
G(y) = 1; 3m [ 1; y;1/Cl-amJJ l·•m 

m=l itBm 
(16) 

where Ba c (1, ... , J }, U B. = (1, ... , J), a. > O, and 
0,;; O'a <1:- •=l 

For the bivariate case with a single class m, Equa­
tion 16 reduces to 

G(y) = [ y :/Cl-a) + y~/Cl-aJ] I·• (17) 

The bivariate extreme value distribution based on 
this form has been studied by Oliveira (12, 13), who 
shows that a is the product-moment correlation be­
tween the two variates. In the general case of Equation 
16, a. can be interpreted as an index of the similarity 
of the unobserved attributes B.. However, the relation 
between the a. and product-moment correlations between 
the alternatives is more complex. 

The choice probabilities for Equation 16 satisfy 

M 

Pi = 1; P(ij Bm) P(Bm) 
m=J 

where 

P(i \ Bm) =exp [Vi/(! - Om)l/ 1; exp [Vj/(I - Om)J 
J~Bm 

if i < B., and 

(18) 

(19) 

(20) 

if i I B., with P(i jB.) denoting the conditional probabil­
ity, and 

(21) 

Choice probabilities of the form of Equation 18 were 
apparently first derived, for the case of three alterna­
tives and B1 = (1 }, B2 = (2, 3}, by Scott Cardell. For 
the case of disjoint B., the form of Equation 18 was 
treated independently by Daly and Zachary (14), 
Williams (15), and Ben-Akiva and Lerman (16). The 
demonstration by Daly a~d Zachary that Equation 18 
is consistent with random utility maximization is note­
worthy in that it permits generalization of the genera­
lized extreme value model and provides a powerful tool 
for testing the consistency of choice models. 

Consider an example of Equation 16, 

(22) 

where alternative 1 represents a dwelling in one com­
munity, and alternatives 2 and 3 represent dwellings of 
a similar type in a second community. Let Vi be the 
strict utility of alternative i. The choice probabilities 
when the three alternatives are offered are, from Equa­
tion 18, 

P(l \1,2,3)=cxp(V1)/(1cxp(V 1)+exp[V2/(l-a)] 

+exp [V3/(1 - a)] 11·•) (23) 

P(2 I l, 2, 3) =exp [V2/(l - a)] I exp [V2/(l - a)] 

+exp [V3/(I - a)]I·• 

.,. ( exp(Vi) +I exp[V2/(l - a)] + exp[V3/(I - o)]l1·•) (24) 

where P (i I A) denotes the probability that i is chosen 
from the alternatives A. If only alternatives 1 and 2 are 
available, then the choice probability (obtained from 
Equation 23 by setting VJ = -"'} has the binomial form 

PO\ I. 2) = exp (V1)/[exp(V1) +exp(V2)] (25) 

If only alternatives 2 and 3 are available, the choice 
probability again has a binomial logit form, 

P(2\2, 3)=exp[V2/0-a)]/lexp[V2/0-o)] +exp[V3/(1-o)J.I (26) 

Examining the choice probabilities of Equations 23 and 
24 when all three alternatives are available, the value 
a = 0 gives multinomial logit probabilities, while the 
limiting value cr .... 1 gives the probabilities 

P(l \ I , 2, 3) =exp (V 1)/I exp(Vi) +max [exp (V2), exp(V3 )] I (27) 

P(21I , 2, 3)=exp(V2 )/[exp(V2)+exp(V3)] ifV2>V3 

= 'hexp(V,)/[exp(V2)+exp(V3)] ifV2 = V3 
(28) 

In this extreme case, the consumer will treat two alter­
natives with identical strict utilities V2 =Vs as a single 
alternative in comparisons with alternative 1. 

RELATION BETWEEN THE NESTED 
LOGIT AND THE GENERALIZED 
EXTREME VALUE MODEL 

The choice probabilities in Equation 18 can be special­
ized to the nested logit model given by Equations 9 and 
11, as we shall now show. This result establishes that 
nested logit models are consistent with stochastic util­
ity maximization and that the coefficient of inclusive 
value provides an estimate of the similarity- of the un­
observed terms in the first level of the nested model. 
Hence, it is possible to estimate some generalized ex­
treme value choice models using nested logit models and 
inclusive values. Further, the generalized extreme 
value choice models provide a generalization of nested 
logit models and could be estimated directly to test for 
the presence and form of a nested (or tree) structure 
for similarities. 

To obtain the nested logit model Equations 9 and 11 
from Equation 18: replace the alternative index i with 
the double index en for community c and dwelling n; re­
place m by c; assume the sets Be have the form Ba = 
(cl, .. . , cN. }; and assume the similarity coefficients 
have a common value CJ. Then Equation 18 becomes 

j Ne I 
Pm = exp [Vcn/(1-a)J l f,;, exp[Vcm/(1- a )]f .., 

implying that 

/ 1-0 
cxp[Y,.111 /(1-a)Jf 

(29) 

(30) 



and that 

/

Ne 

Pnjc =Pen/Pc= exp[Vcn/0 -a)] ~l exp[Vcm/0 -a)] (31) 

Recalling that v •• = /J'x •• + city., these formulas can be 
written 

Pc =exp [er' ye + 0 - a)l0 1 / f exp [cr'yb + 0 - a)lbl 
b=l 

{

Ne 

Pnjc =exp [lfXcn/O - a)] L exp [/3'Xcm/O - a)] 
m~l 

=exp (/3'Xcn/0 - a)]/exp(l0 ) 

Ne 

I., =log L exp (/3'Xcm/0 - a)] 
m=l 

(32) 

(33) 

(34) 

Hence, the nested logit model is a specialization of the 
generalized extreme value model, with the coefficient 
1 - a of inclusive value an index of the degree of inde­
pendence of random terms for alternative dwellings in 
the same community. 

This argument can be extended to trees of any depth. 
A sufficient condition for a nested logit model to be 
consistent with stochastic utility maximization is that 
the coefficient of each inclusive value lie in the unit 
interval. 

LIMITING THE NUMBER OF 
ALTERNATIVES CONSIDERED 

Consider application of the joint multinomial logit model 
Equation 3 to the demand for housing, with alternatives 
indexed by community and by dwelling within the com-
m unity. Ideally, the functional form of the model is 
appropriate for describing choice among the full set of 
alternatives available to consumers, and it is practical 
in terms of data collection and statistical analysis to 
study decision behavior at this level. 

In practice, the number of available alternatives at 
the most disaggregate level often imposes infeasible 
data-processing requirements and strains the plausi­
bility of the independence from irrelevant alternatives 
property of the multinomial logit functional form, as in 
the example of similar dwellings in the same community 
that are likely to have similar unobserved attributes. 

Consider first the· problem where enumeration of all 
alternatives is impractical but where data on selected 
disaggregate alternatives can be observed. If the multi­
nomial logit functional form is valid, we shall establish 
the result that consistent estimates of the parameters of 
the strict utility function can be obtained from a fixed 
or random sample of alternatives from the full choice 
set. 

Let C denote the full choice set. We shall assume it 
does not vary over the sample; however, this is ines­
sential and can easily be generalized. Let P(i jC, z, 9*) 
denote the true selection probabilities, where 9 is a 
vector of parameters, and z is a vector of explanatory 
variables. We assume the choice probabilities satisfy 
the independence from irrelevant alternatives assump­
tion: 

i e D ~ c- P(i jC',1.,0)= P(ij D,z,O) L P(jjC,z,0) 
jd) 

(35) 
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which characterizes the multinomial logit model. 
Now suppose for each case that a subset D is drawn 

from the set C according to a probability distribution 
1T(D Ii, z), which may but need not be conditioned on the 
observed choice i. The observed choice may be either 
in or out of the set D. Examples of 1T distributions are 
(a) choose a fixed subset D of C independent of the ob­
served choice, (b) choose a random subset D of C con­
taining the observed choice, and (c) choose a subset D 
of C consisting of the observed choice i and one or more 
other alternatives, selected randomly. 

We give two examples of distributions of type (c): 

1. (c-1): Suppose D is always selected to be a two­
element set containing i and one other alternative se­
lected at random. If J is the number of alternatives in 
C, then 

71' (D j i, z) = I /(J - I) if D = [i,j] andj ~ i (36) 

or zero otherwise. 
2. (c-2): Suppose C is partitioned into sets (C11 ... , 

CH}, with J. elements in C., and suppose Dis formed by 
choosing i (from the partition set C,) and one randomly 
selected alternative from each remaining partition set. 
Then 

M 

71'(Dli,z)=Jn/ IT 1m 
m=l 

if i e D, M = #(D) (37) 

and D n C. I ifJ for m = 1, ... , M, or zero otherwise. 

The rr distributions of the types (a), (b), and (c-1) and 
(c-2) all satisfy the following basic property, which 
guarantees that, if an alternative j appears in an as­
signed set D, then it has the logical possibility of being 
an observed choice from the set D, in the sense that the 
assignment mechanism could assign the set D if a choice 
of j is observed. 

Positive Conditioning Property 

If j € D c C and rr(D Ii, z) > 0, then 1T(D Jj, z) > 0. 
Their distributions (a), (b), and (c-1) but not (c-2) 

satisfy a stronger condition. 

Uniform Conditioning Property 

If i, j € D c C, then TI(D Ii, z) = 1T(D Jj, z). 
Consider a sample n = 1, ... , N, with the alternative 

chosen on case n denoted i., and D. denoting the choice 
set assigned to this case from the distribution rr(D Ii., zJ. 
Observations with an observed choice not in the as­
signed set of alternatives are assumed to be excluded 
from the sample. Write the multinomial logit model in 
the form 

P(ij C, z, 0) =exp [V;(z, O) 1/L exp [Vi(z, O)] 
jEC 

where V1(z, 9) is the strict utility of alternative i. 

(38) 

If rr(D Ii, z) satisfies the positive conditioning prop­
erty and the choice model is multinomial logit, then 
maximization of the modified likelihood function 

o L L'Xp[V;(zn,Ol+log7!'(D11 jj,zn)]/ 
JcD ~ 

(39) 
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yields, under normal regularity conditions, consistent 
estimates of 0*. When 1T(D Ii, z) satisfies the uniform 
conditioning property, then Equation 39 reduces to the 
standard likelihood function, 

LN =(I /N) i: log jexp[(Vi
0
(z, 9)] /~exp [Vj(Z0 , 8)] l 

n=l l / JeD ~ 
(40) 

A proof is given by McFadden (17). 
In conclusion, analysis of housing location can be 

carried out with a limited number of alternatives, which 
facilitates data collection and processing, provided the 
choice process is described by the multinomial logit 
model. If a mechanism such as (c-2) is used to select 
alternatives, the likelihood function should be modified 
to the form of Equation 39 to obtain consistent estimates 
of all parameters. If a non-modified likelihood function 
is used, estimation can still be carried out satisfactorily 
provided the effect of the selection mechanism for alter­
natives is absorbed by class-specific parameters. Cau­
tion is required in this case in verifying that the con­
figuration of class-specific variables in the model is 
adequate to accommodate the selection mechanism ef­
fects, and in interpreting the estimates of class-specific 
parameters. 

AGGREGATION OF ALTERNATIVES AND 
THE TREATMENT OF SIMILARITIES 

The preceding section has shown that, when the multi­
nomial logit functional form is valid, estimation can be 
carried out by using randomly selected "representative" 
alternatives from each "class" of elemental alternatives, 
where the classes are defined by the analyst. Community 
and dwelling type were classification criteria mentioned 
in the earlier examples. Analysis of choice among 
classes by identifying them with "representative" mem­
bers can be viewed as a method of aggregation of alter­
natives. 

We shall now consider alternative methods of aggrega­
tion that can be employed when the multinomial logit form 
fails because of dependence between unobserved attri­
butes of different alternatives within a class. 

Again consider a consumer faced with a choice of 
housing locations inc= 1, ... , C communities, with 
n = 1, ... , Ne dwellings in community c, all of which 
have common unobserved community attributes. This 
introduces a dependence that conflicts with the assump­
tions of the joint multinomial logit model. To represent 
this dependence we shall assume that the choice prob­
abilities have the nested logit structure of Equations 
32-34, with cr a measure of the degree to which dwellings 
within a class c are perceived as similar. When cr = 0, 
Equation 32 reduces to the multinomial logit model, and 
in the limit when cr = 1, it reduces to 

(41) 

An analysis of housing demand by Quigley (1) using 
Pittsburgh data employs a model of the form of Equa­
tion 41. In Quigley's model, the nesting of community 
and housing type is reversed, with c denoting housing 
type, and n denoting specific dwelling, identified by com­
munity and location. Quigley assumes a sufficient struc­
ture on location choice so that the term max {3'Xen can 
be computed prior to parameter estimation. Then Equa­
tion 41 can be treated as an ordinary multinomial logit 
model. 

In an analysis of neighborhood choice using Washing-

ton, D.C., data, Lerman(?_) estimates a model of the 
form 

Pc =exp [a' ye + x; + (1 -a)log Ncl 

c 
+ ~ exp(a'yb +x: +(1-a)logNbl (42) 

b=l 

where c indexes census tracts andXt is an "average'' 
of the utility terms f3'xe. of the dwellings in tract c. He 
notes that log Ne is 

the measure of tract size required to correct for the fact that a census 
tract is actually a group of housing units. Other conditions being equal, 
a very large tract (i.e., one with a large number of housing units) would 
have a higher probability of being selected than a very small one, since 
the number of disaggregate opportunities is greater in the former than 
the latter. If all units of a particular type in a given zone are relatively 
homogeneous and the {joint multinomial] logit model applies to each 
individual unit, then the appropriate term to correct for tract size is the 
natural logarithm of the number of units [with] a coefficient of one. 

Noting the model (Equation 41) as a second extreme 
case, Lerman concludes that "if the assumptions of the 
[joint multinomial] logit model are violated, the coef­
ficient may differ from one." Lerman estimates the 
coefficient of log Ne to' be 1 - cr = 0 .49 2, with a standard 
error of 0 .094. Hence, cr satisfies the hypotheses of 
theorem 1 and is significantly different from both zero 
and one. 

In the nested logit model (Equations 32 and 34), the 
inclusive value can be rewritten 

le = ix; /(I - a)] +log Ne 

Ne 

+log l/Nc ~ x exp [(Wx,m - X~)/(l - a)] (43) 
m=l 

If a tract c is homogeneous in terms of observed vari­
ables so that 13'x •• = x:, then the last term in Equation 
43 vanishes, and the choice probability for the nested 
logit model (Equation 3 2) is exactly the Lerman model 
(Equation 42). This establishes the consistency of the 
Lerman model with stochastic utility maximization and 
supports his conclusion that the coefficient of log Ne in­
dexes the degree of independence of the alternatives 
within a tract. The same argument can be used to in­
terpret Quigley' s model, with x: = max {3

1
Xen· 

WhenXt is the mean of {3
1x •• , and not all {3

1x •• = Xt, 
the convexity of the exponential implies 

Ne . . 

I/Ne~ exp[(/3'Xcm • X~)/(I - u)] ;;. I (44) 
m=l 

and hence le « [Xt / (1 - cr)J + log N., with the difference 
of the two sides of the inequality depending on the vari­
ance of {3

1x... One limiting case of Equation 43 that is 
of interest occurs when the number of dwellings within 
a tract is large and the x •• behave as if they were in­
dependently identically normally distributed with mean 
XJ'. Let we denote the variance of f31x... If Ne = r.N, 
with r. fixed and N - "', then 

exp I [a'y, +13·x~ +(I -a)log re+ V2w~]/(I -u)) 
Pc -+ c (45) 

L exp I [a'yh +If Xti + (1 - a) log rb + Yzw6 I /(l - u)I 
b=J 

When the disaggregate data Xen are not observed, but 
their distribution can be approximated or estimated, 
and w. is known, then Equation 45 can be used with stan-



dard multinomial logit estimation programs to provide 
estimates of cr and {3. If ro is unobserved, then it can 
be estimated when Wo is known; when Yo contains a tract­
specific dummy variable, however, the tract-specific 
coefficient and ro are unidentified. This suggests one 
interpretation of tract-specific coefficients as indicating 
in part the number of equivalent disaggregate alterna­
tives contained in the tract. 

When wa is not known, but is known to have the struc­
ture w~ = {31 Oa/3, and the variables xa. are multivariate 
normal with covariance matrix Oa, direct estimation of 
{3, a, and a is possible. A modification of standard 
multinomial logit programs to handle nonlinear con­
straints on {3 would be required for full maximum like­
lihood estimation. Alternately, consistent estimators 
could be obtained by writing out the terms in the qua­
dratic form ti Oo{3 as independent parameters and ig­
noring constraints. 

CONCLUSION 

This paper has considered the problem of modeling dis­
aggregate choice of housing location when the number 
of disaggregate alternatives is impractically large and 
when the presence of a structure of similarities between 
alternatives invalidates the commonly used joint multi­
nomial legit choice model. Theorems on sampling from 
the full set of alternatives and on generalizations of the 
multinomial legit model structure to accommodate simi­
larities provide methods for circumventing these prob­
lems. Studies of housing demand by Quigley (1) and 
Lerman (2) motivate the analysis and illustrate its ap­
plicability. 
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Existing statistical procedures for model estimation that use data on ob­
served behavior focus principally on the problem of estimating the pa­
rameters of the model, given the functional form. In contrast, methods 
for measuring function, which are psychological measurement proce· 
dures that use laboratory or interview data, provide a powerful set of 
tools for diagnosing the functional form of behavioral relationships. This 
paper explores the potential of a synthesis of these approaches in which 
functional measurement is used to guide travel demand model specifica· 
tion. A case study on choice of residential location by rural workers pro· 
vides evidence that a model form based on functional measurement gives 
a better specification than the typical alternative functional forms used 
in travel demand models. Although it is relatively limited in scope, the 
case study strongly suggests that functional measurement methods can 
improve demand model specification. 

Estimating a travel demand model can be viewed as two 
interrelated problems: first, the development of a 
specification, or functional form, that describes the 
process of interest; second, the estimation of the param­
eters of that function. However, as Gaver and Geisel 
(1) point out, the existing literature on model estimation 
is oriented heavily toward the problem of estimating a 
set of parameters given a functional specification and 
offers only limited insight into how to select the appro­
priate specification in the first place. Available sta­
tistical approaches such as those suggested by Box and 
Cox (2) and those reviewed by Ramsey (3) rely either on 
statistical tests of goodness of fit or on-a more general 
functional form that has other, simpler forms as re­
stricted versions. 

For example, Box and Cox suggest a transformation 
of the form 

f( ) = { (y" - I )/X, if>.. ;. 0 
y logy,ifA=O (I) 

One can show that in the case of>.. = O, the expression 
(yA. - 1)/>.. converges to logy.· Clearly, the case>..= 1 · 
corresponds to a linear transformation. By estimating 
>.. (as well as the other parameters of the model), one 
can obtain insight into whether linear, logarithmic, or 
other transformations are appropriate and test whether 
the value of>.. is significantly different from any given 
value. 

Unfortunately, these transformations usually compli­
cate the computational problems of model estimation 
greatly, and it is generally infeasible to test the func­
tional form of every single variable and all possible 
combinations of variables. Most travel demand models, 
because of the availability of relatively inexpensive 
model estimation procedures, have been restricted to 
specifications that have linear parameters, i.e., models 
of the form 

f(x) = x(J 

= x 1(J 1 + x2 (J, +x,(J, + • .. (2) 

This restriction is not particularly burdensome if one 
already knows that a particular nonlinear specification 
is appropriate, since, by judicious use of piece-wise 
linear forms and nonlinear transformations of the de­
pendent and independent variables, one can approximate 
most nonlinear parameter functions fairly well. How­
ever, lacking guidance as to the appropriate functional 
form, and given, with existing techniques, the virtually 
infinite number of candidate transformations, choosing 
among specifications on goodness-of-fit criteria is far 
more likely to lead to one of the numerous incorrect 
specifications than to the correct one. . 

In contrast to the existing literature in econometrics, 
work in the areas of functional measurement, informa­
tion integration theory, conjoint analysis, and direct 
utility assessment has been deeply concerned with ques­
tions of functional form. Studies that rely on these the­
ories typically use laboratory-based experiments in 
which subjects are asked to make judgments about hy­
pothetical alternatives. For example, subjects are con­
fronted with a number of possible modes, each with an 
associated travel time, travel cost, etc. They are 
then asked to select a most preferred alternative, to 
rank the alternatives, or to associate some level of util­
ity with each option. 

Because a given subject can be asked to make a fairly 
large number of judgments in a single interview, the de­
.signers of these experiments can explore how individuals' 
responses are affected as a single independent variable 
changes while all other variables are held constant. 
This capability allows for a much more detailed assess­
ment of the functional form of peoples' preferences, 
since, in an intuitive sense, the designer of the experi­
ment can trace the shape of peoples' responses along 
each variable. 

The fairly extensive experience with one of these 
psychological techniques, functional measurement, in­
dicates that for any particular decision the functional 
form of peoples' preferences tends to be fairly stable 
across the population, even though the parameters of 
the function may vary widely (4, 5, 6, 7, 8). A key unre­
solved question, however, is whether the functional form 
derived from laboratory-based experiments is also a 
relevant model for actual decision making. If this is 
the case, then it would seem reasonable to develop a 
demand model estimation strategy that synthesizes the 
best features of both econometric estimation of revealed 
preferences (actual behavior) and function measurement 
(or some other, related technique) of laboratory or in­
terview data. One could begin any demand model esti­
mation by first performing a functional measurement 
experiment on a small sample; then, by using the re­
sulting functional form as the starting point, one could 
estimate a demand model on data from real-world de­
cisions. 

This paper explores the potential of this two-phase 
demand model development technique in a small but 



fairly suggestive case study. The next section describes 
the general methodology of the case study, followed by 
a discussion of the theory of functional measurement and 
its application in the case study respectively. The next 
two sections are parallel to the second and third in that 
they describe theory and empirical results respectively, 
except that they examine models estimated on revealed 
preference data. Since most readers are likely to be 
far more familiar with travel demand modeling methods 
based on revealed preferences than functional measure­
ment, the theory of the latter technique is developed in 
far greater detail than that of the former. 

The conclusion is an evaluation of the implications of 
the study and discusses the potential of the two-phase 
model-building technique for improving travel demand 
models. 

METHOD OF ANALYSIS 

In order to test the two-phase demand model formulation 
procedure, it was necessary to obtain two sets of data, 
one in which the behavior of interest was examined in a 
controlled experimental format and a second in which 
the corresponding real-world behavior was measured. 

The data used represent the spatial choices of non­
local workers in the rural West. The actual real-world 
behavior data are on nqnl.ocal workers who take employ­
ment in the rural West and must select some town near 
the place of employment as a place of residence. These 
data were taken from surveys of power plant employees 
at six sites in Wyoming, North Dakota, and Montana. In 
all but one case, a complete record of each employee's 
residence was available; in the one exception, a 20 
percent sample of employees was used. In total, ap­
proximately 9000-10 000 employees were included in 
the sample. The data used in the functional measure­
ment experiment were based on surveys administered 
to a nonrepresentative sample of students, staff, and 
faculty at the University of Wyoming. 

This case study examines a two-phase analysis in 
which (a) the functional form of a utility model is as­
sessed in a controlled experiment, and (b) the param­
eters of this form are re-estimated by using data from 
actual decisions and are compared to more traditional 
linear parameter forms of logit choice models. 

A major limitation of the study is that it deals with 
a relatively simple, two-variable model of behavior 
and a limited case study population. The results should 
be viewed, therefore, as a pilot test of a methodology 
rather than as a demonstration of a substantive result. 

It is necessary to assume that individuals share a 
common form for their utility functions but that the 
parameters of those functions may vary widely. Empir­
ical evidence available in psychological studies of judg­
ment and decision making supports the existence of a 
common utility function for individual decision makers 
(4, 5, 6, 7, a, 9, 10, 11, 12, 13). Thus, this assumption 
does not appear unreasonable. If such a function exists, 
it should be possible to infer (at least approximately) 
its functional form from relatively small, 'nonrepre­
sentative samples. The parameters of these functions 
will differ, of course, from those of the population at 
large, but the form should be relatively invariant across 
subpopulations. 

If the utility function derived from a laboratory study 
has any relevance to actual behavior, then a model esti­
mated on data from actual decisions, or revealed pref­
erences, should have the same functional form. In 
theory, if people behave as if they actually use the 
laboratory-derived functional form, then that specifi­
cation should fit the actual data better than alternative 
specifications. 
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We shall demonstrate this to be approximately true 
in the case study to be detailed by showing that the func­
tional measurement model is consistently superior, in 
terms of goodness of fit, to all functions usually assumed 
in existing choice models. A comparison of R2 -values 
adjusted for degrees of freedom and the standard errors 
of the models is made for alternadve models. 

While it would be better to compare alternative 
models based on how well they forecast behavior in an 
independent sample, data necessary for such a compari­
son were unavailable for this study. 

OVERVIEW OF FUNCTIONAL 
MEASUREMENT 

As used in this context, the term "functional measure­
ment" describes an approach to modeling individual be­
havior that is characterized by two aspects: (a) func­
tional measurement based on an explicit theory of how 
people reach decisions and (b) use of laboratory experi­
mental measurement methods to estimate models rather 
than observations on peoples' revealed preferences. 

Functional measurement is based on theoretical and 
empirical research in mathematical psychology and re­
lated fields, where there is extensive support for the 
following assumptions. 

b = h(U) 

where 

(3) 

(4) 

(5) 

Xk 1 = physically measurable attributes of the alterna­
tive under study, 

_x,. 1 = values ofXk1 as perceived by individuals, 
U1 = some level of response (such as numerical judg­

ments, rankings, or choices) observed in an 
experimental context for alternative i (for the 
purpose of this paper, we shall refer to this 
response as utility), 

U = vector U" ... , U,, 
B = an actual choice or behavior in a nonexperi­

mental situation, 
I = number of available alternatives, and 

K = number of variables. 

In many cases, Xk1 may include factors for which 
corresponding Y'lc 1 are difficult to measure or not well 
understood. For example, automobile safety may af­
fect a person's choice of auto type, but .its physical 
referrents are not well known. Such factors are treated 
in our theory as distinct, qualitative variables that are 
part of x,.1 • 

As developed above, this theory allows for responses, 
perceptions, and behavior over any set of discrete al­
ternatives, indexed as i = 1, .... , I. For example, one 
might be interested in mode-choice behavior, in which 
there are different factors influencing the desirability 
of driving alone, carpooling, taking transit, etc. In 
many situations, however, the behavior of interest is 
continuous and involves only one alternative. In these 
instances, the theory can often be reduced to the case 
I = 1, and the i subscript can be deleted. However, be­
cause in this case study we are concerned with peoples' 
choices among discrete alternatives, we will retain the 
full notation except as noted. 

Each of these assumptions is restated more formally 
below, and the case of additive and multiplicative utili­
ties is explored in detail. 
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Assumption 1 

For any observed travel behavior there exists a set of 
independent factors that are functionally connected to 
its occurrence or the magnitude of its occurrence. Each 
factor may be either quantitative or qualitative in na­
ture. We shall denote the set of J quantitative factors 
by S 1 = (Su, Su, ... , S 3) and the set of L quantitative 
factors by Q1 = (Q11, Q31, ••• , Qd; J + L = K. The en­
tire vector Xi is simply S1 and Q1 • 

Assumption 2 

Associated with each quantitative and qualitative factor 
is a corresponding value or quantity of its magnitude 
that may be obtained by one of several psychological 
measurement procedures. We shall let the utility of 
this quantity provided by one or a group of subjects be 
(uu, uu, ... , Uoet). Because there may be K different 
values or corresponding utilities for each of the K fac­
tors, we may represent the utilities as ukt• Formally, 
we postulate that 

(6) 

Assumption 3 

In an experimental context we observe a response to a 
combination of (811, S21, ... , SJ11 Q11, .•. , Q~1) on a 
psychological measurement scale. We assume that this 
response measure is connected to the utility of the ex­
perimental factors according to some algebraic combina­
tion rule. If we agree to let U1 represent the response 
to the i th alternative, 

(7) 

The vector of responses (U) is connected to the observed 
travel behavior by means of some algebraic function. 
Hence, if we agree to call the observed behavior B, then 
we can write 

B = h(U) (8) 

Then by substitution 

B = h(U) 

= h[g(x)) 

= h {g[ f(S ,Q)I} (9) 

This is too general a formulation for modeling pur­
poses. In a practical application, one must make ex­
plicit assumptions about f, g, and h and deduce their 
consequences. The results lead to a general paradigm 
for the analysis of travel behavior that has growing em­
pirical support (14, 15). 

THEORY DEVELOPMENT 

The critical component of this theory for the purposes 
of developing appropriate functional forms for travel de­
mand models is the specification of U1 = ~ (x11, X2i. ••• , 
xk 1). Analysis of variance provides a straightforward 
means of implementing the theory and diagnosing and/ 
or testing alternative functional forms. In this study, 
we will consider both the linear and multiplicative 
cases. 

There are two key conditions involved in the applica­
tion of analysis of variance that must be satisfied. 
First, the pattern of the statistical significance (or non­
significance) of the utility responses to various com­
binations of the independent variables must be of a spe-

cific nature so as to permit inference (diagnosis) or 
testing of model form. Second, corresponding graphi­
cal evidence must support the inference or test. 

Consider the hypothesis that individuals in the experi­
ment outlined above will trade off distance (or travel time) 
and town size (or amenities) independently of one 
another. That is, they will combine the effects of these 
two variables linearly. This hypothesis may be tested 
directly by an analysis of variance. If for clarity we 
suppress the subscript i and write 

(10) 

where 

u; = utility values assigned to the m th level of the 
first factor (say, distance) in a factorial ex­
perimental plan, 

u; = utility values assigned to the nth level of the 
second factor (say, town size), 

u •• = overall utility assigned by individuals to com­
binations of levels of factors one and two, and 

E" 00 = random error term with zero mean. 

The test for independence of the two effects (distance 
and town size) corresponds to the test of the significance 
of the interaction effect of U~ x U:. In an analysis of 
variance, this is a global test for any and all interaction 
effects between distance and town size. If the interaction 
is not significant (i.e., the hypothesis that u; and u; 
combine linearly cannot be rejected), then the linear 
form may be accepted. If the interaction is significant, 
it signals that some form other than a simple linear 
combination is appropriate. 

This test is accompanied by a graphical plot of the 
interaction. If the hypothesis of linearity is correct, 
the data should plot as a series of parallel lines when 
plotted against either U~ or u: values on the abscissa. 

To see why, assume the linear form to be correct 
and consider the effect of subtracting level 1 from 
level 2 of the first factor. This yields 

U2n - U1n = (U~ + U~)- (Ul + U~) + (E2n -Ein) 

= U~ - Ul + (E2n - €1 n) ( 11) 

where Uf a nd U~ are the utility values assigned to levels 
1 and 2 of factor one, respectively. Thus, the differ­
ence between the points when u; takes on any value is 
always a constant ti~ - u: (except for disturbances). 
Hence, the graph should yield a series of parallel lines. 

Note that this is true regardless of the forms we as­
sume for the marginal relationships [i.e., u; = f1Q(:,) 
and u: = :fu(Z,.)J. It can be demonstrated that a measure 
of the average effect or utility (the so-called marginal 
utilities) of each of the two variables is given by their 
marginal means. We now demonstrate that this is true 
for any multilinear utility model, thereby confirming 
that it holds for any more restricted form such as 
simple addition or multiplication. 

If U1e dala were obtained from a factorial design in 
which factor one is the row factor (subscripted m) and 
factor two is the column factor (subscripted n), we may 
write the most general multilinear form as 

(12) 

where all terms are as defined previously and k are 
scaling constants. Additional factors simply add addi­
tional one-way, two-way, three-way, and higher terms. 
Now, if we average the factorial data over the second 
subscript n (i.e., the column factor), we would have 



(13) 

where U! is the average over-the~olumn factor. Thus, 
Equation 13 reduces to 

(14) 

where K is collected terms. 
Equation 14 demonstrates that the marginal row 

means (in general, the marginal means for any sub­
script) are equal to the marginal utilities up to a linear 
transformation. Hence, they are as good as any other 
estimate measured on an interval scale. Equation 14 
is important because it demonstrates that an estimate 
of the marginal utility for any factor may be obtained 
by manipulating that factor as part of a factorial or frac­
tional factorial design so long as any multilinear utility 
function can be assumed to have generated the data. 

Returning to the reduced, strictly additive form, it 
may also be demonstrated that these marginal means 
relate to the overall utility value of cell m,n as follows 
~.£.1.~>: 

(15) 

where U .. is the grand average utility (mean). Simi­
larly, for a strictly multiplicative form, it may be dem­
onstrated that the following is true ~ • .§_, 1• ~). 

Umn = k +((Um. - k)(U.n - k)/(U .. - k)] + Emn (16) 

where all terms are as defined in Equation 15 except k, 
which is a scaling constant that represents the arbitrary 
zero point on the utility scale. 

Now, on the assumption that Equation 14 is true, we 
may write the following expressions by assigning levels 
of distance to the rows and levels of town size to the 
columns. 

(17) 

(18) 

because the only source of variation in u •. and U .n is 
that due to the levels of distance and town size and 
error. Thus, 

Umn = f 1 (<.listanceml + f1 (town size0 ) - U .. + Emn (19) 

if the two factors combine additively, or 

(20) 

if the factors combine multiplicatively and we assume 
that k in Equation 16 equals zero as a first hypothesis. 

Following our previous logic, Equation 20 is testable 
statistically and graphically. In particular, Equation 
20 requires that all interaction effects be statistically 
significantly different from zero and that the graph of 
the interaction must consist of a series of diverging 
curves. An exact statistical test may be obtained by 
using the marginal means as the independent values, 
estimating k (usually done by iterative methods) and per­
forming the following linear regression. 

ln(Umn - k) = ln<Um. - k) + ln(U_0 - k) - ln(U .. - k) (21) 

If Equation 20 is true, the coefficients of the distance and 
town size terms should not be significantly different from 
1.0. 

Thus, we have demonstrated that an algebraic and 
statistical theory for diagnosing and testing any multi-
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linear utility form does exist. In order to derive a 
model in the units of the original variables (e.g., miles, 
minutes, population), it is necessary to first diagnose 
the overall form of Equation 12 and then make assump­
tions about the functions in Equations 19 and 20 (or a 
more general form given by Equation 12, if appropriate). 

In the next section we shall demonstrate the applica­
tion of this theory and methodology to the problem of 
choosing a town in which to live, given that one has 
taken a job at a plant or a mine located in a rural area. 
We then demonstrate that knowledge of the functional 
form of the utility expression provides quite accurate 
recovery of real-world data in an analogous choice sit­
uation. We then compare the derived function form to 
a large number of linear parameter forms that might 
typically be fit in a logit analysis. 

RESULTS OF FUNCTIONAL 
MEASUREMENT EXPERIMENT 
FOR TOWN CHOICE 

In order to develop a specification for a utility function 
for town choice, a functional measurement experiment 
designed to reflect the employment and residence situa­
tions for isolated plants in Wyoming, North Dakota, and 
Montana was developed. To maintain a fairly simple 
structure, only two variables, distance to work and size 
of town, were considered. 

Sets of hypothetical classes of towns were constructed 
by developing linear regression functions relating popu­
lation to the number of each of ten types of facilities 
such as bars, grocery stores, restaurants, and 
churches. The number of expected functions in each 
class was predicted from population sizes of 250, 500, 
1000, 1500, 2000, and 2500. 

This procedure is based on empirical research in 
central place theory (16). Thus, there are six levels 
of the composite stimulus (town size and facilities). The 
six levels of driving distance, chosen by examining ac­
tual commuting distances of plant workers (17), were 
24, 48, 73, 97, 121, and 145 km (15, 30, 45;°" 60, 75, 
and 90 miles). All combinations of towns and distances 
yield a 6 x 6 factorial design. This design was printed 
in five different random orders. In addition, four filler 
combinations more extreme than the design combinations 
were inserted. Thus, the experiment involved 40 
distinct combinations that were presented to respondents 
on sheets. 

Filler combinations are used to transfer response 
bias away from the experimental combination extremes. 
Subjects respond more extremely to the fillers that they 
quickly learn are the best and worst combinations in the 
design. To test the effects of the order of the combina­
tions in the questionnaires, five different orders were 
prepared by random draw. Sixty usable questionnaires 
were obtained from students, faculty, and staff at the 
University of Wyoming who volunteered to participate. 
These subjects were randomly assigned to the five order 
conditions. Thus the experiment is a 6 x 6 x 5 x 12 fac­
torial design (town times distances times orders times 
subjects). It should be recalled that this sample should 
be as good as any other for estimating functional form, 
although the parameter values will be biased for the 
population as a whole. 

Subjects were asked to estimate a numerical value 
for their degree of preference for each combination by 
assigning a number (interpreted as a utility measure) 
between zero (absolutely the worst combination imagin­
able) and 100 (the best imaginable). Subjects were 
shown combinations that pretesting had revealed to be 
very undesirable and very desirable. They were told 
that all items to be evaluated were considered less ex-
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Figure 1. Utility responses by population and distance. 
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treme than these and that they were to use these com­
binations to anchor their numerical judgments of pref­
erence. All subjects, therefore, completed all com­
binations. 

Data were first analyzed by means of analysis of vari­
ance. The results showed that the effect of order was 
not significant, while that for distance and town size 
was, as was their interaction. The traditional gravity 
model of trip distribution would indicate a multiplicative 
relationship between these factors that would yield a sig­
nificant interaction; this is confirmed by the analysis. 
The form of this interaction, however, is critical. 
Hence, graphical evidence of multiplication is neces­
sary to bolster the statistical evidence of a significant 
interaction. 

As discussed earlier, if the data are graphed as a 
function of increasing (or decreasing) column values, 
the difference between each row must increase (or de­
crease). Thus, the data plot as divergent (convergent) 
curves. This is approximately true in Figure 1. We 
can therefore tentatively accept a multiplicative combi­
nation rule as a reasonable approximation to the decision 
process for this experiment. 

As demonstrated in Equations 13 and 14, the marginal 
row and column means are interval scale estimates of 
the utility values corresponding to the levels of the ex­
perimental factors, measured in the units of the depen­
dent variable. These effects or utilities can only arise 
from variation in the experimental values. Hence, 

U!,, = r, (town size)+ Em ('.!2) 

~ = f 2 (distance)+ En (23) 

We may assume specific function forms for f1 and f,z; 
two likely candidates consistent with both psychological 
and utility theory are 

U!,, = a1 + b1 town size~ +Em (24) 

(25) 

where u. is measured by the marginal row mean and u. 
is measured by the marginal column mean derived from 
the factorial design. Because these are sums or aver­
ages of random variables, it is reasonable to assume 
them to be normally distributed. The experimental fac­
tor values are fixed, so we have a classical fixed-effects 
regression case and can estimate the desired param­
eters via least-squares. 

If we assume the multiplicative hypothesis encouraged 
by Figure 1 and the results of the analysis of variance, 
we can write (assuming Equations 16 and 20 and letting 
k = O) 

Umn = (Um.HU.n)/(UJ + Cmn (26) 

where U •. and U .• are marginal means and U .. is the 
grand mean. Equation 26 is always true if there is a 
true multiplicative rule underlying the data. Substi­
tuting Equations 24 and 25 into 26 yields 

U,nn = [ I /(U,) I (a 1 + b 1 town size~1 )(a 2 e-b2 distance")+ Emn (27) 



By expanding Equation 27 and combining constants, we 
have the expectation of the following equation. 

The parameters of this equation were estimated via an 
iterative, least-squares procedure that yielded the fol­
lowing utility expression for town size and distance. 

Umn = 24. 76(e·o.021 41 disiance") + 1.313 (town size::;•62) 

X (e·0.021 42 dlslanc•n) + fmn (29) 

This equation accounts for 98.6 percent of the variance 
in the experimental design cell means. Both terms are 
highly significant, as is the overall equation (F = 1154.8; 
df = 2.33). Hence, we tentatively retain Equation 29 as 
a reasonable approximation to the utility function em­
ployed in the experiment. 

ESTIMATION OF CHOICE MODEL 
FROM REVEALED PREFERENCES 

Given that the functional form developed in the previous 
section using functional measurement adequately de­
scribes respondents' expressed preferences under hy­
pothetical conditions, the next logical step is to dem­
onstrate that the same functional form usefully de­
scribes actual choice of residential location. In order 
to do so, we must first postulate a model of decision 
making. Because of measurement errors, omitted vari­
ables, and the use of proxy individuals that associate 
with choice alternatives, we carutot reasonably expect 
to describe choices perfectly. However, by assuming 
a distribution of the random elements, we can model the 
probability with which any alternative is selected. 

For this study we have chosen the multinomial logit 
model. For the sake of brevity, we shall forego the 
derivation of the logit model (18,~, 20, 21). In terms 
of the simple model of location decisions under consid­
eration, this model can be expressed as 

where 

(30) 

P(i IAt) = denotation of the probability that town i 
is selected by person t from some fea­
sible set of towns A., 

V t(P 17 Dtt) = denotation of the representative utility 
(i.e., the nonrandom portion of the total 
utility) for person t, 

Pi = population of the i th town, and 
Dtt = distance between the i th town and person 

t's work place. 

The parameters of this model are generally estimated 
by maximum likelihood. However, Berkson (22) and 
Theil (23) describe the use of least-squares estimation 
for binary and multinomial logit respectively when the 
observations have many repeated entries. For multi­
nomial logit, this can be done by noting that 

f [ P(ilA1)) /[ P(k/A1)] f = { [e v,(t';,tJ;i>] / [Ee Y1CP;.1>;1Jj f 

Hence 

J 

+ { [ e Y1(l'k,Dkt!)/[E c v,(P;,D;1>] f 
j 

(31) 
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ln[P(i/A,)/P(klA,)] = V1(P;,D; 1 ) - V,(P;,Dit) (32) 

If we now impose the restriction that Yt is linear in its 
parameters, the above equation reduces to 

ln[P(i/A,)/P(klA,)] = {3(X; 1 - Xk,) (33) 

where f3 is a vector of parameters and X 1t and Xa are 
the vectors of variables characterizing alternatives i 
and k respectively. 

In this technique, each observation represents 
the proportion of people with common values of X and 
common choice set At who choose alternative i relative 
to the proportion choosing the base alternative k for that 
group. Thus, while the actual sample may have a great 
number of responses, the data for estimation are 
grouped. For example, the original data used for this 
study were gathered from a 100 percent sample of 
workers at six power plants and from a 20 percent sam­
ple at one other. Since only population and distance are 
used as independent variables, each person at a single 
power plant has the same set of available towns, At, and 
the same values of the independent variables character­
izing that set. The proportion of people at a power plant 
choosing a town i for a residence, denoted as f(iJAt), is 
a consistent, unbiased estimate for P (iJAt). Thus, 
n (f(ilAt)/f(kJAt )] is a consistent (though biased) estimate 
for ln CP(iJAt)/P(kJAt )]. 

In a Monte Carlo simulation study Domencich and 
McFadden (21) demonstrated that, when the number of 
repetitions for each alternative is reasonably large, the 
bias in least-squares estimation is small and the 
Berkson-Theil procedure is to be preferred over maxi­
mum likelihood on the grounds of computational effi­
ciency. 

The use of the Berkson-Theil procedure requires 
selecting one alternative location to act as the base (de­
noted by k above) for each power plant. In the results 
reported below, the town with the median share of the 
workers was used as a base location for each of the 
groups of workers employed at the seven power plants. 

In our data, the total number of towns used in the 
models was 46, although each power plant had a dif­
ferent subset of towns available. Some towns were elim­
inated because they had unusual characteristics that did 
not match the range of independent variables used in the 
functional measurement experiment. Given that a base 
alternative is used for each town, the actual nun:iber of 
observations as input to the estimation program was 39, 
the original 46 towns minus the 7 used as base alterna­
tives. 

Another way to view the base alternative is to recog­
nize that the full set of probabilities P (ii Ad is not inde­
pendent; the probabilities must sum to unity. Hence, if 
there are I alternatives in any choice set At, only I - 1 
of them convey any information; the I th is redundant. 

RESULTS OF ESTIMATION FROM 
REVEALED PREFERENCES 

In order to test the usefulness of the functional form de­
rived above, the same specification was estimated on 
the town choice data by nonlinear least squares. A 
large number of linear parameter specifications using 
ordinary least squares via the Berkson-Theil method 
then were estimated. If the functional form derived 
from the functional measurement experiments is indeed 
a useful description of actual decision making, then one 
would expect it to fit the available town choice data bet­
ter than more commonly applied linear parameter forms. 

The results of the estimation for the specification in 
Equation 29 are summarized below in Equation 34. 
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Figure 2. Summarv of linear parameter models. 
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(34) 

These estimates were derived by using a nonlinear 
least-squares procedure incorporated in Time Series 
Processor (TSP), an econometric software package de-

D2 

x 

x 
x 

x 

x 

x 

x 

x 

,2 PD la PD .. a i2 s 

.5225 .50'6 1.ou 

.5915 • 580.5 .tu . 

.2249 .2040 1.30 

.3022 .Zill 1.ZJ 

.5819 • .5708 .tsz 

.2267 .2058 1.29 

.4292 .4138 1.u 

.2082 .1868 1.ll 

.5339 .5213 1.01 

.3862 .3696 1.15 

x .6207 .5996 .919 

x .6351 .6148 .toz 
x .7221 .6983 .791 

.7468 .7251 .762 

.6356 .5044 .9U 

.6242 .5920 .929 

x .7127 .6881. .111 

x .5785 .5424 .983 

x x .7220 .6982 .19' 

x x .7191 .6950 .802 

x x .7447 .7147 .776 

x x .7221 .6894 .aio 

x .7581 .7296 .75.5 

x .7656 .7380 .1" 

x .7592 .7248 .763 

x x .7752 .7331 .751 

x x x .8042 .7600 .711 

veloped at Massachusetts Institute of Technology. The 
numbers in parentheses below the parameter estimates 
are their estimated standard errors. 

Three statistics also are reported._ The first, R2
, is 

the percentage of explained variance; R2 is the value of 
R2 corrected for the number of parameters estimated. 
The standard error of the regression, s, is an estimate 
of the standard error of the disturbance in the model. 
Note that in interpreting these measures, one must re­
call that the dependent variable is ln[P(i !At)/P(k !At) J, 
not P (i IAtl. 

In order to determine whether the specification de­
rived from the functional measurement was in any sense 
"better'' than more usual functional forms, a series of 
linear parameter forms was estimated. The first set 
of these runs used distance and population in linear, ex­
ponential, inverse, and logarithmic form. These speci-



fications, however, have only two parameters, while the 
form in Equation 34 has four. Therefore, a wide range 
of combinations of the variables, including quadratic 
forms of the first two, was also estimated. Some of 
these forms were simply curve-fitting efforts; it is dif­
ficult to see how one would arrive at them from any be­
havioral argument. Others are extended forms of grav­
ity models of spatial interaction. 

Figure 2 summarizes these models and is structured 
so that the colwnns denote the various independent vari­
ables used and the rows correspond to different linear­
in-parameters function forms. In each model, an x indi­
cates that a particular variable was used. The figure 
also summarizes the nwnber of parameters in the model 
and the values of R2

, Ir, ands. 
The most important feature of these results is that, 

even without correcting for the number of parameters 
estimated, none of the linear models fits these data bet­
ter than the specification in Equation 34. The last re­
gression, with eight parameters, comes close in terms 
of R2 -values to the form derived from the functional 
measurement experiment before adjustment, but it is 
significantly worse after the degrees of freedom are ac­
counted for. 

A second significant point is that the behavioral un­
derpinnings for the form in Equation 34 are relatively 
clear (after the analysis is performed), but the speci­
fications involving many parameters in Figure 2 are 
somewhat obscure. For this reason it is unlikely that 
someone using the revealed preference data would ac­
tually choose many of these models. Furthermore, 
many of the parameter estimates for the linear models 
with five or more coefficients are statistically insig­
nificant. 

A side result not reported in the figure is that many 
of the coefficients from at least the two-, three-, and 
four-parameter linear models were statistically more 
significant (as measured by their t-statistics) than those 
from the functional measurement form. It is difficult 
to interpret this result other than to note that, if the 
specification of either (or both) model(s) is incorrect, 
then the estimated coefficients and their corresponding 
t-statistics are in general inconsistent; the higher t­
statistics in the linear form may be meaningless and may 
simply reilect the outcome of a particular form of mis­
specification. 

CONCLUSION 

It is interesting-at least as a mental exercise-to ask 
the question, What form would a reasonable modeler se­
lect if he or she were developing a model from the re­
vealed preference data and the functional measurement 
experiment had been infeasible? Obviously the answer 
to such a question depends on the criteria for model se­
lection used by the analyst, but reasonable answers 
might include simple two-parameter forms such as 
model 2 or 5 in Figure 2 or quadratic forms such as 13 
or 23. It is most unlikely that the form in Equation 34 
would ever he considered, particularly since its estima­
tion requires the use of a fairly expensive nonlinear esti­
mation procedure. Without some prior evidence, such as 
an equation developed in a functional measurement ex­
periment, that such a functional form might be useful, 
most modelers would never even consider nonlinear 
forms unless no reasonable linear model could be de­
veloped. 

Obviously, the empirical evidence presented in this 
paper is extremely limited, and it would be premature 
to suggest that functional measurement or some other, 
similar technique should be a major component of a de­
mand model estimation strategy. However, the rela• 
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tively low cost of laboratory experiments does make it 
appear to be an attractive way to analyze functional form. 
The two-step procedure proposed in this paper offers at 
least one feasible approach to improving travel demand 
models and may actually reduce the cost of model esti­
mation by restricting the class of model specifications 
with which travel demand modele:;.s need be concerned. 
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Effects of Employment and Residential 
Location Choices on Urban Structure: 
A Dynamic Stochastic Simulation 
Timothy J. Tardiff, Tenny N. Lam, and Brian F. Odell, Department of Civil Engineering, 

University of California, Davis 

The pattern of home-to-work linkages in urban areas is affected by house­
hold mobility decisions. This paper describes a dynamic stochastic simu­
lation model designed to illustrate the effects of mobility decisions on 
urban structure. The major feature of the model is the representation of 
household changes in employment or residential locations or both. The 
sequential process of the decision to move and the search for and selec­
tion of new location is specified. The role of accessibility in this process 
is an important consideration in the model, which allows quick execution 
of simulation experiments. Experiments consist of alternative input as­
sumptions involving factors such as city size, numbers and locations of 
job centers and dwelling units, initial pattern of home-to-job linkages, 
moving rate, and importance of accessibility in selecting new locations. 
Two types of experiments are presented. The first examines the dynamic 
properties of the model by varying the initial pattern of home-to-job 
linkages and the mobility rate. The major conclusion is that there ap­
pears to be an equilibrium pattern of home-to-job linkages that is inde­
pendent of the initial configuration and mobility rate. The second type 
of experiment involves the variation of the importance of accessibility in 
the mobility decision process. The results show that the pattern of home­
to-job linkages varies in the expected way with changes in the decision 
process. 

The pattern of linkages between residential and employ­
ment locations in urban areas and the changes in this 
pattern over time are the result of many complex eco­
nomic and social processes. To isolate the contribution 
of each by looking at the total patterns through time 
series or cross-sectional analyses is difficult, if not 
impossible. An alternate approach is to study theoreti­
cal models that deal with a small number of processes, 

or a small part of the problem, at a time. Data and 
theory must finally agree, of course. In attempting to 
model the effects of the processes on urban structure, 
one must make simplifying assumptions in order to 
make the problem analytically tractable. The nature 
of the assumptions is dictated by the purposes of a par­
ticular modeling approach. 

The purpose of the present modeling effort is to ex­
amine the effects of accessibility-based household deci­
sion rules on the changing structure of prototypical ur­
ban areas. The emphasis on accessibility is consistent 
with numerous previous studies and also facilitates an 
examination of the transportation requirements for ur­
ban areas. The model is a dynamic stochastic simula­
tion model that processes household location decisions 
sequentially within a given time period. Each time 
period represents a fraction of the population making 
intraurban mobility decisions, i.e., residential location 
changes, employment location changes, or simultaneous 
home-job changes. An additional objective of the model­
ing effort is to generate a basis for conducting controlled 
theoretical experiments, the purpose of which is to ex­
amine questions such as stability, statistical variabili­
ties, and observability of urban relationships. These 
issues are important for linking theoretical results with 
empirical data. 

Much simplification of the socioeconomic details such 
as the distributions of household and dwelling unit types 
over the urban areas is allowed in order to sharpen the 
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model's focus on the accessibility-based choice deci­
sions. The central issue is how household decision 
rules affect the overall state of the hypothetical urban 
system. Simplification allows the model to be pro­
cessed over many time periods at 'fairly low computa­
tional expenses and thus facilitates examination of the 
dynamic aspects of urban areas. 

A primary concern of the modeling effort is the ex­
istence of constraints at both the household and urban 
system levels. In regard to the former, the dynamic 
aspects of the model implicitly incorporate three con­
straints: those on the search for new residences; those 
on the available choices, which are limited by the num­
ber of vacancies in a given time period; and those im­
plicit in the competition among households for the avail­
able dwelling units. All of these constraints potentially 
lessen the pure effects of accessibility in the household 
decision rule. There appear to be dynamic equilibria 
at the systemwide level that are determined, in part, 
by the nature of the household location decision rule. 
This implies that planned changes in the urban struc­
ture that are inconsistent with the underlying decision 
rules are unstable. Therefore, effective planning poli­
cies seem to be constrained by basic household behavior , 

BACKGROUND 

Since the emphasis of the present study differs from 
that of much previous work, the methodological approach 
also differs. Of the two major categories of previous 
work, the first emphasizes the description and analysis 
of the spatial patterns of urban areas, usuaUy in an 
atemporal manner. Studies of this nature often develop 
and apply spatial interaction concepts such as accessi­
bility (1,2,3,4) or intervening opportunities (5,6) . Al­
though many Of these models yield fairly ricb spatial de­
tail for particular urban areas, they usually do not ex ­
plicitly consider the household decision processes that 
generate the macrolevel patterns. 

The second category of previous work focuses on ex­
plaining household spatial choice processes. Of particu­
lar interest for this study is the examination of intraur­
ban location choices. Studies of this nature have used 
various methodologies and have arrived at conclusions 
that differ according to the disciplinary perspective of 
the study. Some studies, such as Lerman's (7), hypoth­
esize an economic explanation of location choice. In 
these studies, home-to-work accessibility is implicit in 
transportation costs. Other studies focus on the search 
process involved in moving. In these studies the key ac­
cessibility concept is often the accessibility of potential 
new homes to the old home, rather than home-to-work 
accessibility (8, 9). A third type of study emphasizes 
the effects of liOusehold characteristics and/or reported 
reasons fot· moving on the actual decision to move {10, 
11, 12, 13). These studies seem to indicate that accessi­
bility isa relatively unimportant reason for moving. 
Household, dwelling unit, and neighborhood character­
istics are cited much more frequently . However, there 
is evidence that actual behavior of households is consis­
tent with an accessibility hypothesis (14, 15). 

Recently there have been a few notableefforts to ex­
plicitly incorporate household choice behavior into 
models that explain spatial structure to create a hybrid 
of the two categories (16, 17). Often these efforts are 
consistent with economic explanations of spatial choice. 
Further, there is some attempt to dynamically represent 
the urban structure. However, such models have had 
fairly detailed spatial descriptions, have been specific 
to a particular metropolitan region, and have not been 
explicitly concerned with the sensitivity of spatial pat­
terns to changes in behavioral assumptions. 
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In addition to the importance of accessibility, two 
other important issues are encountered in previous 
work. First, it is possible to distinguish between op­
timal versus nonoptimal decision processes. At the 
household level optimality is implicit in the conventional 
utility maximfzation assumption of economic models. In 
contrast to this ue explanations i.wolving a three-phase 
decision process: decision to move, search, and selec­
tion (18, 19). These explanations do not rely on optimal­
ity assumptions in the sense that there are usually con­
straints in the search phase that inhibit the selection of 
the optimal location. Systemwide models allocate activ­
ities based upon some optimality criterion such as wel­
fare maximization (8, 16, 20, 21) or some other planning 
goal such as systemwiae travel minimization (22, 23, 24). 
In contrast to the optimality at a systemwide levelare 
models using an accessibility allocation rule that is not 
explicitly optimal (1, 4, 25, 26) . 

The second issue involves the role of home-to-job 
linkages in location choices. Consistent with monocen­
tric spatial models (27), most economic models assume 
that job location selection occurs before residential lo­
cation choice and that the latter depends on the former. 
On the other hand, job location is not e"-plicitly consid­
ered in explanations that hypothesize search processes 
dependent on the old home. Both explanations ignore 
the possibility of changes in job location without changes 
in residential location. Recent empirical evidence sug­
gests that such a location decision may also be impor­
tant (~ 29). 

The various possibilities are summarized in a clas­
sification scheme s uggested in a review article by Senior 
{30). The entire population in an urban area in a given 
time period can be classified as nonmovers, job changers 
with fixed residences, residentfal movers with fixed job 
locations and simultaneous residential and job movers. 
It is apparent that the usual employment-centered resi­
dential choice assumption ignores some types of moves. 

SIMULATION MODEL 

The basic model represents a highly idealized prototypi­
cal urban area. No attempt ls made to classify house­
holds or dwelling units; therefore , zonal demographic 
and individual characteristics remain unspecified in the 
simulation process. The random component of the 
household location choice process allows potential ef­
fects of household behavioral and characteristic differ­
ences to be realized without explicit specification. 

The urban area is represented by a rectangular array 
containing housing and job center locations. In general, 
the relative spatial separation between the cells of the 
array may be manipulated through topological transfor:.. 
mations to reflect actual spatial patterns and/or trans­
portation systems. Each residential location contains a 
small number of identical dwelling units. The distribu­
tion of dwelling units among locations can represent any 
desired density, although most of the simulations ac­
complished to date have used uniform densities. Simi­
larly, the size ;incl location of job centers can be speci­
fied in any manner, although there is no differentiation 
by job classification. 

At any given time the structure of the urban area is 
represented by the distribution of job locations for resi­
dents of each residential location. Using this basic in­
formation, it is possible to develop various systemwide 
summary statistics such as the distribution and moments 
of the distribution of home-to-work distance. 

The dynamic properties of the model are a result of 
the representation of changes in employment and resi­
dential locations over time. The essentials of these 
processes are represented in Figure 1. 
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Figure 1. Major components of the simulation 
model. 

Nlllllber of 
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time period 
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mobility decisions 

Search and selection 
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Summarize final results 

In addition to accounts of the temporary and final 
states of the urban system, the dynamic model contains 
three major components. The first of these is the gener­
ation of the number of movers for a particular time pe­
riod. This number is selected randomly from a Poisson 
distribution with expected value equal to a fixed propor­
tion of the population. This proportion can be interpreted 
as a mobility rate for a given time period. There are 
two interpretations of this mobility rate. First, higher 
or lower rates may represent higher or lower mobility 
propensities for a time period of fixed length. Alterna­
tively, increases or decreases in the mobility rate may 
represent decreases or increases, respectively, in the 
length of the basic time period. Operationally, the two 
interpretations are indistinguishable. 

The remaining two major components capture the es­
sentials of the hypothesized household location choice 
processes. These processes are consistent with pre­
vious work suggesting a sequential decision process that 
involves a decision to move, a search process, and a 
selection process rather than the individual or system­
wide optimization procedure. 

The representation of the decision to move is the first 
of these components. Consistent with some of the sur­
vey research findings on decisions to move (10, 11, 12, 
13) and also with the Morrison concept of theexistence 
or a hypermobile population (31)' the decision to move 
is assumed to be determined 0y household or environ­
mental characteristics and to be independent of home-to­
work accessibility considerations. This strategy is also 
consistent with that used in other recent dynamic models 
(~, 17). Since the present model does not distinguish 

among these types of characteristics, the location of 
households making mobility decisions is identified ran­
domly as suggested by Harsman and Snickars (20). 

The identification process involves two random pro­
cesses. First, the location of the household is selected 
randomly from all possible locations. Then, the house­
hold is classified probabilistically by the type of mobility 
decision: job change only, residential change only, or 
simultaneous job and residence change. The classifica­
tion probabilities are established as input parameters. 
This procedure continues until the previously established 
households have been identified and classified. Movers 
are accumulated by mobility type in a regional pool to 
await subsequent processing. 

The last major operational component represents the 
search and selection processes. There are two levels 
of sequential processing. First, individual households 
are randomly selected from the mover pool and randomly 
assigned to either available house or available job loca­
tions. The procedure is somewhat similar to that used 
by Mason (17), although this process is random while 
Mason's process prioritized households by income. 
Second, individual households drawn from the mobility 
pool and assigned to initial locations sequentially en­
counter housing or job opportunities. They make an ac­
ceptance or rejection decision based on a preselected 
choice function that usually specifies that the probability 
of acceptance decreases with an increase in the city 
block distance between the potential opportunity and the 
relevant home or job location. The role of accessibility 
in the choice function is consistent with economic expla­
nations of location choice and with some survey research 
findings suggesting that, while accessibility might not be 
important in the decision to move, it may be an impor­
tant consideration in the selection of the new location 
(10). By varying the importance of the random compo­
nent of the choice function, it is possible to test various 
hypotheses that give greater or less weight to the impor­
tance of accessibility. 

The search and selection processes are similar to 
actual or proposed strategies in other dynamic models 
but differ in important ways. First, the random nature 
of the search process has been suggested by Okabe (32 \ 
and Harsman and Snickars (20\. However, both of those 
studies hypothesize a simultaneous deterministic choice 
among a prespecified number of possible vacancies 
rather than the sequential probabilistic choice process 
in the present model. The sequential processing of 
households contrasts with the models incorporating sys­
temwide optimization rules ( 16, 32 \. 

The details of the search andselection processes are 
as follows. First, a mobility type is selected probabi­
listically (without replacement) from the list of house­
holds generated by the previous component. The prob­
abilities are proportional to the actual numbers of 
households in each mobility category at the time the 
particular household is processed. If the mobility type 
is a job change only, a residential location is selected 
randomly from those locations with job-changing resi­
dents. Next, a job location is selected probabilistically 
(without replacement). The probabilities are propor­
tional to the number of job vacancies at each job center. 
The accessibility-based choice function is then used to 
probabilistically accept or reject the job location. Since 
rejected job locations are not replaced, the household 
must accept the last location if all others have been ex­
hausted. As all jobs at a given location are identical, 
this strategy is consistent with the assumption that re­
jection of a job implies rejection of all job opportunities 
at the location for that time period. 

For the residential change only, a job location is se­
lected probabilistically in proportion to the number of 



Figure 2. Pattern of home-to·work linkages 
over time (initial pattern concentrated at time 
periods 0, 10, 20, 30, 40, and 50). 

(a) 

(d) 

residence-changing job holders at each location at the 
time the household is processed. A residential location 
is then selected randomly {with replacement) from those 
locations with housing vacancies. The accessibility­
based decision rule is then used to accept or reject the 
residential location. The process continues sequentially 
until a residential location is selected or until a prespec­
ified maximum search length is encountered, in which 
case the last location is selected. 

Households simultaneously changing jobs and resi­
dences are first probabilistically classified into two 
groups: those who select the residence first and those 
who select the job first. The classification probabilities 
are prespecified. Households subclassified into the first 
category are then processed in the same way as job 
changers and those in the second subclassification are 
processed as residential changers. 

The complete processing of all moving households 
marks the end of the time period. Iterative processing 
through subsequent time periods, or moving cycles, 
continues until a terminal period is encountered. 

ILLUSTRATIVE RESULTS 

The purpose of the simulation is to study the effects of 
household mobility processes and various physical char­
acteristics of urban systems on the home-to-work trans­
portation requirements. By sacrificing detail, a wide 
range of simulation experiments can be examined. 

Each simulation experiment involves variation of one 
or more of the following inputs: (a) the dimensions of 
the rectangular array; {bl the number, sizes, and loca-

89 

(b) (c) 

(e) (f) 

tion of job centers; (cl the distribution of dwelling units 
within the array; {d) the probabilistic accessibility­
based location choice rule; (el the expected proportions 
of mobility types; {f) the mobility rates; (g) the initial 
pattern of home-to-job linkages; and {h) the level of ser­
vice on transportation links. 

The experiments performed to date can be classified 
by the essential purpose of the experiment. All experi­
ments have used the same expected proportions for mo­
bility types: one-third job changers, one-third residence 
changers, and one-third simultaneous changers. In the 
last category, half are expected to select the residence 
first. Almost all the experiments have used a uniform 
distribution of ten dwelling units per location and have 
assumed uniform level of service on transportation 
links, although some preliminary results modifying 
these assumptions are available. 

Four major categories of experiments have been per­
formed. First, the dynamic properties of urban sys­
tems have been examined by varying the initial pattern 
of home- to -job linkage8 and the mobility rates. Second, 
the effects of the accessibility-based decision rule on 
home-job patterns have been examined by varying the 
choice function. Third, the effects of urban structure 
on transportation requirements have been examined by 
varying the dimensions of the array and the number, 
size, and location of job centers. Finally, the effects 
of variations in transportation level of service and the 
density distribution of dwelling units were examined. 

Over 40 simulation experiments have been run. Be­
cause the purpose of this paper is to illustrate method­
ology, an exhaustive description of the results will not 
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be given. Rather, general findings from the first two 
categories of experiments will be described. These 
categories contain the most easily interpretable results 
and the most definitive conclusions at this time. 

Some results involving dynamic properties have been 
described elsewhere (33) and will only be summarized 
here. The major conclusion is that there appears to be 
an equilibrium pattern in home-to-job linkages aggre­
gated over distance that is independent of the initial con­
figuration and the mobility rate. However, the time re­
quired to reach equilibrium varies with the initial con­
figuration and the mobility rates. 

This conclusion is based on five experiments involving 
a 40 x 25 array with ten dwelling units per location. Two 
job centers located in the middle of the array in the 
short dimension and one-quarter of the length of the 
array from the edge in the long direction both contained 
5000 jobs. Three percent of the dwelling units were va­
cant. The accessibility function was linear with a maxi­
mum probability of 95 percent at the minimum distance 
(1 block) and 5 percent at the maximum distance (42 
blocks). 

Three initial patterns and three mobility rates were 
used. The three patterns combined into a uniform pat­
tern (roughly equal distribution of home-to-job linkages 
for each residential location) , a concentrated pattern 
(every resident working at the closest job center), and 
the equilibrium pattern. The last pattern resulted from 

Figure 3. Alternative accessibility-based location 
choice functions. 
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starting with all residences and jobs vacant and assign­
ing the entire population in one time period. By neces­
sity, all movers were simultaneous job and residential 
changers with probability of subclassifications equal to 
one-half. The three mobility rates were 0.5, 1, and 4 
percent. 

The apparent equilibrium is tl,at obtained with the 
equilibrium initial pattern. The dynamic aspects of the 
path to equilibrium are illustrated in Figure 2. This 
figure depicts the distribution of households working in 
one job center for each residential location. Darker 
areas represent higher concentrations of workers. The 
initial configuration is the concentrated one, and the 
mobility rate is 4 percent. The pattern changes from 
one in which everyone in one-half of the city and no one 
in the other half is working at the job center to the equi­
librium position in which the split is roughly two-thirds 
and one-third. 

There are two major implications. First, for experi­
ments concerned with equilibrium rather than dynamic 
properties, the equilibrium initial pattern can be gener­
ated directly, with substantial savings in computation 
costs. Second, the existence of equilibria seems to in­
dicate that initial patterns inconsistent with the choice 
behavior resulting in the equilibria are unstable . For 
example, the situation involving the concentrated pat­
tern may represent the outcome of the frequently advo-
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Table 1. Means and variances of home-to-work Choice Function Concentrated Uniform 
distance distribution for various location choice 
functions. Item a 

Mean 15.89 
Variance 74.18 

Table 2. Frequency distribution of the number of residential locations 
containing N workers at the first job center for various location choice 
functions. 

Choice Function Concentrated Uniform 
Initial Initial 

N a b c d e Assignment Assignment 

10 16 187 2 109 2 381 0 
9 38 109 28 116 4 100 0 
8 88 54 48 78 37 17 0 
7 129 46 109 77 102 2 0 
6 137 72 183 73 195 0 0 
5 145 65 200 77 242 0 854 
4 129 44 183 72 229 0 134 
3 130 44 125 65 122 0 12 
2 108 26 103 68 49 0 0 
1 63 120 14 112 13 0 0 
0 17 233 5 153 5 500 0 

cated new town planning strategy of minimizing home­
to-work distance. 

The effects of alternative assumptions about the im­
portance of accessibility in the location choice process 
can be examined by changing the accessibility-based lo­
cation choice function. Five alternative functions, which 
are represented graphically in Figure 3, were examined. 
The dimensions of the array, the density distribution of 
dwelling units, and the number, size, and location of 
job centers were the same as in the previous sets of ex­
periments. All experiments were the result of generat­
ing the equilibrium initial pattern. 

The mean probability of acceptance, unweighted by 
the number of opportunities at each distance, is one­
half for all alternative functions. However, the un­
weighted variances differ substantially. Conceptually, 
the alternative functions allow accessibility and other 
factors represented by the probabilistic nature of the 
functions to have varying importance. For example, 
function (e) in Figure 3 is consistent with the hypothesis 
that accessibility is of no importance. On the other 
hand, function (bl represents a situation where accessi­
bility is crucial, i.e., close locations are accepted with 
near certainty and further locations are rejected, also 
with near certainty. Function (b) also represents the 
case in which decisions are made with respect to a 
maximum ac<:essibility threshold. 

Tables 1 and 2 present data that summarize the re­
sults of the experiments according to the choice func­
tions a-e in Figure 3. The first table presents the first 
and second moments of the home-to-work distance dis­
tribution for the urban area, while the second table lists 
the frequency distributions of the concentration of 
workers at the first job center nver the 1000 residential 
locations. In addition, both tables contain the corre­
sponding information for the concentrated and uniform 
initial p4tterns used in the previous set of experiments. 
These latter results delimit the range of possibilities; 
i.e., the concentrated pattern has accessibility as totally 
deterministic, while the uniform pattern is essentially 
independent of accessibility considerations. 

Qualitatively, the results in the tables are not sur­
prising. The most important accessibility is in the lo­
cation choice function, the shorter the average home­
to-work distance. Further, great importance assigned 
to accessibility appears to result in small variations 

Initial Initial 
b c d e Assignment Assignment 

12.86 17.26 13.33 18.92 11.25 19.00 
35. 79 85.86 42.99 94.14 21.49 93.68 

around the average distance and, consequently, more 
homogeneity within individual residential locations. 
That is, Table 2 shows that the functions that correspond 
to greater emphasis on accessibility (b, d, concentrated) 
lead to situations where a large majority of residential 
locations have most of their workers at a single job cen­
ter. Conversely, the remaining functions (a, c, e, uni­
form) yield more heterogeneous results. That is, the 
majority of residential locations have a fairly even dis­
tribution of workers at the two job centers. 

Preliminary investigation using the results of these 
and other experiments indicates that these qualitative 
findings can be strengthened by relating input parameters 
to model outputs. For example, there appears to be a 
strong linear relationship between the unweighted second 
moment of the location choice function and the second 
moment of the home-to-work distance distribution. 
Verification of this relationship and further attempts 
to relate other inputs and outputs in a rigorous fashion 
are an important component of future work and will be 
instrumental in demonstrating the ultimate potential of 
the methodological approach. 

SUMMARY AND CONCLUSIONS 

The simulation methodology just described has the po­
tential for yielding insights into the manner in which 
household choice processes and the locations of spatial 
opportunities result in patterns of home-to-work link­
ages. Current results are preliminary and await further 
research that will define relationships between model in­
puts and outputs more rigorously. 

The modeling system is intentionally abstract. Con­
sequently, it is not appropriate for examining the effects 
of a wide range of urban policies, such as policies in­
volving housing and/or particular subgroups of the pop­
ulation. In addition, since the model does not necessar­
ily represent any particular urban area, the conclusions 
that do emerge from particular types of experiments are 
likely to be general in nature. 

These limitations contribute to the particular strength 
of the methodology, however. Rather than applying to 
only one particular urban area, as do most more de­
tailed models, the current methodology allows the quick 
examination of conditions for a wide range of actual or 
potential urban systems. Consequently, any general 
findings are more likely to describe the class of urban 
systems rather than a particular urban area. In this 
way, the approach lies between the two major approaches 
used in previous studies of location choice. That is, 
rather than attempting to study particular location choice 
behavioral proccssc::; on the one hand or attempting- to 
describe spatial regularity at an aggregate level on the 
other, this methodology has the potential for examining, 
in detail, the consequences of location behavior on the 
nature of urban systems in general. 

Despite the abstract nature of the methodology, the 
existing model has been developed with careful attention 
to existing knowledge. This is reflected in the dynamic 
capabilities of the model, in the separation of the loca­
tion choice process into the decision to move and search 
and select components, in the division of mobility deci­
sions into job change and residence change and simulta­
neous change components, and in the fact that the loca-
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tion choice function contains both accessibility and other 
factors subsumed under the random component of the 
function. 

These four features allow a wide range of tests of 
competing hypotheses. In addition, the existing model 
can easily be changed to incorporate other hypotheses. 
For example, the dimensions of the urban area may ex­
pand over time, representing growth. Experiments of 
this nature have already been performed. Similarly, a 
simultaneous decision process among a number of alter­
native locations instead of the sequential binary process 
of acceptance or rejection in the current model can be 
easily represented within the simulation structure. 

Since the model is abstract, it will ultimately be nec­
essary to determine the extent to which it offers insights 
into real urban systems. At one extreme it may be only 
the mathematical system represented by the computer 
code, and at the other extreme it may be adapted to offer 
insights into particular urban areas. Preliminary evi­
dence indicates that the model does, indeed, result in a 
reasonable representation of particular areas as indi­
cated by a comparison of empirical and model home-to­
work distance distributions (34). 

In conclusion, a methodology has been developed that 
has the potential for yielding insights into the equilib­
rium and dynamic properties of urban systems. Such 
insights will be useful in identifying the extent to which 
the outcomes of planning decisions, such as the location 
of employment centers and transportation facilities, are 
constrained by household choice behavior and also by the 
reciprocal constraints of the existing urban opportunity 
structure on household choice. 
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This paper describes an aggregate urban travel demand model designed 
for areawide transportation policy evaluation with limited preparation 
of input data and fast response times. It does not include supply 
models but it can be used by itself for travel demand predictions with 
exogenously specified transportation level·of·service changes or it can 
be incorporated in the framework of the TRANS model. The method­
ology is generally applicable to urban transportation sketch-planning 
situations in which large geographic units are used. Aggregation is per­
formed over spatial travel alternatives and spatially distributed individ­
uals to produce required aggregate travel demand forecasts. An efficient 
solution method for spatial aggregation was developed that employs 
mathematical functions, expressed in terms of coordinates in the urban 
space, to describe the spatial choice process and to represent the geo­
graphic distribution of behavioral units, spatial alternatives, level-of­
service characteristics, and locational attributes. This allows the spatial 
aggregation problem to be solved efficiently. by integrating the travel 
demand models over the urbanized area. Monte Carlo simulation tech­
niques are employed and the procedure entails (a) generation of a sam­
ple of representative households distributed over the urban area using 
available census data, (b) generation of a sample of destinations for each 
trip purpose for each household, (c) computation of travel demand fore­
casts for each household based on the sampled destinations using a sys­
tem of disaggregate travel demand models, and (d) accumulation and 
expansion of disaggregate predictions to produce aggregate forecasts. 

This paper describes the methodology and application of 
an aggregate model of urban travel behavior. The model 
is designed to be applied at a high level of geographic 
aggregation-the entire urban area-for quick assessment 
of urban transportation policies. The underlying meth­
odology is applicable to a wider range of sketch­
planning analyses that are characterized by the use of 
readily available input data (.for example, from the U.S. 
Census) and fast response times. These features are 

essential for a successful integration of technical analy­
sis and transportation decision-making processes. 

Typically, the travel demand models employed in ex­
isting sketch-planning packages offer little policy sensi­
tivity and require separate calibration for different levels 
of spatial aggregation or zone sizes. 

The basic premise of this study is that the use of dis­
aggregate travel behavior models (1, 2, 3, 4) in sketch­
planning applications with appropriate aggregation pro­
cedures would remove these shortcomings. Although 
disaggregate choice models have many advantages over 
conventional aggregate travel demand models in general, 
their distinct advantages from the sketch-planning stand­
point are that once estimated they can be applied to any 
desired level of geographic aggregation and that they have 
the potential of being transferred from one urban area to 
another. 

The aggregate demand model developed in this study 
represents an extreme level of spatial aggregation since 
it treats an entire urban area as a single analysis unit. 
It is suited to metropolitan transportation planning 
studies in which impacts on specific areas are not re­
quired. When incorporated into a complete supply-and­
demand analysis system, it can be used to determine 
scale and composition of transportation investments on 
an areawide basis, involving approximate funding allo­
cations to modes and facility types, to construction and 
maintenance expenditures, etc. It can also be used to 
analyze aggregate impacts of pricing and operating poli­
cies such as fuel price change, parking cost surcharge, 
and areawide transit improvements. 

The model can be used in the framework of the multi­
modal national urban transportation policy planning model 
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known as TRANS (5, 6, 7, 8), which is referred to as .MIT­
TRANS in this paper:-- - -

SPATIAL AGGREGATION OF 
DISAGGREGATE TRAVEL DEMAND 
MODELS 

Aggregate forecasting cannot, in general, be performed 
by substitution of average values of the independent vari­
ables in a disaggregate model. Therefore, aggregate 
forecasting requires the application of an aggregation 
procedure that employs information about the distribu­
tions of the variables (9). An efficient aggregation pro­
cedure is particularly Iinportant in sketch-planning 
models designed for large spatial analysis units (10). 
This section describes the basic concepts and methods 
of aggregating disaggregate travel demand models over 
individuals and spatially distributed alternatives. 

Basic Definitions 

Consider an origin zone as a group of individual behav­
ioral units and a destination zone as a group of elemental 
spatial alternatives. The elemental spatial alternatives­
such as housing units (in the choice of residential loca­
tion) and jobs (in the choice of work place)-are assumed 
to be mutually exclusive in that one and only one of the 
available alternatives will be chosen. 

Consider a prediction of the number of trips (given 
purpose) from an origin i to a destination j (both i and j 
are equal to the entire urbanized area as used for the 
level of aggregation in the l'vllT-TRANS model). First, 
for each individual t in the origin i predict the probability 
that the individual will choose each spatial alternative £ 

in destination j. Denote this probability Pt(s). Then 
sum the probability for all spatial alternatives in the des­
tination to produce the probabilities for all spatial alter­
natives in the destination and call this step aggregation 
of alternatives. Thus 

P,U) = L P,(s) (I) 
SEJ 

Finally, sum the probabilities for all individuals t in ori­
gin i to get the expected number of trips from origin i to 
destination j and call this step aggregation of individuals. 

Tij = L P,U) = L L P1(s) (2) 
lei tei sej 

To illustrate the relationship between spatial and non­
spatial alternatives, let Pt(m js) be the probability of 
trip maker t choosing mode m given that the trip maker 
has chosen spatial alternative s. By similar argument, 
the expected number of trips from origin i to destination 
j by mode m is given by 

Ttjm = L L PtCm Isl P,(s) (3) 
tci sc:j 

The above example illustrates the basic idea of spa­
tial aggregation that consists of two basic steps, the ag­
gregation of spatial alternatives for each individual and 
the aggregation of spatially distributed individuals. These 
steps are conceptually applicable to any desired traffic 
zone size and to both intrazonal and interzonal trips. 

Spatial Aggregation Using Continuous 
Functions 

Obviously, the discrete summation form used in the 
above example is too microscopic for actual prediction, 

since complete enumeration, as the example implies, 
would require astronomical amounts of data and compu­
tation. Furthermore, even if computational costs were 
not a barrier, it is still infeasible to describe the de­
tailed characteristics of each spatial alternative and be­
havioral unit. In order to develop an operational spa­
tial aggregation procedure, some :iegree of abstraction 
of spatial alternatives and behavioral units is necessary. 

There are many possible ways to represent spatial 
distributions, depending on the level of detail desired. 
To generalize the definition of spatial aggregation, as­
sume that mathematical functions expressed in terms of 
two-dimensional coordinates represent the spatial dis­
tributions. This type of representation can be used as 
a basis for comparing different spatial aggregation 
methods (9, 11, 12, 13, 14, 15). 

Suppose thattlieattributes of spatial alternatives and 
the distributions of spatial alternatives and behavioral 
units could be expressed in terms of coordinates of the 
urban space. De.fine a spatial choice density function, 
den0ted G,. {p, q Ix, y), as the probability <>f a behavioral 
unit type k located at point (x, y) choosing a spatial 
alternative located at point (p q) for a specific purpose 
such as shopping destination (16). This is a unique sur­
face for individual type k located at (x, y) that is. also a 
function of the distribution of attributes of spatial op­
portunities and their transportation level of service for 
origin point (x, y) and socioeconomic variables of indi..: 
vidual type k. Define spatial distribution functions for 
spatial alternatives and behavioral units as M(p, q) equals 
the number of elemental spatial alternatives per unit area 
at point (p, q), and Hk(x, y) equals the number of behavioral 
units type k per unit area at point (x, y). The number of 
trips from zone i to zone j can now be derived as (a) ag­
gregation over spatial alternatives to obtain the proba­
bility of behavioral unit type k located at (x, y) choosing 
an alternative in zone j: 

PkUlx,yJ= ff Gk(p,qlx,y)M(p,q)dpdq (4) 

zone 

or (b) aggregation over behavioral units to obtain the ex­
pected number of behavioral units type k located in zone 
i who travel to zone j: 

zone 
I 

The total number of trips is 

= f ff ff Gk(p,q jx. y)M(p, q)Hk(x,y)dpdqdxdy 

z.um.! znn~ 

I 

(5) 

(6) 

It is also possible to repeat the above steps to derive 
other travel demand predictions. For example, let 
D(p, q;x, y) be the distance traveled between points (p, q) 
and (x, yl. Then, the expected kilometers of travel for 
zone pair (i, j) is given by 

MTii =~ff ff D(p,q;x,y)Gk(p,q!x,y)M(p,q) 

zone zone 
i 

x Hkfx, y)dpdqdxdy (7) 



Numerical Techniques for Spatial 
Aggregation 

The spatial choice density function can be expressed in 
terms of spatial coordinates via the distribution over 
space of the independent variables of a spatial choice 
model. The independent variables that enter the utility 
functions of choice models of travel behavior are 

L(p, q;x, y) =transportation level-of-service attributes 
by different modes, times, and facilities 
between origin point (x, y) and destination 
point (p, q); 

A(p, q) =location attributes, or attraction vari­
ables, of the relevant elemental spatial 
alternatives at point (p, q); and 

Sk = socioeconomic characteristics of an in­
dividual of type k. 

Thus, the required input data include spatial distribu­
tions for transportation l evel of service variables (L), 
locational attributes (A), and spatial density functions 
for elemental spatial alternatives (M) and behavioral 
units (Hk) of different types. 

There are two broad approaches in which the spatial 
distribution of the input data can be applied to carry the 
spatial aggregation-a direct and an indirect approach. 

Direct Approach 

The mathematical functions L(p, q;x, y), A(p, q), M(p, q), 
and Hk(x, y) are expressed explicitly in terms of the co­
ordinates (p, q) and (x, y). Furthermore, the spatial in­
tegration is also carried directly. 

Define the following probability density function: 

I 
M(p, q)Hk(x, y) for (x, y) e zone i 

PDFkiJ (p, q ;x,y) = MjHki for (p, q) tzone j 

0, otherwise 

where 

M3 = the number of elemental alternatives in zone 
j, or 

M3 =ff M(p, q)dpdq; and 
l 

Hk1 = the number of behavioral units type k in zone 
i, or 

Hk, = J JHk(x,y)dxdy. 
I 

(8) 

The integral for the number of trips by individuals type 
k from i to j, as an example, can now be rewritten as 

Tkii = MJHkif J J f ck(p,qjx,y)PDFkii ( P. y ;x,y)dpdqdxdy 

l j 

= MiH ki · Gkii (9) 

where Gk, 3 is the expected value of the spatial choice 
density function for individuals type k in zone i and ele­
mental spatial alternatives in zone j . Thus, the expec­
tation of the spatial choice density function is taken over 
the distribution of (p, q) and (x, y) defined by function 
PDFktJ· 

This is the approach taken in the development of the 
MIT-TRANS model. Two broad classes of numerical 
integration methods are possible : mechanical or ap­
proximate quadrature techniques such as described in 
Davis and Rabinowitz (17) and Monte Carlo simulation 
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techniques such as described in Hammersley and Hands­
comb (18l. 

If thefunctions Gk(p , q;x, y), L(p, q;x, y) , A(p, q), 
M(p,q), and Hk(x,y) are relatively well behaved (e.g., 
having a continuous first derivative) and if zones i and 
j assume a s imple shape (e.g., a cir cle or rectangle), 
mechanical quadrature technique~ seem appropriate. 
Otherwise, Monte Carlo simulation seems to be the only 
feasible approach. 

In the MIT-TRANS model, because of the difficulty 
in setting the bounds of the integrals for the complex 
shape of the urban area, mechanical quadrature tech­
niques were ruled out as infeasible, and the Monte Carlo 
approach was chosen. Although Monte Carlo methods are 
generally less accurate than mechanical quadrature 
methods, they are appropriate to travel demand fore­
casting applications because great precision is not re­
quired and we are interested in predicting changes. 

In urban transportation planning applications, the 
Monte Carlo approval offers the following advantages: 

1. No aggregation bias (in the context defined by 
Koppelman, 1975) is produced by Monte Carlo simulation; 

2. Forecast error measures are available immedi­
ately as a by-product of the Monte Carlo simulation 
process; 

3. Errors in Monte Carlo forecasts can be expressed 
as a function of sample size, which is directly propor­
tional to computation effort ; hence, the errors can be 
parametrically controlled by making a direct trade-off 
between accuracy and cost; 

4. The Monte Carlo approach can be applied to any 
type of mathematical representation; and 

5. It is possible to stratify Monte Carlo forecasts by 
socioeconomic or other groups. The prediction errors 
for each group can be controlled separately. 

The major disadvantage of the Monte Carlo approach 
is that, for a given Monte Carlo procedure, the magni­
tude of random error is inversely proportional to the 
square root of sample size. Thus, to reduce the mag­
nitude of error by one-half, the sample size must be 
quadrupled. Although this weakness can be serious in 
applications where a high degree of accuracy is required, 
it is not so in travel demand forecasting applications, 
since relative errors in the range of 10-20 percent or 
even greater are normally quite acceptable for decision­
making purposes. Furthermore, a number of techniques, 
such as the stratified sampling and importance sampling 
used in the MIT-TRANS model, can be employed to sub­
stantially reduce error without increasing the sample 
size. 

Indirect Approach 

The distribution of the coordinates (p, q) and (x, y) is first 
transformed into that of the level-of-service and attrac­
tion variables. Integration is then performed over the 
distribution of the latter variables. 

The spatial choice density function is a function of the 
level-of-service variables (L) and the locational attri­
butes (A), which are, in turn, functions of (p, q) and 
(x, y). Therefore, Gk J can also be expressed as the 
expectation of Gk(L, A) over distribution of Land A, 
PDF. 1J(L, A) : 

Gkij= J J Gk(L,A)l'DFkij(L ,A)dLdA ( 10) 

A I. 

Therefore, the key problem is to find the distribution of 



96 

Land A. Conceptually, if the density functions for spa­
tial alternatives and behavioral units by type are known, 
the probability density function of the variables L and A, 
PDF~ 1 J(L, A), can be derived, either analytically or em­
pirically. 

In practice, however, the probability density function 
can be derived in closed form only under highly simpli­
fying assumptions. For example, in the case of intra­
zonal trips (zones i - j), if we assume that the spatial 
alternatives and behavioral units are uniformly distrib­
uted in a circular zone and that the travel time is pro­
portional to the airline distance between (p, q) and (x, y), 
then a closed-form expression exists for the probability 
density function of travel time, as derived by Kendall 
and Moran (19). 

GenerallY,"""it appears feasible in practice to obtain 
only the first few moments of the distribution of the vari­
ables L and A. Parametric models can be developed 
empirically to express the distribution moments (e.g., 
the means and variances of travel times and costs) in 
terms of the zone configurations (e.g., zone areas), the 
transportation supply and level-of-service character­
istics, the traffic volumes, and the land-use distribu­
tion pattern. 

Two different efforts have previously been made to 
develop such parametric models . However, neither 
used spatial choice probabilities explicitly as the basis 
for model development. In modal split prediction, 
Dunbar (20) directly assumed that the distribution of 
trip distance between a zone pair has a trapezoidal shape 
and is parametrically related to the zone sizes. From 
this assumption and by assuming that the travel speed 
and cost per unit distance were constant for a given 
zone pair, Dunbar was able to obtain the means and 
variances of travel time and cost expressed in terms of 
the zone areas. 

For the access portion of a trip, Talvitie and others 
(21, 22) conducted a large number of simulation experi­
mentSin which the zone configurations, the transporta­
tion supply characteristics, and the trip-end densities 
were varied as independent variables. With the simula­
tion results, multiple regression was used to relate the 
means and variances of access travel times and costs 
as parametric functions of the above independent vari­
ables. 

The distribution required to carry out the aggrega­
tion over alternatives and individuals could be repre­
sented in several different forms (9): 

1. Parametric distribution functions with analytical 
or numerical (including Monte Carlo) integration tech­
niques (11, 12); 

2. Moments of distribution with the statistical dif­
ferentials method that expresses the aggregate quantity 
in terms of moments of the distributions using a Taylor 
series expansion (11) (this approach proved to be un­
stable and is not employed in this study but is included 
for completeness); 

3. Classification (or categorical representation of 
the distributions) with each class, which is a group of 
individuals or a group of alternatives, represented by 
its average values and the aggregate quantity, and is a 
weighted average of the choice probabilities for the 
classes; if overall average values are used for the in­
dependent variables-a one-class discrete distribution­
it becomes the so-called "naive method" that ignores the 
aggregation problem entirely (9); and 

4. Sample enumeration where aggregation is carried 
by summation of choice probabilities for a sample of in­
dividuals and a. sample of elemental or homogeneous 
groups of spatial alternatives for each individual (this 
approach is identical to Monte Carlo integration except 

that the samples are drawn from actual observed data 
instead of from parametric distributions). 

In the MIT-TRANS model a sample enumeration ap­
proach is used for the socioeconomic characteristics of 
households. The spatial distribution of behavioral units 
Hk(x, y) is represented by classific:i.tion and parametric 
functions within each class. All other distribution in­
formation is represented by parametric functions in 
terms of coordinates. 

In conventional urban transportation model systems, 
the basic method used is classification. The population 
and spatial alternatives are classified into traffic zones 
with size varying according to the urban area and the 
purpose of the analysis. For each zone only average 
values are generally given. 

The short-range travel demand prediction system de­
veloped by Ben-Akiva and Atherton (23) employs a sam­
ple enumeration approach to represent behavioral units, 
and a sample of aggregate traffic zones is used to rep­
resent destinations. 

The method of statistical differentials was developed 
by Talvitie (11) and applied by Difiglio and Reed (24), 
Liou (~), anctDunbar (20). -

BASIC OPERATIONS OF THE 
MIT-TRANS MODEL 

MIT-TRANS represents an extreme form of test for the 
feasibility and validity of the spatial aggregation method­
ology developed in this study, since it treats an entire 
urban area as a single traffic zone with almost all trips 
being internal. The model is based on the application of 
Monte Carlo simulation using synthetic socioeconomic 
and land-use distribution data to forecast trip generation, 
distribution, and modal split, with a system of disaggre­
gate travel demand models. There are seven disaggre­
gate models for both work and nonwork trips that have 
been linked together; i.e., outputs from one model be­
come inputs to lower-hierarchy models (15). Examples 
of predictions are the number of trips made, mode 
shares, person-kilometers of travel, vehicle-kilometers, 
average vehicle occupancy rates for work and nonwork 
trips, number of automobiles per family, and so on. 
These predictions are policy sensitive as reflected in 
the elastic travel demand models for the choices of work 
place, auto ownership, mode to work, nonwork travel 
frequency, destination, and mode. 

It should be noted that the MIT-TRANS model in its 
present form represents only the demand component of 
the TRANS overall policy evaluation package, which also 
includes the supply component and evaluation procedures. 
Future extensions of the MIT-TRANS model will include 
the development of network abstract transportation sup­
ply and traffic assignment models and the integration of 
these models and the aggregation procedure into an equi­
librium framework. In lieu of a complete supply-demand 
equilibrium framework, a set of level-of-service rela­
tionships describing spatial distribution of the equilib­
rium conditions of an existing transportation system 
with externally specified parameters is being used in 
the current MIT-TRANS model. 

The existing MIT-TRANS model can be employed to 
analyze a broad range of areawide transportation oper­
ating and pricing options-those policies that are not ex­
pected to significantly alter congestion on the transpor­
tation system. The results of some transportation policy 
alternatives are reported in the summary of empirical 
tests. 

As summarized schematically in Figure 1, the op­
erations of the MIT-TRANS model require three sets of 
inputs: (a) the aggregate city geometry and land~use 



Figure 1. Basic operations of the MIT-TRANS 
model. 
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distribution parameters, (b) the urban area's socio­
economic characteristics, and (c) the specifications of 
a transportation policy alternative. These policy speci­
fications are used to modify the level-of-service rela­
tionships that have been calibrated for the base condi­
tions. The aggregation procedure, a Monte Carlo simu­
lation, operates on these inputs, the disaggregate choice 
models, and the modified level-of-service relationship 
to produce aggregate travel demand forecasts for the 
urban area. The forecasts can be disaggregated by 
market segment, such as by income group. 

In the context of the spatial aggregation concept, the 
MIT-TRANS model uses the direct approach to the in­
tegration problem. The urban area is modeled as a 
quasi-circular shape with the origins (home ends of 
tl'ips) and destinations (nonhome ends) defined by sets 
of coordinates (R, ).) , and (r, 111) or ( L, e IR, .~J, respec­
tively, as depicted in Figure 2. 

For each of three income classes the household den­
sity function is assumed to have a negative exponential 
shape. The spatial alternatives-jobs, shopping desti­
nations, and social recreational facilities-are also rep­
resented by negative exponential employment density 
functions and functions describing location character­
istics. The parameters of these density functions can 
be easily obtained from total counts of population and 
employment for an inner ring and the entire urbanized 
area. The transportation level-of-service functions by 
mode and time of day are expressed in terms of trip 
geometry variables, which are, in turn, functions of 
the coordinates of the trip ends. 

MIT-TRANS also includes a procedure similar to the 
one used by Duguay, Jung, and McFadden (26) to obtain 
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the distribution of socioeconomic characteristics of the 
urban area population by generating a sample of house­
holds from available data. The procedure is based on 
a sample of disaggregate observations from the U.S. 
Census public-use sample, or any other household sur­
vey, and available aggregate data from surveys or pub­
lished sources for past years or from forecasts or staged 
scenarios for future years. 

Monte Carlo simulation techniques are employed in 
all steps of the aggregation process: aggregation of spa­
tial alternatives for a behavioral unit and aggregation of 
spatially distributed behavioral units. The operations 
of the Monte Carlo aggregation procedure include the 
following basic steps: 

1. Determining household sample size, 
2. Generating sample of households for forecast 

year [each household characterized by (L, e) location 
and a set of socioeconomic attributes], 

3. Determining sample size of spatial alternatives 
by purpose, 

4. Generating sample of spatial alternatives by pur­
pose for each household in the sample [each destination 
defined by (r, !/J) coordinates], 

5. Modifying appropriate attributes of the alterna­
tives for policy analysis, 

6. Applying linked demand models for each household 
in the sample, 

7. Expanding sample forecasts to population market 
segments, and 

8. Comparing forecasts against base case for policy 
analysis. 
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Figure 2. City geometry and system of coordinates. 
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SUMMARY OF EMPffiICAL TESTS 

The MIT-TRANS model was programmed in Fortran for 
an IBM370/168 computer. It requires about 0.6 min of 
computer-use time per policy run with a standard error 
of about 1 percent of predicted average passenger kilo­
meters of travel. This demonstrates the computational 
feasibility of the Monte Carlo simulation approach for 
urban transportation sketch-planning applications. 

The model was calibrated for the 1968 Metropolitan 
Washington, D. C., area and was then used to forecast 
1975 conditions as a validation test. Between 1968 and 
1975 there were substantial changes in this area. 

The main differences in land use included a large in­
crease in the fraction of high-income households and a 
corresponding decline in low-income households, plus a 
large population growth in the suburbs together with a 
sharp decline in population in the inner ring. Household 
income increased as did the number of workers, while 
the average household size declined. The transit sys­
tem experienced almost no change at all, while, for 
drivers, auto ownership cost decreased 15 percent and 
auto running cost increased 9 percent in real terms. 

The combination of population growth in the suburbs 
and almost no change in transit coverage meant fewer 
households had available transit in 1975. The major 
changes in travel behavior between 1968 and 1975 in­
cluded increased auto ownership, increased vehicle­
kilometers of travel per household, and decreased tran­
sit patronage. All the forecast changes given below 
agree with these trends. 

Observed Predicted 
Household Transit Factor Changes(%) Changes (%) 

Auto ownership per household 
0 autos -23.2 -23.6 
1 auto -14.0 4.8 
2 autos 34.1 11.6 

Average autos per household 15.1 8.9 
Average transit trips per 

household ·16.7 ·14.5 
Average auto-kilometers per 

household 15.9 16.1 

Apart from Washington, D. C., the model was also 

Destination 

(r,9) or (L,9IR,A) 

e 

calibrated for the Minneapolis-St. Paul area, which has 
two central business districts. The elasticities pro­
duced by the model for both the Washington, D. C., and 
the Twin Cities areas are comparable to before-and~ter 
empirical evidence and forecasts obtained from other 
studies. 

The MIT-TRANS model's range of applications and 
policy sensitivity were tested in the following areawide 
transportation pricing and operating policies. 

1. Transit policies: 50 percent fare increase, free 
transit, 10 percent transit coverage reduction, 100 per­
cent transit coverage; 

2. Auto policies: doubling running cost (in testing 
auto pricing policies the existing value of kilometers per 
liter is taken as a constant), annual $ 400 tax on owner­
ship; 

3. Carpool policy: carpool-only highway lanes and 
preferential parking sufficient to achieve a 20 percent 
reduction in out-of-vehicle travel time and a 30 percent 
reduction in in-vehicle travel time. 

Detailed results compiled in Watanatada and Ben­
Aki va (15) show that auto ownership is affected most 
by policies that either reduce the need for an auto or 
make ownership more expensive. It is less affected by 
policies shifting the relative travel costs by transit and 
auto. 

Auto-kilometers traveled is predicted to change by 
-13 percent for Washington and -11 percent for the Twin 
Cities because of the doubling of the price of gasoline. 
Smaller impacts (-7 percent for Washington) are pre­
dicted from providing transit within a kilometer of every 
household and business in the urban area. No other 
policy-including carpooling incentives-results in more 
than a 3 percent reduction in auto-kilometers traveled. 
Both the number of trips and the mode shares of transit 
can be increased by either pricing or coverage policy. 
Reducing transit coverage by 10 percent has approxi­
mately half the impact of a 50 percent fare increase. 
Free transit increases transit trips more than complete 
coverage, where the impact on nonwork trips is very 
different, nonwork trips being much more price sensitive. 

In addition to the policies shown and discussed, other 



policy options can be analyzed by using the model. Park­
ing costs may be varied throughout the city. In-vehicle 
and out-of-vehicle times for all three modes may be 
modified for both peak and nonpeak conditions. 

Several Monte Carlo sampling experiments were con­
ducted to investigate the statistical properties of the 
model. It was found empirically that a small sample of 
destinations results in minimal bias and optimal effi­
ciency. The results of sensitivity tests of major input 
parameters show the importance of the distribution of 
transit route coverage. 

The empirical results have led to the basic conclu­
sion supporting the applicability of disaggregate travel 
demand models and Monte Carlo aggregation for sketch 
planning. The travel demand forecasting methodology 
proposed operates with readily available aggregate in­
put data while still maintaining the full degree of policy 
sensitivity available in recently developed systems of 
disaggregate models. The most important future ex­
tensions of the methodology are the incorporation of 
supply and traffic assignment models (15) and the de­
velopment of a version of MIT-TRANS for multiple zones 
of varying sizes. 
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Aggregate Prediction With 
Disaggregate Models: 
the Aggregation Bias 

Behavior of 

Uzi Landau, Transportation Research Institute, Technion-Israel Institute of 
Technology, Haifa 

Disaggregate travel demand models are being increasingly applied to pre­
dictions of aggregate demand. This is usually done by applying these 
models to zonal aggregated data, but it causes a bias (the aggregation 
bias) in the predictions obtained. The purpose of this paper is to study 
empirically the characteristics of the bias for a variety of conditions. 
The empirical analysis focuses on the bias in aggregate predictions of 
mode choice for work trips in Washington, D.C. Two main factors of 
bias are identified as the geographic aggregation level and the level of de­
tail by which the distribution of explanatory variables is represented. 
Both the magnitude and the behavior of the aggregation bias are ex­
amined for a wide range of geographic aggregation levels, for several ap· 
proximate representations of the distribution of explanatory variables, 
and for two different transportation options. The simplest aggregate 
prediction method uses average zonal variable values in the disaggregate 
model. The results of this study indicate that, by applying this method, 
substantially biased predictions may result. Applying more accurate dis­
tribution representation reduces this bias significantly but does not en­
sure its complete elimination. A residual bias of significant magnitude 
still remained in many of the situations examined. The implication is 
that sophisticated methods for bias reduction should be developed in 
order to make aggregate predictions with disaggregate models a more 
reliable analysis tool. 

The prediction of aggregate travel behavior is an in­
dispensable element of the transportation planning pro­
cess. Over the past 20 years demand for travel has 
been estimated by aggregate models, but, due to their 
limitations (1, 2), more research efforts have been 
directed to the development of methods for applying 
disaggregate models of individual choice behavior to 
aggregate travel predictions. These models have a 
number of advantages over the aggregate models: they 
are more policy sensitive; they require relatively little 
data; and they are more likely to be transferable (3). A 
detailed analysis of the disaggregate models is given by 
Ben-Akiva (4) and Charles River Associates (1). 

As is the case with all models, certain errors are 
also involved with the disaggregate model aggregate 
predictions. Koppelman (5, 6, 7) presents a comprehen­
sive analysis of the sources ofthese errors. This 
paper focuses on the behavior and magnitude of a specific 
source of error-the aggregation bias-which usually 
appears in aggregate predictions made by disaggregate 
models. 

APPROXIMATE AGGREGATION 
PROCEDURES 

The process of predicting aggregate behavior with dis­
aggregate models consists of three components (7): (a) 
disaggregate choice model; (b) representation of the 
distribution of explanatory variables of this disaggregate 
model; and (c) aggregation procedure, which operates 
on the above two components to obtain the aggregate 
prediction. 

Several aggregation procedures have been discussed 
in the literature (~, .!!_, ~ 10, .!!); some are more accurate 
than others. The more accurate ones apply the dis­
aggregate models directly to disaggregate data or to the 
exact joint probability distribution of the explanatory 

variables. Other procedures that apply the disaggregate 
models to forms of aggregated data are less accurate 
(7). However, the more accurate procedures are 
usually less practical, while the less accurate ones 
are more convenient and in fact more widely used (12, 
~.u). -
- The aggregation bias is one of several contributors 
to total aggregate prediction error, which, in certain 
situations discussed later, is of considerable magnitude. 
This paper concentrates on those characteristics of the 
bias associated with the more popular procedures such 
as estimating future aggregate demand by applying the 
disaggregate model in its exact functional form to zonal 
aggregate data. 

MAIN CA USES OF THE AGGREGATION 
BIAS 

Aggregation is grouping individuals into zones and 
representing them as one group with common charac­
teristics. The data of the new zone system are an 
aggregate representation of the real underlying distri­
bution of the data from the detailed (individual) level. 
There are several ways to represent the aggregate 
zonal data. 

The most common way is the representation of the 
data with their means, such as average zonal income 
and mean travel time. However, every aggregate 
representation of the underlying detailed data results 
in a loss of information. The specific nature of data 
variation at the detailed level is lost in the process of 
aggregation. 

If the disaggregate model is nonlinear, then this loss 
of information causes a bias in the predictions obtained 
that is known as the aggregation bias (7). The main 
factors that contribute to it are the following. 

1. Geographic aggregation level (GAL): Aggrega­
tion of zones simply increases within-group variability 
in the zonal and interzonal distributions of the data. 
Going to higher levels of zone aggregation is identical 
to saying that the zonal and interzonal related data dis­
tributions have larger variances. Representing these 
distributions with few measures (traditionally, only 
one measure, the mean) results in a loss of some 
variational characteristics of the data at the considered 
aggregation level. Therefore, the more we aggregate, 
the more information we lose, and hence the greater 
the aggregation bias. 

2. Distribution representation method (DRM): The 
representation of the underlying distribution of explan­
atory variables at the considered level of aggregation is 
termed here "distribution representation method" 
(DRM). The more we aggregate, the greater is the in­
formation loss and, consequently, the greater the 
aggregation error. However, given a certain aggre­
gation level, the more accurate the distribution repre­
sentation method, the smaller the loss and, hence, the 
better the aggregate predictions. 
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Ideally, we would like to represent the data by their 
multivariate joint distribution and apply summation­
integration procedures (7). In this case, no informa­
tion is lost, and zone aggregation would not cause a bias. 
However, establishing this joint distribution is an in­
tractable problem. Therefore, less accurate methods 
are used to represent the data (~ !!_). They are imper­
fect compared to the multivariate distribution representa­
tion, but they are a more accurate representation com­
pared to the means. They bring about a reduction in the 
aggregation bias, but some error still remains. 

The traditional DRM in aggregate analysis is the use 
of weighted averages. That is, the aggregate prediction 
is made by making each variable in the disaggregate 
model equal to the weighted average of its disaggregate 
values. 

Classification procedures are more accurate DRMs 
than the weighted averages method. They consist of 
approximating the distribution of a variable with a 
histogram of few classes. The expected demand for 
each class is estimated by using average values of all 
variables for this class. The overall demand is deter­
mined as a weighted sum of the individual classes. 

ANALYSIS OF BIAS IN AGGREGATE 
PREDICTION: PURPOSE AND 
METHODOLOGY 

The purpose of the analysis is to study empirically the 
behavior of the aggregation bias, specifically to find 

1. How the bias changes over a wide range of dif­
ferent GALs, 

2. What the magnitude of the bias caused by using 
weighted average procedures is, 

3. How well approximate DRMs of the explanatory 
variables reduce the bias, and 

4. Whether different transportation alternatives 
produce similar (or different) biases. 

A method for identifying the value of the aggregation 
bias was developed and tested in an applied prediction 
context. The method is illustrated by an empirical 
study of mode choice by work trip makers in the 
Washington, D.C ., metropolitan area. The approach 
is to make multiple aggregate predictions of choice 
shares with a single disaggregate choice model for 
two different transportation options, for several GALs, 
and for several DRMs, each applied to all GALs and 
transportation options. 

The predictions made with the disaggregate model 
by the complete enumeration procedure involve no bias 
(i.e., estimating expected shares by averaging the 
choice probabilities, calculated for each member of 
the population). They serve here as the no-bias 
reference level. The aggregation bias of the predic -
tions obtained by applying the disaggregate model to a 
selected DRM, GAL, and transportation option, is de­
termined by comparing these predictions with those 
obtained by complete enumeration. 

DEMAND MODEL, DATA, AND 
TRANSPORTATION OPTIONS 

The demand model chosen for the analysis is of the N­
dimensional logit form, developed by Peat, Marwick, 
Mitchell and Company (PMM) for San Diego (! .. ~). The 
model is developed to forecast central business district­
(CBD-) oriented work trip makers' choice among three 
modes: transit passenger, automobile driver, and 
automobile passenger. The experiment foe uses on the 
error in the aggregate prediction of transit share. The 
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following variables appear in the model. 

IN 
TRNT 

= household income, 
= transit travel time, which is in-vehicle 

time plus transit transfer time, 
TEXS = transit excess time, which is the walk to and 

from transit time plus first wait for transit, 
= transit fare, 

auto highway driving time, 
auto operating cost, 
half of the auto parking cost, and 

FARE 
HWTT 
COST 
PARK 
AEXS auto excess time, which is the walk to and 

from the auto. 

The transit share for individual t, Vt, is 

v1 = [exp(u1)l /[exp(u1) + exp(u2 + G)] 

where 

u1 1.1635 - 0.05625 x TRNT - 0.09157 xTEXS 
- 0.0106 x FARE, 

U2 - 1.4809 - 0.05625 x HWTT - 0.09157 x AEXS 
- 0.01062 (COST+ PARK), and 

G = 2.952 [1 - exp(-0.035 x IN)]. 

(I) 

The model was reported to fit the San Diego data very 
well. Its predictions were also tested by PMM in the 
San Francisco and Boston transportation systems and 
were found to be satisfactory (15). 

Three reasons underlie the choice of this particular 
model. First, it seemed desirable to test a realistic 
demand model. Similar models in terms of variables 
and value of parameters are likely to occur in many 
cases. Second, the model is sensitive to several level­
of-service variables. Third, the model is nonlinear 
not only in its general structure but also in its utility 
function. Such a complex nonlinear form is potentially 
a major contributor to the aggregation bias (~). 

The PMM model was applied to the Washington, D.C., 
data for predictions. The traffic corridor from the 
CBD northbound, through Silver Spring, Maryland, and 
beyond I-495 (the Capital Beltway) was chosen. It is a 
144-traffic-zone segment of the entire metropolitan area 
(1207 traffic zones). This 144-zone system serves as 
our entire disaggregate population (144 x 144 pairs of 
transit share predictions). 

Six superzone systems, each of a different GAL, 
were defined along the study corridor. The basis for 
the definition of a GAL in this experiment is the number 
of traffic zones in one superzone. The superzones were 
defined such that, for a given GAL, each had exactly 
the same number of traffic zones as the others. Con­
sequently, the units by which the level of aggregation is 
quantitatively expressed are elementary (traffic) zones 
per superzone, in shorter notation EZ/SZ. The six 
aggregate systems have 72, 36, 18, 9, 3, and 1 super­
zones. The number of EZ/SZ in each is 2, 4, 8, 16, 48, 
and 144, respectively. The one-superzone system, for 
example, is simply the total study corridor, treated as 
one big zone . 

Data files were prepared to represent the variables 
by their DRMs for the six GALs. The DRMs were 

1. Weighted averages: that is, representation of 
the distribution of each variable by one measure (= one 
class), the mean; 

2. Classification with 2, 3, and 4 classes: that is, 
approximating the distribution of a variable with a fre­
quency histogram of 2, 3, and 4 classes (for example, 
in the two-class case the distribution is split at its 
median and is represented by the means of the two sec-



102 

tions, each given a weight of ~; in the three-class case 
the distribution is divided at its tertiles and is repre­
sented by the means of the three classes, each given a 
weight of 13; the four-class approximation is analogous); 
and 

3. Marginal distributions: that is, each variable 
is represented by its exact marginal frequency histo­
gram. 

The approximate distributions applied consisted of 
the representation of few variables (one, two, or three) 
with their marginal distribution or approximated fre­
quency histogram (i.e., classification), while all the 
rest of the variables were at their means. 

Two transport alternatives were chosen for the 
analysis. Both concerned the routing of the public 
transit vehicles. The first, alternative 1, consisted 
of the bus services, as provided in 1968, where trans­
fers were made by individuals for certain origin­
destination pairs. The second alternative, alternative 2, 
cut all.the transfers for the same trip interchanges as­
suming 5 min/ transfer. 

The PMM disaggregate model was applied to 292 and 
128 different combinations of GAL and DRM for alterna­
tives 1 and 2, respectively. The behavior of the aggre­
gation bias was examined for all these combinations. 
The numerical results illustrated in Figures 1, 2, 3, 4, 
and 5 provide a representative sample of those ob­
tained in the entire study. A more detailed description 
of the analysis and results is given elsewhere ~). 

MEASURES OF THE AGGREGATION 
BIAS 

The aggregation bias is expressed by the following three 
error measures: average interzonal percentage error, 
total area percentage error, and root-mean-square 
error. 

Average Interzonal Percentage Error 

For average interzonal percentage error (PAE), let piJ 
be the basic error measure in transit share prediction 
between superzones i and j, such that 

(2) 

where 

V;; unbiased reference level aggregate prediction 
for superzone pair (i, j), and 
aggregate prediction by approximate aggrega­
tion procedure for superzone pair (i, j). 

Equation 2 expresses the magnitude of the bias as a 
proportion of the unbiased prediction. 

The average level of the interzonal prediction error 
is calculated by averaging out all interzonal errors: 

PAE= LWijPij 
IJ 

(3) 

where w;; is the weight of trips of superzone pair (i, j) 
with respect to all superzone pair trips. 

Total Area Percentage Error 

The purpose of total area percentage error (P,
0
,a1) is to 

capture the bias of the entire study area prediction for 
transit ridership. It is analogous to PAE and is defined 
by 

Pto1:a1=(V: . -V .. )/V .. (4) 

where V .. and V ! . are the unbiased and approximate 
entire area aggregate predictions for transit share, 
respectively. 

Root-Mean-Square Error 

Root-mean-square error (RMSE) is defined by 

[ "" . 2Jy, RMSE = t W;j (Vii - Vii) 

ANALYSIS OF RESULTS 

(5) 

Several characteristics of the aggregation bias were 
examined, as they varied for several GALs and DRMs. 
The bias was estimated by a variety of measures, all 
of which indicated similar bias behavior. Four more 
measures have been applied (8) with similar results. 
The empirical findings follow:-

Magnitude of the Aggregation Bias 

The results obtained in this study show that the use of 
weighted averages in the disaggregate model causes 
significant bias. The values of the biases ranged from 
16 to 40 percent error, depending on the GAL (Figures 
1 and 3). These are much greater biases, compared to 
the 7 percent average bias reported by Koppelman (!). 

This means that the application of the weighted aver­
ages method for aggregate prediction with disaggregate 
models may result in substantial biases, unless special 
procedures for bias reduction are applied. 

The application of more accurate representation of 
the distribution of explanatory variables reduced the 
bias significantly, especially for high GA Ls. This find­
ing agrees with Koppelman's conclusion about the per­
formance of classification procedures. However, the 
residual bias in this study (13-35 percent) is sub­
stantially greater than the 1.4 percent average bias 
reported by Koppelman (!)· 

Flattening of Bias With Higher Levels 
of Aggregation 

Although the bias monotonically increases with aggrega­
tion, it does so at a decreasing rate until it reaches a 
certain point at which the rate almost does not change. 
This characteristic is clearly illustrated by Figures 1 
and 3. 

An interesting phenomenon is that the bias increases 
very rapidly at very low levels of aggregation. Moving 
from the original system of 144 traffic zones (GAL = 1 
EZ / SZ) to a 72-superzone system (GAL= 2 EZ/ SZ) and 
using the weighted averages method, an error jump of 
15.8 percent is made. The next move to the 36-superzone 
system (GAL= 4 EZ/SZ) produces an additional error of 
only 2 .8 percent, which continues to decrease for higher 
levels of aggregation. 

This characteristic has an important practical im­
plication. Aggregation will have to be pursued in many 
analysis situations. Since most of the error is already 
made for low GA Ls, it may be cost effective to go into 
much higher levels of aggregation. The additional small 
error is traded off for large savings in computational 
costs. 



Figure 1. Aggregation bias for different GALs 
and DRMs for alternative 1. 

Figure 2. Bias for two transportation 
alternatives in total area percentage error. 

GAL !! I I I I sz 2 4 8 16 

WEIGHTED AVERAGES 

p total -15.8 -18.6 -21.6 -23.4 

RMSE 4.2 4.8 5.3 5.6 
PAE -19.9 -23.6 -21.2 -29.6 

TEXS BY MARGINAL DISTRIBUTION 
(a) 

p total -14.8 -16.8 -19.2 -20. 7 

RMSE 3.9 4.3 4.7 5.0 
PAE -18.0 -20.7 -23.5 -25.4 

TRNT BY MARGINAL DISTRUBUTION 
(al 

p total -14.6 -16.2 -17. 7 -18.6 

RMSE 3.8 4.2 4.4 4.5 
PAE -17.8 -19.6 -21.4 -22.3 

TEXS AND TRNT BY MARGINAL DISTRIBUTION 
(al 

p total -13.6 -14.6 -15.4 -15.9 

RMSE 3.6 3.8 3.9 3.9 
PAE -15.8 -16.6 -17.5 -18.0 

TEXS AND TRNT EACH 
(al 

BY 3 CLASSES 

p total -14.l -15.4 -16.5 -17.l 

RMSE 3.7 4.0 4.1 4.2 
PAE -16.7 -18.3 -19.S -19.9 

(al All other variables are at their means. 

GAL(a) 2 4 I 8 l 16 

ALTERNATIVE 

WEIGHTED AVERAGES 

1 -15.8 -18.6 -21.6 -23.4 

2 -14. 7 -16.8 -18.8 -20.0 

TEXS BY MARGINAL DISTRIBUTION (bl 

1 -14.8 -16.8 -19.2 -20. 7 

2 -13.7 -15.l -16.5 -17. 3 

TRNT BY MARGINAL DISTRIBUTION (bl 

1 -14.6 -16.2 -17.7 -18.6 

2 -14.0 -15.4 -16.5 -17.0 

TEXS AND TRNT BY MARGINAL DISTRIBUTION (b) 

l -13.6 -14.6 - 15.4 -15 .9 

2 -13.0 -13.7 -14.2 -14.4 

TEXS AND TRNT BY 3 CLASS HISTOGRAM (bl 

1 -14.1 -15.4 -16.5 -17.l 

2 -13.4 -14.4 -15.1 -15.3 

(a) In EZ/SZ 

(b) All other variables are at their means. 
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I 48 I 144 

-26.6 -40.4 

6.3 9.4 

-32.3 -40.4 

-23.2 -34.2 

5.5 e.o 
-27.7 -34.2 

-19.3 -23.l 

4.6 5.4 

-22.2 -23.l 

-16.1 -18.1 

3.9 4.2 

-17.5 -18.l 

-17.9 -21.4 

4.30 5.0 

-20.1 -21.4 

I 48 144 

-26.6 -40.4 

-22.6 -33.9 

-23.2 -34.2 

-19.2 -27.9 

-19.3 -23.l 

-17.9 -21.3 

-16. l -18.l 

-14.8 -16.6 

-17.9 -21.4 

- -
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Figure 3. Aggregation bias for different GALs for alternative 1. 
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Figure 4. Areawide modal split percentage error for 
alternative 1 . 
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CLASSES OF TEXS 

MARGINAL 
DISTRIBUTION 

Usefulness of More Accurate Variable 
Representation 

144 

Figure 4 illustrates the aggregation biases produced by 
transit excess time (TEXS) and travel time (TRNT), as 
they are represented by all possible combinations of pai.r 
classifications under the independence assumption {i.e ., 
representing each by its marginal class histogram as if 
it were independent of the other variable). This figure 
indicates the pattern of diminishing marginal error with 
better representation. For every given representation 
of TRNT, the curve monotonically decreases as the 
accuracy of the representation of TEXS improves, but 
the rate of decrease is slower and levels off as its 
representation approaches the marginal distribution. 
These same results occur for all GALs, for all vari­
ables, and for all DRMs examined. 

As we shift our attention to a pair representation of 
the variables, each with the same number of classes, 
the same behavior of diminishing marginal error con­
tinues to hold. There is a large decrease in error 

Figure 5. Aggregation bias for two transportation 
alternatives. 

pTOTAL 

% 

o 1 -WEIGHTED AVERAGES METHOD FOR 
ALTERNATIVE 1 

<;-TANT- BY MARGINAL DISTRIBUTION 
FOR ALTERNATIVE i 

- 30 >----- - ------------- ---1-1---- --1 

., 

- IQ2L4J....__J8 __ __Jl6'----------4:'::8,---v'-:-1 4~4,--~ 

GAL (EZ / SZ) 

(about 5.5 percent) from the weighted averages method 
to representing TEXS and TRNT with a two-class 
histogram for each; the next step (three-class histogram 
for each) improves the bias only by about 1.5 percent, 
and so on. 

We have assumed that TEXS and TRNT are uncor­
related. Consequently, they were represented each by 
an approximated marginal distribution. The results, 
as expressed by Figure 4, do not contradict this as­
sumption. The figure illustrates that, with every class 
added to represent any of the variables, (a) the overall 
error is reduced and (b) this reduction is made in quite 
a smooth manner, where the rate of reduction for each 
variable is unaffected by the DRM of the other variable . 

As can be seen from Figure 4, the largest portion 
of the total bias that can potentially be corrected by 
representing a single variable with its marginal dis­
tribution is already achieved by a two-class representa­
tion (in our example, about two-thirds of the total error). 
In the case of TEXS, the two-class representation re­
duces the error by about 2 percent compared to 3 per­
cent by marginal distribution, while the corresponding 
figures for TRNT are 3.5 and 5.2 percent. These re­
sults are consistent with those of Koppelman (6), who 
observed the same pattern for his model. As our 
attention shifts to pair representation, an analogous 
phenomenon occurs. 

Aggregation Bias and Transportation 
Alternatives 

The aggregate prediction bias is a function of the trans­
portation alternative under examination. As Figures 2 
and 5 illustrate, the difference between the prediction 
bias of two transportation alternatives is not necessarily 
small, although the same model is used for both, and 
only one variable, TRNT (which expresses the change 
in policy), is changed. 

In our example, the difference between the predic­
tion biases increases with the level of aggregation for 
all DRMs, especially for the weighted averages method, 
and other DRMs that do not represent more accurately 
the variable indicating the change in policy. 



SUMMARY 

The specific conclusions summarizing the findings 
about the behavior of the aggregation bias are 

1. The application of a nonlinear disaggregate de­
mand model to aggregate data may result in sub­
stantially biased predictions; 

2. A large aggregation bias is likely to be intro­
duced even in very low GALs; 

3. As aggregation increases, the bias increases 
monotonically but with a diminishing marginal rate; 

4. A representation of an explanatory variable 
(which is uncorrelated with others), even if only with 
a small number of classes, reduces its error con­
tribution substantially; 

5. The bias reduction is generally greater if a 
number of variables are represented with few classes 
(two or three), than if only one or two of them are 
represented very accurately; 

6. The aggregation bias is a function of the trans­
portation alternative; and 

7. If only some variables are represented more 
accurately, while other variables are represented by 
their means, then a residual aggregation bias of a 
significant magnitude may occur. 

The practical implications of these findings are 

1. Aggregate predictions with disaggregate models 
are not meaningful unless the aggregation biases are 
explicitly considered; 

2. Since the aggregation bias is systematic and 
significant, as in our case study, it is important to 
correct it; 

3. Classification methods applied to correcting the 
bias are not always efficient (in view of the possible 
high residual value of this bias of 13-34 percent, 
sophisticated bias correction methods should be de­
veloped and applied); and 

4. If it is desired to test a variety of transport 
options and if the variable reflecting them is changed 
over a wide range, then it is important to represent 
more accurately the distribution of this variable. 

Indeed, the empirical analysis has focused on ex­
amining a specific model structure in a specific trans­
portation system. However, the characte1·istics of the 
applied PMM demand model appear to be representa­
tive of many other nonlinear demand models in terms 
of the functional form (i.e. s-shaped curve), the num­
ber and nature of explanatory variables, and the value 
of the model's parameters (or elasticities). Similarly, 
the Washington, D.C ., data seem to be representative 
of many urban areas in terms of their variety of socio­
economic characteristics, trip patterns, available 
transportation alternatives, and so on. 

It is, of course, possible that the demand function 
will be of unusual nature (e.g., step function, many 
discontinuities), or that the analysis situation will have 
extreme characteristics (e .g., very high- and very 
low-income people living in the same blocks). But 
such cases are not very common. Assuming that the 
characteristics of our case study are representative of 
many analysis situations, then in view of preliminary 
results (6) and in the absence of any evidence to the 
contrary:- the empirical results obtained here appear 
to indicate the general behavior of the aggregation bias. 
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Planning Model for Transportation 
Corridors 
Antti Talvitie, Department of Civil Engineering, State University of New York 

at Buffalo 

The paper describes a planning model for transportation corridors and 
outlines Its application to one such study. The components of the 
model-demand, level·of·service equilibration, and computation of travel 
impacts-all have new features that make the model system easy and in· 
expensive to operate. Demand is predicted on the basis of a represent&· 
tive sample of households from the study area by using a disaggregate 
logit model; level of service is expressed by means of equations, which 
avoids the pitfalls and costs of lengthy network coding procedures; equi· 
libration is accomplished by solving, in Msence, the demand and level·of· 
service equations. Finally, the consequences of policies can be computed 
by any user-defined market segment. This is made possible by use of a 
representative household sample and the disaggregate demand and level· 
of.service models. 

In this paper a brief description of a planning model for 
transportation corridors is given, and its application to 
one corridor study-the 1-580 corridor in the San Fran­
cisco Bay Area-is outlined. Because the model was 
developed for this particular study, the model and the 
study environment are interwoven. Nevertheless, the 
model system is transferable in its present form to 
other corridors characterized by a strong radial move­
ment. A complete description of the model system, its 
computational efficiency, and the results of the pilot ap­
plication are given elsewhere (1). 

The components of the modeT system are (a) predic­
tion of demand, (b) prediction of transportation system 
level of service, (c) computation of the equilibrium of 
demand and transportation level of service, (d) assess­
ment of the costs and revenues of transportation policy 
alternatives, and (e) processing of information for eval­
uation of the results. Before describing these compo­
nents separately, I shall briefly relate what is new and 
what is omitted from this policy-planning tool. 

The present model is different from the traditional 
transportation analysis models in five ways. First, 
travel forecasting is done by using a representative 
sample of households in the study area. This facilitates 
the use of disaggregate forecasting techniques to calcu­
late the total travel demand as the sum of individual 
travel choices. Second, levels of service (LOS) for both 
access and Unehaul are expressed by means of equations. 
These service models, wllich translate policies and plans 
into LOS, are utilized in a manner that provides disag­
gregate values for all LOS components except peak­
period linehaul time. The peak-period linehaul travel 
time is equilibrated to be equal for all travelers having 
the same origin-destination (O-D) zones. The third new 
feature of the model system is the method of equilibra­
tion. .Equilibration is accomplished, in essence, by 
s olving the demand and service> equations s imultaneous ly. 
Fourth, owing to the use or disaggregate forecasting, 
sample consequences of plans can be computed for any 
user-defined market segment. Fifth and finally, the 
model system is inexpensive and easy to operate and 
apply. 

The model system is still incomplete in important 
ways. The cost side of the transportation system is not 
yet an integral part of the models, even though costs 
were part of the study. Nonwork and auto-ownership 
decisions are not included in the present travel demand 
model. The inclusion of such trips and decisions in the 

model is not conceptually difficult. Nonwork trips can 
be easily added on at small cost. For the particular 
case study for which the model system was developed, 
the inclusion of nonwork trips was not considered nec­
essary. The incorporation of auto-ownership decisions 
is also possible, although more costly, particularly if 
equilibration of such declsions is attempted. Again, for 
a short ru.n, for which the model is now being applied, 
auto ownership is unlikely to be discernibly affected by 
the proposed transportation policies. Thus, the treat­
ment of auto ownership as an exogenous variab1e is jus­
tified. Finally, and most importantly, the feedback re­
lationship among transportation plans and policies and 
location of residences and jobs is assumed not to exist 
in spite of evidence to the contrary. 

Because of these omitted relationships, the assess­
ment of results of the technical analyses on consequences 
of various actions must be done with sensitivity to the 
omissions. 

The components of the model system-demand, ser­
vice, equilibrium, assessment of costs and revenues, 
and processing information for evaluation-are described 
next. These are followed by a brief description of the 
application of the model system. 

PREDICTION OF DEMAND 

Prediction of peak-period travel demand is done in two 
steps. First, on the basis of base yearly information 
about the distribution of households and jobs and of socio­
economic attributes of individuals, a representative 
sample of households is projected for the desired future 
year(s). In planning for the short run this sample can 
be the base-year sample Itself. For the present appli­
cation a special method was developed for projecting a 
representative sample for 1976 from 1970 census in­
formation (2). 

Second, given the 0-D work trip demands of house­
holds and the socioeconomic attributes of households, 
the mode choices are calculated using the familiar logit 
model. This work-trip mode-choice model is discussed 
in detail next. 

The structure of the chosen mode-choice model is 
best shown by means of the tree diagram in Figure 1, 
where the numbers in parentheses are the numbers by 
which modes are identified in this study. 

There are eight primary modes. For many of them 
there are also subchoices regarding access or egress 
modes. For the first three modes (driving alone, ride 
sharing, and local bus) access and egress are always 
assumed to be by walking, and there is no subchoice 
involved. 

For express bus (mode 4), the access and egress 
modes, labeled a and b, are determined independently 
of each other by using an access mode-choice model es­
timated from a San Francisco Bay Area Rapid Transit 
(BART) ridership sample. The access and egress modes 
having the highest probability of choice are assumed 
chosen. This determines how the access and egress at­
tributes are computed for the door-to-door trip. 

For BART (modes 5-8), the access mode is deter­
mined jointly with the linehaul mode, while the egress 
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Figure 1. Tree diagram of the mode-choice model. 

Table 1. Access mode-choice and 
primary mode-choice models. 

Access Mode-Choice Model Primary Mode-Choice Model 

Variable 

Cost divided by wage (min) 
In-vehicle time (min) 
Walking time (min) 
First headway (min) 
Transfer time (min) 
Household income($) 
Autos per driver 
Autos per driver 
Drivers 
Drivers 
Distance to station ~a.a km 
Employment density 
Alternative-specific dummy 
Alternative-specific dummy 
Alternative-specific dummy 
Alternative-specific dummy 

Note: 1 km= 0.62 mile 

Alternative' 

2, 3 
2, 3, 4 
1, 2, 3, 4 
2 
NA' 
3, 4 
3 
4 
3 
4 
1 
NA 
1 
2 
3 
NA 
NA 
NA 
NA 

Coefficient (I-value) 

-0.120 0 (4.2) 
-0.065 2 (2.3) 
-0.065 I (3.6l 
-0.032 2 (1.4) 

0.000 059 (!. 7) 
3.142 (3.2) 
-1.014 (I.I) 
0.680 (2.3) 
0.680 (2.3) 
4.166 (3.5) 

3.473 (2.9) 
4.470 (4.0) 
-0.648 (0. 8) 

Alternative' 

1-8 
1-8 
1-8 
3, 4-8 
3, 4-8 
1.2 
I, 7, 4 (if drove) 
2, 8, 4 (if driven) 
I, 7, 4 (if drove) 
2, 8, 4 (if driven) 
NA 
I 
I 
2 
4 
5 
6 
7 
8 

Coefficient (t-value) 

-0.038 35 (4.3) 
-0.048 48 (2.6) 
-0.047 10 (3 .2) 
-0.023 38 (0.9) 
-0.063 52 (2.9) 
-0.000 054 7 (1.2) 
1.717 (2.6) 
0.680 6 (I. I) 
0.660 2 (2.5) 
o. 728 0 (2.8) 

-0.001 923 (4.1) 
-1.167 (1.2) 
-2.099 (2.3) 
-1.120 (1.4) 
-1.422 (2.9) 
-0.832 4 (1.9) 
-3.581 (4.3) 
-4.065 (5.ll 

• AlternHive numbers are 1 ""walking, 2 =bus, 3 ""drive, and 4 =driven 
bAlternat1ve numbers are given in Figure 1. 
'Variable not used in the model . 

mode from station to work is decided by using the access 
mode-choice model. Again, the maximum egress mode 
is chosen. In addition to access and egress modes, ac­
cess and egress stations also need to be determined for 
express bus and BART modes. This can be done by 
using the access mode-choice model referred to earlier; 
here a shortcut was employed whereby the station near­
est to the individual's home or work was assumed chosen. 

A few words are in order to support such a "mongrel" 
mode-choice model, particularly as it could not be de­
rived from such well-known principles of choice behavior 
as utility maximization because they were not available 
at the time the decision regarding the model structure 
was made. Thus, there was no theoretical pressure to 
choose a sequentially estimated model with the access 
and egress modes characterized by an inclusive price 
variable that is consistent with the logit model (3). 

Second, the choice of egress mode, normally- ignored 
in both demand analysis and forecasting, appears both 
necessary and desirable. However, inclusion of egress 
mode choice as a joint decision with access mode and 
linehaul mode would have doubled the number of BART 
modes and would have left so few observed choices in 
each alternative that estimating alternative-specific 
constants would have been inaccurate. A likely violation 
of the "independence from irrelevant alternatives" (IIA) 
assumption would also have occurred. The same reasons 

can be cited for keeping the express bus as one mode. 
The number of observations did not permit the estimation 
of access mode choice jointly with express bus linehaul 
choice. And, if the prediction of the use of express bus 
access modes was done with the joint structure, the IIA 
property would have been especially aggravating, be­
cause express bus on an exclusive lane is probably very 
similar to BART in its performance. 

In summary, then, the adopted model structure is a 
compromise between conflicting interests. It is believed 
that the chosen structure does not result in the over­
prediction of transit use by the IIA property, that the 
separation of transit demand between BART and express 
bus modes is accomplished satisfactorily, and that the 
equilibration of important system variables is possible 
in a straightforward manner. In short, the mode-choice 
model is tailored to suit the needs of the policy analysis 
not vice versa. It may also be noted that the installation 
of a (recursive) logit model would not be an involved task. 

The specifications of the access mode-choice model 
and of the primary mode-choice model are given in 
Table 1. 

PREDICTION OF DEMAND: MARKETS 
AND METHOD OF AGGREGATION 

In order to predict the modal demand volumes, the study 
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corridor is divided into segments (nine in the present ap­
plication). These segments are mutually exclusive and 
cover the entire length of the corridor and serve as the 
markets on which equilibration is done. Thus, the travel 
demands in each segment are not obtained by link and 

The values of these options define a policy or plan and 
yield the values of the LOS attributes for access and 
linehaul. These LOS values are calculated from the re­
lationships between the attributes and policy actions. 

bus line but by mode and access mode. If necessary, 
auto demand can be divided into arterial and freeway 
volumes; station use by access mode can also be ob­
tained. 

Access Service Models 

The demand of travel on mode m over segment j is 
computed as the summation of individual modal demands 
expanded by the sampling rate e. The disaggregate fore­
casting method expressed mathematically is 

The specific relationships developed for the access 
models are given in Tables 2 and 3. Their detailed de­
velopment is described elsewhere (4). Only few words 
are said here, mostly on their application. 

Application of the access travel time models in policy 
analyses is done in the following way. It is assumed that 
the access and egress travel times on various modes 
have a log-normal distribution whose mean and standard 
deviations are given by the equations. The log-normal 
distribution was chosen mostly on empirical grounds. 

K 

Djm = ~ (1/0) 6f P~ m = I - M, j = I - J 
k•J 

where 

e = sampling rate, 
P~ =probability of individual k choosing mode m 

computed using the mode-choice model in 
Table 1, 

K = sample size, 

(!) 

Given the 0-D zones of workers and the transporta­
tion system attributes of these zones defined in terms 

6~ = fraction of segment j used by individual k on the 
trip (O s 6~ s 1), and 

DJ• = demand (the number of trips) made within or 
through segment j on mode m. 

of the policy options, random draws are made from the 
log-normal distributions of access and egress time com­
ponents for each individual in the sample. In this way 
disaggregate values for access and egress times are ob­
tained for each individual. In order to facilitate appli­
cation, it is assumed that the access times do not re­
quire equilibration. This assumption is tenable for other 
access variables except walking time in a BART parking 
lot. Equilibration of this variable poses no conceptual 
problems. 

TRANSPORTATION LOS MODELS Linehaul Service Models 

Each transportation policy alternative plan is described 
by a set of options. The options considered in the pres­
ent model system are shown below. 

The linehaul travel times, which require equilibration, 
were derived by using an extension of the point bottle­
neck method (5, 6). In order to utilize the method, the 
bottleneck must be identified for each segment. The 
freeway and arterial capacities for a bottleneck are Policy Option 

Bus I ine spacings 
Bus stop spacings 
Bus/BART headways 
Bus/BA RT fares 
Location of BA RT stations 
Residential and employment 
density distributions 

Auto operating cost 

Availability of transit service 
Tolls 
Parking cost 
Highway and street capaciti11s 

(no. of lanes) 
Highway or street capacity 
reserved for priority use 

Signal green time allotted to 
major flow direction 

Application 

Access 
Access, I inehaul 
Access, linehaul 
Access, linehaul 
Access 
Access 

Access, linehaul (per kilometer 
cost) 

Linehaul 
Linehaul (segment j) 
Destination zone 
Linehaul (segment j) 

Linehaul (segment j) 

Linehaul (segment j) 

Table 2. Definitions of explanatory variables. 

Variable Mnemonic Designation 

co Coordinates m~ • mr 

ST Stops bit+ b., 
SP Spacing s. + s, 
L Side l 

HD Headways h. + h, 
HX Headway H, 
BM! Bus kilometers 60 x '' [(1/ s,h,) + (1 / s,h,)) 
SD Standard deviations Vi+ V1 

(of development density) 
HO Hole (rJv,I + (r,/v,) 

DU Dummy 0 
1 

DY Dependent variable 

C~ = 1770(FWJ - PLJ) freeway capacity on nonpriority 
lanes, 

Cf = 1770PLJ freeway capacity on priority lanes, and 
C~ = 1200 x AWJ x GJ arterial capacity, 

where 1770 VPH (vehicles per hour) and 1200 VPHG 
(vehicles per hour green time) are the lane capacities 
for freeways and arterials, respectively, and F'WJ> 
AWJ, and PLJ are the number of lanes in the segment 
bottleneck for freeways, arterials, and priority lanes. 
GJ is the green time split to the major flow direction. 

It is then assumed that travelers distribute them­
selves so as to minimize their travel times (Wardrop's 
first principle); the combined service level of parallel 
capacities C~ and Cj is obtained by summing them hor­
izontally. 

Definition 

Sum of t11e s tations nr major bus li ne coordinates {measured from the cente r of 
the zone), in kilome te r s' 

Sum of bus s top intervals in each direction, in kilometers 
Sum of bus route spacings in each direction, in kilometers 
Side length of zone, in kilometers 
sum or minor bus line headways, in min 
Major bus line headway to x-direction (H, = 0), in min 
Bus kilometers of service within zone (over and above offered by major line H,) 
Sum of the development density standard deviations 

Note, if station is outside the zone, then r, = [m, - (1./2)]/v, and 
r, = [m, - (' / 21]/v, 

Station inside the zone 
Station outside the zone 
Appropriate travel lime or its standard deviation 

a Note that the summation of the variables simply means that the coefficients of the summed variables are constrained to be equal, 
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Table 3. Estimated models for the access travel times on various modes. 

Walking or Driving Time to station and Walking Time to Bus Stop = Bus Ride Time to Station Times Speed = 
Speed= f(variables, a 1l f (variables, a,) !(variables, a 1) 

Mean Standard Error Mean Standard Error Mean Standard Error 

Variable" Coefficient t-Value Coefficient t-Value Coefficient t-Value Coefficient !-Value Coefficient I-Value Coefficient t-Value 

Constant ao -0.271 4.6 -0.0271 1.1 1.004 1.4 0.830 1.6 -0.282 2.9 -0.099 1 2.2 
coa, 0.272 32. 1 0.175 48.4 0.275 7.4 0.147 17.6 
ST a, 5.472 6.0 0.922 1.5 
SP al 1.158 7. 7 0.656 6.3 
La, 0,272 32. l 0.175 48 .4 0.281 10.0 0.188 17.6 
HD a, 0.093 l 9.8 0.047 7 7 ,2 -0.006 20 4. 7 -0.000 554 0.9 
HX ae 0.045 5 2. 7 0.019 0 1.6 -0.002 17 0.8 0.001 64 1.4 
BMia, 0.001 37 1.9 0.003 23 6.3 
SD a, 0.138 11.2 0.0159 3.0 0.150 8.9 0.040 1 5.2 
HO a, 0.293 4. 7 -0.176 6 ,6 
DU a10 0.563 12.6 -0.0949 5.0 0.562 1.6 0.846 3 .4 0.942 8.2 0.0 
F-value 593.8 720.3 41.9 34.0 293.0 257.4 
R' 0.89 0.91 0.49 0.44 0.87 0.83 
CV 0.16 0.15 0.22 0.30 0.23 0.20 
Standard error 0.24 0. 10 2.20 1.53 0.34 0.15 

of estimate 
Mean value of 1.53 0.67 10.l 5.1 1.49 0.79 

DV 

a see Table 2 for mnemonics. 

Figure 2. Single bottleneck versus network travel times. 

time time 

0 c: volum e 0 c volume .. 

The travel times for driving alone on highway modes 
over segment j of length L3 for any given volume B3 are 
given by 

xii = I !Tl' + min (Tt - Tf ); max(O; B~ /C~ - I) P/2] 

+ max[O;(B~ + Bf)/Ci - I] P/21 x 60 (2) 

where B~, Bj, and B~ are peak-hour auto-equivalent de­
mands (from the demand models) on nonpriority and 
priority freeway lanes and arterials, Tj and T~ are 
their free speed travel times in hours, and Pis the 
length of the peak period in hours. 

Thus for a nonpriority carpool 

Xj2 = Xjt +constant penalty (assumed 5.0 min) 

while for a priority carpool it is 

Xj2 = ! Tf +min [(TA -T" ): max <0: BP /CP - I J P/2] I 
I J I J J 

x 60 +penalty (5.0 min) 

and for local bus 

XjJ = x~ +delays due to acceleration-deceleration 

+delays due to boarding and alighting passengers 

and for express bus 

XJ4 = Xj2 +delays due to acceleration-deceleration 

+delays due to boarding and alighting passengers 

(3) 

(4) 

(5) 

(6) 

a 

It is instructive to contrast the above point bottleneck 
formulation of segment travel time to the normal network 
approach. 

Consider a segment that consists of two roads in se­
quence with travel time curves x. and xb. Now the 
single bottleneck approach identifies the restraining 
capacity, which is shown to be on road b (Figure 2) and 
assumes that there is no capacity restraint on road a. 
Hence, road a is characterized by a constant free speed 
travel time, T., and the segment travel time curve is 
derived by a vertical addition of T. and xb. This can be 
compared to vertically adding x. and xb, which is done 
by the network algorithms. It can be seen that in the 
range of travel volumes from zero to c., the single and 
multiple bottleneck formulations give identical travel 
times. Beyond c. the travel times are different, the 
multiple bottleneck travel time being larger than the 
single bottleneck travel time. It ·is not clear which is 
correct. If the two consecutive road links are inde­
pendent, as in the case of a low-volume arterial street 
governed with unsynchronized traffic signals, then the 
multiple bottleneck formulation (every signal is a bottle­
neck) is approximately correct. However, if the con­
secutive links are not independent, as in the case of 
freeways and most arterials, then the single bottleneck 
version is approximately correct. 

The single bottleneck formulation is very attractive 
because of its simplicity and small data requirements. 
Its success will depend in large measure on whether the 
delays in a segment of a corridor are due to congestion 
and whether the corridor segments are independent. Be­
cause the segments here are several kilometers long and 
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Figure 3. 1-580 corridor. 

CA·Z~ 

the delays during the peak are mostly due to congestion, 
the assumption leading to a point bottleneck model are 
likely to be satisfied. 

May and Keller (5) have used the point bottleneck 
model on a single freeway segment several kilometers 
long with apparent success. The prevalence of signals 
and stop signs and other disturbances on arterials 
suggests, however, that the travel time and volume 
function ought to be estimated statistically using col­
lected data. 

In summary, once the plan or policy options have been 
specified, the equations in Table 3 will yield specific 
values for access attributes of various modes for each 
household (individual) in the sample and will define the 
parameters of the linehaul time equations. The simul­
taneous solution to the demand equations and to the line­
haul travel time equations is the sought equilibrium. 
The method employed in equilibrating these equations is 
discussed elsewhere (6). Suffice it to note here that the 
equilibration procedure [utilizing a fixed-point algorithm 
developed by Scarf (7)] was found to be both efficient and 
instructive. -

EVALUATION MEASURES 

The evaluation measures pertaining to the technical 
analyses provide support for subjective political decision 
making and allow the consideration of different conse­
quences that alternative transport policies have on dif­
ferent groups in the transportation corridor. Accord­
ingly, the model system permits any grouping of people 
(market segments) in the representative sample. A 
segmentation that divides the population into nine groups 
was chosen in the present study. These nine market seg­
ments constitute th.ree income groups-low, i;nedium, and 
high-and three work trip groups-suburb to suburb, 
suburb to central business district (CBD), and urban 
to urban. Various summary cross-comparison tables 
between market segments and alternative plans are also 
possible. 

The evaluation measures calculated for the market 
segments include: the values of the trip time and cost 
components and their standard deviations, mode and 
access-mode use, trip distances, agency costs by mode 
(not yet integrated in the model), revenues by mode and 
market segment, and passenger- and vehicle-kilometers 
of travel. 

SAMPLE APPLICATION IN THE 
1-580 CORRIDOR 

The model system is being applied to the 1-580 corridor 

study in the San Francisco Bay Area. The study is still 
in progress, and only an indication of the type of results 
that can be obtained can be given. In order to gain an 
appreciation of the great complexity of the study, a brief 
description of the area is given. 

The geographic scope of the study includes areas for 
transbay and corridor transit ridership and automobile 
use along I-580 from Vasco Road in Dublin over the San 
Francisco-Oakland Bay Bridge to the San Francisco pen­
insula. The corridor is 72 km (45 miles) long, and about 
two million households occupy the immediate neighbor­
hood of the transportation corridor (see Figure 3). 

The direct cause of the present study was the approval 
of a major widening of I-580 in Alameda County in De­
cember 1974. This approval was conditioned by the 
Metropolitan Transportation Commission (MTC) to in­
clude facilities for preferential bus and carpool treat­
ment in the form of reserved lanes and to study the 
feasibility of extending exclusive bus and carpool opera­
tions throughout the length of I-580 from Vasco Road to 
the San Francisco-Oakland Bay Bridge. 

A sample of results is given in Figure 4. By examin­
ing Figure 4, it is seen first that, proportionally, BART 
riders are well-to-do people. For all plans, over 10 
percent of high-income travelers use BART, while only 
5 percent or less of low-income people use BART. 
Across the income groups, only 8-10 percent of the 
BART users are low-income travelers (<$10 000/year); 
over 55-60 percent of the users have a high income 
(>$20 000/year); the remainder are middle-income 
travelers. Carpooling appears to be the most popular 
mode among low-income people; 40 percent of them 
share rides. The corresponding figure for high-income 
people is 20 percent or slightly less. 

Figure 4 also contains a surprise: modal shares are 
not affected much by traffic-engineering measures or 
transit improvements. Increases in fares (plans I-K) 
seem to have the greatest impact in aggregate shares. 
This surprise becomes understandable when it is noted 
that the plots of Figure 4 pertain to all travelers affected 
by the corridor transportation policies, including the 
Bay Bridge, not only those living or working within the 
corridor area. 

It may be noted that the provision of a multiple oc­
cupancy vehicle priority lane on I-580 (plan L) reduces 
the driving alone volume and BART ridership by 2 and 
5 percent respectively. Shared-ride volume has in­
creased by 2. 5 percent and bus volume by 7 percent. 
The introduction of express bus service in extended pri­
ority lane (plan B) further reduces driving alone and 
BART volumes, with a slight increase (1 percent) also 
taking place in the shared-ride mode. There is a sub­
stantial increase (27 percent) in bus volumes. 

The initiation of a full BART service with 3-min head­
ways and increased feeder bus service, in addition to the 
express bus service in a priority lane (plan F) results 
in a 10 percent drop in driving alone and a 5 percent de­
crease in ride sharing. Buses have increased their 
ridership, and BART experienced a 15 percent increase 
in ridership. 

In general it appears that the introduction of expanded 
bus service with current fare structure reduces BART 
ridership unless BART headways are substantially re­
duced and feeder service is improved. 

Results pertaining to the full cost plan (plans J and 
K) are quite interesting. The full cost includes only the 
monetary costs of supplying the service (but no user 
time costs) and the replacement costs of facilities and 
vehicles. An exception was made in the case of BART, 
where the historical costs of construction and land ac­
quisition were used in place of the replacement costs. 
This procedure is incorrect, but the replacement costs 
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of BART facilities were overwhelmingly large. The 
feeling was that sunk costs are sunk, but that the bounds 
and the costs of continued service must be paid for. A 
flat fare was used for local bus by using average travel 
distance; all other fares were based on distance traveled. 

Not surprisingly, the imposition of full cost causes a 
substantial reduction in driving alone (28 percent) and 
BART use (39 percent). Shared-ride and bus modes, 
operating on exclusive lanes whenever possible, ex­
perienced substantial increases (46 and 56 percent re­
spectively). As a consequence of full cost pricing, the 
average trip cost for low-income families would go up 
85 percent (from $0. 73 to $1.35) and 105 percent for 
high-income families (from $1.25 to $2.57). 

Expressed as a function of income, the yearly work 
trip currently takes 5.6 percent of the low income and 
2.0 percent of the high income. After imposing the full 
cost pricing, the corresponding percentages are 10.4 
and 4.0. So, even though the full costs hit the higher in­
come people harder, their proportional take from the 
low income is still substantially more than that from the 
high income. These figures do ignore the fact that, with 
exceptions, low-income people drive less expensive 
cars, keep the cars longer, and often do their own main­
tenance and servicing. Thus the car cost for low-income 
people is likely to be an overestimate. 

The picture changes somewhat when only the transit 
fares are considered. Currently, the average transit 
fare is $0.50 for the low-income and $0.80 for the high­
income users. After imposing the full costs, the fare 
for low-income users increases to $0. 55 (10 percent), 
and the fare for the high-income users goes to $1. 60 
(100 percent). It can be inferred from these numbers 
that the current fare structure makes the low-income 
users pay more nearly for the actual costs of transpor­
tation than the high-income users do. A generalization 
of this is that the flat fare systems or distance-rebated 
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fares are regressive [for other cross-subsidies see 
Hoachlander (8)]. 

The impacfS on other LOS attributes besides user 
cost were also interesting. In brief, the provision of a 
priority lane did worsen the service levels on the seg­
ment from Livermore to Castro Valley. The provision 
of a priority lane from Castro Valley to the Bay Bridge 
increased the speeds of the high-occupancy vehicles, 
while the speeds of the nonpriority vehicles either re­
mained unchanged or increased. Interestingly, the full 
cost plans J and K provide the highest speeds, with plan 
K being marginally better. In general, the priority­
lane plans conferred benefits to higher-income groups 
and to the suburbanites; the urban dwellers and the low­
income people (who are not the same) did not benefit 
from the provision of the priority lane. 

The beneficiaries of the transit improvements studied 
here were also the suburbanites, especially the high­
income commuters. Urban dwellers and the low-income 
people were largely left with their present levels of 
service. An exception to this is plan F, which does im­
prove the access components across all the income 
groups; even with the drastic changes' of plan F the urban 
dwellers gain only in reduced wait times. The full cost 
plans J and K also improve both the linehaul and wait 
time components rather evenly across the market seg­
ment, but the walking times to transit remain unchanged. 

In sum, the currently popular policies seem to confer 
benefits mostly to the well-to-do suburbanites. These 
policies, coupled with current fare structures, also 
provide heavy subsidies to the well-to-do suburbanites. 
It is likely that if the strategies are pursued without 
remedial actions in fares, they will further encourage 
urban sprawl and, unfortunately, increase energy con­
sumption. 

This brief examination of the results may be concluded 
by noting one interesting item not evident from the tables 
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presented here. This most interesting, intuitively obvi­
ous result is the stability of the Bay Bddge travel volume. 
With the exception of plans J and K {full BART service 
and full costs), the work·trip volume crossing the bridge 
is only 1300 less than now. Interestingly, the 1300 re­
duction in bridge volume can be expected as a result of 
offering full BART service with 3-min headways {current 
headways are 12 min) and doubling the feeder bus service 
to BART, in addition to express bus service in an ex­
clusive lane. 

The reason for the insensitivity of the Bay Bridge vol­
wne is that, while travelers within the corridor do shift 
to transit in response to protransit policies, those not 
originating from the cor,ridor but traveling over the Bay 
Bridge are switching to cars. Thus, if Bay Bridge con­
gestion is a social ill that needs to be eliminated, one 
effective way to do it is by charging more for tl'avel. In 
particular, an eminently sensible charge of full costs 
(which does not include time costs) appears to come close 
to attaining the noncongestion objective. 

CONCLUSIONS 

Experience with the corridor model system indicates 
that it is flexible, fast, and inexpensive to operate. The 
ten or so plans were run in one working week at a cost 
of $ 35 per run. These attributes of the model system 
owe much to the way in which policy statements are 
translated into LOS variables (equations rather than 
networks) and the new way of equilibrating service and 
demand. The disaggregate forecasting method employed 
also proved to be quite useful ; it enabled the analysis of 
equity issues in transpo1·tation service and costs. 

In spite of the many innovations and strengths of the 
model system, there are also some weak points. The 
first element in need of improvement is the work·trip 
destination choice model. There is some evidence, too 
lengthy to detail here, that the linear probability model 
utilized in that task is not a very good predictor. How­
ever, it may not be any worse a predictor than any cur­
rent work-trip distribution model; research work on that 
topic is recommended. 

The second element requiring improvement consists 
of the automobile travel time equations. Tbe s ingle 
bottleneck concept together with the Wardrop aggregation 
of parallel links is too insensitive to changes in highway 
capacity. Many specific items require research in order 
to improve this state of affairs. For example, more re­
search is needed in route-choice behavior between ar­
terials and expressways. The same holds true for de­
veloping equations for travel time that have more ex­
planatory variables than just volume and capacity. 

Improvements in the two above-mentioned items re­
quire only minor changes in the workings of the model 
system itself, but the development of specific models 
could require several years. 

The third element that needs attention is the estab­
lishment of relationships among location of residence, 

places of work, and transportation LOS. This is a very 
large and complex task, where empirical knowledge, to 
say nothing of theories and models, is sorely needed. 
Nonetheless, it must rank high in its importance and de­
serves careful investigation by the planning agencies and 
others involved in planning tasks. 
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This paper presents a framework for discussing many transportation de­
mand and supply-demand equilibrium problems. It regards the sequence 
of choices an individual faces when he or she is about to make a travel 
(or not·to·travel) decision as a case choice of a route on an abstract 
network (hypernetwork). Hypernetworks are intimately related to the 
multinomial probit (MNP) model of travel choice. For instance, the mul­
tivariate normal distribution underlying this model enables one to rep­
resent processes of travel choice as route choices on networks and to use 
the networks as visual aids in conceptualizing the specification of covari· 
ance matrices for MNP choice models. Hypernetworks enable us to carry 
out supply-demand equilibrium analyses with disaggregate demand mod­
els on a mathematically consistent basis (heuristic equilibration tech­
niques based on feedback loops do not necessarily converge, as shown 
with a simple counterexample). This greatly enhances the potential of 
probabilistic discrete-choice disaggregate demand models, since it is now 
possible to avoid their mispredictions when applied to congested trans­
portation systems. 

This paper departs from the main line of thought in pre­
vious transportation planning research. It suggests that 
most transportation forecasting problems can be re­
garded as network problems and that by doing so it is 
possible to address several outstanding and seemingly 
unrelated problems in a unified way. Although the urban 
passenger transportation planning process is used 
throughout this paper as an example, it should be noted 
that the concepts introduced here are applicable to 
small-scale problems and sketch-planning issues as 
well. In fact, if one wanted to adapt our approach to 
the very large models that are sometimes used in urban 
transportation planning, further research would be 
needed. A discussion and literature review of existing 
problems with the above-mentioned transportation plan­
ning process follows. 

The most noticeable and widely used approach to 
transportation equilibrium analysis is the Urban Mass 
Transportation Administration's (UMTA's) Urban 
Transportation Planning System (UTPS) (1, 2, 3). The 
UTPS is a battery of computer programs aesigned to 
perform the above analyses, which include trip gener­
ation, trip distribution, modal split, and traffic as­
signment. Each phase in the process has a methodol­
ogy of its own that has been extensively discussed in 
the literature (4, 5, 6, 7, 8, 9, 10, 11). 

There are other eomputer packages that attempt to 
perform equilibrium analysis (such as Dodotrans (12), 
which, unlike the early versions of the UTPS, is an 
explicit equilibration package] and are based on sim­
ilar ideas. A review of many of these packages can be 
found in a report by Peat, Marwick, Mitchell (13). 

Although these transportation planning tools are 
commonly accepted among transportation planners, they 
have received severe criticism in the literature in the 
last several years. 

Some of the criticism is general and points out the 
deficiencies of all large-scale models (14, 15, 16, 17, 18). 
Some of it is directed at specific modelsused in the -
planning process (19, 20, 21, 22, 23, 24). Yet others have 
based their criticism On a morefundamental issue that 
applies to small-scale problems as well-the behavioral 
assumptions that underlie this process (25, 26). The 

latter line of criticism led to the so-called disaggregate 
behavioral demand models (27, 28), which, by using in­
dividuals or households as the study units, attempted to 
capture choice-makers' behavior. Some of these models 
can be interpreted according to the economic principle 
of utility maximization, giving them a flavor of causality 
and behavioral realism. 

Since the use of disaggregate data is more efficient­
disaggregate models need less data than aggregate 
models to get a specific confidence level on the esti­
mated coefficients (29)-and because the estimated co­
efficients are potentially independent of the distribution 
of the explanatory variables, those models have gained 
popularity among planners and are used increasingly in 
practice. Examples of applications and further develop­
ments of disaggregate demand models can be found 
elsewhere (30, 31, 32, 33, 34, 35). 

These models, however, raised a new set of unre­
solved issues. The first of those difficulties is the ag­
gregation problem (36, 37, 38, 39), i.e., how to use dis­
aggregate demand models to predict the behavior of the 
population of choice makers. The second difficulty is 
in incorporating these models into a supply-demand 
equilibrium framework. The third difficulty is that most 
of the disaggregate modeling and estimation effort has 
been with models such as logit (40, 41) that involve as­
sumptions that are sometimes unrealistic and often fail 
to capture reasonable user behavior. Obvious examples 
are the blue bus-red bus problem (42) , the case of 
nested alternatives (43) , and route-choice problems (44). 

In addition, some Of the issues that arise from the -
heuristic nature of the transportation planning process 
still remain, as happens for instance with its failure to 
naturally represent the intimate interdependencies among 
the various phases that comprise it, including the perfor­
mance characteristics of the system (the "supplY'' side). 

This is a problem with the traditional (sequential) 
planning process because, if, for example, modal split 
is performed before trip distribution, transit trips might 
be allocated to zone pairs not used by transit. If modal 
split is performed after trip distribution, too many trips 
might be allocated from, say, an origin with low car 
ownership to a destination connected to it by highway 
only. Although sequential models can avoid this prob­
lem by the use of accessibility measures (45, 46, 47, 48), 
the nw11erical values of these accessibilitymeasures 
are not usually known a priori, which creates some 
problems. For instance, in congested systems, travel 
time (an explanatory variable appearing in trip genera­
tion, trip distribution, and modal split models) can only 
be determined after the traffic assignment step. 

In order to circumvent such problems it is suggested 
that the model system be iterated several times in or-
der to achieve a state of equilibrium, which, for the 
case of probabilistic and discrete choice demand models, 
has not been formally defined. However, due to the high 
computation costs involved, this is seldom done in practice. 

Last, there are some aggregation problems that re-
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main even if aggregate models are used. For instance, 
although market segmentation might enhance predictions 
(49, 50) and is commonly used in practice (trip genera­
tion and auto ownership studies are typical), no firm 
guidelines have been given in the literatu.re as to the 
necessary extent of the segmentation. Similarly, in the 
traffic assignment step, no definite criteria exist on how 
to represent the network, i.e., how to locate the zone 
centroids, or on how to decide on the number and select 
the characteristics of dwnmy centroid connectors. 

In swnmary, the following issues can be identified 
as those 

l. Concerni.ng disaggregate choice models in gen­
eral: (a) the aggregation problem (including market 
segmentation), (b) incorporation in equilibrium analysis, 
and (c) alternatives to logit; 

2. Concerning the traditional process in general: 
(a) equilibrium formulation and equilibration procedure, 
(b) consistency throughout the steps, and (c) network 
representation. 

The objective of this research is to provide a frame­
work within which some of these issues can be resolved. 
Of course, some of the problems have already been 
solved; numerical approaches to p1·obi.t (51, 52) and 
generalized logit (53)-both reasonable aifernatives to 
logit- have alreadybeen developed. Some of them, such 
as the aggregation problem (39), are partially solved, 
and yet some of them, s uch as efficient equilibration ap­
proaches with probabilistic choice models, remain un­
solved. 

This paper uses some of these results and some new 
ideas to formulate a solution (at least partial) to the 
above-mentioned problems. Mathematical formulations 
and algorithmic steps are not within the scope of this 
paper, which concentrates on the concepts and the ap­
plication. A comprehensive treatment of our approach 
is included in Sheffi (54). 

Several equilibrium models have been recently de­
veloped. The first ones dealt (rigorously) with route 
choice and network equilibrium only, by casting the 
problem as a mathematical program (55, 56) . Ruiter 
and Ben-Akiva (57) developed a complete equilibrium­
forecasting system incorporating an integrated set of 
production-oriented disaggregate demand models, and 
a conceptually similar model system is described by 
Jacobson (58). Neither of the last two methods, how­
ever, is guaranteed to produce the desired results in 
terms of convergence to a defined equilibrium. A for­
mal solution to the equilibration problem over a trans­
portation corridor, using disaggregate demand models, 
was obtained by Talvitie and Hasan (59). Theil' ap­
proach consists of formulating the equilibration as a 
fixed-point problem and solving it with the algorithm 
proposed by Scarf (60). 

The approach taken in this research is to view and 
formulate all choice processes as route-choice pro­
cesses on abstract networks, which we call hypernet­
works and to us e an efficient procedure to analyze 
stochastic hypernetwork equilibrium problems. Al­
though a numerical e."ample is provided at the encl, the 
emphasis of this paper is on presenting a concept rather 
than a new technique . 

The following section, which discusses the idea of 
hypernetworks and relates it to e."isting approaches to 
forecasting, is followed by a section that shows how hy­
pernetworks are t' elated to MNP models and how they 
can be used to alleviate some of the above p1·oblems. 
Next the concept of ectuilibrium on a hypernetwork is 
defined and the possible failure of heuristic equilibrium 
approaches to converge is illustrated. The results ob-

tained with a mathematical equilibration procedure that 
has been recently developed by the authors are also 
presented. 

HYPER NETWORKS 

We assume that the various alternatives open to trav­
elers in choice situations (mode, route, destination, 
etc.) can be viewed as paths in a hypothetical network 
(a hypernetwork) made up of links characterized by dis­
utilities. We also assume that, as in route-choice prob­
lems (44), people select the shortest route, that is, the 
alternative with the lowest dlsutility. This is consistent 
with the principle of utility maximization of choice 
theory. 

Assume for instance that we are concerned with a 
modal split-route choice problem for one single origin­
destination pair, and to further simplify matters as­
sume that there are one transit mode and two automobile 
routes. Figure l represents a possible configuration of 
the hypernetwork for such a problem. 

In the figure there are three hyperpaths corresponding 
to the three alternatives. Links OA and OB represent 
the inherent disutility of the two modes, fare and com­
fort, and links AD and BD represent the travel time 
characteristics of the three alternatives. Choice of a 
car implies that the shortest route in the hypernetwork 
consists of the car link and a route through the street 
network. 

In the most general case, link disutilities may be flow 
dependent (e.g., travel time under congested conditions), 
fixed (e.g., fare on a transit line), and/or multiattributed 
if it is so desired. It should be noted at this point, how­
ever, that the algorithm described in the sequet requires 
the modeling of links that exhibit flow-dependent utility 
as single attributed (i.e., as multiattdbuted with fixed 
weights on the attributes) . Disutilities are also assumed 
to be additive so that the disutility of an alternative (hy­
perpath) equals the sum of the disutilities of the links 
that make it up. Both of these assumptions are dis­
cussed by Sheffi (54). 

By modifying the structure of a hypernetwork, one 
can affect the probabilistic structure of the correspond­
ing choice problem. This will be seen in the next sec­
tion as we show how the probability of choice is affected 
by network topology. For instance, Figure 2 displays 
an alternative representation of the problem i.n Figure 1 
that, as will be seen later, would have approximately the 
independence of the irxelevant alternative (IlA) property. 

Figure 3 demonstrates a more complicated choice 
problem that can be represented by a hypernetwork. It 
di.splays a hypernetwo1·k for a combined modal split, 
route, and destination choice problem, where a fraction 
of the population does not have access to the car mode. 
The links of this network are of two types. The ones 
belonging to the street network are real links and are 
associated with travel time and travel cost. All other 
links are dummy links representing different dimensions 
of the problem. For instance, the links leading from the 
destinations tu D represent the unattractiveness of the 
specific destinations and the links labeled car and tran­
sit represent the unattractiveness of the respective 
modes. Note that O, does not have access to the street 
network in order to represent market segments that do 
not own an automobile. The number of hyperpaths in 
this network is larger than in th.e preceding e.xample; 
as a matter of fact, in real problems this nwnber can 
be so large as to preclude enumeration of all possible 
hyperpaths. 

These examples were intended to illustrate that it is 
possible to construct a hypernetwork for many choice 
problems and that different market segments can be 



Figure 1. Simple hypernetwork example for mode and route choice. 
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Figure 2. Independent utility representation of the hypernetwork 
of Figure 1. 

Figure 3. Hypernetwork example for mode, route, and destination 
choice with two market segments. 
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Before launching a more in-depth exploration of hy­
pernetwork properties and applications, it is worthwhile 
to note that the idea of hypernetworks has been latent in 
the literature for some time. As early as 1972 at the 
Williamsburg Conference, Wilson (61) noted that 

It is tempting as computer capacity expands, to think of assigning on 
multimodal networks, in effect, possibly directly to routes on an abstract 
modal basis . ... This is another example of a class of mathematical ag­
gregation problems. 

Manheim (62) formulated the transportation planning pro­
cess as a network, using Dial's assignment method (63) 
to predict flow on the hypernetwork. However, since 
Dial's assignment algorithm is based on a logit formula­
tion, it suffers from the IIA property, which, in route­
choice problems, can be shown to produce unacceptable 
results (44, 64, 6 5, 66). 

Dafermossuggested an integrated equilibrium fl.ow 
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model for transportation planning (67), based again on 
visualizing the whole transportation planning process as 
a solution to a network assignment problem. In her 
words, 

We adopt the natural behavioral assumption that each user chooses his 
origin, his destination, as well as his path as to minimize his "travel cost". 
Of course, "travel cost" should be interpreted in a very liberal fashion. 
In reality additional factors such as "attractiveness" of the origins (resi· 
dential areas) and destinations (places of work) have to be taken into ac­
count but this can be incorporated into the model as "travel cost" by a 
straight-forward modification of the network .... Interestingly, we estab­
lish a mathematical equivalency which reduces integrated transportation 
problems for a network into assignment problems for a modified network. 

Dafermos' model, although very similar to the hyper­
network concept, is not quite as general, because she 
was working exclusively with deterministic travel costs 
over the modified network. This explicitly excludes 
many demand models from the realm of application of 
her model, since, as it is assumed with deterministic 
equilibrium traffic assignment methods, users are iden­
tical (this excludes disaggregate demand models), fully 
informed (which excludes logit, probit, and other sto­
chastic models) individuals making consistently perfect 
decisions. 

The well-known elastic demand traffic assignment 
problem formulated by Beckmann, McGuire, and Winsten 
(68) can be solved with existing fixed demand traffic as­
signment problems on an expanded network (69). Such 
an expanded network can be viewed as a hypernetwork 
since it has dummy links going from each origin to each 
destination in order to represent the no-travel alterna­
tive. 

It is also worth noting that traditional trip distribution 
models such as the entropy model can be cast as hyper­
network problems; Golob and Beckmann (70) showed the 
equivalence of entropy maximization and utility maximi­
zation over a hypernetwork similar to the one in Figure 
3. Others (71, 72, 73, 74) contain mathematical program­
ming formulations Of the combined distribution­
assignment problem that can also be regarded as hyper­
network problems. 

The concept of a hypernetwork thus seems reasonable 
and flexible enough to be applied to many transportation 
forecasting problems. We shall now proceed to an ana­
lysis of the hyperpath choice process. 

HYPERPATH CHOICE AND 
MULTINOMIAL PROBIT 

In this section we consider the choice process to be hy­
perpath when the attributes characterizing the disutili­
ties of each link are given. We thus concentrate on the 
choice process and leave the more complex network 
equilibration issues to the next section. 

The behavioral basis of the approach presented in 
this section is the economic concept of random utility 
(75, 76, 77, 78, 79). Early applications of the concept of 
random utility were suggested by McFadden (80) and 
Kolm, Manshi, anti Mundel (81). -

It has long been recognized from empirical studies 
that highway route choice is not a deterministic proposi­
tion, as seen, for instance, in the early traffic diver­
sion studies (82, 83, 84). This gave rise to traffic as­
signment methodsthaTcto not allocate all the traffic to 
the shortest route (63, 85, 86, 87). These methods, 
however, are deficient \44,64,65, 66, 88), and only 
recently has a general theoryofroute choice been de­
veloped (44). 

OtherS[44) have presented an analytically consistent 
method thataccounts successfully for the topology of the 
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networks. It is based on a probit model of route choice 
and it admits a straightforward generalization for hyper­
networks with multiattributed link disutilities. This is 
done below. 

Assume a general hypernetwork composed of links 
representing various dimensions of travel choice. Every 
link, i, in the network is associated with some disutility, 
u; (we use primes for variables associated with links): 

(I) 

where v; is the measured (known) disutility, and si' is 
a random error term distributed across the population. 
The vector of error terms, s: is assumed to be multi­
variate normally (MVN) distributed with zero mean and 
a known variance-covariance matrix :i:::: Thus, using 
vector notation, u".... MVN (v: !: ' ) . 

As an aside, note that the structure of the variance­
covariance matrix t' can only be decided on reasonable­
ness grounds, as is the case with any specification de­
cision. For instance, corr (E,:; s~) can be set equal to 
zero if one can reasonably assume that links i and j are 
sufficiently unrelated as to be perceived independently 
by the decision maker. As argued by Daganzo and Sheffi. 
(44), disutilities of links belonging to the street network 
can be considered independent. If this is not the case, 
there may be a representation of the problem that will 
admit independent link error te.rms. If the error terms 
on links OA' and OA" in Figure 2 are considered inde­
pendent, the IlA property arises; however, the repre­
sentation in Figure 1 overcomes this. Finding such a 
representation is equivalent to finding a reasonable spe­
cification of the problem. 

The disutility minimization approach yields a multi­
nomial probit (MNP) model of hyperpath choice, since 
the disutilities of hyperpaths are also MVN distributed. 
This can be seen by considering the hypernetwork link­
route incidence matrix, t:. = 6n, where 61k = 1, if link i 
belongs to hyperpath k, or 0, if otherwise. Letting U 
denote the vector of perceived hyperpath disutilities 
(the disutility vector of our choice model), we see that 

u = u· x ll (2) 

and U-MVN (V, t) where V = V' x t:. and!:= t:.r x !:' x t:. 
(T denotes the transportation operation). 

Equation 2 implies that the covariance of two alter­
natives is heavily dictated by the amount of overlap of 
their corresponding hyperpaths. If!:' is diagonal, the 
covariance of two hyperpaths is given by the sum of the 
variances of the common links. Consequently, the topol­
ogy of the hypernetworks bears directly on the probabi­
listic structure of the corresponding choice model. 

Heterogeneous populations are well handled by hy­
pernetworks, for, if we assume that the vector of at­
tributes entering the disutility functions is MVN dis­
tributed across the population and that t' is fixed, the 
choice process also follows an MNP law at the aggre­
gated level (39). Non-normally distributed attributes 
can be hanctled by market segmentation (hypernetwork 
representation), as was done in Figure 3. 

Of course, MNP models can be applied to choice 
problems without hypernetworks, but the graphical aid 
provided by visualizing the degree to which hyperpaths 
overlap helps to conceptualize reasonable parameters 
of the matrix !:, especially for problems involving more 
than one stage of the traditional transportation planning 
process. Note, for instance, that the logit model arises 
from a random utility model with independent error terms 
and that it therefore corresponds approximately to hy­
pernetworks with nonoverlapping routes. It should also 
be noted that, although many choice problems can be 

cast as hypernetwork problems, the use of MNP codes 
is basic to the analysis of general hypernetworks. 

Hypernetworks thus present the same advantages and 
disadvantages of MNP models. Namely, MNP models 
and hypernetworks solve, or at least alleviate, the mar­
ket segmentation problem, since an MNP model of in­
dividual choice is also MNP for U.e aggregate predictions 
(39). The step sequence issue (e.g., should mode choice 
be predicted before destination choice, after it, or si­
multaneously with it), posed by Ben-Akiva (89), who 
demonstrated the feasibility of a simultaneous approach, 
has already been addressed in this paper. Our approach 
is equivalent to a simultaneous MNP choice model whose 
covariance matrix can be studied visually. 

Although hypernetworks enable us to visualize choice 
problems in a unified way and can help select appropri­
ate probabilistic structures for choice models, their 
main advantage is that they will enable us to perform 
supply-demand equilibrium analysis on a mathemati­
cally consistent basis with disaggregate demand models. 
This subject is covered in the next section. 

EQUILIBRIUM 

Although most of the work related to transportation equi­
librium has been done in the context of traffic assign­
ment, equilibrium analyses should not be restricted to 
route-choice situations, especially since in problems 
dealing with congested transportation facilities the 
supply considerations can be a more important deter­
minant of use than the demand function itself. For in­
stance, what good does it do to have a sophisticated de­
mand model that predicts a transit park-ride ridership 
larger than what the access parking lots can accom­
modate? 

Although the equilibrium problem has been addressed 
in the literature in connection with the traditional plan­
ning process (and as was mentioned earlier there is 
a rich literature dealing with heuristic iterative schemes 
involving feedback loops and accessibility measures), 
there is no general definition of equilibrium in the trans­
portation market when the demand side is modeled as a 
probabilistic proposition. Because of this, the following 
definition is proposed. The equilibrium criterion is the 
condition such that "at equilibrium no user perceives 
that he or she can decrease his or her disutility by uni­
laterally changing alternatives." 

This is a generalization of the stochastic user equili­
bration principle (44) of traffic assignment, which, in 
turn, is a generalization of Wardrop' s rule (90). 

The equilibrium solution is obtained by thesolution 
of two systems of equations representing the demand 
and supply relationships. For a hypernetwork with only 
one origin, demand is 

(3) 

wher e 

Xk = number of users selecting alternative k, 
!:XJ = known fixed quantity (the population size), and 
'l'jUJ = disutility of travel alternative j as perceived 

by an individual chosen at random from the 
population. 

This equation is, of course, merely a statement of the 
weak law of large numbers. It states that the (predicted) 
market share of each alternative equals the choice prob­
ability for a randomly sampled choice maker, which is 
determined by the distribution function of the measured 



Figure 4. Binary hypernetwork example. 
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disutility across a population. 
If the latter distribution is approximately multivari­

ate normal [Bouthelier and Daganzo (39) have identified 
some conditions for this), the distribution function is 
totally characterized by a vector of means V and a co­
variance matrix 1;, and in the general case one has 
the supply equations 

V = V(X); ~ = ~(X) (4) 

This equation states that the vector of mean disutilities 
and the corresponding covariance matrix are functions 
of the use on each one of the alternatives; i.e., the total 
link flows on the hypernetwork. In instances where 1; 
can be considered independent of X, supply modeling 
techniques can be used to determine Equation 4. Dis­
cussion of this point is, however, beyond the scope of 
this Paper (54). 

vie now use a simple example with two alternatives 
and a known equilibrium solution to demonstrate how 
heuristic iterative techniques that alternatively solve 
Equations 3 and 4 fail to converge. The example is also 
used to demonstrate a new algorithm that is mathemat­
ically proved to converge. 

Figure 4 displays a hypernetwork corresponding to 
an idealized modal split problem. The street network 
is represented by one link (AD); the inherent character­
istics of the car mode are represented by a link leading 
into the street network (OA); and the transit alternative 
is similarly represented (links OB and BD). The mea­
sured link disutilities are written down by each link. 
The distribution of the link error terms is also specified 
in the figure. 

The supply equations are defined for each link and 
expressed in travel time units: link OA = 10-5 income 
(independent of flow); link OD = 5 (independent of flow). 
Thus 

Car tra ve l time = I 0/( I - X,\l)) (5A) 

where X,o is the flow on link AD . 

Transit travel timt: = 15 (in<lepen<lent of now) (5B) 

Using Equation 2, the choice model corresponding to 
the hypernetwork turns out to be 

U CAR = I 0 - 5 income + car travel time + ~CAR 

UntANSIT = 5 + transit travel time + hRANSIT 

(6A) 

(6B) 

11"1' 

Equations 6A and SB, however, are not ready for use 
because they do not represent the disutilities of a user 
sampled at random from the population. Thus, carrying 
out an aggregation procedure with, say, income being a 
normally distributed attribute with mean and variance 
equal to four yields, as the reader can check, 

UcAR = -10 + car time + ~CAR 

UTRANSJT = S +transit time + hRANSIT 

. {150 0} With~= 0 75 

(7A) 

(7B) 

If instead of a normal attribute, such as income, we had 
a zero-one variable, or market segmentation needed 
(39), one would have introduced additional origins rep­
resenting the different market segments and would have 
connected them to A and B, as was done in Figure 3. 
In any case, Equations 7A and 7B yield for the probabil­
ity of car choice: 

PcAR =Pr { UcAR < UrnANSJT} =Pr{ UcAR - UTRANSIT < O} 

= <I> [ (15 +transit time - car time)/(225)Y• I (8) 

where '1' is the standard normal cumulative distribution 
curve. Equation 8 of our example corresponds to E·qua­
tion 3, and Equations 5A and 5B correspond to Equation 
4. 

Assuming that we are studying one unit of population, 
(l:Xk = 1), Pm = X,o, and Equation 8 reduces to 

>le 

XAo = <I> { 2 - ['/,/(! - XAo)J l (9) 

Equation 9 can be solved graphically, as shown in 
Figure 5A, and yields X,o = 0.61. Since in most in­
stances it is impossible to reduce the original problem 
to a manageable set of equations (e.g., in multicommod­
ity networks with just a few links), efficient numerical 
techniques must be sought, especially since heuristic 
iterative algorithms do not necessarily converge. This 
is shown below. 

A typical heuristic procedure involving feedback loops 
consists of solving Equations 5A, 5B, and 8 alternatively, 
until a convergence criterion is met. In our case and 
to better illustrate the point, we select an initial value, 
X •o = 0 .6 2, very close to the equilibrium solution. 

The table below displays the results obtained with the 
heuristic approach, which the reader can verify. The 
same iterative scheme could have been carried out 
graphically on Figure 5 to yield a familiar pattern known 
to economists as the cobweb model (Figure 6). 

Iteration XAo Iteration XAo 

0 0.620 6 0.736 
1 0.599 7 0.301 
2 0.630 8 0.852 
3 0.579 9 0.006 
4 0.661 10 0.908 
5 0.512 11 0 

The approach developed to solve for the equilibriu~ 
in the transportation market has been formally described 
(54). It is computationally very efficient, can handle 
many origins on the hypernetwork, does not require that 
all the alternative routes be enumerated, and can take 
explicitly into account finite hypernetwork link capaci­
ties. This last feature proves to be invaluable for analy­
sis of problems involving parking and other finite capac-
~ trans~rtilion~ilili~. . . 

Technically, the algorithm solves an associated dis­
utility minimization program for the hypernetwork. The 
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Figure 5. Numerical solution of the hypernetwork 
example. 
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Figure 6. Divergence pattern of a naive iterative 
technique. 
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disutility additivity assumption mentioned in the pre­
ceding section is used to separate between the flow­
dependent and flow-independent link disutilities using 
the optimality principl'e of dynamic programming. Then 
the assignment over the links associated with the flow­
independent disutility is carried out by using analytical 
expressions for the flow allocation and the total dis­
utility for all the populations of each origin zone. These 
quantities are computed at every iteration of the flow­
dependent links equilibration to ensure a global minimum 
for the associated minimization program. A detailed 
description of the algorithm can be found in Sheffi (54) 
and a special application of it to the spatial aggregation 
problem of traffic assignment in Daganzo (91). 

The major assumptions of the methodology include 
the above additivity of the flow-dependent component in 
all the disutility functions. For example, if car travel 
time over the street network is modeled as flow depen­
dent, it has to enter the disutility functions in a generic 
linear-additive form. Furthermore, each hypernetwork 
link can be modeled as stochastic, as multiattributed, 
or as flow dependent (54). Another important limitation 
on our methodology isThat the covariance matrix of the 
multivariate distribution underlying the MNP models 
involved has to be independent of the associated vector 
of means, otherwise Equation 3 does not follow an MNP 
model (39, 54). 

For Oiirparticular example, with a relatively poor 
initial point X AD = 0 .5, the algorithm converges in six 

iterations . The table below displays the results. 

Iteration XAo Iteration XAo 

0 
1 
2 
3 

0.5 
0.748 
0.664 
0.555 

4 
5 
6 
7 

0.637 
0.571 
o.i;10 
0.610 

DISCUSSION AND SUMMARY 

This paper has presented a framework for carrying out 
supply-demand equilibration of a transportation market. 
It is argued that choice problems can be regarded as 
route-choice problems on abstract hypernetworks. This 
idea has been latent in the literature, and, as shown, 
it is intimately related to multinomial probit models. 
Hypernetworks may help us conceptualize useful param­
eters of MNP models, especially for the covariance 
matrix, with not too many additional parameters. 

We addressed the important issue of equilibrium 
analysis by providing a formal definition of equilibrium. 
It is also shown, by means of a counterexample, that 
heuristic iterative algorithms do not necessarily con­
verge to the equilibrium solution and that a newly de­
veloped, efficient mathematical algorithm does indeed 
converge. 

The example and the paper do not include a specific 
discussion of the spatial aggregation problem, but, as 
shown elsewhere (39, 91), the intrazonal level-of-service 
attributes can be wellapproximated with MVN distri­
butions, and therefore MNP models can be used to pre­
dict the loading of the network. This obviates the need 
for centroids and dummy links. 

Although most of the emphasis of our discussion was 
on the urban transportation planning process, micro­
scopic problems can also be represented as hypernet­
works and handled with the above-mentioned equilibrium 
algorithm. Typical examples of applications would be 
finding equilibrium on a dial-a-ride market. Supply 
equations for these systems have recently been developed 
with queueing theory (92). Other examples are selection 
of parking lots in a downtown area as a function of their 
capacities and locations, airport selection as a function 
of an intercity origin-destination table, and the location 
and service characteristics of the individual airports. 

In summary, hypernetwork theory seems to be a 
flexible and powerful methodology that enables us to di­
rectly address some problems that had not been pre­
viously tractable. 
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Significant advances have recently been made in developing and apply· 
ing disaggregate behavioral travel demand models to many aspects of ur· 
ban travel decisions. What has not previously been developed is a full set 
of urban models integrated into a complete forecasting system for use 
by a metropolitan planning organization. The purpose of this paper is 
to describe the first such system, which was developed for the Metropol· 
itan Transportation Commission, the designated metropolitan planning 
organization for the San Francisco area. First, the background of the 
current modeling project is briefly set out, followed by a description of 
the structure of the model system. The model development process-es· 
timation, prediction testing, and validation-is described, and two com· 
puterized model application procedures-a regional network analysis sys· 
tem compatible with available urban transportation planning packages 
and a generalized policy analysis system based on random sample fore· 
casting-are presented. Conclusions concerning the advantages and dis· 
advantages of the system of disaggregate models are presented. 

Significant advances have recently been made in develop­
ing and applying disaggregate behavioral travel demand 
models to many aspects of urban travel decisions (1, 2, 
3, 4). What has not previously been done is the develop­
ment of a full set of urban models and their integration 
into a complete forecasting system for use by a metro­
politan planning organization. The purpose of this paper 
is to describe the first such system, which was devel­
oped for the Metropolitan Transportation Commission 
(MTC), the designated metropolitan planning organiza­
tion for the San Francisco area. The models have been 
developed by the Travel Model Development Project, 

carried out by a consultant team consisting of the 
COMSIS Corporation, Cambridge Systematics, Inc., and 
Barton-Aschman Associates. Because of the number of 
models included in the system, this paper must be an 
overview of the system as a whole, rather than a de­
tailed description of each individual model. Complete 
documentation of the project is available in a three­
volume final report (~)· 

BACKGROUND 

The MTC is the successor to the Bay Area Transporta­
tion Study Commission (BATSC), the original region­
wide multimodal transportation planning agency in the 
Bay Area. Although BATSC carried out the traditional 
first steps of metropolitan transportation planning-col­
lecting and analyzing land-use and travel data-neither 
it nor MTC was previously successful in developing an 
accepted complete land-use and travel modeling system 
that could be used to forecast future travel patterns. In 
cooperation with the Association of Bay Area Govern­
ments (ABAG), the projective land use model (PLUM) 
was developed to forecast future land use, employment 
location, residential location, and socioeconomic char­
acteristics (6). 

Although at least two generations of trip-making 
models that use these forecasts to predict future travel 
have been developed, both MTC and other Bay Area 
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agencies have been reluctant to use them because of 
deficiencies in their ability to represent existing travel 
or to provide reasonable future estimates. The lack of 
such a travel model system led MTC to fund the Travel 
Model Development Project and to select an approach 
to develop a model system that would be, as much as 
possible, based on disaggregate travel demand modeling 
techniques. 

The domain of the models to be developed was clear. 
They should begin where PLUM ends, using PLUM's 
land-use and other travel-related forecasts as input; 
they should deal with all aspects of urban passenger 
travel, including the assignment of transit person trips 
and highway vehicle trips to the appropriate facilities; 
they should provide the ability to conduct areawide plan­
ning studies. 

The data base for model development also became 
clear; although many special purpose surveys collected 
since 1965 cover specific subareas of the region, the 
1965 BATSC travel surveys remain the most recent 
complete travel data set. In addition, all necessary re­
lated data-highway and transit networks, zone level­
of-service data (access times and distances and parking 
costs, for example), and land-use data (obtained largely 
from '.'backcasts" to 1965, using PLUM, of data collected 
in 1970)-were available for 1965. All such data were 
also available with a common zoning system of 290 zones 
and 30 districts. · 

MODEL SYSTEM REQUIREMENTS 

Against this background, the following major require­
ments for the MTC travel demand model system were 
identified. 

1. Validity: The system must accurately represent 
travel behavior, which occurs as a result of an inter­
connected set of household and individual decisions; 

2. Comprehensiveness: The system must represent 
the full range of urban travel decisions; 

3. Policy relevance: The system must be sensitive 
to all relevant policy options; and 

4. Flexibility: The system must be usable for analy­
sis at varying levels of detail and spatial and time 
scales. 

Because disaggregate travel demand modeling tech­
niques provide significantly improved capabilities to 
meet each of these requirements, they have been used 
to develop the MTC model system. Disaggregate 
models estimated at the household, person, or trip 
level are used for aggregate forecasting at the zone 
level. The theoretical and statistical advantages of 
this approach over conventional aggregate modeling 
techniques have been extensively discussed in the litera­
ture (7). The major characteristics of the resulting 
modeCsystem meet the above requirements in a system 
that is (a) an operational areawide transportation plan­
ning tool, (b) based entirely on disaggregated travel de­
mand mcx:lels, and ( c) estimated by using conventional 
urban transportation study data. 

The remainder of this paper describes the key fea­
tures of the model system and emphasizes unique char­
acteristics and major improvements over a typical con­
ventional system. The discussion focuses on two major 
areas: first, the model system structure-the interre­
lations among travel choices and the structure of indi­
vidual models-and, second, the model development 
process-the process of empirical model estimation and 
testing, and the techniques used for aggregate forecast­
ing. The paper concludes with a summary of the key 

advantages and disadvantages of the disaggregate ap­
proach to travel modeling. 

MODEL SYSTEM STRUCTURE 

Travel Choices Represented 

In general, a travel demand model is concerned with 
those household and individual decisions that result in 
trips being made. However, some other choices are 
so strongly interrelated with actual trip-making choices 
that it is impossible to separate them from such deci­
sions. For example, the choice of residential location 
is not in itself a trip-making decision. However, the 
combination of a worker's employment location choice 
and his or her household's location decision has as its 
consequence a trip choice, i.e., daily work trips. 

For this reason, the general framework from which 
the components of the MTC model system are derived 
begins with a partition of all possible household and 
household member decisions into two sets: those that 
are relevant to transportation analysis and those that, 
for practical purposes, can be ignored. This partition 
produces the following set of travel-related household 
decision choices: 

1. Employment location (for all workers), 
2. Residential location, 
3. Housing type, 
4. Automobile ownership, 
5. Mode to work (for all workers), 
6. Frequency (for nonwork trips of each purpose), 
7. Destination (for nonwork trips of each purpose), 
8. Time of day (for nonwork trips of each purpose), 
9. Mode (for nonwork trips of each purpose), and 

10. Route (for all trips). 

For most situations, this set of decisions must be rep­
resented in a complete model system. In theory, each 
decision may be dependent on the rest. For example, 
where one chooses to live is obviously linked to the 
housing type and the level of automobile ownership one 
selects. Similarly, shopping trip destination and mode 
are likely to be closely linked. 

This perspective, if carried through completely, would 
produce a model of unmanageable dimensions, since all 
possible combinations of choices would, for practical 
purposes, be limitless; useful models would then be im­
possible to develop. Fortunately, there are some inter­
relationships among components of this set that are of a 
fundamentally different character than others. Some of 
the decisions, such as residential location choice, have 
high transaction costs and are consequently stable over 
fairly long intervals; other choices, such as the fre­
quency of social and recreational trips, are altered on 
a daily basis. Some decisions are more logically rep­
resented as being made collectively by the household, 
while others can be approximated as individual choices. 
Thus, it is possible to formulate explicit behavioral hy­
potheses and lo establish a structure of the total set of 
choices as a logical working hypothesis. Such an ex­
plicit structure greatly simplifies model development. 
This structure is termed a hierarchy of choice (8). 

Figure 1 illustrates the three-stage choice hierarchy 
represented by the MTC model system. At the highest 
level are urban development decisions, which are long 
run in nature: employers decide where to provide jobs 
and developers decide where to provide housing of var­
ious types. Next come household mobility decisions 
made more frequently; these include where to live and 
work, how many household members will have jobs, 
how often they each will go to work, how many autos to 
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own, and which modes will be used to make work trips. 
Finally come short-run travel decisions made almost 
daily: frequency, destination, and mode for nonwork 
trips, and time of day and route for all trips. 

The PLUM land-use model used by MTC predicts 
each of the development decisions shown in Figure 1, 
plus the residential location decision. The travel de­
mand models described in this paper predict each of 
the remaining household decisions. 

Figure 2 shows in greater detail how the mobility 
and travel choice levels of this choice hierarchy are 
represented in the MTC model system; the mobility de­
cisions of households with and without workers are 
handled separately, and travel decisions are divided 
into two groups. Home-based other travel (nonwork) 
is predicted according to all home-based travel deci­
sions. The dotted lines indicate that there is also an 
indirect provision for nonwork travel (HBO) to affect 
mobility decisions. 

Although the structure shown in Figure 2 is strongly 
related to the conceptual system of disaggregate travel 
demand models shown in Figure 1, it incorporates a 
number of features and approximations necessary for 
producing a practical regional forecasting system. 
These include the following. 
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1. The residential location and housing type choices 
are external to the present model development effort be­
cause they are predicted by the previously developed 
PLUM system, which also predicts income distributions 
and work force by zone. 

2. The mobility choice block for households with 
workers distinguishes between primary and secondary 
workers in a household. Each household with workers 
has only one primary worker, or breadwinner. All ad­
ditional workers are termed secondary. 

3. The modeling system deals separately with home­
based and non-home-based trips. This simplifies the 
representation of trip chains (a trip from home, followed 
by one or more non-home-based trips, followed finally 
by a trip to home), an area in which basic conceptual de­
velopment is continuing (9). Also, it allows the model 
system to deal with one-way trips, in accordance with 
traditional practice, rather than with the roundtrips 
more commonly considered in disaggregate modeling. 

4. For a number of closely related travel decisions 
for which joint models have been previously predicted, 
a series of sequential rather than joint models has been 
developed. Examples are auto ownership and mode 
choice for primary workers, and nonwork trip frequency, 
destination, and mode choice. However, due to the struc­
tures of these sequential models, joint effects are not 
ignored. 

5. There are exceptions to the hierarchy indicated 
by the solid-line arrows connecting the choice blocks. 
These are shown by the dotted-line arrows. Each of 
these represents an accessibility-like variable in the 
higher level model (auto ownership for households with­
out workers, for example) that is obtained from a 
lower level model (home-based other destination and 
mode choice). Each of these variables is based on the 
full set of variables of the lower level model. These 
variables allow consistent representation of level-of­
service effects in spite of the sequential structure of 
the model system. 

6. The time-of-day decision is modeled by using 
historical peaking characteristics rather than a choice 
model based on the relationship between peak and off. 
peak transportation system characteristics. 

7. The vehicle occupancy choice decision for non­
work travel is made by using historically observed rates 
rather than disaggregate choice models. 

8. The route-choice decision is modeled by using 
conventional capacity restraint assignment techniques. 

Before describing the models in each of the choice 
blocks illustrated in Figure 2, the definitions of the var­
ious trip purposes and modes will be given, the nature 
of the linkages implied by the dashed lines in the figure 
will be made explicit, and the types of independent vari­
ables used in the system will be described. 

Trips Represented 

The trip purposes used in model development are: home­
based work trips (HEW), or all trips between home and 
work; home-based other trips (HBO), or home-based 
nonwork travel represented by two sets of models, one 
for generalized shopping trips (including also medical­
dental, business-related, and serving passenger pur­
poses-HBSHl, and one for social-recreational trips 
(including eating, visiting, and recreation purposes­
HBSR); and non-home based (NHB), or all trips that do 
not begin or end at home. These three purpose groups 
include all surveyed trips except school trips. 

The modes considered in the models include auto and 
pickup drivers and passengers, as well as all bus, 
streetcar, railroad, and jitney trips. Trips by trucks 
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and taxi drivers and passengers, and by walkers, are 
not represented in the models. 

Linkages Between the Models 

The components of the MTC model system are linked in 
two ways: first, "lower level" models are conditional 
on the predicted choices by "higher level" models, as 
indicated by the solid arrows in Figure 2; second, feed­
back in the form of composite or accessibility variables 
are calculated by using lower level models and are in­
cluded in higher level models, as indicated by the dotted 
arrows. 

The first type of linkage is determined by the assumed 
choice hierarchy and the resulting sequence of models. 
Variables resulting from higher level choices are pre­
determined for lower level choices and are attributes of 
the household or the individual that do not vary among 
alternative lower level choices. For example, auto 
ownership is treated as a household characteristic in 
the HBO models. 

The composite variables represent expectations of 
the outcomes of lower level choices that could be differ­
ent among alternatives of higher level choices. For ex­
ample, level of service by transit for shopping trips af­
fects auto ownership. However, this variable depends 
on the household choice of shopping trips, a decision 
made only conditional on the household auto ownership. 
Thus, the specific shopping level of service is indeter­
minate in the choice of auto ownership. However, com­
posite variables representing overall shopping level of 
service for alternative auto ownership levels can be de­
termined. The attributes that vary among lower level 
choices are aggregated and included as composite vari­
ables in the models of higher level choices. 

All systems of travel demand models include, to 
some extent, such composite variables. Examples would 
be weighted by "inclusive prices" (3) and by the transit 
accessibility variable used in a trip generation model by 
the Metropolitan Washington Council of Governments 
(10). However, the formulation of these composite 
variables is often arbitrary and results in counter­
intuitive predictions. The composite variables used in 
the MTC model system are derived in a way that is con­
sistent with the underlying assumption of the models. 

If a lower level choice is modeled by using the logit 
model, the composite variable defined over these choice 
alternatives is constructed as the expected maximum 
utility from this choice process. If the outcome of this 
choice were known, then the composite variable would 
be taken as the expected utility of the chosen alternative. 
However, since it is assumed, in developing a choice 
model such as logit, that the alternative with the highest 
utility is selected, then we can calculate the expected 
value of the maximum utility. For the logit model, this 
is equal to the natural logarithm of the denominator of 
the logit probability model (11). 

Because the denominator Of the logit function must 
be computed in forecasting anyway, the use of this ex­
pression as a variable in related models requires little 
or no additional computation. In the MTC model system 
such variables were used in several models as the ex­
pected maximum utility from the entire set of alterna­
tives or as the expected maximum utility from a subset 
of the alternatives. For example, the shopping trip fre­
quency model includes as an independent variable the 
denominator of the shopping destination and mode-choice 
model. The auto ownership model includes the ratios of 
expected maximum utilities from shopping travel by auto 
and transit for different auto ownership levels, which 
are calculated by using appropriate partial sums of the 
denominator. Larger values of this ratio indicate a 

greater need for a car for shopping travel, which will 
therefore result in increased auto ownership. 

Variables Included 

Disaggregate model estimation techniques provide 
greater efficiency in the use of sui:vey data than aggre­
gate techniques do. As a result, more variables can be 
included in the model system, thereby increasing the 
sensitivity of travel forecasts to changes in the urban 
environment and in government policies. 

Figure 3 presents a summary of the independent vari­
ables in the MTC model system in terms of the sub­
models of a conventional system. The independent vari­
ables are classified into four groups: 

1. Highway level of service (auto travel time and 
out-of-pocket cost), 

2. Transit level of service (fare and wait time), 
3. Land use (retail employment), and 
4. Socioeconomic attributes of potential travelers 

(annual income). 

These variables affect all the travel-related choices 
that were described in the previous section. Figure 3 
indicates the classes of variables typically omitted from 
various submodels of conventional systems and the im­
provements in sensitivity to level of service (LOS) and 
socioeconomic characteristics in the disaggregate model 
system. Examples of improved model sensitivity in­
clude the impacts of level of service by auto and transit 
on HBO trip generation and NHB travel and the effect of 
socioeconomic characteristics on trip distribution. The 
added sensitivity to LOS characteristics permits a more 
credible forecasting of the consequences of pricing pol­
icies, auto restraint measures, and other service 
changes that affect not only modal split but generation 
and distribution as well. 

COMPONENT MODELS 

In the light of the general material presented in the pre­
vious sections, each of the four travel choice blocks 
shown in Figure 2 can be discussed by presenting the 
component models and showing their interrelationships. 

Worker Mobility Models 

Figure 4 displays the details of the worker mobility 
models, which include a full set of HBW models and a 
model of auto ownership for households with workers. 
Workers are differentiated into primary (one per work­
ing household, chosen on the basis of income per worker) 
and secondary (all other workers) groups. For each, 
sequential models of trip frequency, work place choice 
(distribution), and mode choice are provided. The work 
place choice models use accessibility terms for each 
destination by all modes obtained from the mode-choice 
models. Household auto ownership is affected by the 
work place choice of the primary worker, by means of 
an expected utility variable that measures the relative 
ease of traveling to this destination by auto and transit. 
In addition, the relative ease of traveling to all shopping 
destinations by auto and transit is allowed to influence 
household auto ownership levels. 

Nonworker Mobility Models 

Because they make no work trips, only auto ownership 
is predicted for households without workers. The model 
uses information on the relative accessibility to shop­
ping destinations by auto and transit, as well as per 



capita household income and residential density mea­
sures to predict probabilities of owning a given number 
of autos. 

Travel Models I: Home-Based Other 

As shown in Figure 5, for each home-based other trip 
purpose-shopping and social-recreational-two models 
exist. These models predict trip frequency and the 
joint choice of destination and mode. Trip frequency is 
dependent on the auto ownership predicted in the mobil­
ity blocks, the autos remaining after all work travel is 
predicted, and the expected utility of travel to all avail­
able destinations by either auto or transit. This struc­
ture allows the amount of nonwork travel to vary as auto 
use for work travel varies, and as the level of service 

Figure 3. A comparison 
of variables included in 
the MTC and conventional 
model systems. 
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Figure 6 presents the structure of the NHB models. 
Home-based trip attractions by mode are put directly 
into a joint model of NHB frequem:y and destination 
choice. The frequency decision is binary; i.e., either 
the traveler goes home (frequency = 0) or he or she 
makes an NHB trip (frequency = 1) to one of the desti­
nation alternatives in the choice set. The details of 
these NHB models are in another paper in this Rec­
ord by Ben-Akiva, Sherman, and Kullman. Explicit 
modeling of mode choice can be omitted if the observed 
frequency of tours involving mode switching is negligi­
ble. In this case, the mode choice for NHB trips can 
be assumed to be determined by the home-based trip 
mode choices; i.e., separate NHB models could be es­
timated for each mode, and the trip table inputs to the 
NHB models are for a specific mode. 

MODEL DEVELOPMENT PROCESS 

An aggregate forecasting system based on disaggregate 
models offers more opportunities for refinement and 
validation than does a system based on purely aggregate 
models. This is because, with disaggregate model sys­
tems, the individual models can be tested in both their 
aggregate (e.g., at the zone level) and disaggregate 
forms. 

Estimation and Validation 

Figure 7 presents a schematic outline of the overall 
model development process starting with estimation. 
Disaggregate estimation requires a sample of observed 

Figure 6. Travel models 11: non-home-based trips. 
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travel decisions and socioeconomic characteristics from 
a home interview or other survey, land-use data to de­
scribe the attractiveness of destinations, and level-of­
service data to describe model alternatives. In terms 
of types of data required, the aggregate and disaggre­
gate approaches are identical. The key difference for 
disaggregate systems arises from the significant reduc­
tion in sample size required to yield statistically signif­
icant parameters. 

As shown in Figure 7, following model estimation, 
the next step in the overall model development process 
is a series of disaggregate prediction tests, a step 
unique to the disaggregate approach. The estimated 
component models can be tested one at a time, passing 
each observed trip in the estimation data set through 
the disaggregate model system to produce tables of pre­
dicted and observed choices. Weaknesses in model 
specification may show up as systematic mispredictions 
by market segment (such as income) or by explanatory 
variable (such as travel time). The feedback loop from 
disaggregate prediction to disaggregate estimation in 
Figure 7 represents the decision to return to the esti­
mation step based on the failure of a given model spec­
ification. Only after each model has passed the disag­
gregate tests does the process proceed to aggregate 
prediction and validation. 

The base-year aggregate validation procedure for a 
disaggregate model system is essentially the same as 
for conventional aggregate systems. With disaggregate 
models it may be necessary to modify the forecasts by 
making transformations of the utilities. This require­
ment arises from the use of average households per 
zone to represent all households in a zone. The differ­
ence between the average behavior of all households 
and the behavior of an average household is referred to 
as aggregation bias (12, 13). 

We found it necessary in the MTC model system to 
add distance-related factors to the utilities of the desti­
nation choice alternatives to match the observed trip 
length distribution. Also, in attempting to match zone­
to-zone or district-to-district interchanges, we had to 
add trip interchange adjustment factors (in some cases) 
to obtain the equivalence between observed and predicted 
data. In this context, however, one important difference 
exists between traditional aggregate and disaggregate 
model systems. A complete disaggregate model system 
can be estimated with data from as few as 1000 house -
holds. The zone interchanges obtained from a sample 
that small are too sparse to use as the basis of zone in­
terchange adjustments. Either one must rely on the trip 
length adjustments as the sole means of validating the 
distribution models with the survey data or one must 
augment the survey sample used for model estimation 
with additional observations. In the case of the MTC 
models, this sample was used in its entirety to ensure 
that the aggregate versions of the models matched ob­
served travel patterns. 

If the disaggregate testing procedure in Figure 7 is 
followed carefully, there should be no need to return 
Irom the aggregate tests to the disaggregate estimation, 
since the only changes made in the models involve ad­
justment of the utilities. 

Disaggregate estimation and disaggregate and aggre­
gate prediction testing were carried out iteratively as a 
part of the MTC model development process. As a re­
sult, the model system matches observed data in all of 
the following respects, at the district and district-to­
district levels (there are 30 districts in the MTC analy­
sis area): (al person trips produced and attracted, (bl 
average trip length for person trips by production dis­
trict, (c) mode choice by production district, and (d) 
trip interchanges by mode. 

The final validation of the model requires external 
data sources and preferably data from before and after 
a change in the transportation system that can directly 
be compared with the model predictions. This step is 
being carried out by MTC in their continuing use of the 
model system. 

Model Application Procedures 

As part of the travel model development project, two 
computerized procedures have been developed to apply 
the demand models described in this paper. The first 
is oriented toward the application of an aggregate ver­
sion of the model system for detailed regional network 
analysis in either the short- or long-range time frame. 
The second is oriented to more rapid generalized policy 
analysis in the short- to medium-range time frame. 
Each of these procedures is described in this section. 

MTC Regional Network Analysis 

MTC regional network analysis (MTCFCAST) is a pack­
age of programs based on all of the MTC travel demand 
models that predicts regional travel patterns and vol­
umes from regional socioeconomic information and the 
level of service data for existing and proposed modes 
of transportation. This computer system represents 
an alternative to the demand estimation portions of the 
traditional urban transportation planning (UTPS) pack­
ages (14, 15) and is integrated with them in its external 
data structure and its use of their data-processing, 
report-formatting, and traffic-assigning programs. 
This compatibility with the UTPS package greatly en­
hances the effectiveness of MTCFCAST. This system 
provides the aggregate application procedure used for 
aggregate prediction tests, as shown in Figure 7. 

The primary product of MTCFCAST is a set of 
eleven 24-h person-trip tables on 

1. Driving alone home-based work trips, 
2. Shared ride home-based work trips, 
3. Transit home-based work trips, 
4. Auto home-based shopping trips, 
5. Transit home-based shopping trips, 
6. Auto home-based social-recreational trips, 
7. Transit home-based social-recreational trips, 
8. Auto non-home-based trips, 
9, Transit non-home-based trips, 

10. Auto home-based trips, and 
11. Transit home-based trips. 

These trip tables may be put directly into the UTPS 
matrix manipulation and network assignment routines 
to produce 24-h or peak-hour highway vehicle and tran­
sit person-trip assignments. The entire composite 
MTCFCAST-UTPS analysis framework is shown in Fig­
ure 8. 

The MTCFCAST forecasting system is similar to 
but more sophisticated than the conventional trip 
generation-trip distribution-modal split methodology. 
It incorporates or provides the necessary inputs to 
UTPS routines that incorporate each of the models de­
scribed in the previous section. Its structure is essen­
tially that shown in Figure 2. Aggregation is performed 
by market segmentation by using average socioeconomic 
values for each of three income groups initially, followed 
by segmentation based on auto ownership level after the 
prediction of auto ownership in the mobility blocks. 

Short-Range Generalized Policy Analysis 

Short-range generalized policy analysis (SRGP) is a 
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computerized procedure that applies a subset of the 
MTC travel demand models for analysis. The proce­
dure is designed to produce rapid turnaround estimates 
of the consequences of broadly defined transportation 
policy options. SRGP processing and outputs are based 
on an input sample of home interview survey households. 
The program estimates the travel behavior of the indi­
vidual households subject to user-controlled facilities 
for expanding the results in whatever manner is appro­
priate to the problem universe. This approach takes 
full advantage of the disaggregate nature of the demand 
models. Aggregation does not take place until the ex­
pansion, after all estimation is complete, and can be 
straightforward and without bias. 

It is the use of sample households that also lends 
SRGP its short-range applicability. The procedure has 
no facilities for modeling the long-range dynamics of at­
tributes of households, such as location and life cycle 
progression or the number of workers and their choice 
of occupations and job locations. Activity distributions 
(the zone extent and intensity of employment, shopping 
facilities, social and recreational opportunities, etc.) 
are also provided exogenously to the procedure. It was 
previously applied to other urban areas using alternative 
disaggregate models (16, 17). 

Because of its orientation to short-range analysis, 
only the following models, which represent short-range 
choices, of the full MTC model system are included: 
auto ownership for worker households, auto ownership 
for nonworker households, HBW mode choice, HBSH 
trip production, HBSR trip production, HBSH destination­
mode choice, and HBSR destination-mode choice. 

As these models are applied to each household in turn, 
summary impacts are accumulated and reported for 
household income class groups or other segmentation. 
SRGP also has the capability to retrieve the results of 
a previous run to produce comparison tables. 

CONCLUSIONS 

As the first production-oriented system developed for 
use by a metropolitan planning organization that is based 
on a consistent theory of traveler behavior and disaggre­
gate model estimation, the MTC model system has 
achieved the following major accomplishments. 

Disaggregate models have been integrated into a 
working aggregate model system that resembles the 
conventional systems with which planners are familiar. 

The model system is a reasonable compromise be-
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tween validly representing the theories of individual 
travel behavior and developing a practical, large-scale 
planning model. 

The model system has improved behavioral proper­
ties compared to its previous aggregate counterpart. 
It is relevant to the low capital cost alternatives that 
must be evaluated now and is sensitive to a wider range 
of variables than aggregate models. 

The model system provides an additional option over 
the full detail and sketch planning approaches supported 
by conventional aggregate models. Random sample enu­
meration is a valuable, quick, low-cost method of ana­
lyzing a wide range of policies and projects. 

Cost reductions in the development of disaggregate 
model systems arise from the vastly reduced amount 
of data needed. Employing random sample enumeration 
techniques also reduces costs of using the models in 
certain situations. 

The only disadvantage that exists in the use of this 
approach relative to conventional aggregate models is 
the increased complexity of the system. Due to im­
proved behavioral representation, more models are es­
timated; they are closely interconnected; and they are 
not yet well understood by practitioners. The cost of 
a full zone aggregate application of a disaggregate 
model system is marginally higher than its aggregate 
counterpart, but this cost differential is not a signifi­
cant issue since the major costs of both types of sys­
tems are network skimming and assigning. 

Work undertaken to date has shown that this model­
ing approach is feasible, that careful estimation and 
testing are necessary during the model development 
phase, that extensive training is necessary to familiarize 
planners with the new approach, and, of course, that the 
resulting model systems are sufficiently improved over 
the conventional system they replace to warrant the in­
vestment in training and model development. 
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This paper describes a practical model of non-home-based travel that can 
be incorporated in existing urban transponation model systems. The 
model is estimated by using a disaggrega18 sample of trips drawn from 
the 1965 home interview survey of the San Francisco Bay Area for the 
Metropolitan Transportation Commission. The model predicts trip gen· 
eration, distribution, and mode split with full sensitivitV to travel times, 
cosu, and zone characteristics. The paper describes the overall model 
structure and estimation results. Comparisons with other research on 
non-home-based travel are drawn and recommendations for future re· 
search presented. 

There is a clear need to better understand non-home­
based (NHB) travel behavior. In large urban areas, 
NHB travel may represent over 20 percent of total ve­
hicle trips, and an even larger proportion when pedes­
trian travel is counted. Moreover, emerging transport 
policies focusing on downtown people-mover systems, 
free or reduced-fare transit circulation systems within 
central business districts (CBDs), auto restricted zones, 
and activity center connectors have drawn increased at­
tention to NHB travel patterns. 

In modeling urban travel patterns, it has been tradi­
tional to classify trips into three categories: home­
based work (HBW) trips, home-based other (HBO) trips, 
and non-home-based (NHB) trips. Models of non-home­
based travel have received the least attention. From a 
behavioral standpoint, non-home-based travel should be 
sensitive to the same factors that are conventionally as­
sociated with HBW and HBO travel patterns. For ex-
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ample, accessibility and the spatial distribution of op­
portunities should clearly influence the generation and 
distribution of NHB trips, and yet most existing model 
systems treat NHB travel as a fixed proportion of home­
based trips or use simple generation rates that take no 
account of transport accessibility. Also lacking from 
most conventional approaches is a behaviorally plausible 
representation of trip chaining. 

Some recent research has attempted to develop ex­
plicit models of trip chaining. Adler, for example (18, 
19), has estimated disaggregate choice models in wlllch 
tile choice set consists of alternative trip chains with 
two or more links. Each alternative's utility was char­
acterized by a total tour level of service and spatial op­
portunities at the destinations included in the tour. An­
other approach was taken by Horowitz (20), who used 
regression analysis to model the frequency and number 
of stops made on household trip chains as a function of 
level of service. Because of their complexity or struc­
ture, neither of these approaches is suitable for inclu­
sion in an urban area travel demand forecasting system, 
but they do establish the importance of characterizing 
the interdependence of non-home-based and home-based 
travel. 

The models reported here explicitly represent this 
interdependence as a Markovian process where the de­
cision of an individual to continue a tour with a non­
home-based trip depends only on conditions at a specific 
trip end, not on the sequence of trips that may have led 



to the trip end. This structure was dictated by practical 
considerations, since in aggregate forecasting applica­
tions it is not computationally feasible to treat specific 
tour sequences as explicit choice alternatives. 

While the theory, estimation, and preliminary vali­
dation of the NHB models reported here were developed 
at the disaggregate level, the models were designed to 
be incorporated into an aggregate travel demand fore­
casting system to be used by the Metropolitan Transpor­
tation Commission (MTC) of the San Francisco Bay Area 
(21, and the paper by Ruiter and Ben-Akiva in this Rec­
ord). Thus, from the beginning, model development 
was concerned with balancing theoretical and behavioral 
plausibility with model practicality and ease of use. The 
key advantages of the resulting models are their sensi­
tivity to transportation level of service and their explicit 
representation of the interdependence of home-based and 
non-home-based travel. 

DEFINITIONS AND TERMINOLOGY 

Non-home-based travel consists of all trips made be­
tween two non-home locations. Examples of NHB trips 
are a journey from work to a place to eat lunch or the 
journey from a shopping location to work. While it is 
possible to further differentiate NHB travel by trip pur­
pose, in the empirical work of this study all travel pur­
poses were grouped together. 

In developing a theory of NHB travel behavior, it is 
convenient to adopt a notation where trips are defined 
by purpose at the origin and destination. Trip end pur­
poses can then be classified into three groups: home 
(H), work (W), and other (0). In these terms, NHB 
travel occurs whenever a trip has W or 0 purposes at 
each end. Thus, the number of NHB trips between 
zones e and k can be written as the sum of the following 
sets of trips: 

NHB trips from e to k = W0 0k + 0 0 Wk + OeOk + W0 Wk ( l) 

where 

w.ok = trips with purpose W at origin e to destina­
tion k with purpose O, 

a.wk = trips with purpose 0 at origin e to destina­
tion k with purpose W, 

o.ok = trips with purpose 0 at origin e to destina­
tion k with purpose O, and 

w.wk =trips with purpose Wat origin e to destina­
tion k with purpose W. 

Similarly, home-based (HB) trips may be defined as 
follows (ignoring home-to-work trips): 

where 

H. Wk = trips with purpose H at origin e to destina­
tion k with purpose W, 

H.Ok = trips with purpose H at origin e to destina­
tion k with purpose 0, 

W.Hk = trips with purpose Wat origin e to destina­
tion k with purpose H, and 

O.Hk = trips with purpose 0 at origin e to destina­
tion k with purpose H. 

(2) 

It was assumed in this study that there is no need to 
differentiate between work-based and non-work-based, 
non-home-based trips. Accordingly the above notation 
can be greatly simplified by designating A to stand for 
any non-home-based purpose, i.e., A= W + 0. This 
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definition leads, for example, to the following relations: 

(3) 

(4) 

The symbols A and H can be used to represent both the 
type and the direction of trips as indicated in Figure 9. 
The terminology and definitions in Figure 9 are essen­
tial for the development of the model described below. 

THEORETICAL MODEL DEVELOPMENT 

Each trip maker at a non-home location is always faced 
with the choice between returning home or traveling to 
a non-home location. If the traveler returns home, then 
one may say that a NHB trip was not made. If a traveler 
does continue on to another non-home location, then the 
traveler must choose between alternative destinations 
and modes. This sequence is repeated until the traveler 
eventually returns home. This view of the NHB choice 
process makes it clear that the traveler's decision pro­
cess can be associated with the trip end. That is, each 
home-based trip (and succeeding NHB trips) constitutes 
a potential NHB trip. 

Given this general framework, two assumptions were 
adopted to simplify the empirical analysis and to facili­
tate the use of the models in aggregate forecasting. 
First, it was assumed that each traveler's decision is 
independent of previous decisions, i.e., that the deci­
sion maker has no memory of past decisions. This as­
sumption obviates the need to represent several alter­
native trip chains (e.g., two-leg versus three-leg versus 
four- or five-leg tours) as explicit choice alternatives. 
Second, it was assumed that travelers making NHB ve­
hicle trips would continue on the same mode as their 
outbound home-based trip; i.e., mode switching is not 
explicitly modeled. Analysis of San Francisco travel 
data indicated an extremely low incidence of vehicle 
mode switching between HB and NHB trip legs. The 
models, in any event, do not ignore trips that switch 
mode. They simply predict these trips as if they con­
tinued on the same mode as on the HB trip. As a result 
of this assumption, separate NHB models could be esti­
mated conditional on auto or transit choice for the 
home-based trip. 

It is apparent from the above discussion that the anal­
ysis assumes that a traveler at a non-home location has 
choices over two dimensions: either to return home 
(NHB frequency= 0) or to make an NHB trip (NHB fre­
quency = 1) to a specific alternative trip end. Using the 
p- uroach of random utility choice models employed in 
a1saggregate travel demand models, the preferences of 
an individual for these choice alternatives can be repre­
sented by the following probabilities: 

1. The first is p(f = 1, e I k) = probability of making 
an NHB trip (f = 1) to trip end location e, which could 
be either an origin or a destination depending on the 
form of the model-a point that will be discussed below­
given that the opposite trip end is in zone k; and 

2. The second is p(f = 0 I k) = probability that an NHB 
trip is not mad~ given a trip end, either origin or desti­
nation, in zone k. 

There will be one such probability for each mode. For 
simplicity, we will not carry the mode subscript in our 
notation. 

It is possible to model NHB trips from either a des­
tination or an origin perspective. The former repre­
sents a traveler choosing from alternative non-home 
destinations (NHB f = 1) given a non-home trip origin, 



130 

Figure 9. Non-home-based trip types. 1 2 
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while the latter represents alternative non-home origins 
from which a traveler could have reached a non-home 
destination. Although the former approach appears 
more reasonable, both types of models were estimated 
in this study in order to calculate directional splits by 
trip purpose. 

The disaggregate model of NHB frequency and trip 
end was specified as a joint choice logit model: 

p(f= l,ejk) =expV0 k/(expV0 k + ~ expVe'k) 
e EAk 

p(f=Ojk)=expVak/(expV0k + ~ expVe'k) 
. e'eAk 

where 

(5) 

(6) 

Ak = set of feasible trip end choices from trip 
end k (note that this set may depend on the 
mode), and 

Vok, Vek = linear parameter utility functions for the 
alternatives f = 0 and f = 1 and trip end e, 
respectively. 

The utility associated with choosing trip end (zone) 
e was represented by the cost and travel time between 
zones k and e and zone e's attractiveness in terms of 
the density and level of its population and employment. 
The zero frequency function contained proxy measures 
for factors that would decrease the probability of NHB 
travel. 

MODEL ESTIMATION 

Definition of Choice Set 

The San Francisco MTC region was divided into 30 dis­
tricts, each of which represented a possible trip end 
choice, In addition, in NHB destination (origin) choice 
models, all zones in the origin (destination) district 
were considered as possible choices. This procedure 
was designed to reduce the variance associated with the 
level-of-service measures. Analysis of our data showed 
that over 85 percent of NHB trips were intradistrict. 
Hence, for the great majority of the chosen trips, level 
of service was represented at the zone interchange level, 
rather than district to district. In the NHB transit 
models a potential destination was considered unavail­
able if transit service was unavailable. The maximum 
size of the choice set was 29 districts (not including the 
trip end district k) plus 26 zones (maximum; many dis-

type 2 trips 
NHB 

type 4 trips 

tricts have fewer) plus 1 zero frequency alternative 
which equals 56 alternatives maximum. 

Estimation Data Set 

The estimation data set for the NHB models consisted 
of a sample of 11 249 trip records from 1347 households 
randomly drawn from MTC's 1965 home interview sur­
vey tape. Screening of all the trips for invalid modes 
(taxi, truck, walk) and purpose (school) reduced the set 
of valid observations to 8216 records, of which 3214 
were NHB f = 1 and 5092 NHB f = 0. These resulting 
data were subdivided into four files corresponding to 
auto, transit, origin choice, and destination choice 
model forms. The resulting numbers of trip records 
are shown below. 

Model Type Population Freq= 1 Freq= 0 

Auto, destination choice 4730 1789 2941 
Transit, destination choice 308 57 251 
Auto, origin choice 4759 1789 2970 
Transit, origin choice 265 57 208 

The small differences in the population of trips from 
which NHB trips could be made as represented in the 
origin and destination choice models are due to incom­
plete trip chains contained in the survey data. 

Specification of Independent Variables 

The variables that were used in the models are listed 
below. 

Variable 

ZEROFCON 
CSDOCON 

LN(TT) 

COST 
EMPDENS 

LN(P/E) 

LN(EMP) 

Description 

1 in zero frequency utility function, 0 otherwise 
1 in zero frequency utility function if origin zone 
(destination zone if NHS origin choice model) is 
in CSD, 0 otherwise 

Natural log of total travel time inf= 1 utility func­
tions, in minutes 

Travel cost inf= 1 utility functions, in cents 
Employment density: total employment divided by 
total area at the destination (origin if NHS origin 
choice model) alternative inf = 1 utility functions, 
in employees per square kilometer 

Natural log of the zone fraction of regional popula­
tion divided by zone fraction of regional total em­
ployment at the destination (origin if NHS origin 
choice model) alternative in f = 1 utility functions 

Natural log of the zone fraction of regional total em­
ployment at the destination (origin if NHS origin 
choice model) alternative inf= 1 utility functions 
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Table 1. Structure of the NHB 
models. Variable 

Model ZEROFCON CBDOCON LN(TTJ COST EMPDENS LN(P/EJ LN(EMPJ 

Auto destination choice 
f = 0 °'' °'• f = l 81 8, (J, (J, 1.0 

Transit deatinatlon choice 
f = 0 Yi y, 
f = 1 o, o, o, 6, 1.0 

Auto origin choice 
f = 0 e, e, 
f = 1 ~. ¢, ¢, ~. 1.0 

Transit origin choice 
fa 0 "• "• f = 1 •• •• r, .. 1.0 

Table 2. Summary of model estimation results. 

Destination Choice Origin Choice 

Auto Transit Auto Transit 

Variable Ee• SE' t-statistic Ee• SE' I-statistic EC• SE' I-statistic EC' SE' t-statistlc 

CBDOCON 0.313 5 0.068 2 4.59 
ZEROFCON -11.22 14.39 -0.78 -7 .57 1.47 5.14 
LN(TTl -2.294 0.073 6 31.2 -1.033 0.306 l -3.38 
COST -0.015 18 0.001 51 -10. l -0.016 08 0.006 91 -2.33 
LN(P/E) 0.470 0 0.030 6 15.38 o.608 8 0.209 9 2.90 
EMPDD 0.002 242 0.000 6 3.87 0.003 566 0.002 0 1. 77 

LN(EMPJ 1.0 1.0 

Percent car- 11.9 55.9 
reel pre-
dictions 

p·' 0.546 4 o. 724 5 
Likelihood 19 341 1554 

ratio sta-
tistic 

.a Ee• nt1ma1f'd cotfflclttn . bSE • lblndlrd &rror. 

The structure of the model showing how each variable 
enters in the f = 0 and f = 1 utility function is given in 
Table 1, which emphasizes the fact that no assumptions 
were made that the coefficients of identical variables in 
the origin and destination choice models would be the 
same. The variable LN (EMP) is a measure of the size 
of a destination alternative and its coefficient is con­
strained to take the value of 1.0. This constraint is nec­
essary if the model is independent of the zone system 
used for estimation. In fact, in aggregate forecasts 
made with the NHB models described here, a different 
zone system has been used. 

Estimation Results 

Estimation results for the four model types are shown 
in Table 2. For each variable the cell entries indicate 
estimated coefficient, standard error, and t-statistic. 
In preliminary estimations not reported here, gross 
employment density was used as a variable to explain 
walk trip propensity (i.e., in the f = 0 alternative), but 
its estimated coefficient was insignificant. Also, in pre­
liminary runs, it was determined that in- and out-of­
vehicle travel time could not be statistically distin­
guished, so only total travel time was ultimately used. 
The coefficient of the size variable LN (EMP) is con­
strained to 1.0 in all cases. 

The relatively high value for the p -2 -statistic derives 
from the fact that the f = 0 alternative is chosen with 
high frequency, while it is presumed in the "equally 
likely" case that it has only an equal chance of being 
chosen along with each f = 1 destination. 

An indication of the reasonableness of the model re­
sults is the implied value of time (VOT). For the rec­
ommended models, the values of time for a range of 
travel times between 20 and 60 min were calculated. 

0.368 4 0.068 3 5.39 1.880 0.458 0 4.11 
-10. 75 7.90 -1.36 -4.53 1.37 3.32 
-2.418 0.074 0 -32. 7 -0.898 2 0.239 8 -3. 75 
-0.013 38 0.001 47 -9.09 -0.017 75 0.006 09 -2.65 
0.398 1 0.030 0 13.26 
0.001 887 0.000 5 3.72 

1.0 1.0 

11.8 50.0 

0.552 7 o. 716 3 
19 681 1322 

These results, based on the estimated models in Table 
2, are shown below. 

Model 

NH B destination choice, auto 
NHB origin choice, auto 
NHB destination choice, transit 
NH B origin choice, transit 

Total Travel Time 
(min) 

20 40 60 

4.53 2.27 1.51 
5.42 2.71 1.81 
1.92 0.96 0.64 
1.52 0.76 0.51 

Auto VOT is higher than transit VOT for every travel 
time and model type (origin or destination choice). For 
both modes, travelers show a decreasing sensitivity to 
marginal time savings as total travel time rises, These 
results are similar to those obtained from the HBO des­
tination and mode-choice models estimated from the 
same data set (~_!). 

FORECASTING WITH THE NHB MODELS 

Forecasting with the NHB models is complicated by two 
factors. First, the models predict the non-home-based 
travel decision of a traveler at the trip end of either a 
home-based or a non-home-based trip; and, second, 
the directional split of the home-based trip is unknown. 

Consider, for example, using a destination choice 
approach where the directional split of home-based 
trips is known. In this case, non-home-based trips 
could be determined by predicting trips in sequence: 
first HB and then NHB. However, since the models 
will predict a non-zero probability to every possible 
destination zone, this approach is computationally in­
feasible for application to large networks that typify 
major urban areas. Lerman and others (22) used a 
variant of this procedure by simulating each trip leg of 
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a tour conditional on the previous trip end, but their ap­
proach is far too complex to be practical for aggregate 
forecasting applications. 

Assuming that there are N possible zones, the total 
number of NHB flows is N2, and this prediction problem 
could be viewed as a solution of a system of N2 simulta­
neous equations. Each equation expresses the expected 
number of non-home-based trips from a given origin to 
a given destination as follows: 

(7) 

where HAk is l: H •. Ak. The unknown directional split of .. 
the home-based trips adds 2N more equations and un­
knowns. The first N of these equations defines the di­
rectional split of the home-based attractions: 

(8) 

where HBAk is home-based attractions at k. 
The second set of N equations defines the conserva­

tion of flows at the non-home ends : 

(9) 

These systems of equations (with known or unknown HB 
direction split) are too complex to be solved directly. 
Therefore, a simplified method based on the use of both 
origin and destination choice models was devised. 

To distinguish between the two NHB model types, we 
introduce the subscript i = 1, 2 to refer to the choice of 
NHB destination (i = 1) or NHB origin (i = 2): 

where 

i = 1 implies e = destination, k = origin, and 
i = 2 implies e = origin, k = destination. 

The equations predicting NHB trips are 

AkAe =P1(f= l, ejk)(HAk +;A.· Ak) 

A.Ak =P2(f= l,ejk) (AkH + ;AkA•) 

(10) 

(11) 

(12) 

Summing both sides of these equations over trip ends 
and denoting the summation over trip ends e by the ab­
sence of the subscript e, we may write 

( 13) 

(14) 

where F1k and Fik are the fraction of potential NHB trips 
choosing zone k as the origin or destination of an NHB 
trip. Specifically these fractions may be written as 

F1k = _!: P1 (f= l,elkl (I 5) 

F2k = L P2 (f= !,elk) ( 16) 

Equations 13 and 14 can now be solved for AkA and 
AAk: 

AkA = ff1kHAk + F1k F21cAkH)/(l - F1kF21c) 

AAk = (F2kAkH + F1kHAk)/(1 - F21<Ftkl 

(17) 

(18) 

Substituting Equations 17 and 18 into 11 and 12 yields 

AkAe = Pi(f = I, e lkl [(HAk + F21cAkH)/(I - F1kF21<)] 

A.Ak =P2(f= 1,elkl [(AkH+F1kHAk)/{l-F1kF2k)J 

(19) 

(20) 

Either Equation 19 or Equation 20 could be used to fore­
cast trips, but not both, since these equations predict 
opposite ends of the same NHB trips. It is more natural 
to use Equation 19, which predicts NHB trips from ori­
gin zone k to destination zone e based on both the home­
to-any and the any-to-home trip ends in zone k. Al­
though only one of the equations is needed to forecast, 
note that the influence of both origin and destination 
models enters in Equations 19 and 20 through the terms 
F1k and Fik· 

Starting from Equations 13 and 14, the complete set 
of relations used for NHB aggregate forecasting can now 
be derived by adding the two equations for the directional 
split of home-based attractions at k and flow conserva­
tion at k. The entire set of equations can then be solved 
simultaneously to obtain expressions for HAk, AkH, A-.A, 
and AAk, which depend only on F1k, F2k, and known HBA-.: 

HAk =[(I - Flk)/(2 - F1k - F21c)J HBAk 

AkH = [(I - F tkl/(2 - F1k - F21<)] HBAk 

AAk = [F21</(2- F1k - F2k)] HBAk 

AkA = !Ftk/(2 - F1k - Flk)) HBAk 

(21) 

(22) 

(23) 

(24) 

The equations serve two purposes: they directionally 
split the forecasts of HBAk (home-based trips; use Equa­
tions 21 and 22), and they directly predict NHB genera­
tions and distribution (use Equation 23 or Equation 24). 

CONCLUSIONS AND DffiECTIONS 
FOR FURTHER RESEARCH 

The models presented in this paper were developed as 
part of a complete system of disaggregate travel demand 
models. However, they can be used in a conventional 
urban transportation model system to replace existing 
NHB trip models. 

The simplifying assumptions of the model structure 
presented were dictated by practical considerations of 
model development resources and computer cost for 
model application. 

Given the overall model structure developed in this 
paper, the specific models could be improved by further 
disaggregation of purposes, inclusion of mode choice, 
and addition of other variables to better represent at­
tractions of travel opportunities and transport services. 
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Urban travel demand research in the 1960s and early 
1970s gave rise to the hope that travel forecasting 
models could be developed that would satisfy the follow­
ing objectives. They would predict the changes in travel 
demand from adding new modes or other new transpor­
tation alternatives, evaluate the consequences of alter­
native policy options applied to the existing transporta­
tion system, be easily transferred from one urban area 
to others, and make full use of disaggregate data to 
properly specify travel behavior. 

In a major step toward these objectives, McFadden 
and Domencich (23) showed that probability choice 
models could be extended using multinomial logit (MNL) 
to estimate equations representing a wide range of 
travel decisions. These models were designed to pre­
dict the short-run responses of trip makers to transpor­
tation system changes. In addition to mode choice, 
which had traditionally been analyzed with probability 
choice models, MNL was applied to trip time of day, 
destination, and frequency decisions . These separate 
models were linked with accessibility measures to form 
an integrated travel forecasting structure. 

The San Francisco MTC system is an initial attempt 
to utilize this basic MNL model structure in a large­
scale urban transportation planning package. It also 
incorporates some important refinements in travel de -
mand model estimation with MNL. The first of these 
is a rigorous definition of the choice structure of mo­
bility decisions based on the work of Ben-Akiva and 
Lerman (1,24). The second refinement is an appropri­
ate specincation for sequential models with inclusive 
prices (25). Finally, there has been some attempt to 
adjust the attraction variables in the destination and fre­
quency choice models to make the equations transferable 
to alternative zone systems. 

Given the scope of the MTC system, it is appropriate 
to review it in terms of the four objectives of travel de­
mand models presented above. The major advances in 
large-scale travel forecasting procedures represented 
by the MTC system appear to be that 
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1. Policy-sensitive accessibility measures have 
been incorporated in the separate components of travel 
demand, 

2. New alternatives to the traveler choice set, such 
as new modes, can be unambiguously forecast by using 
the independence from irrelevant alternatives (IIA) prop­
erty of multinomial logit [see Ch~rles River Associates 
(26) for a discussion of the strengths and limitations of 
this capability] , and 

3. The destination choice models make better use 
of trip record data than does the traditional gravity 
model calibration approach, thereby gaining, potentially, 
greater accuracy in forecasting the trip distribution ef­
fects of transportation system and land-use changes. 

There are several major limitations on the MTC sys­
tem that are discussed in more detail below. These in­
clude, first, problems with model estimation and model 
specification that combine to prevent isolation of short­
run travel response from other effects; these problems 
should lead to forecasts that are overly responsive to 
system changes and to biased policy evaluations. Sec­
ond, the destination and frequency choice model is not 
generally transferable, and, third, potential advantages 
of disaggregate data analysis have gone unrealized, per­
haps because of the dependence upon the traditional 
large.-scale home interview survey. 

POLICY SENSITIVITY 

The MTC system should give biased travel demand fore­
casts and policy evaluations. This results, in part, 
from using relatively simple model structures estimated 
on cross-section data. This statistical design is an un­
fortunate constraint on most travel demand analysis. In 
addition, there appear to be model specification errors 
that compound the drawbacks of using cross-section data. 

CROSS-SECTION BIAS 

Not enough attention has been given to cross-section bias 
in travel demand model estimation. As an example of 
this type of problem, consider either of the MTC sys­
tem's disaggregate models of nonwork trip frequency es­
timated from a household travel survey. These house­
holds will have chosen locations for themselves based 
on, among other things, their preferences for accessi­
bility to alternative activities. Households with low 
preferences for accessibility will live in areas with 
high impedance measures for nonwork trips. House­
holds with high preferences for accessibility will live 
where there are low travel times and costs to a large 
number of trip-generating activities. 

The frequency choice model will use the correlation 
between trip frequency and accessibility and incorrectly 
assign an increased frequency response to a policy that 
increases accessibility. 

In fact, households will have revealed their prefer­
ence for trip frequency by their location decisions. 
Rather than forecasting trip frequency, the model is 
partially distributing households to locations as a re­
sult of accessibility, given their demands for a certain 
number of trips. As a result, the model should over­
predict the travel demand response to increased trip 
frequency. 

Practitioners should be cognizant of potential cross­
section bias, not only in frequency models but also in 
destination and mode-choice estimates and forecasts. 
A lack of appreciation of this problem can lead to model 
specifications that fit the data better than alternatives 
but lead to worse forecasts of traveler responses to 
transportation systems. Two examples of model spec-



134 

ification problems are discussed below. 

MARGINAL VALUE OF TIME IN THE 
NON-HOME-BASED DESTINATION/ 
FREQUENCY MODEL 

Specification of the utility function in the travel models 
will in some ways exacerbate cross-section bias. The 
MTC system's non-home-based destination and fre­
quency choice model, for example, has the logarithm 
of travel time as an argument in the utility function. 
Thus, the marginal value of time is inversely propor­
tional to the amount of travel time between an origin 
and a destination (0-D); that is, the marginal value of 
time declines with respect to time spent in travel. 

This formulation is inconsistent with the behavior of 
travelers who maximize utility under time constraints. 

The policy implications of this model specification 
are that for two zone pairs with equal flows, the time 
benefits of improving travel time by 1 min for an 0-D 
link of 10 min is equivalent to improving travel time by 
6 min for an 0-D link of 60 min. Project evaluation 
will be biased toward improving links associated with 
short origins and destinations inasmuch as cost per 
kilometer of an improvement is constant or increasing. 
Thus, the model is policy sensitive, but it may give 
the wrong priorities to policy alternatives because of 
its specification. 

One problem with estimating the marginal value of 
time from cross-section data is that people with a low 
value of time will take longer journeys, which creates 
a negative statistical correlation between marginal 
value of time and length of the trip. However, this cor­
relation does not tell us that any given individual has a 
decreasing marginal value of time when choosing among 
alternative destinations. This latter concept of value of 
time is what is relevant in analyzing traveler responses 
to system changes and in evaluating projects. 

WORK-TRIP DISTRIBUTION 

The purpose of the MTC model is to forecast travel de­
mand with exogenously determined land-use patterns. 
Presumably, the land-use model (PLUM) forecasts zone 
aggregates of employment and residences that are input 
to the MTC travel demand system. Thus, long-run res­
idence and employment choice decisions are modeled in 
PL UM. A transportation policy that redistributes work 
trips would do so primarily by redistributing zone 
household locations and employment opportunities. How­
ever, the MTC travel demand model keeps these ele­
ments constant and reallocates workers among existing 
places of employment. 

For short-run travel demand analysis, it is prefer­
able to keep work-trip distribution constant (as is done 
in the short-range generalized policy analysis package). 
For long-run travel demand analysis, work-trip redis­
tribution should be included in the land-use forecasting 
system with a methodologically sound linkage to the 
travel demand models. 

TRANSFERABILITY 

Strong conditions are required on the use of zone activ­
ity variables in the MNL model in order to ensure that 
arbitrary repartitioning of the zones does not violate 
conservation of travel flows (27). Even more stringent 
conditions are required eitherxf the nontrip alternative 
is included in the model or if the inclusive price (the 
log of the denominator) from the destination choice 
model is to be in the utility function of a higher level 
frequency choice model. 

The non-home-based travel model in the MTC sys­
tem can be used as an example of the problems in trans­
ferring destination and frequency choice models. The 
developers of the model use total zone employment as 
an attractor variable; it is specified in log form with 
the coefficient constrained to unity. If this were the 
only activity variable in the utilit} function, then the 
model could be transferred without arbitrarily changing 
travel demand forecasts. Unfortunately, including other 
activity variables such as zone attractors in the model 
leads to a violation of conditions that would ensure trans­
ferability. To see this, we rewrite the MTC non-home­
based model as follows, ignoring the employment density 
variable and the zero frequency alternative: 

(25) 

where 

P 1 =probability of the ith alternative; 
V 1 = level of service component of the utility func­

tion; 
E1 = employment in the ith destination zone; 
Y1 =population in the ith destination zone; and 
a = estimated coefficient. 

If a repartitioning of the zones occurs such that .0.E 
and A Y are taken from destination zone 1 and added to 
destination zone 2, then the conservation of trips would 
require the following equality: 

[ev1(E1 -till)1""(Y 1 -t,.Y)" +ev2(E2 +t,.E)1""(Y2 +t,.Y))" 

+ [evl(E 1 -t..E)1""(Y1 -t,.Y)" +ev2(E2 +t,.E) 1""(Y2 +t,.Y)" 

n 
+ ~eviE.t""Y•J 
~ J J 
j=J 

(26) 

With population and employment acting as attractors, 
it is necessary for a to be within the unit interval so 
that the coefficients on zone attraction are positive. 
However, if trips are to be conserved in cases where 
the number of choices is three or greater, it will in 
general be necessary for a to be either zero or one. 
The values for a estimated in the MTC model are within 
the unit interval but tend to be around 0.5, which would 
lead to forecasting error if the model were transferred 
to an alternative zone system. 

Another problem in transferability arises because 
changing the number of destination alternatives will, in 
and of itself, affect the frequency of travel. In a joint 
frequency and destination choice model, such as the 
non-home-based model in the MTC system, this effect 
is quite direct. 

Suppose, for example, that the denominator in Equa­
tion 25 doubles with a twofold increase in destination 
possibilities. Then, using numbers from the destina­
tion sample for the MTC model, the probability of tak­
ing a trip would increase from, say, 0.38 (the propor­
tion of nonzero frequency records in the destination 
sample) to 0.55. This implies a much higher elasticity 
of trip frequency than is intuitively plausible. Note that, 
if frequency choice is modeled separately from destina­
tion choice, the coefficient on accessibility in the fre­
quency choice model could be less than unity, which 
would moderate this effect. 



DISAGGREGATE DATA ANALYSIS 

As a closing and hopefully constructive comment, dis­
aggregate data analysis should focus more on distinguish­
ing variations among households' travel behavior. Dif­
ferent trip makers in a zone have different choice con­
straints and different sensitivities to transportation LOS 
variables. These distinctions are now blurred when one 
model structure is applied to a zone containing a heter­
ogeneous population. In this regard, large-scale plan­
ning models have not been significantly improved with 
the application of disaggregate travel demand models. 
An important topic for future research is how zone fore -
casting can be made more precise through the use of 
disaggregate data analysis that would segment trip 
makers demographically into groups with distinct travel 
behavior. 
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This discussion is a comment from the user's perspec­
tive rather than a critique of the content of the papers. 
We feel that the papers adequately represent the work 
done for MTC by the authors. Further discussion of 
theory and technique does not seem as important as a 
few comments about the experience we have had in using 
the models. This is important to anyone considering 
development or use of such models. 

A little background is appropriate first. MTC con­
tracted with the consultant team (COMSIS, Cambridge 
Systematics, and Barton-Aschman Associates) in 1975 
to develop a complete set of travel forecasting models. 
In phase one of that project the consultants reviewed the 
needs of MTC for travel forecasting models and reviewed 
the MTC data base. Then they recommended how we 
should proceed and told us what it would cost. We ac­
cepted their recommendations, and phase two began late 
in 1975. The model system was delivered about a year 
later. Some additional validation work was necessary 
and was completed by mid-1977. The entire effort took 
about two years and cost nearly $250 000. 

MTC gained knowledge and experience with the 
models as we monitored the consultants' work. MTC 
conducted the aggregate validation for 1975 for the HBW 
models and has been using only those models, preparing 
travel forecasts in one study. MTC also had some brief 
experience with the entire model system early in 1977, 
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before the models were finally validated for 1965. Our 
experience has been primarily with the regional network 
analysis system. We have done some further develop­
ment work on the policy analysis system, but that is not 
reported here. 

Our position is one of concern that the models may 
not do the job we need or may not do it within reason­
able time and resource constraints. The models may 
be excellent theoretically and quite accurate-or as ac­
curate as possible given the data base. We shall deal 
with the behavioral nature purported for the models, 
some changes necessary to validate and use the models, 
and their cost effectiveness. 

A claim made for these models is that they represent 
traveler decision-making behavior. Experience with 
our models indicates that such claims may be somewhat 
inflated. Our opinion is based on the kinds of adjust­
ments needed to make the models match various mea­
sures of existing trip patterns. This judgment is partly 
the result of our feeling that models should be reason­
ably consistent within a given data base. We have not 
found this to be true with our models and data base, but 
either might be suspect. 

What concerns us most are the dramatic changes to 
the constants of the estimated models to eliminate large 
prediction errors. The constants represent the unknown 
or nonquantifiable factors and therefore are subject to 
considerable estimation error. Even when they are 
changed, there is no assurance that the constants will 
retain their values in the future or, if they do not, how 
they might change. 

A second major problem was the inability to identify 
a function that adequately and consistently reproduced 
trip distribution behavior. The need for a trip length 
adjustment variable became apparent in disaggregate 
validation when estimated models overpredicted long 
trips. A distance correction variable by district of pro­
duction was introduced into the utility equation. Its co­
efficient was developed by trial and error to match ob­
served trip lengths. This is reminiscent of the tradi­
tional fitting of older trip distribution functions (friction 
factors). The consultants interpret this variable as 
representing travelers' decreasing knowledge of poten­
tial attractions as trip length increases. We disagree, 
since such an adjustment is applied more often to work 
trips than nonwork trips. It seems that travelers should 
be much more familiar with work-trip attraction alter­
natives farther from home than nonwork alternatives. 

MTC is performing the 1975 validation by comparing 
model predictions to estimates from other sources. 
There was no regional travel survey in 1975, but 1970 
census journey-to-work data have been used in this val­
idation. Traffic counts, transit ridership, and numer­
ous special purpose surveys have also been used to 
check the models. 

The performance of the HB work models in 1975 val­
idation indicated that the distribution models require 
unique adjustment factors similar to traditional K­
factors . The K-factor approach was implemented by 
adding a term to the utility functions for specific i-j 
pairs (county or district interchanges). This is similar 
to changes in modal constants of the utility functions. 
The K-factors were developed first for county inter­
changes and then for district interchanges. 

Since most of the disaggregate research and model 
development work had been done in the area of work 
mode choice, the expectations for the performance of 
these models were high. The results did not measure 
up to expectations. The mode-choice models also re­
quired transit trip production and district interchange 
adjustment factors. 

The results of disaggregate validation showed that 
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the model estimated from 1972 data overpredicted tran­
sit in the 1965 disaggregate data set by 80 percent. This 
required adjustments to the constants of the driving 
alone and carpooling modes. The prediction error was 
eliminated by increasing the driving alone constant by 
31 percent and increasing the carpooling constant by 26 
percent. The reverse happened in aggregate validation. 
HB work transit prediction using the disaggregately val­
idated model was 42 percent under the 1965 observed 
regional transit trips. This required a decrease of 43 
percent in the constant for the driving alone mode and 
a decrease of 30 percent in the constant for the carpool­
ing mode. 

After pondering these results one wonders which dis­
aggregate data set to believe and if the changes in the 
constants of the utility functions are more behavioral 
than shifting empirically derived mode-split diversion 
curves to match the overall level of transit patronage. 

The 1965 aggregate validation of the work mode­
split model also showed that even though the total re­
gional transit trips matched the home interview survey 
data, it was necessary to further adjust the model con­
stants to match transit productions by district. When 
applying the mode-split model to 1975 estimated condi­
tions the results showed that different utility adjust­
ment' factors than those for 1965 validation were needed. 
In addition, the model overpredicted intracounty (short) 
transit trips and underpredicted intercounty (long) tran­
sit trips. This meant further intercounty or interdis­
trict adjustments. The 1975 results were purely mode­
choice prediction errors, since the model-simulated 
person trip table was generated by the distribution 
model that incorporated K-factors that matched the ob­
served 1975 person trips quite well. 

The final aspect of our concern about the models is 
the resources required to operate them. This includes 
extensive data processing to prepare a multitude of vari­
ables in the proper formats and functions for use by the 
models. The simplicity of the papers and this discus­
sion belies the extensive directories and cross­
references required to use, understand, and interpret 
these models. 

Add to that the problem of expense. To run a com­
plete pass of our model system requires about one_ week 
of elapsed time, despite a computer system that gives 
us the best turnaround in the Bay Area. A complete 
model run costs over $6000 in computer charges, in­
cluding all network processing for peak and off-peak 
transit and highway networks. The demand models 
themselves cost something over $2700 for a complete 
run. A complete run includes peak and off-peak net­
works, four purposes, and all-or-nothing assignment. 

Our concerns about these models can be summarized 
in the following way: 

1. The validity and behavioral claims are suspect 
because of the significant changes in constants and co­
efficients required to make estimated models reproduce 
an independent disaggregate data set and an aggregate 
data set: 

2. The particular subsets chosen from the home in­
terview survey data set for disaggregate estimation and 
validation have too great an effect on estimation results; 
and 

3. The extensive work and reiteration from estima­
tion through validation calls into serious question the 
claims by some advocates that disaggregate behavioral 
models are transferable. 

Authors' Closure 
We appreciate having this opportunity to respond to ~he 
discussions by Dunbar and by Shunk and Kollo. Their 
review of our papers, and of the MTC model system in 
its entirety provides insights from the varying perspec­
tives of the' econometrician and tne practitioner. We will 
respond briefly to the critical comments made by each. 

Dunbar's comments deal with potential specification 
errors in the travel demand models. We note that all 
of Dunbar's critical comments apply to all existing 
travel demand models and are not specific to the MTC 
model system. We will respond briefly to three of 
these. 

Dunbar's comment on cross-section bias may be im­
portant only because an ordinary least-squares ap.proach 
was used to estimate the travel frequency models m the 
MTC system. In on-going studies, a probabilistic choice 
structure is used for trip generation models as well as 
for distribution and mode-choice models. This avoids 
the type of cross -section bias pointed out in Dunbar's 
discussion, since estimation of conditional choice prob­
ability (i.e., frequency given location) is unbiased. 

On value of time Dunbar states that it is inconsistent 
for a marginal rate of substitution (MRS) between time 
and cost of travel (i.e., value of time) to decline with 
respect to time spent in travel. This MRS not only is 
the result of the effect of time and cost constraints, as 
Dunbar suggests, but also represents consumers' tra~e­
offs between time and cost that exist when the constraints 
are not binding. In this case, a declining MRS is per­
fectly reasonable, matches a wide range of empirical 
data, and is indeed a property of many existing aggre­
gate and disaggregate travel d~mand models. The .ti~e 
and cost constraints that do exist are represented indi­
rectly in the MTC model system, as in all others, by 
limiting predictions of internal travel to the set of zone 
pairs that exist within some specified analysis area. 

Dunbar points out that the zone activity variables 
used in a number of the MTC destination choice models 
present potential problems when the models are trans­
ferred to other zone systems and other areas. As shown 
in Dunbar's Equation 25, and using his notation, the 
total attraction component of a typical model of this type 
is E:·a Y~. However, this can also be expressed as: 

(27) 

This form supports the interpretation of Y 1 as the only 
size variable, and E/Y1 as a rate or density-type vari­
able. The single size variable does lead to the conser­
vation of trips, and any deviations in predictions cau~ed 
by the rate variable due to changes in zones are no dif­
ferent than deviations in level of service variables-both 
represent unavoidable aggregation errors inherent in 
any aggregate application of travel demand models. 

Shunk and Kollo comment on questions that have 
arisen at MTC about the behavioral nature of the models, 
especially as evidenced by the changes in constants and 
the distance corrections required for validation, and the 
cost and effectiveness of model application. We will re­
spond to their major points. 

NATURE OF CONSTANTS IN 
LOGIT MODELS 

Constants in logit models represent more than the un­
known and unquantifiable characteristics of travel alter­
natives mentioned by Shunk and Kollo. When the models 
are applied at the aggregate (zone) level, these con­
stants must also compensate for whatever biases exist 



due to the approximations and averages used to charac­
terize the aggregated regional system. The important 
thing to note is that these adjustments do not change in 
any way the behavioral validity of the relative weights 
estimated statistically for the variables of the models. 
The advantages of disaggregate models in including 
more relevant variables than is possible in aggregate 
models, and in requiring fewer observations for model 
estimation, are also not affected by constants and the 
need to adjust them in aggregate applications. 

TRIP LENGTH ADJUSTMENTS 

Shunk and Kollo miss the importance of trip length ad­
justments when they state that these adjustments are ap­
plied more often to work trips than to nonwork trips. 
The magnitude of these corrections is more relevant 
than their frequency of application, and the relative mag­
nitudes for work and nonwork purposes vary with trip 
length. For all trips less than 5 km (3 miles) in length, 
no correction is applied for either purpose. In the 5- to 
24-km (3- to 15-mile) range, work corrections exceed 
those for nonwork travel. For trips longer than 24 km, 
the home-based shop corrections are the largest. 

COST AND EFFECTIVENESS 

Our paper mentions the expanded resource require­
ments, both in terms of staff understanding and in terms 
of analysis costs. Shunk and Kollo quote computer costs 
of $6000; we maintain that these compare favorably with 
the costs of traditional aggregate systems, which can be 
as high as $10 000 for a full analysis. In addition, it 
must be noted that these costs apply only to the full net­
work analysis system, MTCFCAST. For many problems 
faced by MPO's, SRGP can provide the required infor­
mation at costs per alternative in the $100-$200 range, 
after one-time costs of approximately $5000, to prepare 
a data base of household and level-of-service data. It is 
also worth noting that further work is being done to ex­
pand the SRGP approach to be compatible with network 
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assignments. The computer costs of this approach fall 
in the $1500-$2000 range when an iterative procedure 
is used to predict both demand and network equilibrium, 
two aspects that cannot be addressed at all for the 
quoted $6000 cost. 

Fred Reid raised another important question. He 
asked both Shunk and Ben-Akiva, "If you had the project 
to do over again, what would you do differently?" This 
is a question to which we have given considerable 
thought, because the technical quality and capability of 
the model system are not being taken full advantage of 
by the agency £or which it has been developed. 

One important aspect of the project that would be done 
differently is that less effort would be spent formulat­
ing and estimating additional model components; instead, 
more effort would be spent on thoroughly testing and val­
idating the fewer model components estimated. This 
strategy is required to prevent the disillusionment likely 
to occur when, near the end of the model development 
process, some component produces unreasonable results 
under certain input assumptions. 

Two other redirections of effort would have increased 
the usefulness of the modeling work done. First, rather 
than the almost exclusive emphasis, in the prediction 
testing and validation portions of the project, on the full 
network analysis system, MTCFCAST, more effort 
would have been devoted to demonstrating the value and 
usefulness of the SRGP program, which is potentially 
more cost effective for many of the policy questions ad­
dressed by an MPO. Second, more emphasis would be 
placed on ensuring, throughout the project, that the end 
product be precisely what is needed to meet the agency's 
planning needs and that the agency staff have full knowl­
edge of the end product and complete facility in using it. 

The problems of implementing and successfully using 
a major new model system require a large amount of 
cooperative effort by modelers and practitioners to be 
completely solved. 

Publication of this paper sponsored by Committee on Passenger Travel 
Demand Forecasting and Committee on Traveler Behavior and Values. 

Effects of Transportation Service on 
Automobile Ownership in an 
Urban Area 
Thomas F. Golob,* Consultant, Birmingham, Michigan 
Lawrence D. Burns, Transportation and Traffic Science Department, Ui! General 

Motors Research Laboratories, Warren, Michigan 

A disaggregate automobile ownership choice model is applied to estimat· 
ing the elasticities of automobile ownership with respect to household 
income, fixed costs of automobiles, travel times on urban roadways, and 
public transit service in a case study urban area. Focus is on the aggre· 
gate stock of automobiles held by all households and on the distribution 
of households owning zero, one, two, and three or more autos. Auto· 
mobile ownership behavior of sociodemographic segments in the total 
population is also compared. Results indicate that the total number of 
automobiles owned is approximately three times more sensitive to 
household income than to automobile travel times. Furthermore, 
automobile ownership is twice as sensitive to automobile travel times 
as it is to public transit travel times. Finally, the automobile ownership 

decisions of inner·city dwellers and older families are more sensitive to 
all of thl!$e factors than are the decisions of suburban dwellers and 
younger families. It is demonstrated that transportation policies affect· 
ing urban traffic efficiency and public transit service are likely to im· 
pact on automobile ownership and these impacts will vary with geo· 
graphical location and population sociodemographic segment. 

The purpose of this research is to estimate the relative 
sensitivities of urban automobile ownership levels with 
respect to household income, automobile costs, ef-
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ficiency of automobiles and public transit travel, and 
locations of residences and urban activities. Focus is 
on the aggregate stock of automobiles held by all house­
holds and on the distribution of households owning O, 1, 
2, and 3 _or more automobiles. 

The sensitivity estimates are generated by using a 
disaggregate automobile ownership model based on a 
theory proposed by Beckmann, Gustafson, and Golob (1). 
The theory postulates that a household trades off re- -
duced consumption of goods and services other than 
transportation for increased accessibility to opportuni­
ties when deciding whether or not to own one or more 
automobiles. The dependent variables are the probabili­
ties that a given household will choose to own a particular 
number of automobiles. The explanatory variables in­
clude those encompassed in the consumption component 
of the household trade-off function and those encompas­
sed in the accessibility components. The former vari­
ables include household disposable income, fixed costs 
of automobile ownership, automobile operating costs, 
and public transit fares. The latter variables include 
travel times by automobile from the household's location 
to all possible trip destinations, travel times by public 
transit to those destinations accessible by transit, and 
the activity level or opportunities at each destination. 
Household sociodemographic characteristics are used 
as segmentation variables. 

The Beckmann-Gustafson-Golob automobile owner­
ship theory leads directly to a strict utility model of 
choice in the manner described by Georgescu-Roegen 
(2, 3) and Halldin (4). Strict utility models are referred 
to as Bradley-Terry-Luce models in psychology (5, 6) 
and are applications of the well-known first-choice a"Xiom 
of Luce (6). As demonstrated by McFadden (7, 8) and 
Yellott (91, these models are expressed withoutloss of 
generalifY as multinomial logit models for parameter 
estimation purposes. 

The initial logit parameter estimations of the 
Beckmann-Gustafson-Golob theory were accomplished 
by Burns, Golob, and Nicolaidis (10). Lerman and 
Ben-Akiva (11) independently proposed an alternative 
model that iSless rigorous in its underlying choice 
theory, more restrictive in its assumptions of a 
hierarchy of travel choices, but able to estimate the 
effects of a far larger number of explanatory variables. 
The two models are excellent complements. 

The model requires data of the sort typically col­
lected in urban transportation planning system (UTPS) 
studies. The case study application presented here 
uses home interview, transportation network, and land­
use data from the Detroit Transportation and Land Use 
Study (TALUS) (12). A maximum likelihood estimation 
technique was employed. Maximum likelihood estima­
tions of multinomial logit parameters have been shown 
by McFadden (7, 8) to be statistically consistent, asymp­
totically efficient: and unique under very general 
conditions. The estimators are also asymptotically 
normal, which permits large sample applications of 
t-statistics and chi-square statistics in significance 
tests. 

Model calibrations were performed by using random 
subsamples of households interviewed in the 1965 
TALUS home interview survey. Since TALUS ex­
pended considerable effort to establish a probability 
sample of households and since large sample sizes 
were used in the present study, the random subsamples 
were judged to be representative cross-sections of 1965 
Detroit area households. Separate subsamples were 
used for model calibration and for calculation of good­
ness of fit. 

As a first step in calibrating the models, households 
were divided into choice-constraint segments based on 

the maximum feasible number of automobiles they were 
assumed to consider. This maximum feasible number 
of automobiles is generally equal to the number of 
driver-aged household members. However, for some 
low-income households, the maximum feasible number 
of automobiles is determined by a constraint on the 
amount of disposable income available to meet costs of 
automobile ownership. The rationale of separate 
calibrations for choice constraint segments has been 
proposed by Recker and Golob (13). It allows for the 
possibility that housholds faced with different choice 
sets weigh the costs and benefits associated with the 
choices differently in arriving at their final decisions. 

In the course of calibrating the models, sensitivity 
analyses were conducted on several model parameters. 
These included automobile fixed costs, disposable in­
come definitions, automobile operating costs, and defini­
tions of activities at trip destinations. 

Following calibration of the model for the total 
sample, the households were divided into segments that 
were homogeneous with respect to their demographic 
and socioeconomic characteristics. Separate calibra­
tions were then performed for each demographic seg­
ment. As discussed by Lovelock (14), Louviere and 
others (15), and Nicolaidis, Wachs-:-and Golob (16), 
such a segmentation allows identification of different 
sensitivities in the choices of various readily identifi­
able groups in society. 

To study the relative importance of factors affecting 
household consumption and those affecting household 
members' accessibilities in household automobile 
ownership decisions, the effects of changes in these 
factors must be examined. These effects are captured 
in a dimensionless measure commonly known as 
elasticity. Elasticity is a ratio of the resulting per­
centage change in a dependent variable to the corre­
sponding change in an independent variable. The greater 
the absolute value of elasticity, the greater the sensitiv­
ity of the dependent variable to changes in the indepen­
dent variable. Expressions were formulated for elastici­
ties of (a) household choice probabilities, (b) expected 
household automobile ownership, (c) expected aggregate 
choice frequencies, and (d) expected aggregate auto­
mobile ownership with respect to (a) household income, 
(b) automobile fixed costs, (c) automobile travel times 
to all destinations, and (d) public transit travel times to 
destinations reachable by public transit. 

These expressions are used in conjunction with re­
sults from the model calibrations to determine elasticity 
values. The values are then interpreted with respect 
to traffic efficiency and public transit service policies. 

MODEL CALIBRATION 

Total Sample 

In the 1965 Transportation and Land Use Study (12) a 
total of 28 178 households that resided within the 
boundaries of the 1960 Detroit urban area were inter­
viewed (17). These households were divided into three 
choice-constraint segments on the basis of the above 
criteria for determining the maximum feasible number 
of automobiles for each household. 

This division is depicted in Figure 1, where 22.2 
percent of the households were postulated to have 
choices between 0 and 1 automobile; 64.4 percent had 
choices among O, 1, and 2 automobiles; and 13.4 per­
cent had choices among 0, 1, 2, and 3 or more auto­
mobiles. Again, both number of driver-aged household 
members and household disposable income were used to 
segment these households. 

Also shown in Figure 1 are the total numbers of 



households in each choice-constraint segment observed 
to choose each alternative number of automobiles. 
These distributions of actual choices affect choice 
model calibrations and must be taken into account when 
evaluating the goodness of fit of such models. 

Multinomial legit parameter estimates for each 
choice-constraint segment are shown in Table 1. The 
sample size for each model is approximately 600. The 
first three rows in this table list the utility coefficients 
(the coefficients corresponding to the consumption term 
and transportation accessibility term are denoted b,, and 

Figure 1. Choice-constraint segmentation for total sample. 
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Table 1. Choice model results for total sample. 

Choice -Constraint Segment 

Model Parameter 0, 1 Auto 0, 1, 2 Autos 

Coefficient on transportation 0.526 0.471 
accessibility term b, 

t-Statlstic 13.60 22.60 
Coefficient on consumption 2.13 6.96 

term b, 
t-Statlstic 11.60 11.40 

Constant 0.598 1.43 
t-Statistlc 6.37 16.90 
Choice to which constant 0 autos I auto 

assigned 
Chi-square statistic for 127.0 116.0 

likelihood explained by 
model relative to null 
hypothesis of choice shares 

Degrees of freedom 3 3 

Table 2. Choice model tests for total sample hold outs. 

Choice-Constraint Segment 

Test statistic 0 , I Auto 0, 1, 2 Autos 

Ag~regate frequencies of 
households owning particu-
lar numbers of automobiles 
(computed/actual) 

0 autos 518/514 77/56 
1 auto 526/530 551/562 
2 autos 383/393 
3+ autos 

lnclividual households' 69 60 
choices classified cor-
rectly, 1-

Individual households' 50 46 
choices predicted cor-
rectly using choice share 
proportions as aid to 
random process, <f. 

1, 2, 3+ Autos 

0.252 

16.90 
8.02 

11. 70 
0.816 
10.20 
2 autos 

96.4 

I , 2, 3+ Autos 

285/285 
635/628 
339/346 
50 

38 
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bt respectively) and their t-statistics (ratio of coefficient 
to standard error of coefficient) for the consumption 
term, transportation accessibility term, and constant. 
The asymptotic distribution of these t-statistics is 
Student's t, and therefore they are used to test the null 
hypotheses b,, = 0 or bt = O. 

The 99 percent critical value nf the t-distribution for 
approximately 600 degrees of freedom is 2.33; t-statistics 
greater than this value have a probability of less than 
0.01 of being due to chance. 

The consumption term is a function of disposable in­
come and automobile fixed costs. The transportation ac­
cessibility term is a function of travel times by auto­
mobile from each household's location to all potential 
trip destinations, the population residing at each desti­
nation (a proxy for the attraction of destinations), and 
travel times by public transit to those destinations 
accessible by public transit. These terms are described 
by Burns and Golob (18) . 

The last row of Table 1 gives a chi-square statistic 
developed from the ratio of the logarithms of the initial 
and final likelihoods; it is used to test the joint null hy­
pothesis that b0 = bt = 0 and has three degrees of freedom 
in the present applications. It can be concluded from 
these results that, first, the probability that statistics 
supporting these models are due to chance is extremely 
low (less than 0.0001) and, second, the relationship be­
tween the number of· automobiles households choose to 
own and both the consumption and accessibility variables 
defined in the present theory is highly statistically 
significant. Research by Burns and Golob (18) presents 
additional and encouraging model goodness-of-fit re­
sults from previous sensitivity analyses. 

The predictive power of these three calibrated models 

Table 3. Choice model results for total equal-proportion sample. 

Choice-Constraint Segment 

Model Parameter 0, 1 Auto 0, I, 2 Autos I, 2, 3+ Autos 

Coefficient on transportation 0.526 0.448 0.207 
accessibility term b, 

t-statlstic 13.6 23.9 15.1 
Coefficient on consumption 2.13 10.6 7.56 

term b, 
t-statistic 11.6 17.6 11.9 

Constant 0.598 0.404 (constant in-
t-statistic 6.37 4. 10 significant) 
Choice to which constant 0 autos 1 auto 

assigned 
Chi-square statistic for 127.0 279.0 90.7 

likelihood explained by 
model relative to null 
hypothesis of choice shares 

Degrees of freedom 3 

Table 4. Sociodemographic factors. 

Correlation 
Percentage Between 

Factor of Variance Factor and 
No. Explained Component Variables Variable 

25.4 Marital status of head of household 0.86 
Sex of head of household 0.78 
No. of licensed drivers 0.77 
No. of household members 0.66 

2 19.0 Age of head of household 0.83 
Tenure at address 0.81 
Rent or own home -0.52 
Education of head of household -0 .49 

18.0 Population density of zone of rest- 0.81 
dence 

Race of head of household 0.80 
Rent or own home 0.48 
Education of head of household -0.44 
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was next tested on hold-out samples. Probabilities 
were calculated by using the parameter values calibrated 
on the original sample and the observed independent 
variable values for each household in a segment hold­
out sample. The aggregate frequencies of households 
owning each particular number of automobiles were 
then computed by adding the probabilities for each choice 
state. In addition, each household was assigned to the 
choice state with highest calculated probability, and the 
percentages correctly assigned were tabulated. Re­
sults are shown in Table 2. 

The descriptive power of each of the models is good. 
With regard to the less stringent aggregate frequencies 
test, all computed frequencies were within 2.5 percent 
of the actual, with the exception of the relatively rare 
case of the households with choices of 0, 1, and 2 
automobiles who chose to own 0 automobiles; these 
households were over-predicted by 37.5 percent. With 
regard to the very stringent percent correct classifica­
tion test, the models each improved classification ac­
curacy by approximately one-third over the best achiev­
able using a priori probabilities based upon the propor -
tions of households choosing to own various numbers of 
automobiles (i.e., using a random process aided by 
market share proportions). 

The results of the total sample model calibrations 
are partially dependent on degrees of inequality in 
choice share proportions. Constants in multinomial 
logit models adjust for inequalities in choice shares, 
but, in general, utility coefficients are also affected. 
Consequently, in order to investigate the relative con­
tributions of the consumption and transportation ac -
cessibility terms in explaining the choices of each of 
the three choice-constraint segments, models were 
calibrated for samples chosen with equal proportions 
of each chosen alternative. Results are shown in 
Table 3. The segment with choice between 0 and 1 
automobile had approximately equal choice shares for 
the total sample, and thus model results are the same 
as in Table 1. 

The presence of constants in a logit model estimated 
on equal proportion samples indicates that there is a 
bias in choice toward one or more alternatives not ex­
plained by the model variables. The failure to find a 
constant significantly different from zero is a necessary 
but not sufficient condition for the full explanatory power 
of model variables in light of random disturbances. 
Thus, there is justification in interpreting the results 
of Table 3 to mean that the choices of households among 
1, 2, and 3+ automobiles are more fully explained in 
terms of the present theory than are the choices of 
households between 0 and 1 automobile, and among 0, 1, 
and 2 automobiles. In other words, choices involving the 
alternative of 0 automobiles are more difficult to explain 
than choices involving only how many automobiles are to 
be owned. This conclusion is further strengthened by 
comparing the chi-square statistics, where degrees of 
freedom correspond, and t-statistics listed in Table 3. 

A second conclusion is that transportation accessi­
bility is more important relative to consumption (dis­
posable income and fixed automobile costs) for house­
holds choosing between 0 and 1 automobile than it is for 
households in the other two choice-constraint segments. 
This conclusion is based on comparisons of utility coef­
ficients and is only ordinal. 

Sociodemographic Segments 

The total sample of Detroit urban area households was 
segmented on the basis of similarities in patterns of 
sociodemographic characteristics. The available char-

acteristics measured in the TALUS home interview are 
listed below. 

Characteristic 

Number of household members 
Number of licensed drivers 
Rent or own house 
Tenure at address 

Education of head of household 

Sex of head of household 
Race of head of household 
Age of head of household 
Marital status of head of house-
hold 

Population density of traffic 
analysis zone of residence 

Coding 

Absolute number 
Absolute number 
1 =own, 2 = rent 
1 = 7 weeks or less, 2 = 8-51 weeks, 
3 z 1-4 years, 4 = 5-10 years, 
5 = over 10 years 

1 = 8 years or less, 2 = 9-11 years, 
3 =high school, 4 =college 

1 =female, 2 = male 
1 a white, 2 =nonwhite 
Absolute number 
1 = unmarried, 2 =married 

Persons per hectare 

The segmentation methodology is similar to that 
described by Golob and Nicolaidis (19). It involves 
factor analysis and cluster analysis-:- The factor analysis 
is used to summarize the interrelationships among the 
sociodemographic variables by creating linear com­
binations of the variables (factors) that are independent 
of one another. Clustering individual households into 
homogeneous groups is then conducted in the multidi­
mensional space of the factors; this eliminates redun­
dancies in demographic measures and simplifies inter­
pretation of the resulting segments. A random sample 
of 935 households was used in the factor and cluster 
analyses. The total sample of 28 178 households were 
then assigned to the resulting segments by using multiple 
discriminant analysis classification procedures. 

Three sociodemographic factors were found to 
account for 62 .4 percent of the variance in the original 
ten variables, and additional factors were judged not to 
add sufficient descriptive power to warrant the loss in 
efficiency. The factors are described in Table 4, where 
the percentage of variance accounted for by each factor 
and the variables that have high correlations (factor 
loadings) with each factor are listed. 

The selection of an appropriate number of segments 
is accomplished in a fashion similar to the selection of 
the number of factors: a cut-off point is located in a 
clustering "compactness" index (i.e., an index simul­
taneously measuring within-segment homogeneity and 
between-segment heterogeneity). A good compactness 
index is judged to be the Wilks ;\-criterion, the ratio of 
the determinant of the pooled within-segment scatter 
matrix to the determinant of the total scatter matrix. 
In this way four sociodemographic segments were found. 

The four sociodemographic segments were next 
plotted in the space of the three factors to facilitate in­
terpretation. The segments were labeled so as to best 
represent their positions in the factor space. These 
labels and the proportions of the total sample in each 
segment are given below. Essentially, there are two 
large segments, and two segments that are approxi­
mat ely one-half the size of the large segments. 

Percentage of 
No. Label Total Sample 

1 Single-person households 15.7 
2 Younger families 39.8 
3 Inner-city dwellers 15.2 
4 Older families 29.3 

Division of each of the four segments into choice­
constraint segments led to the aggregate splits depicted 
in Figures 2 through 5. These figures are analogous to 
Figure 1 for the total sample. However, some choice-



Figure 2. Choice-constraint segmentation for 
demographic segment 1. 
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Figure 3. Choice-constraint segmentation for demographic 
segment 2. 
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Figure 4. Choice-constraint segmentation for demographic 
segment 3. 
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constraint segments essentially did not exist for some 
sociodemographic segments, because there were in­
sufficient observations to permit choice models to be 
calibrated for these cases. They are indicated as rare 
events in Figures 2 through 5. 

Interpretation of the figures leads to the conclusion 
that, for each of the four sociodPmographic segments, 
the distribution of the segment sample into choice­
constraint segments is intuitively satisfying, including 

Figure 5. Choice-constraint segmentation for demographic 
segment 4 . 
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Table 5. Choice model resulu for sociodemographic segment 1 . 

Model Parameter 

Coefficient on transportation 
accessibillty term b, 

I-statistic 
Coefficient on consumption 

term b, 
t-Statistlc 

Constant 
I-statistic 
Choice to which constant 

assigned 
Chi-square statistic for 

likelihood explained by 
model relative to null 
hypothesis of choice shares 

Degrees of freedom 

Choice-Constraint Segment 

0, 1 Auto 0, 1, 2 Autos 

0.526 

11.7 
2.61 

9.99 
0.615 
5.38 
0 autos 

109 

3 

No model 

1, 2, 3+ Autos 

No model 

Table 6. Choice model results for sociodemographic segment 2 • 

Model Parameter 

Coefficient on transportation 
accessibility term b, 

t-Statistlc 
Coefficient on consumption 

term b, 
t-Statistic 

Constant 
t-Statistlc 
Choice to which constant 

assigned 
Chi-square statistic for 

likelihood explained by 
model relative to null 
hypothesis of choice shares 

Degrees of freedom 

Choice-Constraint Segment 

0, 1 Auto 0, 1, 2 Autos 1, 2, 3~ Autos 

No model 0.433 0.215 

24.8 13.9 
10.9 7.80 

18.4 10.6 

0.484 
5.14 (constant in· 
1 auto significant) 
329 70.8 
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the occurrence of the rare events. 
Choice model results for the sociodemographic seg­

ments are given in Tables 5 through 8. The format of 
these tables is identical to that of Table 3 for the total 
equal proportion sample. Comparisons among the re­
sults shown in Tables 5 through 8 lead to the following 
conclusions (sizes of the random samples chosen for 
model calibrations are approximately equal). 

First, with regard to choices between 0 automobiles 
and 1 automobile, significance levels of constants in­
dicate that errors in model specification are expected 
to be less for demographic segment 3 than for demo­
graphic segment 1. That is, choices of inner-city 
dwellers are more readily explained in terms of the 
accessibility and consumption variables of the present 
theory than are the choices of single-person house­
holds. 

Second, with regard to choices among 0 automobiles, 
1 automobile, and 2 automobiles, chi-square statistics 
and t-statistics indicate that choices of younger families 

Table 7. Choice model results for sociodemographic segment 3. 

Choice-Constraint Segment 

Model Parameter 0, 1 Auto 0, 1, 2 Autos 1, 2, 3+ Autos 

Coefficient on transportation 0.390 0.509 No model 
accessibility term b, 

t-statistlc 8.62 17.3 
Coefficient on consumption 1.87 9.81 

term b, 
t-statistlc 8.04 18.1 

Constant (constant 
t-Statistic insig- -0.338 
Choice to which constant nificant) -2.94 

assigned 
Chi-square statistic for 41.2 167.0 

likelihood explained by 
model relative to null 
hypothesis of choice shares 

Degrees of freedom 2 3 

Table 8. Choice model results for sociodemographic segment 4. 

Choice-Constraint Segment 

Model Parameter 0, 1 Auto 0, 1, 2 Autos 1, 2, 3+ Autos 

Coefficient on transportation No model 0.457 No model 
accessibility term b, 

t-Statistic 2 7. 5 
Coefficient on consumption 14.2 

term b, 
I-statistic 20.0 

Constant 
t-statistlc 0.371 
Choice to which constant 3. 83 

assigned 1 auto 
Chi-square statistic for 278 

likelihood explained by 
model relative to null 
hypothesis of choice shares 

Degrees of freedom 3 

Table 9. Elasticities of total sample. 

are most effectively explained, then come choices of 
older families, and finally are choices of inner-city 
dwellers. In addition, the relative utility weights in­
dicate that accessibility is a more important considera­
tion relative to consumption for inner-city dwellers, 
which corresponds to an expected higher average level 
of public transit service for these people. 

Comparisons involving choices among 1 automobile, 
2 automobiles, and 3+ automobiles were not possible 
because only one sociodemographic segment had a 
choice model calibrated for this choice-constraint seg­
ment. 

ELASTICITY CALCULATIONS 

Total Sample 

Elasticities of automobile ownership in the Detroit 
metropolitan area in 1965 with respect to certain im­
portant model explanatory variables are shown in 
Table 9. These include elasticities for the expected 
number of households owning alternative numbers of 
automobiles and the overall elasticity for the aggregate 
stock of automobiles held by all households. 

Automobile ownership was found to be three times 
more sensitive to changes in disposable income or 
automobile fixed costs than to uniform percentage 
changes in automobile travel times throughout the 
metropolitan area: a 10 percent increase in all in­
comes would lead to a 3 percent increase in the aggre­
gate stock of automobiles, while a 10 percent increase 
in automobile travel times would lead to a 1 percent 
decrease in aggregate stock. Travel time by public 
transit has one-half the effect of travel time by auto­
mobile and almost the same effect as travel time by 
automobile to destinations located within the city of 
Detroit. 

The net number of households owning 1 automobile 
is relatively insensitive to changes in disposable in­
come, fixed costs of automobiles, or any travel times. 
This is because about the same number of households 
move from 0 automobile to 1 automobile states as 
move from 2 automobiles to 1 automobile for opposite 
types of changes. With respect to the relative effects 
of the consumption term versus the transportation ac­
cessibility term, the number of households owning 0 
automobiles and the number of households owning 3+ 
automobiles are most sensitive to income and auto­
mobile fixed costs. However, the number of house­
holds owning 0 automobiles also has the highest sensitiv­
ity to transportation accessiblity variables; the number 
of households owning 3+ automobiles, together with the 
number owning 2 automobiles, has only modest sensi­
tivity to transportation accessibility variables. 

The results in Table 9 were developed through aggre­
gation of results for each of the three total sample 
choice-constraint segments. Tables 10 through 12 list 
these more detailed results for comparison purposes. 

Elasticity of Expected No. of Households Elasticity of 
Aggregate stock 
of Autos Held 

Var lab le 

Consumption term: 
Disposable Income (= negative of fixed costs of all autos) 

Transportation accessibility term: 
Travel by auto to all destinations 
Travel by auto to destinations In city of Detroit (only) 
Travel by public transit to all destinations 
Travel by public transit to destinations In city of Detroit (only) 

Owning 
0 Auto 

-0.94 

0.30 
0.11 

-0.17 
-0.10 

Owning 
I Auto 

-0.08 

0.05 
0.02 

-0.01 
-0.01 

Owning 
2 Autos 

0.49 

-0.21 
-0.08 
0. 10 
0.06 

Owning 
3 Autos 

0.89 

-0 .21 
-0.08 
0.09 
0.06 

by All Households 

0.29 

-0.10 
-0.04 
0.05 
0.03 



Households faced with choices between 0 and 1 auto­
mobile (Table 10) are most sensitive to changes in both 
consumption and accessibility term variables; house­
holds faced with choices among 1, 2, and 3 or more 
automobiles are least sensitive to such changes. Since 
households in the latter choice-constraint segment 
generally have higher incomes, the difference in con­
sumption term elasticities is consistent with traditional 
economic theories. Households in the latter segment 
in general are also more suburbanized, so the difference 
in accessibility term elasticities can be interpreted to 

Table 10. Elasticities of choice-constraint segment with choice of 
0 or 1 auto. 

Elasticity of Ex-
pected No. of 
Households in the 
Choice-Constraint Elasticity of 
Segment 

Owning 
Variable 0 Auto 

Cmurumption term: 
Disposable Income (= negative -0.72 

of fixed costs of all autos) 
Transportation accessibility 

term: 
Travel by auto to all destlna- 0.21 

tlona 
Travel by auto to destinations 0.08 

In city of Detroit (only) 
Travel by public transit to all -0.12 

destinations 
Travel by public transit to -0.07 

destinations in city of 
Detroit (only) 

Table 11. Elasticities of choice-constraint 
segment with choice of 0, 1, or 2 autos. 

Table 12. Elasticities of choice-constraint 
segment with choice of 1, 2, or 3+ autos. 

Aggregate 
Stock of Autos 

Owning Hela by Segment 
1 Auto Households 

0.72 0.72 

-0.21 -0.21 

-0.08 -0.08 

0.12 0.12 

0.07 0.07 

Variable 

Consumption term: 
Disposable income (= negative 

of fixed costs of all autos) 
Transportation accessibility 

term: 
Travel by auto to all destlna-

Ilona 
Travel by auto to destinations 

In city of Detroit ( oRly) 
Travel by public transit to all 

destinations 
Travel by public transit to 

destinations in city of 
Detroit (only) 

Variable 

Consumption term: 
Disposable income (= negative 

of fixed costs of all autos) 
Traneportatlon accessibility 

term: 
Travel by auto to all destina-

tions 
Travel by auto to destinations 

in city of Detroit (only) 
Travel by public transit to all 

destinations 
Travel by public transit to 

destinations in city of 
Detroit (only) 
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reflect the relative unavailability of alternatives to 
travel by automobile outside the city of Detroit. Many 
such relationships between elasticities and socioeco­
nomic and location patterns are explored later in 
this report. 

A final issue in this section is the effect of auto­
mobile fixed costs. Because of the assumptions 
underlying the utility theory model, treating auto­
mobiles as homogeneous economic gocxls equates the 
absolute value of the effect of disposable income and 
automobile fixed costs. It is beyond the scope of the 
present theory to distinguish between new and used 
automobiles. If, however, second and third automobiles 
held by households are postulated to be affected by 
exogenous inputs (such as insurance costs) to a dif­
ferent extent than first automobiles are, differences in 
sensitivities to income and automobile fixed costs can 
be investigated in terms of the present theory. 

Assume that changes in fixed costs of second and 
third automobiles are less than changes in fixed costs 
of first automobiles by a fixed percentage. For example, 
if costs of the first or primary automobile held by 
households increase by 10 percent, the costs of second 
and third automobiles increase by 7 .5 percent (i.e., 
fixed cost increases for additional automobiles are 75 
percent of fixed cost increases for primary automobiles). 
Fixed automobile cost elasticities for the total sample 
have been estimated under such an assumption, and re­
sults are graphed as a function of percentage difference 
between primary and second and third automobile cost dif­
ferences in Figure 6. Fixed automobile cost elasticities 
range linearly from on the order of one-half the income 
elasticity to the income elasticity over the entire domain 
of possible percentage differences. These results are 

Elasticity of Expected No. of 
Households in the Choice- Elasticity of 
Constraint Segment Aggregate 

Stock of Autos 
Owning Owning Owning Held by Segment 
0 Auto 1 Auto 2 Autos Households 

-1.44 -0.22 0.61 0.26 

0.47 0.12 -0.26 -0.10 

0.17 0.04 -0.10 -0.04 

-0.27 -0.04 0.12 0.05 

-0.16 -0.03 0.07 0.03 

Elasticity of Expected No. of 
Households in the Choice- Elasticity of 
Constraint Segment Aggregate 

Stock of Autos 
Owning Owning owning Held by Segment 
I Auto 2 Autos 3+ Autos Households 

-1.07 0.01 0.87 0.23 

0.22 -0.01 -0.21 -0.05 

0.08 0.00 -0.08 -0.02 

-0.12 0.00 0.10 0.03 

-0.07 0.00 0.06 0.02 
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Figure 6. Implied elasticity of aggregate stock of automobiles versus 
change in costs of automobiles. 
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Table 13. Elasticities of aggregate stock of autos. 

Sociodemographic Areawide 
Segments Auto 

Percentage Disposable Travel 
No. Type of Sample Income Time 

Single-person 16 0.68 -0.19 
households 

2 Younger families 40 0.48 -0. 12 
3 Inner-city 15 0.77 -0.20 

residents 
4 Older families 29 0.66 -0 .16 

Total 100 0.51 -0.14 

100 

Areawide 
Transit 
Travel 
Time 

0. 11 

0.06 
0. 13 

0 .07 

0.07 

interpreted to be evidence that the true automobile fixed­
cost elasticity lies within this range. 

Sociodemographic Segments 

Elasticities of the aggregate stock of automobiles owned 
by all households in a sociodemographic segment with 
respect to selected variables are shown for each of the 
four demographic segments in Table 13. The three 
variables are disposable income, automobile travel 
time to all destinations, and public transit travel time 
to all destinations. Results for the total sample are 
shown for comparative purposes. These total sample 
res ults are differ ent from t hose listed in Table 9, since 
t hey are gener ated by using equal proportional sampling 
choice model parameters (Table 3), as opposed to 
r andom sampling (Table 1). This is necess ary in or der 
to match the sampling underlying the results for the 
sociodemographic segments. 

The choices of inner-city residents are most sensi­
tive to changes in disposable income and both auto­
mobile and transit travel times. The choices of younger 
families are least sensitive to changes in these vari­
ables explaining automobile ownership behavior. The 
effects of the two variables representing the transporta­
tion accessibility term are greatest relative to the effect 
of income for single-person households. 

With regard to the two accessibility variables, the 
choices of inner-city residents and single-person 
households are most sensitive to public transit travel 
time relative to automobile travel time. Since these 
two segments are the least suburbanized, this result 
is consistent with the conclusion that public transit is 

a more significant factor in automobile ownership 
decisions in higher density areas where its service 
level is higher. 

CONCLUSIONS 

The aggregate stock of automobiles held by urban 
households (all automobiles owned, both new and used) 
is sensitive to transportation accessibility factors­
travel times by automobile and by public transit-as 
well as to income and automobile ownership cost. Using 
the Detroit area as a case study, the following sensitiv­
ities were found from 1965 cross-sectional data: 

1. The elasticity of automobile ownership with re­
spect to automobile travel times is 0.1. It may there­
fore be inferred that a 10 percent decrease in auto­
mobile travel times experienced by all households, as 
a result perhaps of road or traffic efficiency improve­
ments, would cause a 1 percent increase in automobile 
ownership, all else being held constant . The elasticity 
of automobile ownership with respect to public transit 
travel times is 0.05, or one-half that of automobile 
travel times. 

2. The automobile ownership decisions of inner-city 
dwellers are more sensitive to travel time accessibility 
factors (and income) than are those of suburban dwellers. 
The ownership decisions of young families are less 
sensitive to these same factors than are those of older 
families. 

3. The elasticity of automobile ownership with re­
spect to disposable income is 0.3, or three times that 
of automobile travel times and six times that of public 
transit travel times . 

These conclusions are derived from elasticity cal­
culations using cross-sectional data at one point in 
time. While such calculations are conceptually dif­
ferent from elasticity calculations that use time-series 
data, they do provide a basis on which to compare 
relative effects of different variables. 

Implications of these results are twofold. First, 
transportation policies aimed at improving traffic ef­
ficiency within urban areas can be expected to increase 
automobile ownership levels. Second, policies aimed 
at improving public transit service can be expected to 
decrease automobile ownership levels, but the absolute 
value of this effect will be approximately one-half that 
of the traffic efficiency effect (for an equal percentage 
change in overall automobile or bus trip time). These 
effects should not be ignored when assessing the costs 
and benefits associated with plans affecting traffic ef­
ficiency or public transit service. 
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Perceptual Market Segmentation 
Technique for Transportation 
Analysis 
Ricardo Dobson*, Charles River Associates, Inc., Cambridge, 

Massachusetts 
Mary Lynn Tischer, Federal Highway Administration 

A primary aim of this research is to illustrate a relatively uncomplicated 
and effective perceptual market segmentation procedure for transporta­
tion policy analysis. This illustration is achieved through a flowchart de· 
scribing the technique, an empirical application, and tests of the reliabil· 
ity of the derived market segmentation structures across split halves of 
a data set. The procedure was calibrated on a sample of Los Angeles 
central business district workers. The segmentation structure, which 
was derived for the full sample, readily distinguished the perceptual 
IJ'OUps and correlated highly with appropriate mode-choice patterns. 
It was also observed that perceptual segmentation membership was a 

stronger determinant of mode choice than zone network times and 
costs. The split sample analyses showed reliable relationships across 
halves and confirmed the mode<hoice linkage of perceptual segments 
relative to network times and costs. Among the practical implications 
of the segmentation procedure are its use in developing short-range fore· 
casting models and its potential for developing information aids to tar· 
gat groups of travelers. 

The concept of market segmentation for consumer re-
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search issues was introduced into transportation analy­
sis in the early and middle 1970s. Several major re­
views address market segmentation and how it can be 
used to facilitate transportation analysis (1, 2, 3, 4). 
Transportation analysts have long grouped households 
on the basis of geographic proximity. However, the 
introduction of the market segmentation concept has 
pointed to the fact that spatial arrangement is not the 
sole basis for agglomeration. Golob and Dobson (5) have 
suggested that perceptions and preferences may serve 
as a useful basis for grouping households or individuals. 

Three broad areas have received attention in con­
siderations of direct consumer research applications of 
market segmentation. These are the analysis of behav­
ioral intentions, the estimation of factors underlying 
objective choices for travel options, and transit market­
ing by operating agencies. 

Studies directed at the analysis of behavioral inten­
tions are most often concerned with innovative or evolu­
tionary transportation systems. Costantino, Dobson, 
and Canty (6) supported the hypothesis that a more 
thorough uiiderstanding of individuals' preferences for 
ways of traveling to work or shop could be obtained by 
stratifying a sample into homogeneous groups rather 
than by considering respondents as an undifferentiated 
set. Dobson and Kehoe (7) investigated the validity of 
market segments based on perceptual dimensions and 
determined that one market segment's dimensions were 
better at estimating its satisfactions than other seg­
ments' dimensions. 

Studies attempting to explain objective travel choices 
are most often concerned with analyzing the operation 
of an existing transportation system. The goals of these 
analyses are frequently the diagnosing of current opera­
tions in a search for system enhancements and/or the 
devising of a better forecasting model. Hensher (8) 
found that employment commitment, size and composi­
tion of household, and age distribution of travelers in 
a household were related to shopping trip frequency. 
Recker and Golob (9) found that market segments based 
on perceived constraints for the ability to easily use a 
way of traveling emphasize alternate classes of system 
attributes as determinants of a way of getting to work. 
Dobson and Tischer (10, 11) reported that choice models 
based solely on system perceptions were statistically 
significant beyond the 0.01 level. 

There are a limited number of actual applications of 
market segmentation strategies to transit marketing. 
Some of these are documented in a marketing publication 
issued by the Urban Mass Transportation Administration 
entitled Pricing-Transit Marketing Management (12). 
For example, the San Diego Transit Commission raised 
the general fare to a total of 35 cents. However, fares 
for senior citizens and handicapped patrons were set at 
15 cents, and the student fare remained at 25 cents. 
While general patronage declined slightly in response to 
this segmentation policy, there were substantial in­
creases in the degree of bus use among groups spared 
the fare increase. Furthermore, these patronage ad­
justments were accompanied by an overall revenue in­
crease. Other cities that instituted different segmenta­
tion policies include New York and Chicago. 

This paper is designed to extend the literature on 
market segmentation for transportation analysis. One 
principal goal of the report is to illustrate a relatively 
simple market segmentation procedure for use in con­
sumer research on traveler choices. This technique 
was previously discussed from theoretical and research 
perspectives by Dobson (13) and Horowitz and Sheth (14). 

STUDY DESIGN 

Sample 

The sample comprised 874 individuals who work in the 
Los Angeles downtown area and who live within 3 km 
(2 miles) of a freeway that feeds r2dially into that area. 
Further details on the sample characteristics are given 
elsewhere (11, ..!§,). 

Data 

Only three of the many types of data collected from home 
interviews are presented here: frequency of mode use, 
perceived system attributes, and socio demographic 
data on the individual and his or her household. An ad­
ditional data set composed of network time, distance, 
and cost was derived for the sample at the geographic 
zone level and is assigned to individuals depending on 
their origin and destination zones. 

Individuals were asked how frequently per month they 
used each of three modes-the single-occupant auto, the 
bus, and the carpool-to travel to work. The frequency 
of use for each mode was subtracted from every other 
mode to obtain comparisons of mode use. These con­
structed variables, frequency of auto use minus fre­
quency of bus use, frequency of auto minus carpool use, 
and frequency of bus minus carpool use, are used 
throughout the analysis as the dependent variables. 

Beliefs about 19 attributes for each of the modes were 
collected with a semantic differential format. The in­
dividual is asked to locate his or her perception of each 
mode on a seven-point scale anchored at each extreme by 
opposite descriptors of an attribute. Marital status, 
number of people in the household, dwelling type, in­
come, age, race, sex, life cycle, and auto ownership 
were obtained from the respondent. 

The network time and cost data were constructed to 
follow standard procedures. These data are estimated 
for small geographic units or zones as they relate to the 
transportation network of arterials, highways, and 
transit routes. The auto network data were supplied by 
the California Department of Transportation. Carpool 
data were calculated by adjusting times for the picking 
up of passengers and assuming 2.28 passengers per car­
pool. The transit data were developed from schedules 
and maps provided by the Southern California Rapid 
Transit District and other relevant transit-operating 
agencies. Additional information regarding the compu­
tation and definitions for the network data can be found 
in Dobson and Tischer (11). 

Research Procedures 

A conceptually simple and easily implemented procedure 
to segment respondents on their perceptions of transpor­
tation alternatives is discussed. The segmentation struc­
ture that results from the application of the procedure is 
compared with engineering data to determine its merits, 
separately or in conjunction with network data, for pre­
dicting the choice of mode to work. Finally, the seg­
mentation structure is tested for stability across halves. 

The segmentation procedure follows the outline in 
Figure 1. The first step can be predicated on a large 
number of belief judgments (e.g., 57 for the current data 
set) and the expectation that many beliefs would be re­
lated as elements of broader concepts. Principal com­
ponents factor analyses with varimax rotation are per­
formed on the belief judgments about each mode. The 
belief factors explaining the largest percentage of shared 
variance for beliefs about each mode (e.g., carpools, 
single-occupant autos, and buses) are saved, and vari-



Figure 1. Segmentation procedure. FACTOR ANALYSES 
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Table 1. Factors selected for segmentation procedure. 

Definition for Sample 

Factor Label (N = 8741 (N = 435) (N = 4391 

Bus conve- Convenience Convenience Convenience 
nience Ease of use Ease of use Ease of use 

Re liability Reliability Reliability 
On-time arrival On-time arrival On-time arrival 
Ease to destina- Ease to destina- Ease to destlna-

tlon lion tlon 
Wait for vehicle Wait for vehicle Wait for vehicle 

Parking cost Flexible schedule 
Carpool conve- Convenience Convenience Convenience 

nience Ease of use Ease of use Ease of use 
On·time arrival Qn ... time arrival On-time arrival 
Ease to destlna- Reliability Ease to destlna-

ti on ti on 
Crowding Crowding 
Wait for vehicle Wait for vehicle 
Weather Weather 
Extra time Extra time 

Single-occupant Comfort Comfort Comfort 
auto comfort Relaxing Convenience Weather 
and conve- Convenience Flexible schedule Crowding 
nience Flexible schedule Ease of use Ease of use 

Ease of use On-time arrival On-time arrival 
On-time arrival Ease to destina- Ease to destlna-
Ease to destina- tlon lion 

ti on Walt for vehicle 
Extra time 

ables with high factor loadings on those factors are com­
bined to form composite variables. The composite 
variables are merely the average of the semantic dif­
ferential scores for the attributes that load highly on a 
factor. If it is known from a priori considerations which 
variables are important, these variables can be used to 
estimate composite variables without analyses and vari­
max rotations. The latter statistical techniques are not 
a mandatory component of the perceptual segmentations 
procedure. 

The sample is assigned categorical scores on the 
basis of position above or below the median on each 
composite variable. The three variables are then 
crossed by using a Cartesian product process as repre­
sented in Figure l; eight cells result. Respondents are 
segmented into eight groups. For example, one group 
is characterized as being below the median on all three 
composite variabl~s. Another group is above the median 
on one composite variable and below the median on the 
other two. 

The comparative utility of segmented belief data, in 

SEGMENTATION 

DEVELOP COMPOSITE 
VARIABLES 

DETERMINE SAMPLE 
MEDIANS ON 
COMPOSITE VARIABLES 

SPECIFY SEGMENTS BY 
CARTESIAN PRODUCTS 

ASSIGN RESPONDENTS 
TO SEGMENTS 

---+ 
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place of or in addition to network data, is tested by using 
a general variance component analysis procedure. 
Through a regression technique, the variance of mode 
use explained by the two data sets and their interaction 
are tested separately. The additional contribution of 
each independent variable set to explaining the dependent 
variable can be determined by calculating R2 with and 
without the particular variable set included. 

First, a regression is performed for all independent 
variables, as in the following equation: 

Then a second regression that omits the variable of 
interest is performed for example X2. 

(I) 

(2) 

The R2 resulting from Equation 2 is subtracted from 
Equation 1, leaving the amount of variance in Y explained 
by X2 above and beyond that explained by X1. Testing 
for interaction follows the same procedure as that de­
scribed above. Two regression equations are neces­
sary, but a new component, the interaction term, is 
added. The significance of each type of variable can be 
determined with standard statistical procedures. 

The stability of the segmentation structure is tested 
by randomly splitting the sample in half, redefining the 
groups, and applying one half's definition of the belief 
composites to the other half. If the perceptual segmen­
tation structure transfers from one half to the other, 
then more general transferability is demonstrated. 

FINDINGS 

Full Sample Analysis 

The first major step of the market segmentation proce­
dure outlined in Figure 1 is a factor analysis of percep­
tual judgments for alternative transport modes. Across 
all three modes, 14 factors were extracted. The number 
of factors retained for buses, carpools, and single­
occupant autos were 5, 4, and 5 respectively. In no 
case was the gap between the largest and second largest 
factor with respect to explained variance less than eight 
percentage points, and the largest factors accounted for 
31-39 percent of the variance for their respective 
modes. 
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The factors with the largest percentage of variance 
for the judgments about a mode were used for the market 
segmentation analysis. Three factors were retained, 
one factor per mode. The largest factor for buses was 
labeled "convenience." The largest carpool factor was 
also convenience. The name assigned to the single­
occupant auto's largest factor was "comfort and con­
venience.'' The definitions for all three factors are 
shown in Table 1. Composite variables were computed 
and market segments were derived according to the 
method described above. 

Market segments are labeled according to their rela­
tive scores on the three composite variables defined 
above. Because there are three composite variable~ and 
two classes (i.e., above or below the median), eight mu­
tually exclusive and exhaustive groups can be derived 
from the Cartesian product of the variables. The group 
of commuters that was above the median on all three 
composite variables is designated B+, CP+, SOA+. 
Commuters who viewed carpools in a relatively positive 
way, but were comparatively negative in their percep­
tions of the other two modes, are labeled B-, CP+, 
SOA-. Finally, the appropriate designation for com­
muters who judged all modes in a relatively negative 
fashion is B-, CP-, SOA-. The number of commuters 
in each market segment is as follows: 

1. N (B-, CP-, SOA-) = 127, 
2. N (B-, CP-, SOA+) = 138, 
3. N (B-, CP+, SOA-) = 78, 
4. N (B-, CP+, SOA+) = 104, 
5. N (B+, CP-, SOA-) = 105, 
6. N (B+, CP-, SOA+) = 61, 
7. N (B+, CP+, SOA-) = 146, and 
8. N (B+, CP+, SOA+) = 115. 

Figure 2 presents average attribute scores on the 19 
original variables for three characteristic segments: 
B-, CP-, SOA+; B-, CP+,_ SOA-:; and B+, CP-, SOA-. 
There is a separate frame for each mode. Apart from 
a couple· of minor exceptions groups segmented to favor 
a mode have uniformly more positive perceptions toward 
that mode than other groups. The first frame of Figure 
2 shows segment B+, CP-, SOA- to have the largest bus 
ratings for 18 of 19 attributes. Similar patterns for the 
favored mode are exhibited by segments B-, CP+, SOA­
and B-, CP-, SOA+ in the second and third frames re­
spectively. 

For the single-occupant auto and to a lesser degree 
for buses and carpools, the differences in the percep­
tions of groups can be characterized by degree rather 
than kind. The shapes of the profiles across segments 
are similar for the same mode. Furthermore, it can 
be noted that the perceptual profiles reilect widespread 
characterizations of system alternatives. For example, 
single-occupant autos are viewed as being compatible 
with a flexible schedule and ease of use, although it is 
recognized that autos are expensive. On the other hand, 
buses are seen as being inexpensive, but they expose 
passengers to unpleasant conditions such as inclement 
weather and crowding. The high degree of comparabil­
ity for the modes across segments andthe intuitive valid­
ity of characterizations emphasize the vertical nature 
of perceptual judgments and support their widespread 
use in urban transportation planning. 

Figure 3 presents profiles of behavioral and socio­
demographic data for the following three representative 
segments: B-, CP+, SOA-; B+, CP-, SOA-; and B·, 
CP-, SOA+. Among the most central questions about 
the perceptually based market segments are those about 
their relationship to mode use. Do commuters identified 
as favoring a mode usually travel by that mode? The 

first two sets of bars of Figure 3 answer this question 
affirmatively. 

Sex, income, and auto ownership are associated with 
mode perceptions in corresponding ways. For example, 
segments with positive views of high-occupancy vehicles 
have a disproportionately large percentage of females, 
low-income workers, and individuals from households 
with zero autos. The lowest income and auto ownership 
characteristics and highest percentage of females are 
found in B+, CP-, SOA-. A positive view of carpooling 
is associated with households of three or more individ­
uals, but not particularly with marital status. Appar­
ently, children create an extra emphasis on keeping an 
auto at home. Carpooling makes a family auto more 
readily available to nonworking family members. 

Mode choice is often accounted for by network data 
in urban transportation planning analyses. Therefore, 
perceptual segments should account for mode choice 
better or at least add extra explanatory power to a 
choice model calibrated with network data. In order to 
help evaluate the usefulness of the perceptual segments, 
three types of choice models are calibrated. The types 
of models correspond to the differences in how often per 
month commuters use alternate modes. The three de­
pendent variables for the models are auto minus bus, 
auto minus carpool, and bus minus carpool. The net­
work independent variables consist of impedance and 
cost differences for the corresponding models. Seven 
dummy variables represent the perceptual segment 
membership. With these variables, each commuter 
could be coded as belonging to one of the eight percep­
tual segments. 

The table below shows the percentage of variance 
accounted for in the three dependent variables by four 
types of independent variables. 

Dependent Variables 

Independent Variables A·B A-CP B-CP 

Network (NT) 
Beliefs ( B) 
NT+ B 
NT+ B +NT* B 

0.03 0.00 
0.27 0.12 
0.28 0.12 
0.29 0.14 

0.02 
0.16 
0.16 
0.21 

These four types of independent variables are network 
data alone (NT), belief data alone (B), network and be­
lief data combined in an additive model (NT + B), and 
network and belief data combined in additive and multi­
plicative fashion (NT + B + NT * B). With one excep­
tion, NT for A-CP, all modes are significant at beyond 
the 0.01 level. However, the most interesting finding is 
that the perceptual segment data al ways explain mode 
choice better than network data. Furthermore, there 
is at best only a slight improvement when network data 
are additively introduced to a belief model of mode 
choice. When network and belief data are combined in 
additive and multiplicative fashions, the results again 
represent only a slight improvement over a mode-choice 
model calibrated solely with respect to the belief seg­
ments. 

The following table reports the significance level of 
the main and interaction terms for the network and be­
lief data with respect to mode choice. 

Variables Held Dependent Variables 

Data Types Constant A-B A-CP B-CP 

NT B +NT* B P < O.Q1 p > 0.05 p < 0.05 
B NT+ NT* B p < 0.001 p < 0.01 p > 0.05 
NT* B B+ NT p > 0.05 p < 0.05 p < 0.001 

The technique used to compute statistical significance 
was referenced earlier in the research procedures sub-



section of the study design. Because of the way that the 
variance accounting properties of the belief data can be 
absorbed into the interaction terms between network and 
belief data. the belief data are found not to be statisti­
cally significant when tested against a model that in­
cludes a significant interaction set of terms for the bus 
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minus carpool dependent variable. In any event, the be­
lief data are superior to the network data for two of three 
dependent variables. The results shown in the above 
tables indicate that perceptual segment data account for 
mode choice better than network data and that belief data 
can add substantially to the explanatory power of a 

Figure 2. Beliefs about buses, carpools, and single-occupant autos for selected market segments. 
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model calibrated in network data through either the main 
or the interaction terms. 

Split Sample Analysis 

The full sample of 874 commuters was randomly divided 
into two parts: one sample contained 439 travelers, the 
other 435. This section of the findings compares and 
contrasts the 439 and 435 samples and the full sample 
to assess the reliability and robustness of the market 
segmentation strategy. 

Factor analyses were performed on beliefs about each 
mode for each split half. In general, there is a high 
degree of comparability despite the fact that the number 
of retained factors for each mode is not the same for 
all the samples. The first bus factor was interpreted 
as convenience across all samples. In addition, the 
first factors for the carpool and single-occupant auto 
modes were interpreted, respectively, as convenience, 
and comfort and convenience. The first table listed 
specific attributes for the generic factor labels men­
tioned above. The bus convenience factor is defined in 
an almost identical fashion for all three samples. There 
are six attributes used by all three modes. There is 
more heterogeneity for the carpool convenience factor, 
but three attributes are used by all three modes. The 
single-occupant auto factor is also more heterogeneous 
across samples than the bus convenience factor. 

With the composite variable definitions, separate 
market segmentation structures were derived for the 
435 and 439 samples in the manner described by the text 
discussing Figure 1. The segmentation structure is 
similar across split samples with respect to the 19 at-

Table 2. Coefficients of determination for made difference 
frequency model calibration analysis for split samples. 

Dependent Variables 

(N = 435) (N = 439) 
Independent 
Variables A-B A-CP B-CP A•B A-CP B-CP 

NT 0.03 0.01· 0.01' 0.03 o.oo· 0.03 
B 0.21 0.08 0.16 0.27 0.15 0. 14 
NT+ B 0.22 0.08 0.16 0.28 0. 15 0.16 
NT+B+NT•B 0.32 0.15 0.23 0.34 0.19 0.21 

1 P > 0.05. 

Table 3. Statistical significance of data types for split sample 
frequency. 

Dependent Variables 

(N • 435) (N = 439) 
Data 
Types A-B A-CP B-CP A-B A-CP B-CP 

NT p > 0.05 p > 0.05 p > 0.05 p < 0.05 p > 0.05 p < 0.01 
B p < 0.001 p < 0.001 p > 0.05 p ' 0.001 p < 0.05 p > 0.05 
NT• B p < 0.001 p < 0.001 p < 0.05 p < 0.001 p < 0.05 p < 0.05 

Table 4. Crass-validation of frequency models for split samples. 

Dependent Variables 

(N = 435) (N = 439) 
Independent 
Variables A-B A-CP B-CP A-B A-CP B-CP 

B 0.24 0.10' 0.13 0.24 0, 11 0.14 
B +NT 0.23 0.10 0.12 0.25 0.11 0 ,16 
B+NT+NT'B 0.11 0.05 0.11 0.08 0.01• o.oe 
•0.01 > p > 0.001 . bp > 0.06. 

tribute ratings . The following table shows three in­
tercorrelation matrixes among three segments for the 
nineteen attributes across split samples. These seg­
ments are: B+, CP-, SOA-; B-, CP+, SOA-; and B-, 
CP-, SOA+. There is a separate matrix for each mode. 

Product-Moment Correl~tians 

Beliefs B-. CP+, SOA· B+, CP-. SOA- B-. CP-, SOA+ 

About carpools 
B-. CP+, SOA- 0.64 0.61 0.50 
B+, CP·, SOA- 0.66 0.85 0.74 
B-, CP-, SOA+ 0.47 0.89 0.93 

About SOA 
B-. CP+, SOA- 0.85 0.86 0.97 
B+, CP·, SOA· 0.70 0.97 0.92 
B-. CP-. SOA+ 0.83 0.93 0.97 

About bus 
B-. CP+, SOA- 0.93 0.71 0.97 
B+, CP-, SOA· 0.62 0.94 0.59 
B-. CP-. SOA+ 0.94 0.66 0.98 

Although the split samples have slightly different com­
posite variable definitions and therefore slightly dis­
similar segmentation structures, there is a high degree 
of comparability between the 435 and 439 samples. The 
diagonal cells would always be larger than other cells 
from the row and column for which the diagonal cell 
forms an intersection if a segment correlated most 
highly with its matching segment in the other sample. 
This is generally the case, with only six violations out 
of 36 possible split sample comparisons for the three 
intercorrelation matrixes. This pattern is statistically 
significant at beyond the 0.01 level by a sign test. 

Because of space limitations, the sociodemographic 
patterns for the 439 and 435 samples are not shown. 
The distribution of sociodemographic variables across 
segments in the two split halves is comparable to that 
shown for the 874 sample in Figure 3. For example, it 
is overwhelmingly the case that commuters who favor 
a mode usually travel by that mode. Another example 
is that income and auto ownership are negatively asso­
ciated with positive perceptions of buses and carpools. 

Tables 2 and 3 present model calibration and statisti­
cal analyses for the perceptual segmentation of the split 
samples and the engineering data with respect to the 
three dependent variables. These tables show similar 
patterns to those reported for the full sample. For ex­
ample, Table 1 shows that modal beliefs by themselves 
are consistently better estimators of the dependent vari­
ables than the network data. When network data are 
added in a linear, independent fashion to beliefs, there 
is no, or at best, only a slight improvement in percent­
age of variance accounted. However, the addition of 
network data in a multiplicative fashion to beliefs results 
in a more substantial increase. Table 2 shows the in­
teraction terms to be statistically significant for every 
dependent variable in both split samples. These findings 
support the conclusion from the first two tables that per­
ceptual segment data account for mode choice better than 
network data and that belief data can add substantially to 
the explanatory power of a model calibrated in network 
data either through the main or interaction terms. 

Table 4 shows cross-validation squared correlation 
coefficients for the frequency models calibrated on the 
split samples. The cross validation was implemented 
by using the composite variable definitions and model 
coefficients of one half to estimate the frequency dif­
ference between modes in the other half. However, 
travelers were assigned to perceptual segments based 
on their composite scores and the distribution of com­
posite scores in the cross-validation sample. 

Models based on the perceptual segmentation data 



alone result in cross-validation squared correlation co­
efficients that are approximately as large as those from 
the belief and network data combined in an additive 
model. In other words, network data do not add to the 
ability of the perceptual segmentation data to account 
for the model frequency differences in the other half. 
Furthermore, both the belief model and the additive be­
lief and network data model are consistently superior to 
a model that combines multiplicative with additive ag­
glomerations of network and belief data. 

SUMMARY AND CONCLUSIONS 

Two principal goals of this report are to illustrate an 
effective and yet uncomplicated perceptual segmentation 
paradigm and to compare the perceptual segments re­
sulting from the procedure with engineering indexes of 
systems performance as determinants of mode choice. 
Figure 1 presents an outline of important steps in the 
market segmentation procedure. This presentation is 
process oriented as opposed to model oriented, and it 
is, therefore, compatible with the recommendations of 
Hensher (2, 8) regarding the acceptability of market seg­
mentation-to transportation analysts. 

While the empirical discussion of the process treats 
a variety of reliability and validity issues related to the 
segmentation strategy, its actual implementation involves 
little more than a factor analysis and the grouping of re­
spondents based on median scores. Furthermore, as 
noted in the discussion of Figure 1, factor analysis is 
not a mandatory component of the procedure. 

It was empirically demonstrated that this uncompli­
cated segmentation paradigm yielded perceptual seg­
ments that correlated better with mode choice than stan­
dard engineering data on systems performance. This 
finding is a basis for the more widespread use of this 
segmentation paradigm. 

The reliability of the market segmentation procedure 
highlighted in Figure 1 is assessed in the findings. When 
the full sample of 874 commuters was split into two 
samples of 435 and 439, there was a large degree of 
comparability between the two parts. Furthermore, the 
superiority of the perceptual data relative to the engi­
neering data was clearly evidenced in both split samples, 
and this superiority was also demonstrated in a cross­
validation test. 

The perceptual segmentation paradigm described here 
can be used for transportation planning in a two-step 
process. The first step involves the calibration of a 
market segmentation structure. As mentioned above, 
this step involves little more than an identification of 
important attributes and grouping respondents based on 
median composite scores, and its principal elements 
are described in the discussion of Figure 1. The re­
sulting segmentation structure will isolate travelers with 
common viewpoints about alternative transport modes. 
In addition, the criteria used to identify who belongs to 
particular segments will be readily available. These 
criteria will comprise selected semantic differential 
scales that are the basis for composite variables for 
alternative transport modes. Example scale designa­
tions are listed in Table 1. 

In the second step, the calibrated market segmenta­
tion structure is applied to respondents in a different 
geographic region or for some planning horizon asso­
ciated with a future date. If it is possible to survey the 
sample to which the segmentation structure is to be ap­
plied, then a reduced questionnaire form based on the 
composite variable definitions can be used. This will 
save interviewing time and simplify the interviewing in­
strument. In any event, no factor analysis is required 
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in the second step because the important attributes will 
have been identified in the first phase. Where reinter­
viewing is impossible, estimates of the distribution of 
travelers in the distinct perceptual segments must be 
based on the best available alternative data sources. 

When a perceptual segmentation procedure is imple­
mented as described above, sel•eral useful consequences 
follow. For example, the factor analysis step can be 
used to identify and define salient generalized attribute 
variables, such as those discussed by Spear (16) or 
Nicolaidis (17). Furthermore, these definitions serve 
as the baseSfor the resulting perceptual segmentation 
structure. The specific attributes that underlie the seg­
mentation structure are likely to be very important with 
respect to consumer choice, and they thus deserve high­
level consideration in the setting of policies with respect 
to system operation, new service planning, and innova­
tive transport facilities. 

Within the calibration step of the segmentation pro­
cess, it is possible to examine the correlation of the 
perceptual segments to various behavioral and socio­
demographic indexes. This correlation element will aid 
in the validation of the segmentation structure. For ex­
ample, those with a positive viewpoint toward a mode 
should use that mode more than those without. By com­
bining the perceptual and sociodemographic information, 
it is possible to specify different messages for alterna­
tive segments of the traveling public with different 
sociodemographic characteristics. By uncovering the 
linkages between sociodemographic characteristics and 
perceptual segments, it is possible to identify target 
groups for directing information. 

The significance of the study reported herein can be 
judged by the new knowledge it contributes to the body 
of market segmentation research on transportation 
planning and the number of new applications and analyses 
generated by it. The current investigation is itself a 
synthesis and extension of earlier analyses and dis­
cussions presented by Golob and Dobson (5), Hensher 
(2, 8), and Costantino, Dobson, and Canty-(6). The fun­
damental behavioral tenet around which this report cen­
ters is that travelers have different viewpoints of trans­
portation facilities and services and that these view­
points have strong implications for the selection of 
modal alternatives. The segmentation procedure applied 
here was shown to be highly correlated with mode 
choice, especially in comparisons with network data. 
This correlation supports the fundamental tenet of the 
paper and supports the diffusion of perceptual segmen­
tation paradigms. 
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Testing for Significant Induced Trip 
Making and Travel in Providence, 
Rhode Island 
Michael E. Smith and George E. Schoener, Federal Highway Administration, 

U.S. Department of Transportation 

The research reported in this paper was conducted in order to determine 
whether or not increased highway supply causes increased travel or trip 
making or both. In order to make this determination, data from origin­
destination travel surveys conducted by the Rhode Island Department of 
Transportation in Providence for the years 1961 (before construction of 
1·95) and 1971 (after 1·95) were used. For each year the origin-destination 
survey data from the Providence area were divided into two groups­
samples representing households inside the 1-95 corridor and samples rep­
resenting those outside it. For the resulting four groups of households, 
cross·classification matrixes were developed using household size and 
auto ownership as independent variables; the dependent variables were 
vehicle-kilometers of travel (VKMT) per household, vehicle·hours of travel 
(VHT) per household, and auto driver trips per household. The compari­
son of the resulting matrixes revealed that the highway did not increase 
trips or VHT, but it did increase VKMT. This allows the tentative con­
clusion that travelers increase their VKMT until they use up a given 
amount of travel time. This conclusion supports the standard system­
insensitive approach to trip generation as well as the use of travel time 
as an impedance in trip distribution. 

A frequent statement advanced by transportation pro­
fessionals is that highway improvements, by inducing 
travel, create more congestion than they eliminate. Al­
though few data exist to support this statement, it has 

gained legitimacy by sheer repetition. Another frequent 
observation is that new highway facilities imply an in­
crease in vehicle-kilometers of travel (VKMT). The 
legitimacy of this is crucial to the evaluation of the en­
ergy and air quality impacts of new facilities. The pur­
pose of this paper is to provide some empirical evidence 
to either validate or invalidate these two observations. 

The data we shall use were gathered during two house­
hold surveys-one in 1961 before construction of I-9 5 and 
the other in 1971 after construction-in Providence, 
Rhode Island (Figure 1). The two origin-destination (O-D) 
travel surveys conducted in Providence were of the home 
interview type. The 1961 survey consisted of 11 467 
samples, whi.le the 1971 survey contained 855 samples. 

A naive way to determine whether or not a highway 
induces trip making and travel (TM/T) is to measure 
TM/T before and after a highway is built. If the "after" 
TM/T is greater, then one might conclude that the high­
way did indeed induce it. The problem with this approach 
is that the increase in TM/T may be due to changes other 
than those on the new highway facility. For example, be­
tween the two surveys incomes probably rose, auto 
availability rose, and land-use changes occurred. Any 



Figure 1. Providence metropolitan area. 
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of these changes could cause increased TM/T, regard­
less of whether or not the highway had been constructed. 

In this paper such changes are controlled for in two 
ways. First, the study area is divided into two parts­
the portion inside the influence of the new highway and 
the portion outside it. Determining the influence area 
will be discussed later. Second, trip-making behavior 
is studied by dividing the population into different groups, 
based on family size and auto ownership. The trip rates 
of these groups rather than those of the population as a 
whole are analyzed. 

Many previous studies have shown that a correlation 
exists between aggregate highway supply per capita and 
VKMT per capita (1, 2, 3, 4). The existence of such a 
correlation, however-;- does not guarantee the existence 
of a causal relationship between the two variables. 

Another study design used in the past and similar to 
the one used here is the before-and-after variety. The 
main objection to this type of study is the presence of 
confounding variables (5, 6), which we have attempted to 
eliminate in this researchby establishing a control group. 
This technique has also been criticized because it is im­
possible to specify a control group of identical, or even 
nearly identical persons who are completely unaffected 
by the change (5). Because of this, we analyzed differ­
ences between the control and survey groups to see if 
these differences remained constant. 

Although the control group was admittedly not com­
pletely immune to effects from the new highway, they 
were less affected by it. Therefore, if a change in the 
differences between the groups occurs, it can be con­
cluded that the highway did change travel behavior. How­
ever, because the line between the two groups is fuzzy 
at best, it will be impossible to detect the structure or 
magnitude of the change. This research, then, began 
by being confined only to finding out whether or not a 
highway itself (directly or indirectly) generates a signif­
icant number of trips or is responsible for a significant 
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increase in VKMT or vehicle hours of travel (VHT). Cer­
tain relationships emerged from the findings of this re­
search that allowed some tentative conclusions about the 
magnitude and structure of the change, but most of the 
discussion is oriented toward TM/T generation . 

other research has been conducted on the premise 
that new traffic on a highway cai. be divided into different 
eategories such as develoJ?mental {from land-use 
changes), natural growth (from socioeconomic cha~es), 
diverted (from other streets or highways), induced (new 
trips made because of the highway), transferred (from 
other modes ), and shifted (to new destinations) (7). 

The methodology of this research should control for 
diverted and natural growth traffic because the dependent 
variables are analyzed at the household level, with the 
households divided into homogeneous groups. Induced, 
transferred, and shifted traffic are to be considered 
highway generated and will all be captured in this study. 
Developmental traffic will also be discussed in this 
study, but, since there is a control group, only those 
trips attracted to highway-induced development will be 
measured. Again, we did not set out to measure the 
magnitude of the change, only to decide whether or not 
a significant change occurred. 

METHODOLOGY 

To determine whether the presence of the highway 
caused additional TM/T in the Providence metropolitan 
area (PMA), a two-part procedure was applied. First, 
the PMA was divided into two parts: first the influence 
area, defined as those zones influenced by the presence 
of the highway, and second the rest of the area. The 
influence area is referred to as inside the corridor, or, 
simply, inside. The rest of the area will be referred to 
as outside the corridor, or outside. The household and 
trip data from the 1961 and 1971 surveys were divided 
into two groups-one for inside the corridor and the other 
for outside the corridor-in order to develop compara­
tive data. 

Definition of the Corridor 

In order to find which zones were inside as opposed to 
outside, a selected link analysis program, LINKUSE, 
was run with a 1971 calibrated network and 1971 0-D 
survey information. Given any origin zone, LINKUSE 
will compute the number of trips originating in that zone 
that use a given set of links. By coding I-95 as the given 
set of links, it was possible to identify all zones contain­
ing trip origins whose paths followed I-95 for some part 
of the trip. 

Each of the zones so identified was marked on a 1971 
PMA traffic zone map. Most of these zones were within 
3 or 4 km (1.5 or 2 miles) of the highway. Zones 
farther out were seldom marked. Therefore, the marked 
zones provided a rough, or "first-cut" corridor. In 
order to identify a continuous corridor, "holes" were 
filled in; that is, an unmarked zone, when surrounded 
by marked zones, was included in the corridor. Con­
versely, a marked zone surrounded by unmarked zones 
was excluded from the corridor. The first-cut corridor, 
plus these adjustments, was the corridor used for this 
study (Figure 2). 

To determine which traffic zones in the 1961 survey 
were within the corridor, a traffic-zone equivalency 
table was developed. Thus, the 1971 traffic zones that 
were identified as being within the corridor were con­
verted to equivalent 1961 traffic zones. Similarly, this 
conversion was performed for traffic zones outside the 
corridor. This procedure made it possible to identify 
four data sets for analysis purposes. 
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Development of Comparative Data 

One way to estimate the effect of the highway on trip 
making would be to compute the overall trip rates for 
persons inside the corridor and for persons outside the 
corridor for both 1961 and 1971. If the trip rates in­
creased for persons inside the corridor more than it 
increased for persons outside it, one might conclude 
that the highway actually did induce trips. This approach 
was rejected for the following two reasons: first, vari­
ables other than the presence of the highway that are 
correlated with location may be the cause of trip rate 
changes, and, second, by taking into account the effect 
of other variables through the use of a standard trip 

Figure 2. 1-95 corridor in 
Providence metropolitan area. 

Table 1. Number of observations in each family size and 
auto ownership category. 

Number Number o( People 
oC 

Data Autos 1 2-3 4+ 

1961 IN 0 637 792 188 
1 294 2404 1865 
2+ 9 526 799 

1961 OUT 0 248 295 110 
1 98 1263 1087 
2+ 6 358 504 

1971 IN 0 57 49 6 
1 41 153 45 
2+ 2 116 100 

1971 OUT 0 20 9 4 
1 10 57 25 
2+ 2 61 66 

Table 2. Cross-classification of auto driver trips per 
household by family size and auto ownership. 

Number Number of People 
of 

Data Autos L 2-3 4+ 

1961 IN 0 0.013 0.078 0.293 
1 2.656 3.090 3.583 
2+ 5.055 5.885 

1961 OUT 0 0.012 0.075 0.300 
1 2.663 3.193 3.626 
2+ 4.687 5.591 

1971 IN 0 0.0 0.041 0.0 
1 3.171 3.778 4.511 
2+ 6.431 8.060 

1971 OUT 0 0.0 0.0 0.0 
1 4.000 3.421 4.280 
2+ 5.361 7.500 

generation model, the model's stability can be tested. 
A cross-classification model was chosen as the best 

way to represent trip generation behavior. Although 
cross-classification by auto ownership and income is 
usually recommended (8), income was not available in 
the Providence survey. - Therefore, cross-classification 
by auto ownership and family size was used instead. 
Family size has been used successfully in other trip 
generation studies. 

Because we were concerned with vehicle trips and 
travel only, we deleted from the data set all trips that 
were not auto driver trips. The auto driver trips were 
then divided into the following four data sets: 

1. 1961 IN-all 1961 auto driver trip records with 
zones of residence inside the corridor, 

2. 1961 OUT-all 1961 auto driver trip records with 
zones of residence outside the corridor, 

3. 1971 IN-same as 1961 IN but with 1971 data, and 
4. 1971 OUT-same as 1961 OUT but with 1971 data. 

We amended each data set by adding trip length and trip 
time to each trip record. The trip time was obtained by 
locating the minimum time path from the given origin to 
the given destination on the calibrated network. The trip 
distance was defined as the road kilometers along the 
minimum time path. This provides a means for mea­
suring VKMT as well as trip rates. 

The next step was to cross-classify the data in each 
of the four data sets. Table 1 shows the number of ob­
servations in each cell as a result of this cross­
classification. In addition, each dependent variable 
(VKMT per household, VHT per household, and vehicle 
trips per household) was cross-classified by auto owner­
ship and family size. The results are shown in Tables 
2, 3, and 4. It should be noted that there are a rela-

Table 3 . .Cross-classification of VKMT per household in 
tenths of kilometers by family size and auto ownership. 

Number Number of People 
of 

Data Autos 2-3 4+ 

1961 IN 0 0.6 6.1 20.9 
1 146.3 186.2 217. 7 
2+ 333.9 391.4 

1961 OUT 0 1.4 10.0 26.2 
1 165.3 220.3 254.6 
2+ 387.8 444.2 

1971 IN 0 0.0 2.1 0.0 
1 196.2 267.1 218.1 
2+ 510.2 610.4 

1971 OUT 0 0.0 0.0 0.0 
1 192.0 213.4 225.8 
2+ 435.0 573.6 

Table 4. Cross-classification of VHT per household in 
minutes by family size and auto ownership. 

Number Number of People 
of 

Data Autos 2-3 4+ 

19111 IN 0 0.11 0.89 2.96 
1 23.47 29.62 34.39 
2+ 51.23 60.74 

1961 OUT 0 0.18 1.29 3.63 
1 23.94 30.58 35.51 
2+ 52.65 60.71 

1971 IN 0 0.0 0.33 0.0 
1 27.71 36.07 32.64 
2+ 67.83 80.35 

1971 OUT 0 0.0 0.0 0.0 
1 28.20 29.07 30.52 
2+ 59.48. 76.83 



Table 5. Test for differences between cell means for trips per 
household. 

Number Number of People 
of 

Data Auto1 2~3 4+ 

1961 IN versus 0 0.642 0.425 0.715 
1971 IN 303 342 114 

-0.979 -2.85 -2.27 
137 1414 1130 

2+ -5.06 -5.78 
472" 602" 

1961 OUT versus 0 0.346 0.440 0.414 
1971 OUT 655 799 190 

-1.67 -1.11 -1.43 
302 2459 1888 

2+ -0.777 -3.172 
585 863" 

1961 IN versus 0 -0.083 -0.082 0.046 
1961 OUT 883 1085 296 

0.025 1.347 0.463 
390 3665 2950 

2+ -1.931 -1.373 
882' 1301 

1971 IN versus 0 0.0 0.432 0.0 
1971 OUT 75 56 8 

-0.630 0.668 0.242 
49 208 68 

2+ 1.621 0.684 
175 164 

•significant at the 10 percent level. 

Table 6. Test for differences between VKMT per household 
among the four data sets. 

Number Number of People 
of 

Data Autos 2-3 4+ 

1961 IN versus 0 0.569 0.474 0.390 
1971 lN 692 839 192 

-1.464 -4.52 -0.009 
333 2555' 1908 

2+ -5.32 -5.20 
640' 897' 

1961 OUT versus 0 0.346 0.315 0.509 
1971 OUT 266 302 112 

-0.404 0.203 0.470 
106 1318 110 

2+ 1.001 -2. 719 
417 568' 

1961 IN versus 0 -0.878 -0.801 -0.364 
1961 OUT 883 1085 296 

-0.850 -4.386 -1.421 
390 3665" 1950 

2+ -2.508 -2.606 
882' 1301' 

1971 IN versus 0 o.o 0.430 o.o 
1971 OUT 75 56 8 

0.426 1.171 0.151 
49 208 68 

2+ 1.182 0.416 
175 164 

•Significant at the 10 percent level. 

tively small number of cells in each table. This is be­
cause of the small number of samples obtained in the 
1971 survey, which made it impossible to construct a 
large table with stable cell means. Also, the one­
person, multicar household cell was deleted due to lack 
of data. 

ANALYSIS 

In order to decide whether or not the highway had gen­
erated trips and to determine model stability, several 
t-statistics were constructed to test the significance of 
differences between the cell means in each of the four 
matrixes shown in Table 2. The following pairs of ma-
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Table 7. Test for differences between VHT per household 
among the four data sets. 

Number Number of People 
of 

Data Autos 2-3 4+ 

1961 IN versus 0 -0.526 -0.661 -0.353 
1961 OUT 883 1085 296 

-0.153 -0.973 -0.918 
390 3665 2950 

2+ -0.520 +0.011 
882 1301 

1961 OUT versus 0 +0.342 0.345 0.525 
1971 OUT 266 302 112 

0.372 0.372 0.729 
106 1318 1110 

2+ -1.172 -2.720 
417 568" 

1961 IN versus 0 -0.5533 -0.499 -0.429 
1971 IN 692 839 192 

0.927 2.740 -0.378 
333 2555' 1908 

2+ 3.894 3.585 
640" 897" 

1971 IN versus 0 o.o 0.4349 o.o 
1971 OUT 75 56 8 

-0.0319 1.258 0.317 
49 208 68 

2+ 1.052 0.332 
175 164 

'Significant at the 10 percent level. 

trixes were compared: 1961 IN versus 1971 IN, 1961 
OUT versus 1971 OUT, 1961 IN versus 1961 OUT, and 
1971 IN versus 1971 OUT. The t-statistics, along with 
the degrees of freedom (which are, here, the numbers 
of observations) for each one, are shown in Tables 5, 6, 
and 7. 

Because we are trying to compare matrixes, t­
statistics on the individual elements of each matrix are 
of little value in isolation. What is needed is a way to 
evaluate the significance of a matrix oft-values. This 
was done in the following way. The probability of at­
statistic' s being significant at the 10 percent level by 
pure chance is 0.10. Therefore, the chance probability 
that one t-value in a set of eight will be significant is 
computed as follows: 

p(I) = [8!/1 ! (7!)] (0.9)7 (0.1) 1 = 0.383 

Other probabilities are computed as follows: 

p(2) = [8!/2! (6!)] (0.9)6 (0.1)2 = 0.149 

p(3) = [8!/3! (5!)] (0.9)5 (0.1 )3 = 0.033 

8 2 

p(n ;;. 3) = ~ p( I) = I - ~ p(I) = 0.048 
i=J i=o 

(I) 

(2) 

(3) 

(4) 

We had previously decided to reject the null hypothesis 
(i.e., that the two matrixes are equivalent) when a sig­
nificance level of 10 percent was reached. Therefore, 
this probability analysis shows that, when comparing any 
two matrixes, up to two significant t-statistics may be 
generated and we will still fail to reject the null hy­
pothesis that the matrixes are equivalent. If, on the 
other hand, three or more significant t's are found in 
the comparison matrix, then we must conclude that the 
matrixes being compared are significantly different. 

Using this criterion, the relationships between the 
matrixes were developed. These relationships are 
shown schematically in Figures 3, 4, and 5. Figure 3 
shows that the entries in the trips per household matrix 
for the 1961 IN data set are significantly smaller than 
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Figure 3. Schematic of trip rate ® 
differences. 
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household differences. 
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corresponding entries in the 1971 IN data set. The same 
relationship holds between 1961 OUT and 1971 OUT. 
However, there was no significant difference in trip 
rates for those inside the corridor as opposed to those 
outside for either year. Therefore, it appears that, al­
though trip rates did increase significantly, the highway 
was not the cause. 

Figure 4 shows that, in 1961, there was significantly 
less VKMT per household inside the corridor than out­
side it. Over the years this difference disappeared. 
Apparently people living close to the highway are now 
making longer trips, though they have not increased 
their trip rate. 

Figure 5 shows how VHT per household varies tem­
porally and spatially. The pattern is precisely the same 
as that in Figure 3. Therefore, one could conclude that 
the highway did not increase the daily vehicle hours of 
travel per household. 

Although Table 7 shows only one significant difference 
between 1961 OUT and 1971 OUT, there were enough data 
in these two data sets to show a significant difference 
between the two one-person, multicar household cells. 
We had previously decided to reject the null hypothesis 
only when three or more significant differences had been 
detected. However, rejecting the null hypothesis in this 
case preserves transitivity as indicated in Figure 5. Not 
rejecting the null hypothesis would violate this transi­
tivity. 

CONCLUSIONS AND DISCUSSION 

The first conclusion reached was that, according to 
limited data collected, the highway did not generate new 
trips. This conclusion is based on the comparisons 
schematized in Figure 3. Since the trip rate matrixes 
for the two geographic areas (inside and outside the cor­
ridor) were equal at both points in time, the highway 
could not have been responsible for any increase in trip 
rates. 

The results shown in Figure 3 also permit another 

conclusion. Since the trip rates increased over time, 
it must be concluded that the model form is temporally 
unstable. n must be noted, however, that family size 
is not a preferred variable for the cross-classification. 
A model using income may have proved to be more 
stable. Also, the number of cells in the matrixes is 
far less than ideal. This is because of the lack of data. 
An expansion of each matrix would have thinned out the 
data to the point where there may have been no data in 
some of the cells. 

Although analysis of Figure 3 leads to the conclusion 
that the highway had generated no new trips, Figure 4 
shows that the highway did create a demand for longer 
trips (in terms of kilometers). Although the data in this 
case are insufficient to measure the amount of extra 
VKMT generated by the highway to any practical level 
of precision, the data are sufficient to show that the in­
crease is statistically significant. This demand for 
longer trips is indicated by the fact that in 19 61 house­
holds inside the corridor traveled fewer kilometers than 
similar households outside the corridor. By contrast, 
in 1971 the households inside the corridor were traveling 
just as many kilometers as those outside the corridor. 
The fact that VKMT per household rates did not change 
over time in the outside group indicates that when there 
are no major transportation system changes the cross­
classification model for predicting VKMT may be tem­
porally stable. More data may indicate otherwise, 
however. 

As indicated by Figure 5, we cannot reject the null 
hypothesis that the highway did not generate extra ve­
hicle hours of travel or reduce them. If we accept the 
null hypothesis previously not rejected, then a very in­
teresting conclusion can be drawn: The highway led to 
extra VKMT only to the extent that a trip could be com­
pleted in a given amount of time. For example, a 10-
min shopping trip remains 10 min; however, it is now 
a 12-km (7-mile) trip rather than an 8-km (5-mile) trip. 

To analyze the effect of this concept we used the 
following variables: h = VHT per household, m = VKMT 
per household, and s =average travel speed. Obvi­
ously, m/h = s, or m = sh. Therefore, a 2 percent in­
crease in travel speed would result in a 2 percent in­
crease in VKMT. This result suggests a procedure for 
predicting VKMT for a given transportation network. 

First, devise a cross-classification model that di­
rectly predicts VKMT per household. Any change in the 
transportation system that increases speed by a certain 
factor should be dealt with by increasing the predicted 
VKMT by the same factor. 

If this is indeed a true model of travel behavior, then 
transportation improvements that significantly increase 
travel speed will result in a proportional increase in 
VKMT. However, improvements that are designed 
mostly to smooth out traffic flow but do not significantly 
increase travel speed will result in no significant in­
crease in VKMT. 

Another conclusion that may be gleaned from this re­
search is relevant to the transportation planning process 
as it currently exists. Most travel demand models pre­
dict trips produced independently of the characteristics 
of the transportation system. This research supports 
such an approach. Since, as far as the data show, a 
radical improvement in the transportation system did 
not significantly increase trip making, it appears rea­
sonable to assume that trip generation is indeed inde­
pendent of the transportation system. 

This research also supports the use of travel time as 
a measure of spatial separation in the gravity model. A 
decrease in travel time, when put into the standard 
gravity model, will result in increased trip lengths and 
therefore increased VKMT. The fact that people af-



fected by the new transportation facility in Providence 
may have increased their VKMT directly in response to 
increased speed shows that travel time may be the major 
impediment to travel. This result further supports the 
use of travel time as the measure of spatial separation 
in distribution models such as the gravity model and the 
intervening opportunities model. 

Although the analyses performed in this study indicate 
that new highways result in more VKMT with no increase 
in VHT or the number of trips, the data were insufficient 
to measure the amount of change in the VKMT. In ad­
dition, the paucity of the data makes small changes dif­
ficult to detect. There may have been small changes in 
VHT and trips that escaped detection in this study. 
Therefore, the conclusion that VKMT increases by the 
same amount as average speed increases must be made 
with appropriate reservations. 

Further research should address the question of how 
many extra VKMT are produced by new highways as well 
as the relationship to VHT, number of trips, average 
trip length, and average speed. Such a quantification 
would provide a major breakthrough in the field of high­
way planning. In addition, this analysis was limited to 
the comparison of residential trip productions; further 
research should investigate the effect of system supply 
changes on nonresidential trip generation (i.e., trip 
attractions>. 
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Destination Choice Behavior for 
Non-Grocery-Shopping Trips 
Frank S. Koppelman, Department of Civil Engineering, and John R. Hauser, 

Department of Marketing, Transportation Center, Northwestern 
University, Evanston, Illinois 

This paper combines attitude and market research and disaggregate 
behavioral demand modeling to produce a diagnostic and predictive 
model of destination choice for non-grocery-shopping trips. The 
analysis is based on perception and preference models to measure 
attractiveness and logit choice models to link attractiveness and ac­
cessibility to frequency of destination choice. Alternative analytic 
techniques were compared to identify the most effective technique 
for each step in the process. Factor analysis was found to be superi­
or to nonmetric scaling to identify consumer perceptions of shopping 
location attractiveness because it is more understandable and predicts 
better. Statistical preference models (first preference logit, preference 
regression) provided consistent predictions and similar interpretations. 
For choice prediction, revealed preference (standard logit approach) 
and intermediate preference models provided complementary insight 
into the consumer behavior process. Use of both models leads to 
insights that would have remained hidden had either model been used 
alone. The results indicated that attractiveness of trip destination can 
be effectively measured with attitudinal models; that the five basic 

(measured) constructs of attractiveness are variety, quality, satisfac­
tion, value, and parking; that of tnese quality is consistently the most 
important and prestige of store appears to be the most important as­
pect of quality; and that both attractiveness and accessibility are im­
portant determinants of destination choice. Any destination choice 
model should include both. 

The focus of this study is on the trip maker's choice of 
destination for non-grocery-shopping trips. This re­
search was undertaken in the belief that improved under­
standing of this destination choice process would pro­
vide insight into the general process of destination 
choice behavior. This research also develops effective 
analytic models that can be used for the analysis of 
destinations other than shopping areas. 

Travel choice behavior can be represented by a simple 
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Figure 1. Consumer response process. 
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evaluation and selection process. Each individual evalu­
ates each alternative that is known and available to him 
or her and chooses the alternative he or she values most 
highly. Because the value of an alternative to an individ­
ual cannot be precisely specified, the choice process is 
represented by a probabilistic choice model in terms of 
those aspects of value that can be identified. That is, 
based on a partial valuation of each alternative, the model 
predicts the probability that the individual will select 
each of the available alternatives. The individual prob­
abilities can be aggregated across individuals to provide 
predictions of group behavior. The structure of the con­
sumer response process used in this study extends the 
approach described above in two significant ways. 

First, the characteristics of the alternatives are 
described by what the individual' perceives rather than 
by engineering measures . This approach extends the 
range of attributes to include those that cannot be mea­
sured by direct engineering means; it accounts for dif­
ferences of individual perceptions of identical alterna­
tives ; and it gives useful insight into how consumers 
actually perceive alternatives. 

Second, the substantive aspects of the destinations­
their attractiveness-are modeled separately from the 
spatial aspects of these alternatives-their accessibility. 
This approach follows the research direction suggested 
earlier by Hanson (1). 

The resulting mOdel structure consists of three in­
tegrated components that describe individual percep­
tions of shopping locations, individual evaluations of 
shopping location attractiveness based on relative 
preferences for perceived characteristics, and choice 
of shopping location based on attractiveness ratings 
and accessibility measures. This model is based on a 
consumer behavior model formulated by Hauser and 
Urban (2) and independently by Shocker and Srinivasan 
(3) and modified for transportation by Hauser and 
Koppelman (i)· 

OBJECTIVES OF THE RESEARCH 
AND APPROACH 

The research had two objectives. The first was to in­
crease understanding of the process by which individual 
consumers select locations for non-grocery-shopping 
trips. The second was to develop and critically evaluate 
alternative empirical models of the consumer choice 
process. 

These objectives were achieved by developing and 
interpreting alternative models of perception and 
preference and integrating them with a choice model. 

The alternative models provide different perspectives 
on the consumer process and contribute to an overall 
understanding of that process . Comparing models pro­
vides a basis for selecting those that will be most useful 
in particular situations. The primary criteria are their 
ability to provide useful insights into c.onsumer be­
havior and to predict accurately consumer preferences 
and choice behavior. 

The model structures examined include three models 
of perceptions and three models of consumer preference 
combined with the multinomial logit choice model. The 
models of perception include fundamental attributes, 
factor analysis, and nonmetric scaling. Fundamental 
attributes represent perceptions in terms of an ex­
tensive list of attributes. Factor analysis and non­
metric scaling identify the underlying cognitive dimen­
sions consumers use to evaluate products or services. 

The preference models considered are preference 
regression, first preference logit, and revealed pref­
erence logit. Preference regression and first pref­
erence logit select relative importance weights for 
attributes in order to best explain rank-order prefer­
ences or first preferences, respectively. Revealed 
preference models select relative importance weights 
for both the attractiveness attributes and the acces­
sibility characteristics by analysis of observed choices. 
These importances identify those dimensions that most 
affect the consumer choice process and thus help man­
agers identify which characteristics to stress in the 
formulation of strategy or policy. 

The details of the research are described in the re­
mainder of this paper. The second section reviews 
the theory and models used; the third describes the 
empirical setting and experimental design; the fourth 
and fifth evaluate the different models with respect to 
interpretability and predictive accuracy, respectively; 
and the conclusion presents a summary of results and 
indicates directions for further research. 

THEORY AND MODE LS OF SHOPPING 
LOCATION CHOICE BEHAVIOR 

The process by which consumers evaluate and choose 
among a set of alternatives can be described in dif­
ferent ways. In this study, we represent the consumer 
response process by the sequence of distinct but inter­
related stages described in Figure 1. This simplified 
representation of perception, attractiveness, acces­
sibility, and choice is a part of a more complex market 
process that describes interaction among individuals, 
information diffusion, changes in behavior based on 



experience, differences between market segments, etc. 
(2, 3, 4). Nonetheless, this representation provides a 
useiuf framework for the analysis of destination choice 
behavior and provides a critical link in any behavioral 
model of the transportation consumer. 

Methodologies based on combining perception, pref­
erence, and choice have proved extremely productive in 
other contexts (2, 3). It is reasonable, therefore, to 
posit that these methodologies will enjoy similar success 
in transportation. They do not replace the disaggregate 
behavioral demand models now in common use but aug­
ment them, enhance their predictive abilities, and make 
them more responsive to the planning needs of today's 
managers. 

Modeling Consumer Perceptions 

Consideration of consumer perceptions rather than 
direct (engineering) measures of alternatives makes it 
possible to include attributes or characteristics for 
which direct measures do not exist and to account for 
differences between consumers' subjective evaluation 
of alternatives and objective reality. The usefulness of 
incorporating nonengineering measures in travel choice 
behavior has been demonstrated in studies by Spear (5), 
Nicolaidis (6), and Dobson and Kehoe (7). Differences 
in perceptions among individuals or differences between 
perceived and engineering measures or both have been 
identified by Burnett (B) and Dobson and Tischer (9). 

We shall examine three alternative perceptual models 
in this study. The simplest and most obvious method of 
representing consumer perceptions is by individual rat­
ings for an exhaustive list of attributes. These attribute 
scales, called fundamental attributes, provide a com­
plete description of consumer perceptions and are con­
ceptually easy to use because no further data collection 
or analysis is required. Use of the complete list as­
sumes that the individual simultaneously evaluates a 
long list of attributes in formulating preferences among 
alternatives. Alternatively, one can assume that under­
lying cognitive dimensions exist and that consumer rat­
ings of attributes include a common component attribut­
able to these cognitive dimensions, an attribute-specific 
component, and some measurement error. The com­
mon components or cognitive dimensions can be found 
by factor analysis of the attribute ratings across alter­
natives and consumers (2). The advantage of factor 
analysis over fundamental attributes is that it identifies 
a simpler perceptual structure that can provide clearer 
insight into how consumers perceive alternatives. 

Finally, one can identify cognitive dimensions by 
analysis of perceived similarities between products or 
services. Nonmetric scaling positions alternatives in 
n-dimensional space so that the distance between pairs 
of alternatives corresponds as closely as possible to the 
reported similarity between them (10, 11). The advantage 
of nonmetric scaling over factor analysis is that it does 
not assume the ratings scales are metric, because scales 
are determined independently of the attributes and can 
uncover dimensions not represented in the attributes. 
However, nonmetric scaling requires additional, hard­
to-collect data on similarity judgments; also, the scaling 
procedures are difficult and expensive to use. Further­
more, the assumptions built into these algorithms are 
very restrictive behavioral postulates and could, there­
fore, restrict the model. For example, a commonly 
used algorithm called INDSCAL assumes that all con­
sumers have perceptions that are homogeneous subject 
to a scale transformation. Finally, the number of 
dimensions that can be identified is severely constrained 
by the number of stimuli (10, 13_). 

Modeling Consumer Preferences by 
Attractiveness 
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We describe the consumer response process as one of 
perception, preference, and choice. The purpose of 
separating the preference and choice steps is to avoid 
confounding performance or attr-ictiveness characteris­
tics, which influence both preference and choice, with 
other characteristics such as availability, awareness, 
and accessibility, which primarily influence choice. 
In this study, this two-step process is tested by com­
paring importance weights and predictive ability of 
models, including an intermediate preference step, with 
revealed preference models that exclude the inter­
mediate preference step. 

The analysis of consumer preferences is directed 
toward finding a function that maps consumer perceptions 
into a preference rating, or attractiveness index. The 
preference models considered in this study determine 
the relative importance of the fundamental attributes or 
cognitive dimensions by estimating a linear compensa­
tory model of the form 

(I) 

This model states that consumer i's preference or 
attractiveness index for product j, P1i, is the weighted 
sum of his or her perceptions, d1Jk• of alternative j 
for attribute or dimension k where the estimated im­
portance weights are average insights for the popula­
tion. Three models are evaluated. 

Preference regression statistically estimates the 
importance weights by using rank-order preference 
as the dependent variable and the consumers' percep­
tions as independent variables. Ordinary least squares 
is used to estimate importance weights, despite the 
implicit metric assumption, because it has been shown 
that these results are similar to those that would be 
obtained by more expensive monotonic regression (13). 
Preference regression uses full rank-order information 
in the estimation of importance weights. 

Preference logit assumes that the true preference, 
PrJ• is composed of an observable part, P1J, as in 
Equation 1, plus an error term, e1J: 

P~ = P;; + e;; (2) 

Assuming an independent Weibull-distributed error term 
makes it possible to derive a functional form for the 
probability L1J that consumer i ranks j as his or her 
first preference (14 ). This probability is given by 

(3) 

where the sum is over all alternatives, l. The im­
portance weights are estimated by maximum likelihood 
techniques (14 ). The appeal of the logit model is that 
it explicitly models stochastic behavior (15) and that it 
makes no metric assumptions about preference rank­
ings. Although it uses only first-preference information, 
it can be extended to use rank-preference information 
(16) with similar results. 
-Revealed preference assumes that the underlying 

preference weights must be obtained by analysis of 
choice behavior. It assumes that each individual 
selects an alternative that has the greatest utility to 
him or her. The importance weights, wk, are esti­
mated jointly with the importance of nonpreference 
characteristics such as the time, effort, or cost of 
obtaining a selected alternative (see Equation 6, below). 
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The advantage of the revealed preference model is that 
it does not rely on reported preference data but on ob­
served choice behavior. However, the estimates of 
cognitive importance weights may be biased if the non­
preference choice elements are not carefully specified. 

Modeling Consumer Choice Behavior 

The consumer response process is designed to explain 
and predict individual choice based on a model of 
perceptions and preferences. The choice model postu­
lates that individual consumers associate a value v1 i 

with each available alternative and select the alternative 
that has the greatest value. Our estimate of the in-. 
dividual value v ti is a linear combination of the pref­
erence index, Pw and situational variables, Zu., in­
fluencing choice behavior. 

Y1j = /30P1j +I: /3mZIJm (4) 
m 

The true value is equal to the estimated value plus a 
random component that represents unobserved influence 
and specification errors. Using the same distribution 
assumption as for preference logit, we obtain the 
multinomial logit choice model, which describes the 
probability of individual i's choosing alternative j on a 
single occasion by 

C;; = exp(vu)/f exp(vu) (5) 

When the preference index has not been estimated, the 
value function is formulated in terms of the fundamental 
attributes or cognitive dimensions, 

(6) 

and the revealed preference importance weights, wk, 
are estimated simultaneously with the other parameters 
of the choice model. 

EMPffiICAL SETTING 

The empirical focus of this study is on non-grocery­
shopping trips. Historically, researchers in both 
transportation (18) and marketing (19, 20) have em­
phasized the importance of accessibility or distance 
from the consumer's residence to the shopping center. 
Some studies have included measures of shopping loca­
tion size, usually retail floor space or number of retail 
employees (21). Although size of shopping locations, 
which also represents the range of opportunities avail­
able to the shopper, is a relevant measure of attrac­
tiveness, it is unlikely to capture all the aspects of 
attractiveness that influence shopping location choice 
behavior. In order to understand the construct of 
shopping location attractiveness from the perspective 
of consumers, we must determine the cognitive dimen­
sions of shopping location attractiveness, their relative 
importances in forming preferences, and their im­
portance relative to accessibility in influencing choice 
behavior. 

The models estimated in this study are based on data 
collected at shopping locations in the North Shore sub­
urbs of Chicago. The process of sampling individuals 
at their chosen destination requires the use of choice­
based estimation procedures to obtain consistent esti­
mators of parameters (17). The data collected describe 
attitudes toward and useof seven shopping locations. 
The data used in this analysis include rank-order 

preference for each shopping location, similarity judg­
ments for all pairs of shopping locations, direct ratings 
of each shopping location for 16 attributes, and frequency 
of trips to each location. The 16 attributes (see the list 
below) chosen to describe the general characteristics of 
shopping locations and the questionnaire were developed 
through extensive literature review, preliminary sur­
veys, and analysis of developmental questionnaires (22). 
The 16 attributes are -

1. Layout of store, 
2. Ease of returning or servicing merchandise, 
3. Prestige of store, 
4. Variety or range of merchandise, 
5. Quality of merchandise, 
6. Availability of credit, 
7. Reasonable price, 
8. Availability of sale items (specials), 
9. Free parking, 

10. stores located in a compact area, 
11. Store atmosphere (heating, cooling, noise, 

crowds, etc.), 
12. Ability to park where you want, 
13. Shopping center atmosphere (pedestrian-only 

area, flowers and shrubs, covered walkways, etc.), 
14. Courteous and helpful sales assistants, 
15. Availability of a specific store, and 
16. Number and variety of stores. 

The analysis is based on a random sample of 500 
consumers who reported familiarity with all seven shop­
ping locations. All models were then tested for ability 
to predict on a saved-data sample of an additional 500 
consumers. Predictions were quite good for all pref­
erence and choice models on factor analysis and funda­
mental attributes. Furthermore, all relative model 
comparisons were supported by the saved-data anal-
ysis (23). 

Thedata collected did not include information on the 
costs (time, out-of-pocket cost, physical effort, etc.) 
of traveling to each of the shopping locations. Only the 
residential location of the shopper was obtained. For 
this reason accessibility is represented by the distance 
between each shopping location and the shopper's 
residence. 

MANAGERIAL INTERPRETABILITY 

The primary goal of this study was to understand and 
explain consumer response in the selection of destina­
tions for non-grocery-shopping trips. Thus initial 
analysis of and comparison between models was based 
on managerial interpretability. The model interpreta­
tions, which provide basic insight into the behavioral 
process, serve as a first test of model usefulness and 
validity. 

Perception Models 

A plot of the average ratings of each shopping location 
for the 16 fundamental attributes (Figure 2) reveals a 
number of insights into the existing pattern of percep­
tions. However, the complexity of the figure and 
excessive amount of data in it make it difficult to focus 
on critical areas. 

The alternative perceptual models, factor analysis 
and nonmetric scaling, produce simpler perceptual 
representations. Although the methods of analysis dif­
fer, each of these perceptual models identifies cognitive 
dimensions by structure matrixes that relate them to the 
16 fundamental attributes. These structure matrixes are 
used to identify the cognitive perceptual dimensions. 
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Figure 2. Map of fundamental attributes 1.0 z.o J.o 4.0 s.o 
ratings for seven shopping locations. I. LAYOUT OF STORE 
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Table 1. Structure matrixes for perceptual 
Factor Analysis, Factor Loadings Nonmetrlc Scaling Directional Cosines models. 

Attribute Quality and Quality Parking and 
Number Variety Satisfaction Value Parking Variety Versus Value Satisfaction 

1 0.27 0.58 
2 0.10 0.53 
3 0.34 0.62 
4 0.67 0.33 
5 n:n 0.81 
6 0. 16 Q.34 
7 0.07 -0.06 
8 0.22 
9 -0.15 

10 0.03 
11 0.08 
12 0. 15 
13 0.24 
14 0.17 
15 0.62 
16 0,83 

Based on statistical rules and intuitive interpretations, 
the best results were obtained by using a three­
dimensional perception space for nonmetric scaling and 
a four-dimensional space for factor analysis. The percep­
tual structures for each model are presented in Table 1. 

Both models identify combinations of five basic con­
structs of variety, quality, satisfaction, value, and 
parking. These constructs are consistent with earlier 
studies by Singson (24), Monroe and Guiltinan (25), and 
Jolson and Spath (26"}. However, the grouping Ofthese 
constructs is different between models . Factor anal­
ysis groups quality with satisfaction, while nonmetric 
scaling groups quality versus value and groups parking 
with satisfaction. The reverse directionality of quality 

0.07 
0.07 
0.31 
0.66 
o.rr 
0.69 
0.56 
0.32 
0.29 

0.16 0.20 0.22 0.50 0.84 
0.34 0.26 0.32 0.12 0.94 

-0.00 -0.06 0.30 0.60 0.52 
0.31 -0. 19 0.93 0.36 0.08 
0.04 -0.07 0.30 0.81 -0.51 
0.49 0.05 0.68 -'ll.09 -0.47 
0.60 0. 11 0.49 -0. 85 0.19 
o.74 0.01 0.79 -0.59 0.17 
0.04 0. 81 -0.29 -0.55 0.78 
0.07 0.56 -0.45 0.04 0.89 
0.03 0.40 -0.20 0.45 0.87 
0.11 0.84 -0.46 -0.48 0.75 
0.04 lf.40 -0.10 0.48 0.87 
0.1 5 0.32 -0.05 0.41 o:9i 
0.20 0.03 0.87 0.43 -0.24 
0.16 -0 .17 0.92 0.39 -0.05 

and value in the nonmetric scaling solution undermines 
interpretability because it is impossible to identify a 
clear direction of goodness along this scale. The ap­
propriateness of these alternative models will be ex­
amined in terms ·of their predictive abilities. 

These models are used to develop perceptual maps 
of shopping locations based on the underlying cognitive 
dimensions. These maps are shown in Figure 3. It is 
immediately apparent that the maps are simpler for 
managers to interpret, but one can hypothesize that this 
simplicity comes at a cost of reduced detail. We must 
compare the predictive ability of these perceptual 
models with that obtained from the fundamental attri­
butes. 
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Figure 3. Perceptual maps 
for models of consumer 
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The normalized importance weights for the various 
models on the two reduced perception structures are 
shown in Table 2. The most important dimension for 
each perception structure includes quality as a com­
ponent. The importance weights estimated by pref­
erence regression and preference legit are similar 
for each of the perception structures. This robust­
ness of direct preference models is important be­
cause it suggests that the choice of perception model 
is more crucial to the identification of strategically 
important policies than is the choice of preference 
model. The similarity of the importance weights be­
tween preference regression and preference logit for 
each perception model is partially retained in the 
revealed preference model. Quality-related dimen­
sions remain the most important. However, the 
revealed preference weights differ for the other di­
mensions. For factor analysis, parking gains in im­
portance at the expense of variety. In nonmetric 
scaling, quality versus value gains at the expense of 
parking. These shifts are strategically important as 
they produce insight into the strength of feeling about 
the aspects of shopping destinations. 
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For example, suppose (as will be shown later) that 
factor analysis is the preferred model for this data set. 
The increase in parking importance can be explained 
because it is partially confounded with accessibility. 
The decrease in variety importance can be explained 
in this data set by the characteristics of the destinations 
available to the residents of the North Shore suburbs of 
Chicago. That is, the two destinations highest in 
variety are least accessible. Thus, in the revealed 
preference choice model, variety and accessibility are 
highly correlated and the relative weights may not be 
stable. These correlations are reduced in the two-step 
choice mode. 

Other hypotheses for the differences observed can be 
developed but not tested with the available data (23). The 
difference in results illustrates the importance or using 
both a revealed preference choice model and a two-step 
preference choice model. This use of convergent models 
is a powerful tool that can lead to insights not obtain­
able by either model alone. Note that in this case in­
terpretations based on either model alone might miss 
the interactions between variety and accessibility. 

Preference models estimated by using fundamental 
attributes consistently identify prestige of store, which 
is closely related to quality, as the most important 



Tabla 3. Prediction tasts. 
Preference 

First 
Preference 

·consumer Model Recovery 

Bue models 
Equally likely 14.3 
Market share 26.7 
Distance only 
Beet fundamental attrt- 55.6 

butea model 
Theoretically beat model 

Factor analysis 
Preference regrea.lon 50.6 
First preference loglt 55.0 
Revealed preference 

Nonmetrtc scalln111 
Preference regre11Blon 36.8 
Ftrst preference logtt 34.8 
Revealed preference 

attribute. However, there is a high degree of in­
stability in the estimated values for other importance 
weights due to multicolinearity. Thus, while there is 
consistency in preference estimation with reduced 
perceptual dimensions, there is a high degree of in­
stability in the estimation of preference weights for 
fun~amental attributes (23). 

PREDICTIVE ABILITY 

This section tests the ability of each model to predict 
preference and choice on the estimation data sample. 
Separate predictions on a saved-data sample of 500 ob­
servations support the results reported here (23). 

Prediction Formation 

Individual predictions are made by applying the alterna­
tive model structures to each individual's ratings on 
the fundamental attributes and distance for each shopping 
location. The prediction process consists of the follow­
ing sequence of steps. 

1. Perception measures are obtained by applying 
the perception models to the fundamental attribute rat­
ings or Individual similarity measures to obtain percep­
tion scores for the cognitive dimensions. 

2. Perception scores formulated are combined with 
the estimated or measured importance weights to obtain 
individual preference (attractiveness) measures for 
each shopping location. 

3. Preference measures are rank ordered to obtain 
individual preference ranks used in the analysis of 
preference prediction. 

4. Preference and accessibility measures are used 
in the choice models to predict overall ratings and 
choice probabilities for each shopping location. These 
predictions are used in the analysis of choice predic­
tion. 

Preference predictions are made with each of the 
perceptual and preference models, and choice predic­
tions are made with each of the linked choice models. 
These predictions are compared to a variety of base 
models that serve as bounds on prediction and help in­
dicate the power of each set of models. The lower 
bounds include random (equally likely) preference 
choice in proportion to market share with distance as 
the only variable. Perfect prediction of choice fre­
quency serves as the upper bound. 

For a detailed discussion of these bounds see Hauser 
(27). Prediction with the best fundamental attributes 
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Choice 

Rank Percent 
Preference Correctly 
Recovery Predicted Information 

14.3 14.3 0.0 
18.5 24.7 
31.9 32.6 

37.9 32. 7 39.2 

38.7 100.0 

32.9 32.7 36.4 
37.0 32.9 37.3 

32.6 38.5 

25.1 31.8 33.5 
24.4 31.8 33.7 

32.2 34.1 

models identifies the loss In predictive ability, which 
may result from reduction in cognitive data through 
faster analysis or nonmetric scaling. 

Preference Prediction Results 

Preference prediction results for each perceptual and 
preference model are reported in Table 3. Factor 
analysis dominates nonmetric scaling with respect to 
first preference recovery and rank preference re­
covery. Furthermore, factor analysis does as well 
as fundamental attributes, indicating that there is no 
loss in predictive ability due to the simplification of 
perception structure. Preference logit is slightly 
superior to preference regression, but the most im­
portant differences among models is in the choice of 
perception model. 

Choice Prediction Results 

Choice prediction results are presented in Table 3 in 
terms of percentage of correct predictions and per­
centage of information e.'tplained (27). The model com­
parisons are the same as for the preference predictions, 
but the differences are not as great. Revealed pref­
erence does better on choice but not significantly better 
than the two-step preference and choice models. 

The overall predictions are quite good. The best 
model (factor analysis with preference logit) correctly 
predicts 32 .9 percent of the choice occasions as op­
posed to the 38. 7 percent that is theoretically possible 
in this population. 

The goal was to predict frequency of choice for each 
individual. Since situational variables were not Included, 
the model cannot predict for each choice occasion. 
Furthermore, the maximum Information is quite re­
spectable compared to previous results with similar 
models. The factor analysis models do well compared 
to the equally likely and market share proportional 
models and are almost as good as the fundamental 
attributes model. 

Of the perceptual models tested, factor analysis is 
the superior predictive model for both preference and 
choice. It does as we 11 as the fundamental attributes 
but provides important simplification of the perceptual 
process. Thus for this data set it appears that factor 
analysis is most representative of the consumers' 
cognitive process. It is Interesting to note that these 
results have since been replicated on another data set 
(28). 
-The differences among the preference models are less 

dramatic. This further supports the observation that 
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the preference models are relatively robust and that the 
selection of preference model is less crucial than the 
selection of perceptual model. The predictive similarity 
of revealed preference and two-step preference and 
choice models supports the conjecture that the use of 
these models in parallel is an important managerial tool. 

CONCLUSIONS 

The focus of this research is on the behavioral modeling 
of destination choice. The models developed use state­
of-the-art techniques in marketing and transportation 
to provide strategic, policy-sensitive models for the 
explanation and prediction of destination choice behavior 
for non-grocery-shopping trips. The products of this 
research are a behavioral model of destination choice 
and an identification of the most accurate and useful 
techniques to analyze destination choice behavior. 

Behavioral Model of Destination Choice 

The interpretations and insight about consumer behavior 
come from the combined analysis. This process of 
convergent analysis provides insights that might not be 
obtained from a single model structure. In summariz­
ing these results we look for consistent results when 
the models converge and "best model" results when 
they diverge. The primary results are that 

1. Attractiveness can be measured with combined 
perceptual and preference models, and this measure 
predicts well and provides useful insight into consumer 
behavior; 

2. Five basic constructs best measured by the fac­
tor analysis perceptual model describe shopping 
destination attractiveness: variety, quality, satisfac­
tion, value, and parking; 

3. Quality is consistently the most important con­
struct of shopping destination attractiveness, and 
prestige of store appears to be the most important 
aspect of quality; and 

4. Both attractiveness and accessibility are im­
portant determinants of travel behavior, and any 
destination choice model should contain good measures 
of both. 

Comparison of Model Structures 

A number of alternative techniques are tested to select 
the best models for the analysis of destination choice. 
The results suggest that factor analysis is the best 
perceptual model for identifying a concise set of dimen­
sions to describe the consumers' cognitive process and 
that the statistical preference models (first preference 
logit and preference regression) are reasonably robust 
in providing consistent predictions and similar inter­
pretations . 

Based on these results but subject to confirmation 
in other empirical studies, we recommend that statis­
tical analyses of consumer destination choice be based 
on factor analysis to identify perception, preference 
regression or first-preference logit or both to identify 
importance weights, and convergent analysis with 
revealed preference and two-step preference and choice 
models to analyze choice behavior. 
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Trip Distribution in Subregional 
Analysis 
Stephen M. Howe, North Central Texas Council of Governments, Arlington 
Yehuda Gur, John Hamburg and Associates, Philadelphia 

The paper describes the formulation and calibration of the access and 
land development trip distribution gravity model (ALDGRAV) for use 
in highway planning at a subregional level. The model is being used 
as an element of the thoroughfare analysis process (TAP). which, in 
turn, is one module of the thoroughfare planning system (TPS). TPS 
has been developed by the North Central Texas Council of Govern· 
menu, in close cooperation with the local governments, to answer 
present planning needs, in particular to provide tools for orderly, in· 
expensive, and fast response evaluation of small· and medium-scale 
strategies. TAP provides the analysis capabilities of the system. The 
paper introduces the hierarchy of objectives, design requirements, and 
the resulting design decisions of TPS, TAP, and the ALDGRAV trip 
distribution model. A detailed description of the latter is given. 

The North Central Texas Council of Governments 
(NCTCOG), together with the participating local govern­
ments, has developed the thoroughfare planning system 
(TPSL The system is designed to answer many of the 
recent needs in the field that have arisen primarily from 
shifting stress from large-scale, capital-intensive proj­
ects to s ubregional projects . Major objectives of TPS 
include providing tools for the planning of the principal 
and minor arterial network that supports the freeway 
system in the region and tools for evaluating projects 
such as the annual capital improvement programs of in­
dividual communities, on a local scale, and providing 
support, cost effectively, for the analysis of small- and 
medium-scale projects within the framework of the re­
gional thoroughfare plan. 

TPS is described in detail elsewhere (1). Its major 
elements include: (a) an approved regional thoroughfare 
plan complete with design standards, (b) a base inventory 
of the thoroughfare system with procedures for continu-

ous updates, (c) a thoroughfare information system (TIS) 
that facilitates the storage and easy access of both in­
ventory data and analysis r esults, (d) a thor oughfar e 
analysis process (TAP) to evaluate the impact of alter­
native strategies, and (e) a methodology for evaluating 
transportation system management ( TSM> strategies. 

THOROUGHFARE ANALYSIS PROCESS 

TAP is the travel simulation component of the TPS and 
has the following specific design requirements. It must 
be able to analyze a wide range of potential strategies, 
such as the effect of land-use changes (e.g., a new shop­
ping center), the effect of major TSM strategies, and 
small- and medium-scale capital projects, and it should 
develop and maintain the regional long-range plan and 
analyze small-scale problems quickly and inexpensively. 
The structure of TAP is described in Figure 1. Its 
logic closely follows that of the conventional urban trans­
portation planning system. Major innovations in the sys­
tem include windowing and streamlined processing. 

Windowing means that by using computerized pro­
cedures subfiles for analysis are built from base data 
files that describe the zones and networks of the region 
in much detail. Typically, these subfiles include de­
tailed presentation for the area of interest; the level of 
detail decreases gradually with distance from the area 
of interest. Different subfiles are built for practically 
every analysis. 

In streamlined processing, through both the selection 
of models and the use of computerized procedures, it is 
possible to go through the whole analysis process for one 
alternative in one or two computer jobs. At the same 
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Figure 1. TAP program sequence. FROM 
TIS 

Regional 
AcHvities/ 
Trips 

Regionol 
Netwo~ 

I Propo1ed 
I Activity 
I Cha".'11., 

i--c$ 
I (Modified) 
I Rogionol 
I Trips 

I 

I TO 
I TIS 

I 
I 
I 

I 
I 

lntenection 
File 

I Zonal & 

r----------1~ I Network 
Sumrnariet 

Culltd 
Intersection 

File 

UROAD 

Culled~REBLD Network 

Skim 
Trees 

JSUM 

NETSUM 

I 
I 
I 

I Trip 
I Tobie 
I Summaries 

I 
I 
I 

I Assignment 
'--------------'~ I Summaries 

time, the user can easily change the structure of the 
process in response to special analysis requirements. 

CONSTRUCTION OF THE TRIP TABLE 

The procedure for constructing the trip table is a major 
part of TAP. It determines, to a large extent, the struc­
ture of the whole process in response to special analysis 
requirements. The following is a short description of 
the process as implemented. This description is fol­
lowed by a discussion of alternative approaches and the 
reasoning behind the selected approach. 

A major input to TAP is the zone data file, which in­
cludes (for each of the 7000 traffic survey zones) esti­
mates of activity such as population, employment, ser­
vice employment, and median income and productions 
and attractions of vehicle trips by five trip purposes. 
Such a file is prepared, externally to TAP, for each of 
the likely planning years, for instance, for each 5-year 
period until the year 2000. 

Through the program GENER, the user can introduce 
changes in the activity measures for individual traffic 
survey zones. Using a combined trip generation, mode­
split, and auto occupancy model, the program recalcu­
lates trip productions and attractions. Thus it is pos­
sible to introduce into the process and analyze the effect 
of proposed land-use changes. 

The zone data file is then put into the program 
WINDOW. Depending on the user-specified window 
structure, WINDOW aggregates the zone data to form 
the zone structure used in the analysis. The resulting 
analysis zones might include individual traffic survey 
zones within the area of interest, with aggregation of 
the zones elsewhere according to a five-level hierarchy. 
Typically, 150 to 300 analysis zones are created by ag-

gregating the original 7000 traffic survey zones. WINDOW 
also processes the network by culling links from the 
base network according to their importance in a five­
level hierarchy and their distance from the area of in­
terest. Next, the zones are connected to the network 
through approach links, or directly by load nodes. 

Minimum impedance skim trees are built, using the 
program TREBLD. Trees are built on a prestressed 
network; i.e., speeds are calculated by considering av­
erage expected link volumes. The network might be pre­
stressed to consider average daily loads and/or peak 
period loads. Impedance is calculated as a linear com­
bination of time, operating costs, and tolls. 

The trip file, together with the skim trees, is put into 
the program ALDGRA V for trip distribution. Trips are 
distributed separately by five trip purposes using the 
corresponding skim trees. A detailed description of the 
trip distribution process is given below. 

By using the program UMATRIX, the purpose-specific 
trip tables are combined and, if necessary, transposed 
to create the final trip table. At this point, special trips 
(through and airport trips) are also added to the table. 

MAJOR DESIGN CONSIDERATIONS 

Trip Generation 

It was possible, obviously, to make the trip generation 
model an integral part of TAP and to require as input 
only the estimated zone activity levels. This approach 
was rejected, because in the analysis of small-scale 
problems there is no need to repeat the entire trip gen­
eration for each analysis. Selective updates through 
GENER are sufficient for analysis of localized land-use 
effects. 



Another major problem was the method for mode­
split analysis lor, more accurately, the estimation of 
the number of auto person trips, given the number of 
total person trips). Available procedures for mode­
split estimation are rather costly and require the input 
of skim trees by mode, as well as various zone data. 
It is clearly infeasible to go through such a process for 
the whole region for every analysis of a small-scale 
project. Thus, the base trip generation model includes 
a full mode-split analysis. 

Mode split for activity updates (within TAP) is per­
formed by using the resulting zone-split factors. It is 
implicitly assumed that in most projects of the type 
analyzed by TAP, system changes are not large enough 
to cause significant changes in mode split. Obviously, 
whenever this assumption is not justified, a full-scale 
mode-split analysis (outside TAP) has to be made. 

Trip Distribution 

Conceptually, it is possible to treat trip distribution in 
the same way as trip generation is treated, namely, to 
distribute the trips outside TAP and to aggregate the 
resulting trip table for each window. This approach has 
been rejected, since the cost of a 7000 x 7000-zone trip 
distribution would be prohibitive. Moreover, connecting 
the 7000 traffic survey zones to the network (for pur­
poses of skim tree building) would result in an impossi­
bly large network. 

In TAP, trip distribution is done after constructing 
the window by using the 150 to 300 analysis zones typi­
cally resulting from the windowing phase. It is possible 
to use this approach only if the performance of the trip 
distribution model is not overly sensitive to area aggre­
gation. Nihan and Miller (2) have shown that a properly 
formulated gravity model possesses this attribute. In 
a number of applications in New York it was shown that 
the ALDGRAV model, in particular, gives very stable 
results under a wide range of aggregation schemes. The 
ALDGRA V model and its use in TAP are described in 
detail in the following sections. 

TRIP DLSTRIBUTION MODEL 

The trip distribution model used in TAP is ALDGRAV, 
a gravity model formulation adapted from the access and 
land develo_pment (ALD) model originally developed by 
Schneider l~ !, ~) and further discussed more recently 
by Kaplan (~. 

ALDGRA V Concepts 

In TAP, the ALDGRA V model is used to distribute trips 
from production end to attraction end. Trip productions 
and attractions, for each traffic survey zone, are cal­
culated apart from TAP and then aggregated according 
to the creation of analysis zones by program WINDOW 
within TAP. The trips are then distributed by the TAP 
version of ALDGRA V, which embodies the following 
basic assumptions. 

1. Probability maximization is applicable to the dis­
tribution of trips; 

2. For a given group of trip makers, the sensitivity 
of travel to the disutility is not a single value but ranges 
over a continuum; 

3. The total disutility of travel, incurred by the trips 
produced from a given zone, must be finite; and 

4. For a given zone, the input number of attractions 
is a surrogate measure of the attractiveness of that zone 
to trip makers. 
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The application of probability maximization, with the 
constraint implicit in assumption 3, yields the 
ALDGRA V model form. For a more rigorous dis­
cussion, the reader is referred to Kaplan (6), from 
which much of the ensuing discussion is also excerpted. 
The basic gravity model formulation may be expressed 
as 

where 

VIJ = number of trips produced by zone i and at­
tracted to zone j, 

Vi = total number of trips produced by zone i, 

(I) 

G( .) =travel (decay) function representing the rate 
at which attractiveness declines with increas­
ing travel disutility, 

FIJ = disutility of travel from zone i to zone j, and 
AJ = attractiveness (number of attractions) for 

zone j. 

Equation 1 can be interpreted as a share formula that 
allocates the total productions from zone i, V1 , among 
alternative attraction zones, according to their relative 
attractiveness weighted by their corresponding decay 
values. 

Specific gravity formulations are distinguished by 
different forms of the travel function G( .). Examples 
include 

1. Inverse power function G(F) = r•, 
2. Negative exponential function G(F) =exp (-aF), 
3. Combined inverse power and negative exponen­

tial function G(F) = F-• [exp (-bF)], and 
4. Gamma density function, G(F) = F"- 1 exp(-F)/r(a). 

The travel function used in ALDORA V is somewhat more 
complex than the above functions but can be related to 
the negative exponential function 2 as follows. 

If basic assumption 2 is replaced by the simplified 
assumption of a single value, a, for traveler sensitivity, 
one derives the gravity model form (Equation 1) with 
negative exponential travel function 2. This model has 
been derived from entropy maximization principles by 
Wilson (7). However, the ALDGRAV formulation is 
based on-the theoretically more complete assumption 2 
that leads to integration over a range of sensitivity val­
ues and results in the gravity form with the ALDORA V 
travel function 

(2) 

where Ka is the modified Bessel function of second kind 
and second order, and a is a value representing an 
average traveler sensitivity. 

For comparison, alternative travel functions are 
plotted in Figure 2. The value of the a constant was 
chosen to ensure comparability of the four functions, 
as follows: 

1. G (t) = t-•; a= 2.625, 
2. G (t) = e-"'; a = 0.260, 

e-•t 
3. G (t) = -t-; a= 0.143, and 

4. G (t) =Ka (2 yat)/4at; a= 0.100. 

Regardless of the a-values, the Bessel function will al­
ways have a faster decay rate than the negative exponen­
tial at very small disutility values and a slower decay 
rate over large disutility values. No such general state­
ment can be made about the comparison with the inverse 
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Figure 2. Comparison of alternative travel functions. 
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power or the combined functions. 
In its application in TAP, the ALDGRA V model is 

doubly constrained; i.e., Equation 1 is iteratively ad­
justed to balance the trips received by each zone to the 
input number of attractions. 

Travel Disutility 

For interzone trips from zone i to zone j the travel dis­
utility measure used in TAP is 

Fii = Tii + TP(AT;) (3) 

where 

T, 1 = W1 * tu+ Wa * c1J + W3 • f1 i is the total 
travel impedance from zone i to zone j, 

tu =travel time from zone i to zone j, 
ell = operating cost from zone l to zone j, 
'fu = tolls from zone i to zone j, and 

W1, W2, W3 = weighting parameters (uniform for the 
whole region). 

TP(AT 1) is a fixed penalty assessed according to the 
area type, AT11 of zone i. 

Conceptually, the fixed penalty reflects factors such 
as cost of owning the car, parking costs, and walking 
time from the parking to the final destination. The fixed 
penalty may have a different value for each of the four 
area types used in TAP (numbered by Urban Mass Trans­
portation Administration ( UMT A) convention and corre­
sponding roughly to a trip-end density classification) 

1 = Central business district (CBD) (20 000+ daily 

one-way person trip ends per square mile), 
2 = CBD fringe (5000-19 999 trips per square mile), 
3 =Suburban (1000-4999 trips per square mile), and 
5 =Rural (0-999 trips per square mile). 

For intrazone trips the calculation of travel disutility 
differs somewhat. Generally, intrazone travel time 
cannot be obtained directly from conventional skim trees. 
Within ALDGRAV, therefore, the intrazone travel time 
is estimated as a function of the radius of the zone. This 
quality is, in turn, divided by the intrazone speed to es­
timate the average intrazone travel time, to which the 
fixed penalty is added to yield the intrazone disutility. 
Note that, within TAP, the calculation of intrazone dis­
utility is of special importance because of the large 
variations in zone sizes due to windowing. Proper cal­
culation of the intrazone disutilities plays a major role 
in ensuring stable model performance under varying ag­
gregation schemes. 

A special treatment has been established for the dis­
tribution of external-local trips. These trips are some­
what unique, due to the fact that they are generally 
longer than internal trips and that only the within-region 
portion of these trip lS described by the skim trees. 

The fixed penalty (TP in Equation 3) can be inter­
preted, in the case of external trips, as the average 
impedance of that part of the trip outside the region. 
This interpretation ls fully compatible with the theory 
of ALDGRAV. By treating the external-local trips as a 
special trip type , it is possible to assign to them an ap­
propriate fixed penalty, as required. 

Another unique attribute of these trips is that their 
distribution is not as dependent on the value of the in­
traregional impedance as that of the other trip types. 
Thus, in order to ensure their smooth distribution 
within the region, the trips are "flopped"; i.e., the in­
ternal end of the trip is considered the production end, 
whil€ the external station is considered the attraction 
end. 

Calibration of Model Parameters 

The ALDGRA V parameters requiring calibration, for 
use in TAP, are (a) the relative weights of the different 
impedance components, (b) the multiplier constant a, 
(c) the fixed time penalty TP associated with eac.h area 
type, and (d) the average speed SI associated with intra­
zone trips within each area type. These parameters 
affect the simulation of trip distribution patterns through 
their effects on travel function and calculation of travel 
dis utility. 

Figure 3 shows how the shape of the travel function 
G( .) is affected by the value of a. With all fixed time 
penalties set at O, an increase in a-value determines a 
sharper rate of declining attractiveness with increasing 
disutility and hence a shorter mean trip length (disutility). 

Differences in mean trip length by area type can be 
simulated by adjus ting the fixed penalty TP associated 
with each area type. Cons ider, in Figure 3, the curve 
~ssoci ated with a = 0.001 : the addition of TP to the dis ­
utility moves the ordinate to the right, i.e., shifts the 
curve to the left. Thus, the rate of decline in attrac­
tiveness becomes more gradual over the range of inter­
est, and the mean travel disutility increases. 

The a-value and the TP values determine the mean 
interzone travel disutility. With a and TP fixed, the 
intrazone speed, SI, can then be adjusted to determine 
the intrazone percentage of trips for each area type. By 
decreasing SI the intra.zone dis utility is increased, and 
hence the intrazone percentage is decreased. Adjust­
ments in SI do not affect the interzone disutilities, F w 
and therefore have no direct effect on interzone trip 



Figure 3. G-values versus disutility by a-values. 
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lengths, although in practice the latter may be slightly 
affected because of the competition for trip ends im­
plicit in the balancing of trips received with input at­
tractions. 

Calibration Procedure and Criteria 

The calibration procedure is based on accurate approxi­
mations of observed average interzone trip length (or 
travel time) by area type and of the interzone percentage 
of trips, by area type. The rationale for these approxi­
mations is that vehicle kilometers of travel (VKMT), or 
vehicle hours of travel (VHT), by area type are thereby 
accurately approximated, since VKMT equals mean trip 
length times percentage of interzone times number of 
trips and VHT equals mean travel times percentage of 
interzone times number of trips. 

As an additional check on the validity of the model 
parameters, of course, simulated and observed volumes 
are compared for closeness of fit, particularly on major 
interchanges. 

The calibration itself is conducted in an essentially 
stepwise cut-and-try fashion. From an initial set of 
parameter values, the multiplier a is first adjusted to 
roughly approximate regional mean trip length (or travel 
time), but with allowance for adjustment within each area 
type. The fixed penalties, TP, are then adjusted to ap­
proximate the mean within each area type. Finally, the 
intrazone speeds, SI, are set to give the correct intra­
zone percentage. Although the effects of the parame­
ters are interrelated, with the aid of manual calculations 
the calibration procedure thus organized can accomplish 
the basic criteria in three to five test runs. 
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CALIBRATION RESULTS 

This section documents the calibration of ALDGRA V for 
distribution of vehicle trips in TAP for each of the fol­
lowing trip purposes: home-based work, auto driver 
(HBW); home-based non-work, auto driver (HNW); non­
home-based, auto driver (NHB); truck and taxi (T&T); 
and internal versus external {I/E). 

Calibration Results 

The base data for calibration were taken from origin­
destination survey data compiled in a 1964 home inter­
view survey conducted in the Dallas- Fort Worth area. 
The trip data were redefined in production-attraction 
format and expanded to form vehicle trip tables for each 
of the five trip purposes. The zone structure used in 
calibration consists of 504 regional analysis areas 
(RAAs), plus 18 external stations. For analysis pur­
poses, the RAAs are aggregated into 39 jurisdiction 
districts. The districts and external stations are shown 
in Figure 4. The calibration effort utilized travel-time 
skim trees compatible with the trip tables in zone struc­
ture, base year, and peak versus off-peak conditions. 

Shown in Tables 1, 2, and 3 are the calibration re­
sults for HBW, HNW, and NHB trip purposes, which 
collectively constitute more than 80 percent of vehicle 
trips in the region. A comparison of observed and simu­
lated trip patterns with respect to the basic criteria, in­
terzone percentage, and average interzone time, is 
shown. Both observed and simulated trip tables were 
aggregated (squeezed) for comparison of district-district 
interchanges, and a classification of major interchanges 
by percent error is shown for each trip purpose. Also 
shown are the calibrated parameters. 

To briefly evaluate the calibration results, the inter­
zone percentage and the average interzone travel time 
have generally been matched quite closely, even when 
broken out by area type. For major interchanges, the 
accuracy summaries are encouraging, particularly in 
view of the fact that these results were obtained without 
the use of K-factors. (Aside from the usual questions 
of behavioral validity and temporal stability, K-factors 
present additional problems for planning with a flexible 
zone structure.> 

The errors did not appear to be systematic except in 
the case of HNW and, to a lesser extent, NHB. For 
these trip purposes, the simulated within-district per­
centages tended to be lower than observed. As noted 
above, however, simulation results were accurate in the 
interzone percentages, as well as in the average inter­
zone impedance. The implication is that there is a pro­
pensity, particularly in HNW travel, to go either to a 
neighboring zone or to a distant one, which is not fully 
captured in the model. In other words, for interzone 
trips, the observed impedance distribution curve is 
flatter, or less peaked, than the simulated curve. Pos­
sible solutions would be to go to a long and a short stra­
tification (this creates problems in definition) or to sep­
arate home-based shopping from other HNW purposes. 
This is one of the issues to be addressed in future 
research. 

NEED FOR FURTHER RESEARCH 
AND DEVELOPMENT 

In spite of the generally satisfactory performance of 
TAP and its procedure for constructing trip tables in 
particular, there are still a number of areas where more 
study is needed and likely to be highly cost effective. 
The following list of subjects to be studied reflects our 
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Figure 4. District definition and 
external stations. 

@ 

Tabla 1. HBW auto driver trips. 

Tabla 2. HNW auto driver trips. 

Table 3. NHB auto driver trips. 

3 

ll @ 0 

Observed Simulated 

Percentage Percentage Average Percentage Average 
No. of of of Travel of Travel 

Area Type Trips Total Interzone Time(mln) Interzone Tlme(min) 

1. CBD 1 748 0.2 100.0 8.9 98.8 e.2 
2. CBD Cringe 140 936 20.1 95.3 12. 7 95.9 12.1 
3. Suburban 514 652 73.4 92.6 16.5 93.1 16.6 
5. Rural 44 184 ~ 79.4 24.2 84.8 24 .2 

Total 701 520 100.0 92 .4 16.1 93.l 16.1 

Note: Percentages of error for all district-district interchanges greater than 5000 trips were Q. 10 for 14, 10·20 for 11, 20·30 for 5, 30-40 
for 4, 4().50 for 0, and 50·60 for 1; the parameters used were a • 0.54 and SI 150 for TP 12, SI 400 for TP 12, SI 600 for TP 10, 
SI 600 for TP 3, and SI 600 for TP 3. 

Observed Simulated 

Percentage Percentage Average Percentage Average 
No. of of of Travel of Travel 

Area Type Trips Total Inter zone Time(mln) Interzone Tlme(min} 

1. CBD 3471 0.2 98.4 8.0 98.7 e.o 
2. CBD fringe 295006 17.0 79.5 9.7 82.4 9.2 
3. Suburban 1322180 76.2 67.5 10.6 66.8 10.5 
5. Rural 113 702 ~ 56.0 16.5 55.6 16.6 

Total 1734359 100.0 68.8 10.7 68.8 10.6 

Note: Percentages of error for all distric:t·district interchanges greater than 10 000 trips wcmt 0-10 for 9, 10-20 for 13, 20·30 for 3, but 
none above; the parameters used were a= 1.20 and SI 150 for TP 13, SI 420 for TP 5, SI 420 for TP 3, SI 500 for TP 0, and 
SI 500 for TP 0, 

Observed Simulated 

Percentage Percentage Average Percentage Average 
No. of of of Travel of Travel 

Area Type Trips Total lnterzone Time (min} Interzone Time (min) 

1. CBD 76 582 8.5 98.6 11. 5 96 .1 11.3 
2. CBD fringe 204 907 22.e 86.8 10.3 89. I 9. 8 
3. Suburban 586 337 65 . 1 75.9 11.6 76.2 11.5 
5. Rural 32 688 _.!:! 57 .6 17.5 58.2 17 .5 

Total 900 514 100.0 79.6 11.4 80.2 11.2 

Note: Percentages of error for all district ·district interchanges greater than 5000 trips were 0 · 10 for 16, 10·20 for 14, 20-30 for 11, but 
none above; the parameters used were a= 1.2 and SI 100 for TP 25, SI 450 for TP 9, SI 450 for TP 7, SI 550 for TP 2, and SI 550 
forTP 2. 



present major concerns; it is not intended to be compre­
hensive or exhaustive. 

Multimodal Windowing 

The extension of the present capabilities of TAP to 
multimodal analysis seems, naturally, to be the next 
order of business. The unimodal capabilities of TAP 
are clearly insufficient for modern planning. The prob­
lems of windowing for transit analysis might be rather 
complicated; specifically, the structure of transit net­
works will require more involved network culling tech­
niques, compared to the techniques used for highway 
networks. Moreover, conventional mode-choice models 
are rather sensitive to area aggregation (because of the 
importance of access-egress impedance). They might 
perform poorly within the framework of windowing, 
where skim trees are available only for the aggregated 
zones, which might be rather large. 

Trip Distribution for Microassignment 

Within TAP, the ALDGRA V model produces trip tables 
that can be used for microassignment. In some in­
stances, in order to attain sufficient precision in the 
microanalysis, analysis zones are very small, only a 
few blocks. There is, as yet, very little experience with 
the performance of ALDGRA V (and practically all trip 
distribution models) in such small-scale analysis. A 
careful study of this issue is much needed. 

Need and Justification for Precision 

There are a number of areas in which certain increases 
in the complexity and costs of the analysis might make 
the results of the analysis more precise. Examples in­
clude 

1. Making the relative weights of travel cost and 
time a function of income in impedance calculations, 

2. Relating fixed impedance penalties to measurable 
zone attributes such as cost and availability of parking, 

3. Further stratifying home-based non-work trips to 
short and long in order to attain better duplications of 
observed trip-length distributions, and 

4. Using a number of paths rather than only one path 
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for calculating impedance (the ALDGRA V theory, for 
example, suggests that both the minimum time path and 
the minimum cost path should be considered). 

In spite of the long experience in travel forecasting, it 
seems that these issues have never been studied 
thoroughly. Various assertions, based primarily on 
so-called behavioral and theoretical considerations, on 
these subjects have been made; however, there is a need 
to study these issues by comparatively analyzing them 
with observed data, as well as by weighing the potential 
increase in the precision of the results versus increas­
ing the cost of acquiring data and the complexity of the 
analysis. 

REFERENCES 

1. Program Concept, Development of a Thoroughfare 
Plan and Inventory. North Central Texas Council 
of Governments, Arlington, Apr. 1975. 

2. N. Nihan and D. G. Miller. The Subarea Focusing 
Concept for Trip Distribution in the Puget Sound 
Region. TRB, Transportation Research Record 
610, 1976, pp. 37-43. 

3. M. Schneider. Access and Land Development. HRB, 
Special Rept. 97, 1968, pp. 164-177. 

4. M. Schneider. Direct Estimation of Traffic Volume 
at a Point. HRB, Highway Research Record 165, 
1967, pp . 108-116. 

5. Creighton, Hamburg. Transportation and Land De­
velopment-A Third Generation Model: Theory and 
Prototype. Federal Highway Administration, U.S. 
Department of Transportation, Rept. Contract No. 
FH-11-6792, 1969. 

6. M. P. Kaplan. Calibration of the Access and Land 
Development (ALO) Model Travel Function: A Mul­
timodal, Multidimensional Travel Function for Use 
in Urban Travel Demand Models. Department of 
Civil Engineering, Northwestern Univ., Evanston, 
IL, master's thesis, Aug, 1976. 

7. A. G. Wilson. A Statistical Theory of Spatial Dis­
tribution Models. Transportation Research, Vol. 1, 
No. 3, 1967, pp. 253-269. 

Publication of this paper sponsored by Committee on Passenger Travel 
Demand Forecasting and Committee on Traveler Behavior and Values. 

Recent Structural and Empirical 
Findings in Trade-Off Analysis 
Patricia M. Eberts,* Kellogg Corporation, Battle Creek, Michigan 
K.-W. Peter Koeppel,* Institute of Administration and Management, Union 

College, Schenectady, New York 

This paper reports on three recent investigations by the New York 
State Department of Transportation's Planning Research Unit into 
empirical and theoretical aspects of trade·off analysis, a multi· 
dimensional attitude scaling procedure. First, the possible influence 
of the length of the questionnaire was investigated. Fatigue bias was 
found to be substantial, and use of abbreviated questionnaires and a 
random order of items is suggested. Second, tests were made for a 
degradation in response accuracy, with substantially shortened ques· 

tionnaires. No significant loss of information was found in reductions 
of up to 50 percent of a 10·matrix design. Third, the effects of dif· 
ferent utility integration rules were studied. Some differences were 
found but they are too small to be of practical importance. The re· 
search concludes that the trade·off procedure is a powerful, robust 
approach that can be used with confidence, 
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Figure 1. Split·half partitioning of the sample. 
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Numerous methods of attitude and opinion scaling have 
been used with increasing frequency by transportation 
researchers in recent years. A newly developed ap­
proach, trade-off analysis, has been used extensively 
by Market Facts (1, 2), and a similar algorithm was 
subsequently operationalized by the Planning Research 
Unit of the New York State Department of Transporta­
tion (NYSDOT) (3). 

Using data about rank-order preferences of combina­
tions of attribute levels, this procedure estimates the 
utilities each respondent places on the attributes de­
scribing a policy. In a second step, these individual 
utilities are then aggregated to estimate market shares 
for proposed objects or policies, defined in terms of 
these attributes. NYSDOT has used this method exten­
sively in its studies of travel preferences and behavior 
(4, 5, 6). 
- However, due to the relative newness of the proce­

dure, until recently little analysis has been conducted on 
the properties of the procedure itself. This paper sum­
marizes a number of such studies by NYSDOT. Specifi­
cally, the following problems are dealt with: 

1. Respondent fatigue because of the questionnaire 
length ("item position bias"), 

2. Effects of reductions in the questionnaire size on 
the relative accuracy of the scaling procedure, and 

3. Sensitivity of the procedure to various functional 
forms of the utility integration model. 

The research summarized in this paper is described 
separately in more detail in other reports (2_, ~· 

DATA 

The data for these analyses were obtained from a study 
of white-collar employee attitudes toward alternative 
work schedules (5). A random sample of 140 employees 
of the main office of NYSDOT was administered a ques­
tionnaire on travel patterns, general attitudes toward 
work schedule changes, perceived impacts of these 
changes, and detailed attitudes toward five character­
istics of work schedules. The five attributes and their 
levels are as follows: 

1. Work week: 
4 days/week-Monday - Thursday, 
4 days/week-Tuesday - Friday, and 
5 days/week-Monday - Friday; 

2. Hours per day: 
7 hours/day, 
8 hours/day, and 
9 hours/day; 

3. Times worked: 

n = 140 

Categorical Trade-Off Format 
Judgment n • 70 (50%) 
Format Order I Order 

n • 70 (50%) 1+10 10<-l 
n • 35 (25%) n • 35 (25%) 

66% 80% 

J, .I~ 

n • 67 n • 23 n • 28 
(56%) (19%) (25%) 

n = 113 

Fixed (everyone starts and stops work at the 
same time), 

Individual-specific (fixed for each person but 
allowing for differences between persons), 
and 

Variable (start and stop work whenever the 
employee wants, subject to working a full 
schedule each day); 

4. Parking location: 
Unassigned spaces in assigned lots, 
Special location for carpools, and 
Assigned place in assigned lots; and 

5. Cost of parking: 
Free, 
$1/month, and 
$1/week. 

The present working arrangement at NYSDOT's main 
office consists of (a) 5 days, Monday- Friday; (b) 7. 5 
hours/day; (c) fixed schedule; (d) unassigned parking in 
assigned lots; (e) free parking. 

To investigate the structure of the trade-off model, 
a split-half approach was used to partition the sample, 
in which each respondent was randomly assigned one of 
these three versions of the questionnaire: categorical 
judgment format, trade-off format (10 matrixes in order 
1-10), and trade-off format (10 matrixes in order 10-1). 
Figure 1 shows the distribution of the selected and re­
turned trade-off sample (n = 51). Characteristics of 
respondents in each group were statistically similar to 
the population on three characteristics. 

ITEM POSITION BIAS 

The questionnaire required by trade-off analysis is very 
lengthy, and thus we should expect to observe fatigue on 
the part of the respondents. Two different versions of 
the trade-off questionnaire, in which the order of ma­
trixes was reversed, were administered to test this hy­
pothesis. 

The idea underlying this procedure is that, if an at­
tribute included early in one questionnaire but rather 
late in the other questionnaire is changed, the result 
should be two different estimates of the preference 
shares for the same future. The difference in prefer­
ence should be most pronounced for attributes presented 
at the extreme ends of the questionnaire and less pro­
nounced for attributes presented in the middle of the 
questionnaire. 

To determine the position of each attribute in the 
questionnaire, a ranking of from 1 to 10 was computed 
as below. 



Original Rank Form 
Rank Reversed Difference 

Attribute (Group 2) (Group 3) in Rank 

1 2.5 8.5 -6 
2 4.75 6.25 -1.5 
3 6 5 1 
4 6.75 4.25 1.5 
5 7.5 3.5 4 

Ten test policies were then constructed, changing one 
attribute level at a time. Differences in the predicted 
preferences for group 2 versus group 3 were plotted 
against average differences in rank for each attribute. 
Results are shown in Figure 2. The largest difference 
in the preference shares does indeed exist for attribute 
1 (the attribute with the largest difference in rank), fol­
lowed by attributes 2 and 3. Attributes 4 and 5, how­
ever, do not follow the hypothesis, probably because 
state workers are extremely sensitive to them and any 

Table 1. Mean utilities for attribute levels under full and reduced data 
sets. 

Percentage of Data Remaining 

50 50 
Attribute 100 60 Stepwise Circular 40 

I. Work week 
4 days, M-Th 0.3806 0.3862 0.3772 0.3798 0.3726 
4 days, T-F 0.3697 0.3747 0.3584 0.3693 0.3597 
5 days, M-F 0.2496 0.2390 0.2644 0.2509 0.2677 

2. Hours per day 
7 0.4321 0.4583 0.4199 0.4477 0.4470 
8 0.5292 0.3275 0.3253 0.3254 0.3085 
9 0.2387 0.2142 0.2548 0.2269 0.2446 

3. Work schedule 
Fixed 0.2917 0.2810 0.2857 0.2962 0.2916 
Specific 0.3148 0.3140 0.3107 0.3151 0.3122 
Variable 0.3935 0.4049 0.4036 0.3887 0.3962 

4. Parking location 
Anywhere in lot 0.3899 0.4025 0.3924 0.3949 0.4145 
Specific H carpool 0.2743 0.2657 0.2723 0.2731 0.2548 
Assigned 0.3358 0.3317 0.3353 0.3320 0.3306 

5. Parking [ee 
Free 0.5823 0.5636 0.5919 0.5632 
$1 per month 0.2988 0.2862 0.2799 0.2753 
$1 per week 0.1189 0.1503 0.1281 0.1614 

iSince all matrixes relating to attribute 5 were excluded, no mean utility was calculated. 

Figure 2. Differences in policy preferences 
versus differences in attribute location. 

ATTRIBUTE I 
DAY OF WEEK 

ATTRIBUTE 2 
HOURS/DAY 
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change from the present status would be uniformly re­
jected. 

Thus, the result of this study is that lengthy applica­
tions of trade-off analysis are likely to contain position 
bias and that appropriate measures (e.g., reversing or­
der) should be taken to remove position bias. One addi­
tional method of avoiding such a bias, reducing ques­
tionnaire length, is examined in the next section. 

REDUCTION IN QUESTIONNAIRE 
LENGTH 

Not only could the effects of respondent fatigue be re­
duced by a shorter questionnaire (i.e., reduction of the 
number of matrixes presented), but substantial economic 
savings in survey administration and processing could 
result from such a reduction as well. 

To test the sensitivity of the trade-off technique to 
data reduction, four reductions of 40, 50, 50, and 60 
percent were performed by eliminating matrixes from 
the existing data set. A test policy was selected in 
which the time schedule (attribute 3) was changed from 
fixed to completely variable. The mean utilities ob­
tained are given in Table 1. Overall, the differences in 
mean utilities between the full set of data and the reduced 
sets are small. Expectedly, this leads to the same pre­
dicted preference patterns for the full and all reduced 
data sets, as shown in Figure 3. In general, even a 50 
percent reduction in questionnaire length does not lead 
to a significant loss of information. 

A circular design in the selection of the attribute 
pairings is probably superior to other designs, in the 
absence of prior knowledge about the dominance of any 
attribute. The 60 percent reduction possibly does not 
lead to a significant loss of information, but its per­
formance depends critically on the dominance of the piv­
otal element(s); in the absence of prior knowledge, such 
a design is not advisable. 

FUNCTIONAL FORMS OF THE MODEL 

All the preceding tests were done by using a multiplica­
tive utility integration rule: 

20 

10 

ABSOLUTE OlFFEREl'lCE IN 
PREFER.ENCE SHAii.ES '· 

ATTRIBUTE 3 
TIME WORKEI) EACH OAY 

I 
/ 
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Figure 3. Preference predictions under full and reduced data sets. 
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Table 2. Mean utilities under different functional forms. 

Utilities 

Additive Multlplicati ve 
Attribute Level Mean Mean 

1. Work week 4 days, M-Th 0.3903 0.3806 
4 days, Tu· Fr 0.3795 0.3697 
5 days, M·Fr 0.2302 0.2496 

2. Hours per day 7 0.4458 0.4321 
8 0.3396 0.3292 
9 0.2147 0.2387 

3. Work schedule Fixed 0.2865 0.2917 
Speci!ic 0.3173 0.3148 
Variable 0.3966 0.3935 

4. Parking location Unassigned 0.3950 0.3899 
Prefer !or Cal'pool 0.2675 0.2743 
Assigned 0.3376 0.3358 

5. Parkin~ fee Free 0.6203 0. 5823 
SI per month 0.3094 0.2988 
$1 per week 0.0703 0.1184 

(I) 

where 

U" = utility of policy p and 
Up,; = utility of attribute i as defined for policy p. 

A number of objections to this model have been raised, 
the most important being the requirement of ratio scales, 
which are difficult to establish from the preference in­
formation in the questionnaire. Two other models, 
therefore, were compared to the multiplicative model: 
an additive model 

UP= Up , I + Up,l + ... + Up,n (2) 

and the additive exponential model 

DESIGNS 
50 

43.7 

74 

40 

4Z.8 

79 

100 

In each case, the probability of policy choice is then 
computed as a Luce share model: 

(3) 

(4) 

Obviously, these models are related by the exponential 
transformation, since 

Up,l (up,2) ..•. Up,n = exp(vp,I + ... + Vp,n), with Up,1 

= exp(vp,1) 

The additive exponential model takes the form of the 
multinomial logit model when combined with the Luce 
share model. 

(5) 

Since the exponential transportation is not admissible 
for ratio or interval scales, if we want to interpret these 
scales in other than an ordinal manner we can make the 
following predictions. First, utilities for attribute 
levels and policies would change slightly, comparing the 
three forms; second, market preferences based on first 
choices would not change at all; and, third, market 
preferences based on preference shares would change 
slightly. 

In the tests done to confirm the above hypotheses, 
the computer program was modified to allow for the di­
rect estimation of the additive utilities. These same 
additive utilities were then used to calculate preferences 
under the logit model, due to restrictions inherent in the 
programs. The results (Table 2) confirm the above hy­
potheses. The differences in the mean utilities are in­
deed so small as to be of no practical value. 

For the evaluation of market preferences, the 5 days, 
variable hours future was used. The resulting market 
shares are given in Figure 4. As expected, there is no 
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change in the overall voting share for the additive and 
logit models. In both cases, one person (out of 51) 
shifted his vote for the future when going from the 
additive-logit models to the multiplicative model. While 
we expected no shift at all, this shift does not upset the 
hypothesis, since the hypothesis is valid only for the 
case of a perfect fit of the utilities to the data and an in­
finite data set. Both of these conditions are not true in 
this (and any practical) application. 

In the case of the preference share model, we find, 
as expected, a slight but insignificant shift. The logit 
model as applied to additive utilities stands between the 
additive and multiplicative model. From a demographic 
viewpoint, the three models are equivalent. If we were 
to select a model from a psychological point of view, 
we would tend to favor the additive model, which has 
been found to be an acceptable representation of many 
decision processes in other studies. However, from a 
measurement theoretical point of view, the additive 
model is to be preferred only for the purpose of a voting 
share prediction. It is not admissible for the calculation 
of a preference split unless it is subject to the exponen­
tial transformation, leading to the multinomial logit 
model. If we are interested in the preference split, this 
is the model with the best theoretical foundation. 

On the individual level, the exponential additive model 
requires scales with known unit and one arbitrary origin 
per individual. On the aggregate level the unit of mea­
surement does not have to be the same over individuals 
as long as we interpret the utilities as likelihoods. This 
represents a significant relaxation of the necessary con­
ditions for the establishment of the utility structure com­
pared to the additive and multiplicative models. Thus, 
the exponential additive model, which leads to the logit 
model when standardized, is generally the preferred 
utility integration rule for trade-off analysis. 

MODEL FORM 

ADDITIVE EXPONENTIAL 
6Z.7S 
51.40 

79 

0 

100•4 

47 

100, 0 

100 

SUMMARY 

/ 

IOO'ro 

IOO"'f., 

100•1. 

MU\. Tl Pl.IC A TIVE 
64.71 
5Z.JS 

47 
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To summarize, we found that the lengthy questionnaire 
needed for trade-off analysis is likely to lead to "posi­
tion bias" in the data collected. Randomizing techniques 
would be needed in the composition of the questionnaires 
administered. While this may lead to larger variability 
in the data, it will reduce the effect of bias. We also 
found, however, that a 50 percent reduction in question­
naire length can be achieved without a significant loss 
in accuracy. A "circular" design is preferable. Last, 
for most practical purposes, all three utility models 
tested (additive, exponential additive, multiplicative) are 
equivalent. While the additive model is more commonly 
used, the exponential additive model is superior to the 
additive model on measurement-theoretical grounds. 

The transportation policy planner should find trade­
off analysis a helpful tool in the assessment of attitudes 
toward policy alternatives, and it has in fact been ap­
plied usefully in studies of staggered work hours, public 
transportation, and carpooling. The method is robust 
to reductions in questionnaire length and to various 
utility integration rules, and allows for an easy assess­
ment of preferences broken down by demographics. It 
is hoped that such applications will be extended and fur­
ther investigated. 
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Air Passenger Distribution Model for 
a Multiterminal Airport System 
Johannes G. Augustinus and Steve A. Demakopoulos, Port Authority of New York 

and New Jersey 

This paper reports on work aimed at calibrating the concepts of a theo· 
retical air passenger airport distribution model with observations on actual 
passenger behavior as derived from inflight surveys. The original model, 
as developed for the U.S. Department of Transportation, has been mod· 
ified to reflect more realistic passenger behavior patterns. Specifically, 
the simplistic assumption that passengers always select the most conve­
nient airport regardless of the relative convenience (or inconvenience) 
of other available facilities or service has been replaced by a formulation 
that permits a more flexible distribution among facilities. The calibra· 
tion of this modified distribution model with inf light survey data for the 
New York-New Jersey metropolitan area shows that model estimates 
that correspond closely with actual passenger distributions can be ob· 
tained, provided proper sensitivity coefficients are selected. 

In 1970, Peat, Marwick, Mitchell and Company, under 
contract to the U.S. Department of Transportation, de­
veloped a computerized intercity transportation effec­
tiveness (ITE) model, of which a separate access­
assignment (AAM) model deals with airport access prob­
lems, other factors related to airport choice such as 
congestion, and the potential role of sepecialized access 
systems such as off-airport satellite terminals (!). 

The access-assignment model has two components: 
(a) a demand assignment model and (b) a cost benefit 
analysis model. 

The following report discusses considerable ex­
pansions and modifications of the demand assignment 
model, developed by the Port Authority of New York 
and New Jersey under contract to the Tri-State Regional 
Planning Commission. Besides these technical ex­
pansions and modifications, the report also deals with 
the adaptation and application of the model to the Tri­
state region. Finally, as its main focus, it discusses 

some results of the model's premises in terms of ob­
servations on actual air passenger behavior observed 
in Port Authority inflight surveys. 

GENERAL STRUCTURE OF THE 
ITE-AAM MODEL 

This model attempts to simulate a transportation system 
in which passenger behavior and physical elements of 
the system interact. Such an interactive process is 
described by an iterative simulation in which one set of 
variables determines the level of another set in one 
phase (iteration), while the process is reversed in the 
next phase. For example, in the first iteration the 
passenger's airport choice is determined solely by con­
venience of access. Passenger volumes assigned on 
that basis then determine congestion levels at each of 
the airports in the system (aircraft, roadway, check-in 
delays) and frequency of flights at each facility. These 
convenience and inconvenience factors are then added 
to the access factors in redistributing passengers in 
the next iteration on the basis of total convenience, all 
expressed in monetary terms. The passengers for 
whom differences among facilities were marginal may 
change their choices from one iteration to another. 

Total cost as conceived in the model includes all 
elements of cost incurred by the passenger from point 
of origination to aircraft take-off. These costs consist 
of out-of-pocket user costs as well as the cost of time 
involved in this process. Three such costs are 
centroid-oriented costs such as over-the-road access 
time and costs primarily physically (geographically) 



determined; nonvolume dependent costs such as parking 
fees, the fare of public transportation, and time lost 
in moving through the terminal, which do not depend 
on volume of (assigned) passengers, but are simply 
given at any point in time; and volume-dependent costs 
such as costs of congestion delay and schedule waiting 
time, which depend on passengers, vehicles, and flights 
assigned by the previous iteration. 

The model as originally developed assigned passengers 
from each origin zone on a winner-take-all basis; i.e., 
all passengers from each zone were exclusively as­
signed to the one airport or satellite and airport com­
bination that produced minimum cost to the passenger. 

ITE MODEL AND ACTUAL Am 
PASSENGER ACCESS PATTERNS 

Whereas the original model assigns passengers to fa­
cilities on the basis of a priori assumptions, the recur­
ring inflight surveys conducted at the New York-New 
Jersey metropolitan airports by the Port Authority in 
cooperation with the airlines contain a wealth of com­
pletely empirical information on the passengers' air­
port choice in the real world, providing information on 
local origin, choice of airport, ground access mode, 
access travel time, destination of air trip, purpose of 
trip, etc. (2 ). 

The obvfOus question presenting itself is whether 
the a priori asssumptions of the ITE model are con­
firmed by these empirical observations and, if not, how 
the model could be modified to incorporate the results 
of such observations in the real world. 

The basic concept of the original model, that a pas­
senger will always select the facility most convenient 
to him or her regardless of the relative degree of con­
venience as compared to alternate facilities (i.e., 
winner take all), is most likely an oversimplification 
of passenger b.ehavior. The Port Authority inflight 
surveys show ample evidence that, when differences 
in convenience among alternate facilities are small, 
passengers distribute themselves among the available 
facilities rather than select exclusively the theoretically 
most convenient airport as determined by access con­
gestion and schedule frequency. In the New York-New 
Jersey area this is particularly evident in the distribu­
tion of Manhattan passengers. As these account for 
more than a third of the region's traffic, this is ob­
viously of major significance in any distribution model 
that is to have practical application in the Tri-State 
area. 

MODIFIED DISTRIBUTION FUNCTION 

A more general model formulation that permits much 
more flexibility and presents many more opportunities 
for verification with and adaptation to empirical data is 
one similar to a model developed by the Rand Corpora­
tion in a 1967 study for the Port Authority (3), Adapted 
to the basic structure of the ITE model, this formula­
tion says that, for each origin zone, the distribution 
among alternate airport facilities will follow the function 

where 

W 0 = fraction of passengers from centroid i who 
will select airport j, 
area (centroid) = 1, ... , C, 

= airport = 1, ... , P, 

(I) 
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cost for a passenger from centroid i to use 
airport j (roadway time, process time, wait­
ing time, etc.), 
cost of the cheapest airport j for a passenger 
from centroid i, and 

~ = an index of passenger sensitivity with respect 
to cost differences among airports. 

This model says in essence that the fraction W of 
total passengers originating in a particular centroid i 
who are to select a particular airport j is a function of 
the cost involved in using that particular airport versus 
the cost of using any of the other competing airports. 

Although the particular functional relationship chosen 
is not necessarily the only one possible, it is clear that 
the relationship, as expressed in general terms, is 
logical; in a multiterminal situation, the passenger is 
assumed to be confronted with a choice among available 
airports and, in making a choice, will weigh the airports 
for relative convenience in a particular situation. The 
cost elements specified in the ITE model are obviously 
major components of this factor convenience. 

Some more specific mathematical properties of this 
model are also appealing, as they further demonstrate 
the generality in the logic of the model as a mathematical 
description of passenger behavior. 

In the first place, it satisfies the condition of con­
ceptual logic that if passengers were infinitely sensi­
tive to differences in access time, then they would 
always select the nearest airport. In this case, the 
coefficient a would approach infinity {or become in­
finitely large), and under that condition the value of W ii 
approaches zero for all airports except the nearest one, 
for which it approaches a value of one. This is the all­
or-nothing or winner-take-all concept. 

On the other extreme, if passengers were absolutely 
insensitive to differences in access times (if a were as­
sumed to approach zero), the model would produce an 
equal distribution of passengers among the three air­
ports, regardless of differences in access time. 

The mathematical formulation of the model, finally, 
ensures that the sum of the individual shares of each 
airport for each particular centroid by definition always 
equals one, or, in other words, there never is an un­
distributed residual 

Numerical examples illustrating these properties are 
given by Augustinus (4). 

Although a passenger's sensitivity with respect to 
access time is probably high, it is not a priori in­
finitely high; therefore it is likely that in real life the 
coefficient will have a value somewhere between zero 
and infinity. 

(2) 

To provide an indication of the impact of changes in 
the value of a on passenger allocation estimates, Rand 
in their report produced a figure (Figure 1) showing 
the passenger distribution between two airports {W ii) 

as a function of the ratio of access times to each airport 
{T1 /T12

). It is clear from this figure that, with in­
creasing values of a, except for the very low ones, the 
curve rapidly approaches the shape of the zero-one 
distribution that results from an assumed a =co. Prob­
ably, this is also a fairly good reflection of real life 
because most of the passengers, in particular when 
access differences are significant, will select the 
nearest airport. If, however, major segments of the 
passenger market are located in centroids where the dif­
ferences in convenience among available airports are 
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Figure 1. Behavior of the volume allocation 1.0 r-~:::::---~-=---.---------------------. 
weighting function for different values of ci. 
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marginal or at best small, as is the case in New York 
for many origin zones in the central business district, 
this assumption becomes clearly defective. 

MODEL CALIBRATION AND 
MEASUREMENTS 

Having modified the model in such a way that it can 
reflect proportionate distributions of passengers among 
airports rather than only exclusive choices of one 
facility, a number of steps had to be taken to calibrate 
this modified model with actual survey data and to 
establish optimum values for the a coefficient. 

Aviation Planning Zones 

For purposes of this study, the Tri-State region was 
broken down into 131 analysis zones (aviation planning 
zones). In addition, 11 zones bordering on but outside 
the region were included, as Port Authority inflight sur­
veys indicate that these zones generate not insignificant 
numbers of passenger trips through the three metro­
politan airports. The zone structure selected was pri­
marily based on the availability of data (the smallest 
zone unit for passenger origin data was the zip-code 
designation), the trip-generating density, and the geog­
raphy of the access network. With a total of 142 origin 
zones and three airports serving the region, the model 
had to deal with 142 x 3 = 426 origin-to-airport links. 

Trip Generation by Zone 

The number of air passenger trips per aviation planning 
zone, rather than being computed from a theoretical trip 
generation model (as in the original ITE-AAM model), 
in this calibration study was determined from actual in­
flight survey data on passenger originations collected in 
1972 (2). 

As expected, the core area, and specifically Man­
hattan, is the largest traffic generator relative to its 
size, generating approximately one-third of the total 
locally generated trips. Moving out from the core area, 
trip generation density generally diminishes. 

Besides passenger originations, the inflight surveys 
provide information on other items, such as trip 
destination, trip purpose, and residences of passengers. 

1.0 I .5 2.0 2 .5 3.0 

Ratio of trip times: Ti 11 /Tin 

In the calibration study, the destination of the air trip 
(as represented by length-of-haul brackets) has been used 
to stratify the passenger market to determine differences 
in sensitivity to airport access convenience. Stratifica­
tion with respect to other passenger characteristics that 
conceivably could reveal differences in access sensi­
tivity, such as trip purpose (business versus personal 
air trips) or passenger residence (Tri-state region 
residents versus visitors to the region from elsewhere), 
have not yet been tested in this study. 

Zone Centroids 

For each zone a geographic centroid was selected from 
which data on travel times and cost to airports and 
satellite terminals were measured. Centroids were 
selected on the basis of two factors: (a) traffic-generating 
density, defined by the areas of relatively high traffic 
generation within a zone, and (b) geographic location with 
respect to major highway intersections. 

Network Data: Access Times and Cost 

For all practical purposes, airport access in 1972 was 
exclusively over highways. All travel times used in 
the calibration phase, therefore, reflect only highway 
times, by private car, taxi, or airport limousine. 
Times used are arithmetic averages of peak and off­
peak travel times, as Port Authority airport statistics 
indicate that approximately one-half of the air pas­
sengers travel to and from the airports during highway 
peak hours and the other half during the off-peak hours. 

The data do reflect today's congestion patterns in the 
region and thus do assume differing speeds over different 
highway segments. 

As to the costs of access for 1972, the cost of using 
private automobile was computed on the basis of a cost 
of 4.0 cents/km (6.5 cents/ mile), which included the 
cost of maintenance, tires, and gas, but no fixed cost 
such as depreciation, garage insurance, etc. This 
reflects the cost as presumably perceived by the pas­
senger. Other (unrelated) Port Authority modal split 
studies produced the most realistic distributions be­
tween public and private modes when applying this con­
cept for private automobile users. Taxi rates were 
computed on the basis of the then existing (1972) fare 



structure of 50 cents for the first 0.12 km (0.2 mile) 
plus 10 cents per additional 0.12 km, the structure in 
effect in New York City, but fairly representative for 
most other taxi fares in the metropolitan area. For 
Manhattan access cost, a taxi-private car mix of 70:30 
was assumed, and a (reverse) 30:70 ratio for Brooklyn, 
Queens, the Bronx, and the nearby urban areas across 
the Hudson. Access costs to all other parts of the region 
were based exclusively on the use of private automobile. 
Highway, bridge, or tunnel tolls were added where ap­
plicable. 

Airline Schedules 

Although airline schedules can be generated by the ITE 
model internally, in the calibration of the model with 
passenger survey data, airline schedules by distance 
range were fed into the model as they actually existed 
in 1972. This procedure should produce better mea­
surements of passenger behavior, as actual schedules 
in the model simulate congestion and level of service 
conditions as actually experienced by passengers in 
making their selection of airport decisions during the 
survey period. 

Market Breakdown 

In the calibration runs the total domestic passenger 
market was broken down in five markets by length of 
haul: under 300 km (250 miles), 300-800 km (250-499 
miles), 800-1280 km (500-799 miles), 1280-2400 km 
(800-1499 miles), and over 2400 km (over 1500 miles). 
Such a breakdown was meaningful for these reasons. 

First, from a theoretical point of view it is reason­
able to postulate that short-haul passengers would be 
more sensitive with respect to access time and cost 
and more discriminating in their choice of airport than 
long-haul passengers. If confirmed, this should 
manifest itself in the values of the coefficients in the 
model that produce passenger distributions most cor­
responding to those observed in the passenger surveys. 

Second, the level of service at each airport is not 
uniform in each market, partly for historical, partly 
for operational reasons (e.g., no transcontinental ser­
vice at La Guardia). Thus, empirical measurements 
made separately for each market permit changes in 
service patterns in the future if indicated by expected 
technological developments or plans for airport ex­
pansion. 

Calibration Results 

After feeding the input data as described into the ITE 

Table 1. ITE model estimates versus actual regional totals. 

Item 

Actual 

Model 
estimates 
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model, the distribution of the air passengers in each 
market among the three airports, as simulated by the 
model under varying values of a, was calibrated against 
the actual distributions observed in the 1972 inflight 
survey. The results are shown in Table 1. 

The model estimates appear to reflect actual dis­
tributions fairly well for any of the selected a values, 
which indicates a basic soundness of the logic of the 
model as a simulation of actual behavior. 

It is also evident from the table that certain a values 
produce numerically better results than others. This 
supports the original premise of the study that, once a 
proper theoretical framework (model) has been de­
veloped, passengers' sensitivities to convenience dif­
ferences can be estimated from actual survey obser­
vations. 

It should be emphasized that there is no a priori con­
nection between the model estimates and survey obser­
vations other than the common base of passenger 
originations (the origin numbers used as input in the 
model were taken from the survey). The airport dis­
tributions developed by the ITE model are generated 
through the model's internal logic. The survey data 
show which airports were actually selected by the 
passengers. 

Although no overall measure of goodness of fit has 
been incorporated into the model at this time, the re­
sults strongly indicate that very high values of a (most 
closely corresponding with a =co; i.e., the all-or­
nothing hypothesis) generally produce less realistic 
results than a values in the general range of 5-15. 
Where deviations of some significance occur with re­
spect to an individual airport, a more detailed analysis 
of the underlying market structure (business versus 
personal travelers, residents of the region versus 
visitors) might well explain some of such deviations 
and enable us to further refine the measurements and 
reduce the differences. 

Although some irregularities occur, the data do 
further indicate that in the lower distance ranges the 
best-fitting results are produced by higher values of a, 
while in the longer ranges lower values of a produce 
better results. This confirms the a priori expectation 
that access and convenience factors are more important 
to short-haul than to long-haul travelers, as they account 
for a relatively larger share of the time and cost of the 
total trip. 

It may be mentioned that, in deriving this conclusion, 
less weight was given to the longest range, where ser­
vice at Kennedy and Newark in 1972 definitely favored 
Kennedy. Equal service levels might well have reduced 
actual passenger levels at Kennedy to the benefit of 
Newark. 

Cl• 

Value 

25 

15 

10 

5 

Terminal 
Location 

LGA 
JFK 
NWK 
LGA 
JKF 
NWK 
LGA 
JFK 
NWK 
LGA 
JFK 
NWK 
LGA 
JFK 
NWK 

Market 

Under 
300 km 

189.0 
20.6 
90.3 

200.1 
18.7 
81.0 

190.6 
30.5 
79.1 

176.4 
45.0 
78.2 

145.8 
73.0 
81.0 

300-
800 km 

167.3 
27.4 
81. 7 

205.0 
10.0 
61.9 

195.3 
20.2 
61.4 

181.0 
33.8 
61.8 

147.9 
60 .2 
68 .6 

800- 1280- Over 
1280 km 2400 km 2400 km 

211.2 232.5 27 .4 
18.7 205.8 182 .7 
95.1 120.4 45.4 

221. 7 246.7 
23 .6 200.1 210.3 
80.0 104.5 45.0 

214.8 241.4 
31.1 219.1 208.3 
79.6 98.6 46 .9 

202.6 233 .8 
43.2 229.5 203.3 
79.3 95.9 52.1 

171.2 223.2 
70.8 231.0 186.3 
84.0 105.1 69.0 

Note: 1 km • 0.62 mile. 
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Table 2. ITE model estimates versus actual Manhattan only. 

Item 

Actual 

Model 
estimates 

ar-
Value 

25 

15 

10 

5 

Terminal 
Location 

LGA 
JFK 
NWK 
LGA 
JFK 
NWK 
LGA 
JFK 
NWK 
LGA 
JFK 
NWK 
LGA 
JFK 
NWK 

Market 

Under 
300 km 

150.4 
16.4 
15.1 

175. 7 
1.3 
4.8 

165.6 
8.4 
7.9 

148.8 
19.8 
13.2 

113.8 
40.1 
28.0 

300-
800 km 

118.7 
19.2 
21.2 

156.2 
0.4 
2.2 

150.0 
3.9 
4.8 

137.4 
11.7 

9.6 
105.5 
29.6 
23.5 

800- 1280- Over 
1280 km 2400 km 2400 km 

123.6 100.8 13.5 
10.7 60.1 65.6 
17.3 12.8 2.8 

148.C 173. 7 
0.2 3.8 77.4 
3.5 3.9 4.4 

143.1 159.l 
2.4 15.1 73.8 
6.1 7.1 8.0 

132.3 140.5 
8.4 28.6 68.8 

10.9 12.3 13.0 
102.4 107.7 
24.9 47.1 58.1 
24.4 26.5 23.1 

Note: 1 km • 0.62 mile. 

Table 2 shows the model results versus actual for 
Manhattan only, which accounts for more than one-third 
of total regional traffic generation in all distance 
ranges. Another reason why the model's performance 
in Manhattan has special significance is that for many 
zones the differences in accessibility to the airports are 
relatively small and thus the model estimates are more 
sensitive to the value of a to be selected. If differences 
in convenience among airports are large, differences in 
assumed values of a do not produce significant dif­
ferences in model estimates. 

The optimum values for a appear to be here some­
what lower than in the total regional numbers and gen­
erally fall in the 5-10 range. The declining trend as 
a function of length of haul is also here much in 
evidence. Recognizing that the actual observations as 
summarized are subject to sample fluctuations and, 
moreover, that actual behavior may reflect factors 
not accounted for in the model, it may be postulated 
that the a values basically could be represented by a 
linearly declining curve as a function of length of haul. 

The Port Authority report to the Tri-State Regional 
Planning Commission also included some examples of 
how a model, as developed here, could be applied in 
estimating the traffic potential for a couple of off­
airport satellite terminals. 

The main objective of this paper, however,. was to 
report on some results of the development of a pas­
senger distribution model that could be calibrated 
against survey data on actual passenger choice pat­
terns. We hope such attempts to merge theoretical 
model concepts with empirical data on actual passenger 
behavior will contribute toward the development of 

more realistic demand forecasting tools for use in 
transportation planning. 
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System for Planning Local Air Service 
Maxim~lian ~· Etschmaier '. Department of Industrial Engineering, Systems Management 

Engmeermg, and Operat10ns Research, University of Pittsburgh 

Local air service is characterized by a strong sensitivity of traffic to a 
number of factors such as frequency, time of departure, trip time, and 
alternative transportation available by ground modes. Consequently 
in planning local air service, the demand function and the scheduling' 
constraints must be considered in more detail than is necessary with 
other types of air transportation. This paper presents a system de· 
veloped at the University of Pittsburgh for planning local air service. 

The system was used in studying the potential of air service between 
the provincial capitals of Austria. 

The motivation for this study was an overall regional 
development plan drawn up by the province of Steiermark 
in Austria. Although Austria is a federal republic of 



nine provinces, each with its own government of con­
siderable power, there is a strong trend toward cen­
tralization in Vienna. Ever since the collapse of the 
Austro-Hungarian monarchy, Vienna has been too large 
a city for a country the size of Austria. The population 
of Vienna is now more than a quarter of that of all Aus­
tria. This fact, together with the gravitational force of 
the seat of the federal government, creates a strong 
momentum toward centralization. Already most major 
corporations are headquartered in Vienna; the bulk of 
federally subsidized cultural activity is also located 
there; and Vienna has the only airport in Austria that 
ever had more than three scheduled daily departures. 

The trend toward Vienna is aggravated for the prov­
ince of Steiermark, for which holding its own would 
be enough. This province is faced with certain struc­
tural deficiencies. On the one hand there is sizable 
heavy industry with a long-standing tradition and high 
technological standards. This industry's existence is 
being threatened by today's economy. On the other hand, 
there are numerous farms too small to support a family 
at today's level of expectations. For these reasons the 
province has to attract settlement of new businesses and 
industry. 

To this end, government is trying to make the prov­
ince more attractive to the business community. Much 
has already been done in this direction. Numerous tax 
incentive plans and subsidies have been devised. Graz, 
the capital, has acquired a reputation as a center for 
avant-garde cultural activity. Excellent recreational 
facilities were developed throughout the province, which 
is host to a number of significant international sporting 
events. The availability of good transportation facilities 
is viewed as an important factor in its attractiveness. 

The government therefore commissioned studies to 
examine the railway, highway, and air transportation 
systems. The intention was not so much to determine 
the long-range effects that improved transportation fa­
cilities would have on the economic development of the 
province, but to determine the short-range economic 
feasibility of improved transportation facilities. In the 
case of air transportation this meant determining 
whether air service attractive enough to justify subsidy 
could be designed. There were no firm limitations im­
posed on the amount of subsidy that could be expected, 
but clearly any subsidy would have to be reasonable in 
relation to the anticipated patronage. 

Air service was expected to perform the following 
functions: (a) connect the province with the other prov­
inces of Austria, (b) connect the province to large popu­
lation centers outside Austria, and {c) tie the province 
into the international air transportation system. Special 
emphasis of the study was to be placed on the interaction 
between air and surface transportation, in particular, 
how major highway construction projects would affect 
the demand for air transportation. A new highway sys­
tem is under construction and, although it will not be 
completed for quite some time, the development of an 
air transportation system could not be justified if it were 
to be threatened with extinction after completion of the 
highway system. 

Our study was complicated by a number of factors, 
the most important ones being that, except for a brief 
episode, there was practically no history of local air 
service in the area. Furthermore, the stage length of 
most potential routes is quite short, which makes them 
highly wlnerable to competition from ground transporta­
tion. Also, the area is quite densely populated, so a 
number of different cities have to be considered as po­
tential users of any one airport. 

Of course, many of these factors are quite typical 
for the environment in which local air service operates 
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anywhere. We have thus supplemented the funds pro­
vided by Steiermark with funds from the University of 
Pittsburgh and expanded the study to a far broader scope 
than would have been justified within the context of the 
Austrian situation alone. The result is a general sys­
tem for planning of local air service (PLATO) that can 
provide a framework under which any local air service, 
operating over reasonably short routes, can be viewed. 

Of course, as any demand function would, the de­
mand function included in PLATO reflects the socio­
political and cultural background of central Europe, the 
area for which it was developed. In any area in which 
the relations among factors differ it would be necessary 
to reformulate the demand function. Any demand func­
tion can only express the most important dependencies 
and incorporate only a small selection of variables. The 
dependencies not included are expected not to vary sig­
nificantly within the framework of the study. As one 
moves to another region, one can expect changes in the 
importance of different dependencies and variables. 
Also, certain variables may simply not be available 
for other areas. 

The PLATO system, nevertheless, can aid a study 
for another region in two ways. First, it can help in the 
development of a demand function by handling the mas­
sive socioeconomic and geographic data. Second, once 
a new demand function has been developed, that function 
can be entered· into PLATO, and traffic estimates, reve­
nues, and costs for air service can be obtained without 
difficulty. 

SETTING FOR LOCAL AIR SERVICE 

The type of environment PLATO is primarily designed 
for is characterized by a large number of relatively 
small cities scattered over a comparatively small geo­
graphic area. The area is served by a small number of 
local airports. The potential demand for air transpor­
tation comes both from people moving between one city 
and any other city in the region and from people moving 
from one city to a point outside the region. 

The airports are located in such a way that passen­
gers from some cities might use two or more different 
airports, depending on their final destination. The region 
is served comparatively well by surface transportation 
on highways and railways. Surface transportation does 
provide an alternative to air transportation and, for 
niany, can actually beat air transportation in terms of 
total travel time between cities. 

In this kind of environment air transportation can only 
compete effectively if it can meet the true transportation 
needs of the traveling public. This means it has to pro­
vide service at the right times, with high enough fre­
quency so that there is a big enough chance that some 
transportation need can be satisfied, and at a cost dif­
ferential against surface transportation that would be 
commensurate with the time saved. As a consequence, 
the traffic that can be attracted by air transportation will 
be highly sensitive to schedules and air fares, and it is 
generally meanin~·less to develop plans for local air ser­
vice that do not express this kind of sensitivity. 

On the other hand, the cost function for providing lo­
cal air service is considerably less favorable than it is 
for interregional air service. The reasons for this are 
the short stage lengths, the small size, and the rela­
tively low operating efficiency of the aircraft. This 
leaves a narrow margin for local air service to operate 
in. And, although much of the local air service enjoys 
healthy public subsidies of one form or another, it is 
generally only profitable for small companies that can 
avoid the pressures of strong national unions and can 
operate under comparatively low overhead costs. 
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Planning local air service thus means finding a deli­
cate balance between the preferences of the traveling 
public and the dictates of the cost function. The public 
refuses to fly at other than the most desirable departure 
times: the high aircraft utilization mandated by the cost 
function forces one to schedule flights throughout the day. 
The problem can of course be solved best if differences 
in the time-of-day preferences for travelers on different 
routes can be matched. 

AVAILABLE DATA 

As the air service offered in Steiermark was only mar­
ginal, limited traffic data were available. A summary 
of the traffic originating in Graz in 1972 is shown in 
Figure 1. At that time, the flights offered in the morn­
ing were Graz-Salzburg-Zurich and Graz-Linz­
Frankfurt; at midday were Graz-Vienna, Vienna-Graz 
and Zurich-Salzburg-Graz; and in the evening were 
Frankfurt-Linz-Graz. All flights were with DC-9 air­
craft. Traffic data for the Graz-Vienna flight were not 
available. 

Also in 1971 airport passenger surveys were con­
ducted in all Austrian and German airports. For Graz 
this survey was conducted in 1972. In these surveys a 
sample of departing passengers were asked questions 
about, among other things, the starting points and final 
destinations of their journeys and how they got to the air­
ports. Figure 2 shows an analysis of the passengers de­
parting from Graz. The numbers in the figure are ex­
trapolated average daily passengers. Since the survey 
did not include the routing of a passenger, the results 
cannot be compared directly with the traffic data of Fig­
ure 1. Exceptions would be the flights to Linz and 

Figure 1. Average passengers per day, 
1972. 

Figure 2. Passenger survey of 1972. 

Salzburg, for which the results are reasonably close. 
It was expected that a considerable number of pas­

sengers went to Vienna by surface transportation and 
started their flight there. These passengers could be 
extracted from the Vienna airport passenger survey. 
It was found that an average of 38 passengers a day were 
traveling from Steiermark by surface to Vienna to board 
a flight there. This figure is only a lower bound, since 
it does not include passengers who spent a night in Vienna 
before continuing their trips. 

Also available was a market survey done by an Aus­
trian institute (Khoulhavi) in which businesses and house­
holds were asked how many trips a year they would ex­
pect to make to different destinations if air service were 
available. The questions that must be raised against 
this survey are the same for any survey of the demand 
for an essentially new mode of transportation. The pro­
spective passengers cannot possibly be given a full im­
pression of what it would actually mean to use the pro­
posed mode. Consequently, they may use a completely 
unrealistic perception of the proposed mode to base their 
estimates on. Also, it is quite difficult for one to esti­
mate how often he or she would travel to some city, 
since one cannot always distinguish between desire and 
reality. The results of this survey indicate quite clearly 
that not all of these problems could have been dealt with 
successfully. Therefore, the survey appeared to be of 
limited value within the context of this study and was not 
used. 

Clearly the available data are not sufficient for de­
veloping a demand model. We therefore selected a 
cross-sectional approach with models developed for 
comparable environments and calibrated for the spe­
cific situation. The comparable situation was found in 



Germany, where considerable data as well as past mod­
els were available. The air traffic data were taken from 
the surveys for most German airports. Additionally, 
socioeconomic and geographic data about all German dis­
tricts were gathered. 

A model of the demand for local air service was de­
veloped by Intertraffic (1) in the study for North Rhine­
Westphalia. This model was further refined by Nusser 
(2), who applied it in a study of local air service for all 
Germany. We adopted much of the functional form of 
these models. 

The need for change arose from the fact that some 
required socioeconomic variables were not available for 
Austria. Also, we went into considerably greater detail 
in the representation of the surface transportation alter­
natives. To accomplish this, the demand had to be de­
termined from any district to any other district, with 
one airport possibly serving many districts. This led 
to considerable computer work and required the develop­
ment of new procedures and program organizations. 
Finally, some modifications were made to the time-of­
day variability of demand. Details of these modifica­
tions will be given in the discussion of PLATO. 

STRUCTURE OF PLATO 

As mentioned before, the central problem in planning 
local air service is one of developing a schedule for 
which the expected revenue matches or exceeds the ex­
pected total cost. In solving this problem for one par­
ticular company, one might use any one of a number of 
objective functions such as return on investment and 
total profit one wants to maximize. If one is solving the 
problem for a local government, one would be interested 
in maximizing the air service-possibly favoring certain 
airports-that can be economically justified. Often this 
means that the subsidies required to operate some sched­
ules have to be reasonably related to the amount of ser­
vice offered by the schedule. Quite obviously the con­
siderations entering the evaluation of a schedule are 
almost impossible to formulate into a mathematical ob­
jective function. The problem really is not so much one 
of optimization, but of providing the government with a 
number of reasonable choices. 

Of course it would be desirable to have an algorithm 
that could automatically generate a number of "most 
reasonable" choices, but the developmental effort, com­
puter run times to actually perform the optimization, as 
well as the information required to formulate the prob­
lem, might prove prohibitive. Even the optimization 
simply in terms of a single-valued company objective 
might prove to be such an enormous task that it could 
actually be carried out only for very small systems. 
For such systems, however, good schedules might be 
arrived at fairly easily by hand. What seems more 
important, therefore, than a closed form optimization 
method is a system that can help a human planner to set 
up a schedule and that can quickly evaluate the schedule 
in terms of revenue and cost. 

Setting up a schedule involves arranging and re­
arranging flights in different strings, determining de­
parture and arrival times for all flights, and just putting 
the whole schedule on paper in a readable form. The 
evaluation of the schedule in terms of cost and revenue 
involves large numbers of tedious calculations for each 
flight. Following the pattern of most airline planning 
systems (3), PLATO does not perform any optimization, 
but concentrates on schedule editing and evaluation. 

An overview of PLATO is given in Figure 3. By far 
the greatest part of the system is taken up by the gener­
ation of the demand function. The demand for air trans­
portation is determined by city pair on the basis of a 
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wealth of socioeconomic and geographic data. In this 
process the competition from all surface transportation 
modes is considered explicitly. The city pair demand 
functions are then assigned to the relevant airport pairs 
to form airport-pair demand functions. The virtue of 
the approach of PLATO is that all geographic and socio­
economic data are processed in the modules for local 
and interregional route generation and demand genera­
tion. These modules require large core space and con­
siderable computer time, but they are used only once 
for any given situation. For each airport pair they ar­
rive at two functions in which the traffic can be calcu­
lated by inserting schedule variables. This minute num­
ber of functions is then used to evaluate as many sched­
ules as desired with a minimum amount of computer 
time. A special feature in the system permits the eval­
uation of one schedule for two different years at the same 
time. 

ROUTE GENERATION MODULE 

The route generation module preprocesses some of the 
input required for the local demand generation module. 
It takes as input the complete transportation network of 
the region. Highway, railway, and potential air route 
networks are entered separately in the forms in which 
they can be most easily obtained. The program converts 
them into the form required for the calculations. 

Common to all three networks are nodes to represent 
the cities of the region. Other nodes are defined to rep­
resent junctions or changes in the travel speed. A num­
ber of auxiliary nodes may be defined to represent times 
spent to get through airport terminals or railway stations 
or to make connections. An example for the nodes and 
arcs that might be associated with one city is given in 
Figure 4. Figure 5 gives a schematic overview over the 
route generation module. The algorithm used to find the 
fastest routes is the one by Floyd (!). 

DEMAND GENERATION MODULE 

PLATO differentiates between two different kinds of de­
mand for air transportation, namely, purely local de­
mand-the trip originates and terminates within the re­
gion-and interregional demand,the trip originates in 
the region and terminates outside or vice versa. Each 
kind of demand is determined in a separate module. The 
essence of these modules is that they take the large vol­
ume of socioeconomic and geographic data and reduce 
them to a very small size. This permits the succeeding 
schedule evaluation module to work with only modest 
core requirements. Overviews of the two modules are 
given in Figures 6 and 7. 

The total interregional demand that originates in a 
district is obtained as a function of socioeconomic and 
geographic parameters of that district. The model was 
developed using traffic data for 130 German districts 
obtained from the airport passenger survey of 1971. 
Numerous model assumptions were tested. The model 
that yielded the best fit had the following form: 

Y ; a x PDbGpc cpd [(EP - EMP)/EP] e + f x ADS B11 x (l /P) (I) 

where 

Y = estimated number of annual interregional pas­
sengers per 1000 inhabitants, 

PD = population density (inhabitants per square 
kilometer), 

GP ; gross domestic product per 1000 inhabitants, 
CP = number of businesses per 1000 inhabitants, 
EP ; number of employees per 1000 inhabitants, 
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EMP = number of employees in manufacturing per 
1000 inhabitants, 

AD = aircraft movements at the nearest large air­
port, divided by the square of the distance to 
that airport (a value of 10 km was used if the 
actual distance would have been less than that), 

B = number of hotel beds, and 
P =population in 1000s. 

The rationale for this model formulation developed 
from two reasons for the transportation activity of a dis­
trict. The first is the economic power of the region it­
self; this is represented by the first part of the equation. 
The second reason is the existence of transportation fa­
cilities. Although this reason cannot be separated com­
pletely from the indigenous traffic, the relationships, 
which govern this kind of traffic, are clearly different. 
The kind of traffic generated by the availability of trans­
portation facilities would have not only the form of va­
cation tourism but probably, more importantly, the 
form of what one might call business tourism. 

Business meetings of all kinds are held at places 
that are easily accessible. In the long run, the avail-

Figure 6. Demand 
generation module. 
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ability of transportation facilities tends to change the 
structure of business located in a district, encouraging 
settlement of businesses that are either origins or des­
tinations of travel. The second part of our equation 
gives a modest account of this dependence. 

Although overall the model provided a good flt, there 
is one difficulty, which eventually led us to abandon it 
in the Austrian study. The specific number of inter­
regional passengers per district varies widely, ranging 
from a high of 1890 passengers per 1000 inhabitants for 
Frankfurt to a low of 41 for Gelsenkirchen. All dis­
tricts in Steiermark are definitely at the low end of this 
range, where the variance would introduce a consider­
able uncertainty into the estimate. Thus the confidence 
in the model is no greater than the confidence in simple 
extrapolations from past traffic data and estimates. 
Therefore, in the Austrian study, such estimates, 
scaled up according to growth projections for local 
demand, were used in place of the model. 

The total interregional demand that originates in a 
district is initially determined in undirected form. This 
demand is then split up according to destinations of 
travel prevailing in the area. In the Austrian study a 
total of thirteen destination regions was used. Initially, 
all interregional demand originating in a district is as­
signed to the nearest airport. How much of that demand 
actually uses that airport and how much travels by sur­
face directly to the nearest hub is a function of the 
schedule offered and is determined in the schedule eval­
uation module. 

For the purely local demand a multistage model is 
used. The local traffic attracted by some flight seg­
ment is assumed to be dependent on some base demand 
for that airport pair, the departure time, and the fre­
quency with which the airport pair is served. The func­
tional relationship is assumed to have the form 

Demand= XLD x SERLEV x [LD/Fl(NF)] 

where 

Demand = local traffic attracted by some flight, 
XLD =the base demand, 

(2) 

SERLEV = service level of the route as a function of 
the frequency offered, 



LD =value of the time-of-day preference, and 
Fl(NF) = maximum possible sum of the time-of-day 

preferences for the given frequency NF. 

The base demand XLD between an airport pair is ob­
tained as the sum of the base demands CLD between 
those city pairs that use the given airport pair. CLD 
for a given city pair i, j is given by the following function: 

CLO= FI x OT" I [f(B;Bj) + f(O;Oj)] /[f(OP)E~ Aii 11 (3) 

where 

FI = calibration coefficient, 
DT, DP = differences in travel time and price respec­

tively for shortest route for surface trans­
portation alone and shortest route including 
air transportation, 

B1 = population of city i, 
D1 = gross domestic product of city i, 

E1J =straight line distance between i and j, and 
A1 J = mean of airport access and egress times for 

cities i and j. 

CLD is set to zero if the time gained by using air trans­
portation is so small that it would not justify the in­
creased cost. It is assumed that time has a certain 
value for each traveler and that he or she would be will­
ing to pay only up to a certain amount for every hour 
saved. The cut-off value is a variable that can be set 
by the user. 

As was mentioned previously, the basis for these 
models is work done by Intertraffic (1) for North Rhine­
Westphalia and by Nusser (2). The function for the base 
demand is taken almost directly from Intertraffic. The 
major modification was necessary because no detailed 
balance of economic accounts is available for Austrian 
districts. For this reason, the gross domestic product 
had to be substituted in place of the gross domestic prod­
uct for services required by the Intertraffic model. The 
most adverse effect of this substitution was eliminated 
by scaling and by means of a calibration coefficient. 

The function Demand is a device used to consider 
some criticism that was already leveled by Nusser 
against the Intertraffic model. The time-of-day de­
pendence does not appear pronounced enough for the very 
short distances of interest here. Nusser derived a more 
appropriate function, but he correctly pointed out that 
incorporation in the Intertraffic model would lead to 
changed coefficients. We tried ·to get around this prob­
lem by separating the frequency dependence of demand 
from the time-of-day dependence. 

Thus we determined for each frequency the maximum 
number of passengers who can be attracted under opti­
mum departure times. This is given by XLD x SERLEV, 
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with SERLEV derived directly from the time-of-day 
function of Intertraffic. Then the actual traffic on a 
flight is determined using the actual weights under 
Nusser's function relative to the maximum values pos­
sible under the given frequency. Certainly this pro­
cedure would be open to criticism. Also, good judg­
ment has to be used in its application. As we will show, 
however, the results obtained thus far have been quite 
convincing. 

The demand generation module only calculates XLD 
for the local demand. The calculation of Demand is 
left to the schedule evaluation model. The demand gen­
eration module is set up in such a way that results for 
different functions for the cost of surface and air trans­
portation can be used in one run. This permits the user 
to perform a certain amount of sensitivity analyses with 
a minimum effort. 

SCHEDULE EVALUATION MODULE 

This module performs a highly efficient computation of 
the total cost and revenue associated with a given sched­
ule. By producing results for a number of variations of 
some parameters in one run it facilitates a sensitivity 
analysis of the results. 

The basic structure of the module is given in Figure 
8. The module consists essentially of four more or less 
independent parts: 

1. Processing interregional demand, 
2. Processing local demand, 
3. Considering aircraft capacity, and 
4. Calculating cost and revenues. 

All data entered in this module have been reduced to 
a form beyond which they could not be reduced without 
the knowledge of the flight schedule actually offered. The 
reason, of course, is that, while the proceding modules 
will be used only once for any given problem, one will 
want to evaluate many different schedules. Minimizing 
the work to be done within this module therefore means 
minimizing the total computational effort required for 
PLATO. It also means that this module can be operated 
from a terminal with fast run and response times. 

The maximum interregional demand XJD1J from air­
port i to region j is obtained as output of the interre­
gional demand generation module. If airport i is not it­
self a hub, then this demand may be assigned to flights 
from i to any hub, provided they permit reasonably good 
connections. To permit this check all flights from the 
possible hubs to the different regions must be entered 
into the program. This is done in the form of a list that 
gives the number of non-, one-, and multistop flights 
to and from each region for each hub for every hour. The 
user must also enter a maximum value CTl of the con­
nect time accepted in each hub. Then for each local air­
port i and for each destination region j the following pro­
cedure is followed. 

For each possible hub k all connections i-k-j are iden­
tified that use a connect time of less than CTl. If one or 
more connections can be found, then XJD 11 is split be­
tween them in proportion to their value l/\number of 
stops x distance i-k-j). If the shortest connection avail­
able requires a connect time TC> CTl and surface 
transportation is available to the nearest hub, requiring 
a time TS, then XJDIJ ((TS/TC)/[ (TS/TC) + (TC/TS)]} 
is assigned to the shortest connection. The rest are as­
sumed to travel to the nearest hub by surface transporta­
tion. If no connection can be found, all demand XJD13 
travels to the nearest hub by surface transportation. 

A distinction is made between hubs inside the region 
and hubs outside of it. While the traffic that moves by 
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surface to a hub outside the region is of no further inter­
est, the traffic that moves to a hub inside the region can 
be loaded on flights departing from that hub. 

The procedure used to determine the local traffic gen­
erated by a flight was essentially outlined in the discus­
sion of the demand generation module and will not be re­
peated here. It requires a time-of-day preference curve 
and a service level function. The time-of-day preference 
curve permits one to read off directly a preference value 
LD for each departure time. 

We feel that this approach is more reasonable for a 
local air service environment than one that integrates 
the demand over a region of attraction for each flight, 
especially if that region of attraction reaches to the 
zones of indifference of the preceding and the succeed­
ing flight. The reason is that the approach chosen here 
permits a better representation of the elasticity of de­
mand. Difficulties arise when two or more flights are 
scheduled too close to each other so that they are com­
peting for the same passengers. This can always be 
ruled out if the schedule is properly set up. In the en­
vironment of interest here any such schedule does not 
appear reasonable. If it were desirable to consider 
such situations, however, it would not be difficult to 
enter special provisions into the system. 

PLATO permits the use of different time-of-day 
preference curves for each airport pair. On some routes 
the demand might arise mostly from business travel with 
a strong preference for flights near the beginning and 
end of the business day. On other routes there might 
be a substantial share of tourists who tend to prefer 
flights closer to the middle of the day. Recognizing this 
fact might permit a high utilization of the fleet at a com­
fortable average load factor and thus lead to reasonably 
profitable operations. 

The service level function (SERLEV) multiplied by 
the base demand gives the maximum traffic that can be 
generated with some frequency NF. This traffic can be 
realized if the flights are placed optimally throughout 
the day, in which case the sum of the time-of-day pref­
erence factors is given by Fl(NF). The traffic actually 
generated is proportional to the actual values of the time­
of-day preference factors LD for each flight or their sum 
for the entire route. 

The function SERLEV is characterized by ans-shape. 
While the first frequency will attract a relatively small 
volume of traffic, additional frequencies will attract in­
creasing volumes corresponding to the penetration of the 
market. From a certain frequency onward, the increase 
in traffic volume will start to decrease, indicating be­
ginning saturation. Eventually the curve will become 
completely horizontal. The width of the s is strongly 
dependent on the length of the route and the shape of the 
time-of-day preference curve. Obviously, the longer 
the route, the steeper the ascent. For extremely long 
routes the first frequency can attract all the traffic that 
can be generated on the route, and additional frequencies 
can only be justified for capacity reasons. A similar 
observation can be made for a route with a very pro­
nounced peak in the time-of-day preference curve. 

The limited aircraft capacity is simply treated as a 
restriction on the traffic that can be carried on one flight. 
In order to take into account the random day-to-day var­
iations of traffic, it is reasonable to reduce the true air­
craft capacity by some maximum average load factor. 
Any traffic that cannot be accommodated is assumed to 
be lost. We do not believe that in the local air service 
environment, at least in operations below the point of 
beginning saturation, it would be reasonable to reassign 
this demand to flights at other departure times. Excess 
traffic is removed in increasing order of the per capita 
revenue. 

The last part of this module, the calculation of cost 
and revenues, is just a lot of multiplication and addition. 
The only thing that deserves mentioning is that any con­
ceivable cost function can be handled by it. Along with 
cost and revenue data, statistics on seat kilometers of­
fered, revenue seat kilometers, and average load fac­
tors are compiled per aircraft type. 

SCHEDULE EDITOR AND REPORT 
GENERATOR 

The schedule editor permits the user to develop a sched­
ule on a terminal without having to perform any calcula­
tions in his or her head or on the side. Thus for any 
flight with a given departure time, it automatically cal­
culates the arrival time and the earliest possible de­
parture time for the following flight. The schedule is 
developed in the form of aircraft rotations, and the user 
can insert or delete flights from a string of flights with­
out having to redefine the whole string. The schedule 
editor also performs a number of elementary feasibility 
checks. At the time of this writing, the schedule editor 
is still not in its final form, and we therefore prefer not 
to give any details. 

The report generator produces a report of the eco­
nomic results of each flight. For multistop flights, traf­
fic figures are given for each origin-destination (O-D) 
pair as well as for the flight segment. Also shown are 
the passengers by 0-D pair that could not be accommo­
dated. For interregional flights it is possible to show 
the traffic originating or terminating in the region with­
out concern for other traffic or cost and revenue figures. 

In addition, a summary report is printed. All the 
intermediate results from the route generation and de­
mand generation modules can be displayed optionally. 

RESULTS AND VALIDATION 

The objective of this study was to demonstrate if and 
how a viable local air service for Steiermark could be 
developed. The objective was not satisfied by producing 
some form of optimum schedule. Rather, a lot of judg­
ment and restraint had to be used to develop a reason­
able schedule that would be attractive to all parties con­
cerned. Reasonable meant not only keeping any kind of 
financial risk within limits but also passing the minimum 
threshold that would make future growth possible. 

Following this, a number of different schedules were 
produced. All these schedules offered a maximum of 
two daily frequencies on any route. The results for one 
of the most attractive schedules in the sample printouts 
using Fokker F27 equipment are shown graphically in 
Figure 9. The table below gives a summary of the eco­
nomic results for that schedule, including some sensi­
tivity analysis. 

Year 

Variable 1975 1985 

Fare 1.00 1.25 1.25 1.00 1.25 1.25 
Driving cost 1.00 1.00 1.25 1.00 1.00 1.25 
Load factor 52 46 52 56 45 56 
Revenue: DOC 1.03 1.12 1.27 1.12 1.08 1.38 
Including fuel tax 0.81 0.89 1.00 0.87 0.87 1.09 

It can be seen that revenue in all cases covers the dir.ect 
operating cost so long as the domestic fuel tax is not 
levied. If the fuel tax has to be paid, it is almost im­
possible for the revenues to cover the direct operating 
cost. It is interesting to note that the highway projects, 
which are expected to be completed by 1985, have a 
stimulating effect on air traffic. Not only do they de-
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crease the airport access times, but they increase the 
attraction between districts, leading to a general in­
crease in travel activity. 

The results obtained appear quite reasonable and 
realistic. Since the proposed air service has not yet 
been realized, it is not possible to check the model re­
sults against reality. We were, however, fortunate that 
at the end of our study a completely independent pro­
posal for local air service was developed by Austrian 
Airlines (AUA). 

Load Factor 
Schedule AUA PLATO 

I 
II 
111 

50 
55 
45 

46 
43 
46 

They were considering three schedule alternatives. 
Their traffic predictions were made without sophisti­
cated models but using the best judgment of the airline. 
We evaluated all three schedules by means of PLATO. 
A comparison of results given in Table 2 shows a rea­
sonably good agreement. We should add, however, 
that these three schedules were economically much less 
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attractive than schedules we developed. 
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Model to Estimate Commuter Airline 
Demand in Small Cities 
Bruce A. Thorson,* Civil Engineer, City of Des Moines, Iowa 
Kenneth A. Brewer, Department of Civil Engineering, Iowa State University, Ames 

This paper considers the factors indicating a community's potential de­
mand for commuter air carrier service, compares these factors to a pro· 
file of commuter airline passenger characteristics, and reports the 
results of an extensive regression analysis to develop a model to estimate 
commuter airline demand in small cities. The final regression model was 
nonlinear in nature and incorporated community populations and mea· 
surements of isolation from the certificated air carrier transportation 
system. This model was the basis of a recommended program to in· 
tegrate commuter air carriers into Iowa's total transportation system. 

Historically, commuter air carrier service has had a 
general public image of instability. This image resulted 
from operational failures and discontinuing service to 
cities along system routes. Primary reasons for such 
failures and service interruptions are associated with 
financing, operations, and marketing. Specifically, the 
aircraft being used have been too large for the markets 
being served; the operators have not been able to fi-
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nance operating expenses in the initial period during 
which patronage is being sought; communities have been 
reluctant to give financial or marketing support for such 
operations; and travel time delays may have been ex­
cessive when the routes have been short or when nu­
merous station stops have occurred between a commu­
nity and a terminating hub airport . 

An Iowa state-level interest in evaluating the role 
commuter air carriers and intercity express bus route 
service might play in long-range transportation develop­
ment to enhance personal mobility generated a research 
effort to provide some means of estimating the potential 
of a given community to utilize commuter air carrier 
services (1, 2). 

Commuter air carriers were defined by the Civil 
Aeronautics Board (CAB) in 1969 in amendments to the 
Economic Regulations Part 298: Classification and Ex­
emption of Air Taxi Operators. Air taxi operators are 
defined as those who nperform, pursuant to published 
schedules, at least five round trips per week between 
two or more points, or carry mail." 

As such, the roles of the commuter airlines in serv­
ing the nation and the public are at least threefold. 
The primary role is providing passenger service be­
tween communities. In addition, they furnish a much 
needed air cargo service for many businesses and in­
dustries. They also transport mail under contract with 
the U.S . Postal Service. 

Commuter airlines serve three different sectors of 
the air transportation market. First, service between 
hub airports is provided; second, operations connect 
CAB certificated points with noncertificated points 
(usually connecting small, isolated, or rural communi­
ties to hub airports); finally, service is offered as a 
replacement for local service airlines' certificates 
when authorized by CAB. 

Generally, commuter air carriers specialize in serv­
ing small communities. Of 414 communities receiving 
scheduled passenger service in 1976, 108 (26 .1 per­
cent) had populations less than 50 000 people (3). Fur­
thermore, during fiscal year 1974, 77 percent of the 

markets enplaned fewer than 10 passengers per day and 
41 percent of the markets served were less than 160 km 
(100 miles) apart (4). 

Calendar year 1972 statistics have shown the average 
passenger trip length to be 160 km (§_). These figures 
reinforce the primary role of commuter air carriers: 
service to small communities with short haul lengths 
and low-density air demand. Such figures also reinforce 
the need to predict the ultimate market demand for com­
muter air service in any given community if a state­
level transportation planning agency is going to be able 
to develop plans that can enhance stability and produc­
tivity in the contribution of commuter air carriers to 
the total transportation system. 

IDENTIFICATION OF COMMUTER 
AIRLINE DEMAND INDICATORS 

A comprehensive literature review enumerated a wide 
range of variables used in estimating passenger demand 
(!,_!, _[, 1.~.~. 10,.!!. 11.11.14,.!§., 16, 17, 18, 19, 20,n, 
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32T. Among the most 
frequent variables werepopulationof community served, 
passenger's household income, community retail sales, 
and employment in the community (classified by occu­
pational categories). Others of less frequency included 
community wholesale sales, kilometers to the nearest 
Federal Aviation Administration (FAA) designated hub 
airport, passenger education, and passenger age. 

A check on the appropriateness of variables reported 
in the literature related to passenger characteristics 
was obtained through an on-board commuter air carrier 
survey at Iowa stations. The 1976 commuter air car­
rier routes in Iowa and the populations of cities are 
shown in Figure 1. 

Each airline serving these routes was sampled for 
three consecutive days in the summer of 1976; ques­
tionnaires were completed once by all passengers. 
Pertinent results of the survey are shown in Table 1. 
This additional input to the variable selection process 
appeared to reinforce the potential variable list named 

Figure 1. Iowa commuter air carrier 
passenger routes and certificated air 
carrier stations for 1976. 
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Table 1. Iowa commuter air carriar passenger 
survey results for 1976. 

Questionnaire Variable 

Total trip length, km 

Trip purpose 

Number ol times pre­
viously flown on com­
muter alrllnea in past 
year 

Reason for traveling by 
commuter airline 

Traveler occupation 

Traveler annual house­
hold Income, $ 

Traveler age 

Traveler education level 

Note: 1 km m 0.62 mile. 

Response Category 

0-158.4 
160-238.4 
240-318.4 
320-478.4 
480-638.4 
640-798.4 
800.. 

Business 
Personal or family affairs or shopping 
Medical 
Social or recreational 
other 

0 
l or 2 
3 or 4 
5 or 6 
7-12 
13-24 
25-36 
36 

Travel time saving 
Travel cost saving 
Convenience or scheduling 
Comfort 
Owned no car or one not available 
Travel time plus other factors 
Only airline available 
other 

Professional, technical, or managerial 
Farm owner or manager 
Clerical or sales 
Craftworker, equipment operator, or laborer 
Unemployed 
Retired 
other 

<5 000 
5 000-9 999 
10 000-14 999 
15 000-24 999 
25 000-49 999 
50 000+ 

<18 
18-24 
25-39 
40-64 
>64 

Grade school 
Attended high school 
High school 
Technical school 
Attended college 
College graduate 
Postgraduate 

Response' 

Number 

0 
32 
62 
49 

8 
7 
~ 
218 

164 
15 

1 
39 

_! 
221 

119 
27 
21 
19 
11 
11 

7 
--1 
218 

72 
l 

57 
l 
l 

23 
41 

-1.! 
207 

164 
3 

12 
5 
2 
4 

....!! 
195 

1 
13 
19 
66 
74 
~ 
212 

7 
19 
78 

102 
~ 
212 

2 
7 

27 
5 

47 
81 

..!?. 
214 
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Percentage 

0.0 
14. 7 
28.4 
22.5 

3.7 
3.2 

27.5 

100.0 

74.2 
6.8 
0.5 

17.6 
~ 
100.0 

54.6 
12.4 
9.6 
8.7 
5.0 
5.0 
3.2 

.....h! 
99.9' 

34.8 
0.5 

27.5 
0.5 
0.5 

11.1 
19.8 

5.3 

100.0 

81.6 
1.5 
6.0 
2.5 
1.0 
2.0 
5.5 

99.9' 

0.5 
6.7 
9.7 

33.8 
37.9 
11.3 

100.0 

0.9 
9.0 

36.8 
48.l 
~ 
100.0 

0.9 
3.3 

12.6 
2.3 

22.0 
37.9 
21.0 

100.0 

•Total sample of 228 passengers; no response to selected items created varying survey response. 
bDoes not equal 100 percent due to rounding. 

above, including occupations, annual household income, 
age, and education level. The survey results indicated 
that among commuter airline passengers 81.6 percent 
of the heads of households were from professional, tech­
nical, or managerial occupations; 83 .0 percent of the 
households had annual incomes of at least $15 000; over 
85 percent of the passengers were 25 years of age or 
older; and about 60 percent of the passengers were col­
lege graduates. 

An equation form was desired for the community com­
muter air carrier demand predictor and, therefore, 

multiple regression was selected as the technique to 
generate the predictor. Selection of the variables to 
be included in the regression analysis was based on 
three considerations. First, the variables had to be 
reasonable measures of Iowa community characteris­
tics; second, they should have been substantiated by 
previous research; third, data on them had to be avail­
able and accessible. 

Five variables were chosen for a linear multiple re­
gression analysis after carefully evaluating previous 
studies, examining the results of the on-board passenger 
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survey, and considering the nature of the existing prob­
lem. These variables were 

1. POPL = 1970 community population, 
2. INCOME= percentage of families in the commu­

nity with annual incomes of at least $15 000, 
3. OCCUP = percentage of persons in the commu­

nity employed in professional, technical, or managerial 
occupations, 

4. EDUC= percentage of persons in the commu­
nity over 25 years of age with 4 or more years of col­
lege education, and 

5. ISOLATE= kilometers to the nearest FAA hub 
airport. 

The dependent variable was the average daily passenger 
enplanements (ADPE) at 58 cities having commuter air 
carrier service during 1974 (,!). Cities from a six-state 

Table 2. Average daily passenger enplanements 
and independent variable data used in the 
regression analysis. 

Community 

Clinton, IA 
Dubuque, IA 
Ft. Dodge, IA 
Ft. Madison, 1A 
Keokuk, IA 
Mason City, IA 
Ottumwa, 1A 
Spencer, IA 
Dodge City, KS 
Garden City, KS 
Goodland, KS 
Great Bend, KS 
Hays, KS 
Hutchinson, KS 
Independence, KS 
Lawrence, KS 
Liberal, KS 
Manhattan, KS 
Olathe, KS 
Salina, KS 
Carbondale, IL 
Danville, IL 
Galesburg, IL 
Jacksonville, IL 
Macomb, IL 
Marion, IL 
Mattoon, IL 
Mount Vernon, IL 
Quincy, IL 
Sterling/Rock Falls, IL 
Bemidji, MN 
Brainerd, MN 
Chisholm/Hibbing, MN 
Eveleth, MN 
Fairmont, MN 
Grand Rapids, MN 
International Falls, MN 
Mankato, MN 
New Ulm, MN 
Thief River Falls, MN 
Winona, MN 
Worthington, MN 
Cape Girardeau, MO 
Jefferson City, MO 
Joplin, MO 
Kirksville, MO 
Rolla, MO 
Alliance, NE 
Chadron, NE 
Columbus, NE 
Grand Island, NE 
Hastings, NE 
Kearney, NE 
McCook, NE 
Norfolk, NE 
North Platte, NE 
Scottsbluff, NE 
Sidney, NE 

Note: 1 km • 0.62 mile. 

Source: 1970 Cen!Us (33). 

area with social and economic environments approxi­
mating Iowa cities and having commuter air carrier ser­
vice were selected. Table 2 indicates the variable 
values for the regression analysis data base. 

REGRESSION ANALYSIS 

A stepwise variable inclusion multil_)].e regression pro­
cedure available in the statistical package for social 
sciences (SPSS) was utilized to provide linear regres­
sion models of the variable data set. The first step in­
cluded all five independent variables and the data from 
the 58 communities listed in Table 2. The resulting 
equation was 

ADPE=-35.61381+1.394 21(POPL)+ l.96447(1SOLATE) 

+ 1.450 53 (OCCUP) - 2.084 72(1NCOME) 

+ 0.409 SO(EDUC) 

Variable 

Independent 

(I) 

Dependent POPL ISOLATE 
ADPE (OOOs) INCOME OCCUP EDUC (km) 

13 35 18.9 21.7 9.7 64 
93 91 20.0 21.7 10.1 113 
18 31 17.2 24.2 10.6 145 

3 14 15.3 22.8 7.6 145 
3 is 14.5 24.3 8.3 161 

44 30 15.9 24.2 11.0 129 
19 30 12.0 22.8 6.6 129 

5 10 18.5 25.8 10.8 145 
12 14 14.5 25.8 11.4 225 
25 15 17.6 23.6 12.1 306 

8 6 12.1 19.9 7.3 290 
12 16 15.7 27.8 10.0 145 
27 15 14.3 30.4 20.5 209 

5 37 12.3 25.5 11.5 64 
6 38 11.0 26.5 9.3 145 

15 46 18.9 34.5 30.0 64 
35 21 16.0 20.6 12.8 242 

182 59 18.6 31. 5 34.5 177 
7 18 18.4 24.1 11.8 32 

41 38 14.8 26.2 12.3 129 
39 23 22.3 39.2 35.4 129 
30 43 19.3 21.9 8.5 129 
17 36 17.1 21.8 9.5 64 

2 21 17.0 24.0 11.3 113 
5 20 22.7 30.1 24.0 113 

37 21 13.2 27.2 9.1 129 
17 36 15.4 19.3 7.9 161 
20 16 15.1 22.5 8.7 129 
62 64 13.7 21.0 8.0 177 
14 26 18.0 16. 7 6.7 81 
37 11 14.7 30.6 15. 7 161 
30 12 13.1 25.8 10.2 177 
50 22 12.5 23.7 8.9 97 
2 5 9.3 21.7 7.9 81 

11 11 13.3 22.9 8.3 161 
7 7 15.4 27.6 11.5 129 

39 6 18.8 23.8 8.1 225 
9 31 19.6 25.6 18.8 113 
6 13 11.6 22.4 0.0 129 

25 9 13.5 27.1 9.3 145 
7 26 14.2 24.8 12.9 64 
9 10 16.4 29.8 10.l 97 

36 46 15.2 27.6 12.8 177 
10 32 23.6 30.6 15.8 161 

134 39 12.0 25.2 8.5 113 
9 16 14.0 27.0 17.7 209 
2 13 20.6 37.9 27.7 161 
5 7 10.8 29.0 8.6 225 
6 6 11.7 29.5 12.4 145 
7 15 13.9 21.9 8.7 113 

76 31 12.9 23.8 8.0 145 
14 24 15.0 24.8 9.6 101 
13 19 12.9 24.7 15.2 209 

9 8 11.8 27.4 7.3 322 
15 17 14.3 22.8 7.9 97 
52 19 12.4 22.7 8.3 322 
61 15 14.6 28.5 12.1 258 

6 6 9.2 22.3 6.4 242 



The regression coefficients of this equation are shown 
in Table 3. The number in parenthesis following the 
regression coefficient indicates the order in which that 
variable was introduced into the regression equation by 
the SPSS program. Below each regression are indicated 
the number of data points used in the analysis (for ex­
ample, 58 for Equation 1), the simple correlation of each 
independent variable with ADPE (r), the cumulative 
multiple r 2

, and the absolute value of the t-statistic for 
the regression coefficient. Examination of these results 
in Table 3 indicates some undesirable effects in Equa­
tion 1. First, the large negative constant is undesirable. 
Second, the negative sign on INCOME is illogical. Third, 
EDUC is more highly correlated with INCOME than any 
of the independent variables are with ADPE. Fourth, 
only the regression coefficients of POPL and ISOLATE 
have associated t-values that are significant at the 0.05 
level or better. Finally, the last three variables did 
not add much to the predictive capability of the esti­
mating equation as measured by the cumulative multi-
ple r 2

• 

Examination of the data revealed that Manhattan, 
Kansas, and Joplin, Missouri, had excessively high 
levels of actual average daily passenger enplanements 
when compared to cities of comparable size. The prox­
imity of Manhattan to a military base and Joplin to the 
Ozark region recreation areas apparently made these 
two cities atypical in relation to Iowa cities, so they were 
deleted from the data set for further analysis. 

The next analysis step consisted of using POPL, 
ISOLATE, and OCCUP to estimate demand. Equation 2 
in Table 3 resulted. A third step was the same analysis 
with INCOME replacing OCCUP (Equation 3). Comparing 
the results of Equations 2 and 3 in Table 3, it is evident 
that the variables OCCUP and INCOME did not enhance 
the reliability of either equation to predict average daily 
passenger enplanements. Analysis of the residuals be­
tween predicted values and actual values for the data set 
indicated that some stratification of the data might im­
prove the predictability of the estimating equation. 

Since there was some evidence that a level of 10-15 
average daily passenger enplanements was a demand 
level assuring that commuter air carriers could operate 
successfully (4), all five independent variables were in­
cluded in an a"iialysis with all data points having ADPE 
less than or equal to 15 (Equation 4 results in Table 3) 
and all data with ADPE greater than or equal to 10 
(Equation 5 results in Table 3). Note that EDUC did not 
explain enough of the residual variance to be introduced 
into Equation 4, that Equation 4 has very low r 2

, and 
that the only POPL has a regression coefficient signif­
icant at the 0.05 level. Equation 5 has a higher r2, has 
illogical negative signs on INCOME and EDUC, and has 
significant coefficients only on POPL and ISOLATE. In 
general, neither of these equations is satisfactory. 
Equations 6 and 7 resulted from the same data stratifi­
cation and included only POPL and ISOLATE as indepen­
dent variables. Examination of residuals showed no sig­
nificant difference between Equations 4 and 6 and be­
tween Equations 5 and 7. Furthermore, the regression 
coefficient on ISOLATE in Equation 6 is not significant 
at the 0 .05 level. 

The sensitivity of the regression parameters to the 
stratification level was examined by selecting a sub­
sample consisting of all data with ADPE greater than 15 . 
Equation B resulted from this analysis. The regression 
coefficient on ISOLATE is no longer significant at the 
0.05 level as compared to Equation 7 in which it was 
significant. 

Based on the analysis described above, a regression 
of POPL and ISOLATE with ADPE for the total sample 
of 56 data points was considered to be the best general 

191 

linear model (Equation 9). Stratification by community 
population as an independent variable was preferred to 
stratification by ADPE, because the mean value of 
ISOLATE was substantially different for those cities 
over 20 000 people as compared to cities under 20 000 
people. 

Two regressions were performed on the 30 cities 
with populations less than 20 000 (Equation 10) and on 
all cities having populations 20 000 or more (Equation 
11). Note that in Equation 10 the variable ISOLATE en­
tered the solution first and that, while the regression 
coefficient POPL is not significant at the 0.05 level, it 
is at the 0.10 level. An inverse situation existed for 
Equation 11 as compared to Equation 10 (reinforcing 
the logical consequence of city size and degree of isola­
tion as intervening factors). Even though Equations 10 
and 11 based on stratified data explain less of the sam­
ple variance as measured by r 2

, comparison of resid­
uals indicated that Equations 10 and 11 were preferred 
to Equation 9. Of the 30 communities used as a data 
base in Equation 10, 16 had smaller residuals than re­
sulted from Equation 9 with an average decrease of 
1.24; for the 14 communities producing an increased 
residual value with Equation 10, the average increase 
was 0.93. Similarly, 14 of the 26 communities in the 
Equation 11 data base had lower residuals with Equation 
11 than with Equation 9, with an average decrease of 
2.06. The 12 communities having increased residuals 
with Equation 11 as compared to Equo1.tion 9 residuals 
increased an average of 0.84. Thus, Equations 10 and 
11 were considered to be the best linear multiple re­
gression model. 

Since a stratified sample produced the best linear 
model and the relatively low percentage of the sample 
variance was never explained (40 plus percent), an ex­
tensive multiple regression analysis was conducted to 
seek a nonlinear model with higher r2

• The following 
list shows the various independent variable transforma­
tions utilized in this analysis [the dependent variables 
are ADPE, ADPE/ 1000, ln (ADPE)): 

(ISOLATE)-1 

ln (ISOLATE) 
ln (POPL) 
(EDUC) x (INCOME) 
ln (EDUC) 
ln (INCOME) 
(ISOLATE) x (ISOLATE) 

1 
[(ISOLATE) x (ISOLATE) f 
ln (OCCUP) 
(ISOLATE) x (INCOME) 
(OCCUP) x (INCOME) 
(OCCUP) x (EDUC) 
(INCOME) x (INCOME) 
(POPL)Y' 
(ISO LA'f,E) v, 
(POPL) 
(EDUC)- 1 

(INCOME)- 1 

(OCCUP)- 1 

(OCCUP)'' 
(EDUC)v' 
(INCOME) v' 
(POPL) x (POPL) 
(OCCUP) x (OCCUP) 
(EDUC) x (EDUC) 

1 
[(POPL) x (POPL) f 
[(EDUC) x (EDUC) r 1 

[(INCOME) x (INCOME) f 1 

[(OCCUP) x (OCCUP)r
1 

(POPL)J 
(EDUC) I 
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Tabla 3. Results of linear stepwise inclusion multiple regression analysis. 

Equation 
No. Constant POPL ISOLATE OCCUP INCOME EDUC 

-35.613 81 1.394 21 (I) 1.966 47 (2) 1.450 53 (3) -2.084 72 (4) +0.409 50 (5) 
58 (r, r'. t) (0.57, 0.32, 6.03) (0.09, 0.39, 2.26) (0.18, 0.43, 1.00) (0.95, 0.46, 1.58) (0.24, 0.46, 0.37) 

2 -16.315 49 0.628 19 (1) 1. 759 12 (2) 0.078 58 (3) N.A. N.A. 
56 (r, r', t) (0.53, 0.28, 5.64) (0.16, 0.40, 3.19) (-0.08, 0.40, 0.15) 

3 -9.982 40 0.838 98 (1) 1.714 00 (2) -0.27102 (3) N.A. N.A. 
56 (r, r', t) (0.53, 0.28, 5.61) (0.16, 0.40, 3.06) (0.07, 0.40, 0.38) 

4 5.778 77 0.1720 (1) 0.273 38 (2) -0.235 30 (3) 0.179 75 (4) 
32 (r, r'. t) (0.36, 0.13, 2.29) (-0.02, 0.17, 1.41) (-0.11, 0.20, 1.32) (0.16, 0.22, o. 79) 
-22.576 31 0.867 99 (1) 1.859 95 (2) 1.916 00 (4) -1.523 04 (3) -1.026 10 (5) 
34 (r, r', t) (0.46, 0.21, 4.37) (0.16, 0.34, 2.33) (-0.03, 0.40, 1.44) (-0.09, 0.38, 1.24) (-0.06, 0.42, 1.02) 

6 3.041 53 0.173 12 (1) 0.206 00 (2) N.A. N.A. N.A. 
32 (r, r', t) (0.36, 0.13, 2.43) (-0.02, 0.17, 1.12) 

7 -7.132 43 0.701 71 (1) 1.955 91 (2) N.A. N.A. N.A. 
34 (r, r', t) (0.46, 0.21, 3. 78) (0.16, 0.34, 2.42) 

8 6.968 70 0.618 63 (1) 1.365 86 (2) N.A. N.A. N.A. 
24 (r, r', t) (0.51, 0.28, 3.20) (0.06, 0.33, 1.46) 

9 -14.194 85 0.824 58 (1) 1.754 61 (2) N.A. N.A. N.A. 
56 (r, r', t) (0.53, 0.28, 5. 74) (0.16, 0.40, 3.22) 

10 -12.292 17 0.946 23 (2) 1.484 59 (1) N.A. N.A. N.A. 
30 (r, r'. t) 0.25, 0.26, 1.63) (0.43, 0.18, 2.67) 

11 -21.099 84 0.854 18 (1) 2.461 14 (2) N.A. N.A. N.A. 
26 (r, r', t) (0.56, 0.32, 3. 48) (0.28, 0.40, 1. 74) 

Tabla 4. Results of nonlinear 
Equation stepwise inclusion multiple- (POPLJ' (POPL)Y, r' 

regression analysis number 5. 
(N = 56) Constant (ISOLATE)• (POPL) (POPL)1 Parameter 

12 2.816 94 0.093 72 0.401 Coef£lcients 
(6.01) (t) 

13 6.226 03 0.067 55 0.000 05 0.439 Coefficients 
(3.29) (1. 89) (t) 

14 6.565 90 0.090 48 0.000 17 -0.011 89 0.460 Coefficients 
(3.49) (1.95) (1.43) (t) 

15 -8.13446 0.088 99 0.000 30 -0.027 43 +4.875 62 0.469 Coefficients 
(3.42) (1. 76) (1.43 (0.90) (t) 

Table 5. Simple correlation 
Variable ADPE (ISOLATE) x (POPL) (POPL)' (POPL)' (POPL)i-l 

matrix for analysis number 5. 

(ISOLATE)3 

(INCOME) 3 

(OCCUP)3 

(POPL)-~ 
(EDUC)­
(ISOLATE)..;i 
(INCOME)-3 

(OCCUP)-3 

(POPL) x (INCOME) 
(ISOLATE) x (OCCUP) 
(ISOLATE) x (EDUC) 
(ISOLATE) x (POPL) 
(EDUC) x (POPL) 
(POPL) x (OCCUP) 

ADPE 
(ISOLATE) • (POPL) 
(POPL)1 
(POPL)' 
(POPL)'1' 

1.00 0.633 12 
1.00 

Six different stepwise analyses were conducted resulting 
in 26 different nonlinear regression models. 

Table 4, where ADPE is the dependent variable, in­
dicates the results of the nonlinear regression analysis 
yielding the best r2 and most significant regression co­
efficients. Equations 12-15 have equal or better ability 
to explain variation in the 56-community sample data 
than do the best linear equations (Equations 9, 10, and 
11). However, only the coefficients on the variable 
(ISOLATE) x (POPL) are significant at the 0.05 level. 
As Table 5 indicates, other independent variables are 
more highly intercorrelated than they are correlated 

0.569 72 0.575 19 0.484 02 
0.671 84 0. 764 61 0. 782 25 
1.00 0.968 53 0.685 83 

1.00 0.833 96 
1.00 

with the dependent variable, ADPE. Thus, the best non­
linear regression expression is Equation 12. 

CONCLUSIONS 

Comparing linear to nonlinear regression results indi­
cates that the expression ADPE = 2.81694 + 0.9372 
(ISOLATE) x (POPL), which is Equation 12, is the best 
estimator of average daily passenger enplanements at 
a small community. The constraint term is very small 
and yields little conceptual error when the community 
is very close to an FAA hub airport (ISOLATE ap­
proaches zero) or when the community population is very 
small (POPL approaches zero). The variable interac­
tion of isolation times population is analogous to the 
concept of gravity model-travel resistance formulas 
long accepted in trip distribution analyses. Finally, it 
is a simple expression. 

Recognizing that Equation 12 only explains 40 percent 
of the variance in the sample data, we still considered 
it a sufficiently adequate estimator of ultimate demand 
for commuter air carrier service to be one of the prime 
bases of the recommended program for integrating com­
muter air carriers into Iowa's total transportation sys­
tem (34). 

Demand estimates were calculated for 42 cities in 
Iowa considered to be candidates for expanded commuter 



air carrier service. These demand estimates along with 
public attitudes and highway trip diversion estimates 
resulted in a recommended planning program. 
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Distributing Air Cargo in the 
Baltimore-"! ashington Region 
Mark E. Tomassoni, Department of Geography and Environmental 

Engineering, Johns Hopkins University, Baltimore 
David Rubin, COMSIS Corporation, Wheaton, Maryland 

The planning of air cargo terminal systems requires accurate forecasts of 
demand, particularly of the impact of points of cargo origin and destina­
tion on demand. A methodology for this problem should meet three 
criteria if it is to be useful for airport planning. It must use low-cost and 
generally available data; it must be based on cargo shipper and receiver 
behavior; and it must allow for the transferability of results required for 
general forecasting. This paper describes a methodology based on acono· 
metric analysis of data from a number of small geographic areas within 
the Baltimore-Washington region. Tests of the method were performed 
by the Maryland Department of Transportation as part of a Maryland 
Aviation System Plan designed to address the current status of all aviation 
facilities in the state and to prepare recommendations for any required 
expansion or development. This case study suggests that the method is 
a useful tool for forecasting the arrival and departure of air cargo within 
the region but that it is not necessarily adequate for testing whether pol· 
icy changes affect demand. 

The forecast of intraurban commodity distribution is 
central to an understanding of the locations of future 
cargo generation and consumption. (In the following, 
"cargo" refers to all freight, ma:i.J., and express ship­
ments by air.) Yet, recent goods-movement studies em­
phasize the significant absence of data bases and rudi­
mentary record keeping necessary for forecasting growth 
and for understanding the implications of the forecasts 
for fixed facility development. 

According to one federally sponsored project (1, p. 9), 
"little is known at this time about the intra-urban-flow of 
goods. Neither adequate theory, nor models, nor hy­
potheses detailing activity linkages within urban areas 
exist. Thus there is no base from which the design of 
empirical studies of goods movement can be systemati­
cally derived." Unless proper record keeping is estab­
lished for ongoing intraurban commodity distribution, 
the potential increases for preparing inaccurate projec­
tions and developing imprecise assessments of transpor­
tation externalities such as land use, industrial location, 
regional taxation, and environmental disamenities. 

The purpose of the present paper is to summarize the 
results of a two-day survey methodology that forecast 
air cargo generation for 78 geographic areas in the 
Baltimore-Washington region. Although air cargo trans­
portation is often recognized as an interurban commodity 
transportation phenomenon, the intraurban surface haul 
of air cargo before and after actual air transportation is 
central to successful and timely movement. So impor­
tant is the truck haul of air cargo that it was the subject 
of considerable study, particularly in the middle and 
late 1960s. 

Brewer was often found using the phrase "chaos on 
the ground" when describing the surface transportation 
of air cargo (2, 3). It was his contention that the surface 
transportation and ground handling of air cargo could ac­
count for as much as 40-80 percent of total in-transit 
time. 

Commodities transported by air are typically of high 
value per unit weight. Examples include electronic 
equipment, perishable foods, nonmechanical equipment, 
replacement parts for operating machinery, and printed 
matter. One would have expected the airlines to devote 
extensive research efforts toward the analysis of the 

intraurban and surface haul of air cargo. But available 
research is scarce. 

In addition to Brewer's work, there are at least two 
other studies that address the air cargo issue. Reeher 
and Dwyer examined the air-truck network serving the 
Baltimore-Washington region (4). They sought to reveal 
the relationships among airport air cargo market areas, 
air carrier operating schedules, motor carrier opera­
tions, rate-setting behavior, and intraurban commodity 
flows. While no previous study had presented in such a 
comprehensive fashion the numerous variables affecting 
the surface movement of air cargo, the Reeher and 
Dwyer study suffered from the absence of an adequate 
cargo movement data base. 

Tomassoni and Weissbrod (5) extended the work of 
Reeher and Dwyer by suggesting that, within multiair­
port environments, market area competition is easily 
determinable by plotting surface haul cartage rates set 
by local trucking agencies to and from the airports. 
Accordingly, they identified three types of market 
areas-exempt, indifferent, and preferred-within the 
same Baltimore-Washington regional study area. Ex­
empt market areas were defined as locations within a 
40-km (25-mile) radius of the airport or the city limits 
of the air carrier's certificated route point (6). Indif­
ferent areas were classified as areas with no preference 
of airport use. Preferred market areas were described 
as areas with a clear preference for one airport over 
another when measured in terms of motor carrier 
freight rates. 

Despite the insights provided by these two research 
teams, neither was able to examine in geographic depth 
the places of air cargo origination and destination due 
to the absence of an adequate cargo movement data base. 
It was evident that the next major study of air cargo in 
the region should begin to develop the information back­
ground needed to describe the existing transportation of 
air cargo and to provide the framework for projections 
of forecast demand. 

MARYLAND AVIATION SYSTEM PLAN 

Mindful of the need for more sophistocated commodity 
movement data, the staff of the Maryland Department 
of Transportation included, as part of their statewide 
aviation system plan, an extensive treatment of air 
cargo fl.ow. Efforts were initiated to "identify and ex­
amine the structure, operations, and quantity" of do­
mestic air cargo originating from the three airports 
Baltimore-Washington International (BWI), Dulles In­
ternational (!AD) , and Washington National (DCA) (2). 

The Airports 

BWI, !AD, and DCA form an important multiairport air 
cargo system. The market area served by these three 
airports extends roughly north to Harrisburg, north­
west to Cumberland, southwest to Roanoke, south to 
Elizabeth City, east to the Delmarva peninsula, and 
northeast to Aberdeen. Handling more than 11.5 Gg 
(12 700 tons) of enplaning cargo in 1976, these regional 
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Figure 1. Zones within the Baltimore-Washington region. 
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airports together accounted for 2.28 percent of all do­
mestically enplaned cargo (8). 

The historical development and current position of 
the airports can be described as follows. The first 
airport of recognized significance to be constrµcted in 
the region was Washington National following a decree 
set forth by President Roosevelt in the late 1930s. Fed­
eral funds were allocated and DCA was completed in 
1941 at a distance of only 6 .5 km (4 miles) from the 
Washington, D.C., central business district. Though 
dominating the transportation of cargo until only re­
cently, the increased demand for air cargo (9) and the 
associated growth in surface vehicle movement has led 
to serious on-airport vehicle congestion problems. 
This, combined with its obsolete 1393-m2 (15 000-ft2

) 

air cargo building, has forced cargo-hanclling activity 
to relocate in dispersed hangar areas and has decreased 
incentive to ship air cargo via DCA. 

The second airport to "Je constructed in the region 
was the Baltimore-Washington International Airport, 
then known as Friendship International. Christened in 
1951 by President Truman, BWI is located 16 km (10 
miles) south of Baltimore's central business district and 
only 32.3 km (20 miles) north of the District's mall area. 
BWI is currently experiencing an unprecedented rate of 
modernization and expansion of terminal facilities, cargo 
handling areas, airline schedules, and marketing efforts. 
The state-owned and state-operated 10 219 m2 (110 000 
£t2) of air cargo facility and the airline-owned rampside 
cargo structures accounting for an additional 5946 m2 

(64 000 ft2) allow BWI to claim the greatest regional 
freight-hanclling ability. 

Indeed, by late 1976, BWI began to handle more air 
cargo thanDCA for the first time in the region's history. 
Moreover, since motor carriers are not subject to the 
continued on-airport congestion that they would experi­
ence at Washington National, terminal delays are re­
duced, and truck and driver operating times can be more 
effectively utilized. 

These observations, together with the capability to 
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increase cargo warehousing space to more than 27 871 
m2 (300 000 ft2), make it apparent that BWI has a major 
advantage in air cargo and has the incentive to obtain as 
large as possible a percentage share of the region's 
total air cargo market. 

Completing the facilities is Dulles International Air­
port, dedicated in 1962 by John F. Kennedy on an expan­
sive semirural Virginia plot some 38.6 km (24 miles) 
from downtown Washington, D.C. Constructed in large 
part in response to the then growing congestion at DCA, 
IAD has attracted long-haul aircraft schedules that are 
restricted from use out of DCA. Obstacles in the form 
of lengthy highway access times from the District, ac­
cess road closed to truck traffic because of structural 
design, and limited aircraft schedules have limited air 
cargo use at Dulles. 

The Survey 

To assess the amount and types of air cargo originating 
in the region, a two-day, 100 percent sample of surface 
haul airway bills was obtained from the four major air 
cargo forwarders (10). These forwarders were Air Cargo 
International (ACI),Emery Air Freight, Airborne 
Freight Corporation, and Railway Express Association 
(REA) Air Express (now defunct). A total of 2178 ship­
ments were surveyed. 

From the airway bills the following information was 
coded for each shipment: name of forwarder, place of 
cargo origination, airport in the region used to ship the 
cargo, destination airport, number of pieces in ship­
ment, total weight of shipment, and date. The region 
was subdivided into 78 analysis zones (Figure 1), of 
which 6 were used to describe nonregional points of 
origination. 

The total cost of the air cargo survey including sur­
vey distribution, computer coding, and expansion to an­
nual figures came to approximately $ 5000. With a total 
of 21 78 survey shipments recorded, the average cost of 
each survey item came to about $2.30. 
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Table 1. Air cargo forwarder survey results. 

Shipments to Airports 

Percentage 
Forwarder BWI DCA-IAD Total of Total 

REA Air Express 283 598 881 40 
Airborne Air Freight 183 161 344 16 
Air Cargo, Inc. 181 79 260 12 
Emery Air Freight 277 416 693 32 

Total 924 1254 2178 100 

Table 2. Air cargo forwarder survey weights. 

Total Average 
Sample Weight 

Number of Weight per sample 
Airport Forwarder Samples (kg) (kg) 

BWI REA Air Express 283 4 283 15.1 
Airborne Air Freight 183 8 355 45.7 
Air Cargo, Inc. 181 20 957 115.8 
Emery Air Freight 277 14 482 53.3 

Subtotal 924 48 077 57.5 

DCA-IAD REA Air Express 598 9 695 16 .2 
Airborne Air Freight 161 7 257 45. l 
Air Cargo, Inc. 79 8 508 107.3 
Emery Air Freight 416 12 303 29.6 

Subtotal 1254 37 763 50.0 

Total 2178 85 840 39.4 

Note: 1 kg. 2.2 lb. 

Results 

Of the total sample, REA accounted for 40 percent of 
the total, Emery was represented by 32 percent, Air­
borne Freight Corporation by 16 percent, and ACI by 12 
percent (Table 1). The samples accounted for a total 
weight of 85 840 kg (189 252 lb) or an average weight 
of 39.4 kg (86.9 lb) per 'shipment (Table 2). ACI handled 

· the largest average weight per shipment in deliveries to 
B WI as well as DCA and IAD. 

Factoring and Forecasts 

The total cargo originating in each zone during the two­
day period was then expanded proportionately to annual 
totals during the survey year. Two sources of annual 
air cargo volume data were used to find the proper ex­
pansion factors: Maryland Department of Transporta­
tion's State Aviation Administration Comparative Sum­
mary of Activity (June 1973-June 1974) and the Federal 
Aviation Administration's National Capital Airports Ac­
tivity Reports for Dulles International and Washington 
National Airports (July 1973-June 1974). Both of these 
data sources break down the air cargo activity into en­
planing and deplaning cargo by type, i.e., mail, freight 
(domestic-international), and express. The expansion 
factor was calculated by simply dividing the annual kilo­
grams by the survey kilograms. 

Forecasts of 1985 and 1995 cargo origination were 
then developed based on demographic forecasts supplied 
by the Baltimore Regional Planning Council and the 
Washington Council of Governments. The forecasts were 
controlled by a macroforecast for the region as a share 
of the national forecast. 

Distribution of Cargo to Air Destinations 

The forecast for originating cargo was then distributed 
to leading domestic destinations by using the Simat, 
Hellisen, and Eichner air passenger distribution model. 

Aircraft belly capacity was determined for various air­
craft types. A 65 percent load factor was assumed, and 
a certain percentage of cargo capacity was eliminated 
for use as luggage space. 

The originating cargo demand was calculated for each 
of the three regional airports and from each of the 78 
zones based on accessibility measures from the air pas­
senger portion of the state system plan (~). Cargo was 
distributed to the closest airport, but DCA was limited 
to shorter trips. Final output displayed total cargo from 
each aviation analysis zone to each of the three airports. 

CONCLUSIONS 

This paper has attempted to summarize the results of 
a two-day survey that forecast air cargo generation for 
the Baltimore-Washington region. Some questions that 
must be raised and carefully considered, before accu­
rate evaluations of air cargo origination are possible, 
are 

1. Which points generate most air cargo? 
2. Which commodities are produced at generating 

points? 
3. A re local airports providing airlines with ade­

quate cargo storage capacity at or near the airport? If 
not, is this reducing the amount and/ or type of cargo 
shipped through the airport? 

4. When a survey is used, is consideration given to 
sampling cargo destined for the local airport(s)? 

5. Can an ongoing record-keeping system of air cargo 
flows be established7 

6. What are the identifiable market areas surrounding 
a particular airport? 

This list could be greatly expanded. What is at issue is 
the relative importance of gathering this information, 
the cost of such a study, and the final use to which the 
information could be profitably put. It seems at least 
plausible to conclude from the results of this study that, 
placed in the hands of the proper marketing experts, the 
type of study conducted by the Maryland Department of 
Transportation could prove useful in expanding cargo 
movement by air through local air carrier airports. 

This paper has not in any way attempted to describe 
in comprehensive detail the procedures and final fore­
casts resulting from the study. Those interested in ob­
taining more background information are asked to con­
tact the Maryland Department of Transportation. 
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Commuter Rail Diversion Model 
Gary A. Gordon, City Engineer, Gloucester, Massachusetts 
Thomas E. Mulinazzi, Department of Civil Engineering, University of 

Maryland 

Over the past two decades commuter railroads, in gen­
eral, have been experiencing declines in ridership that 
have led to a rather stable but low level of ridership. 
Alternative action therefore must be taken to recoup 
financial losses. These losses can be offset by re­
ducing or eliminating commuter service, by obtaining 
outside funding, or by increasing commutation rates 
or the entire fare structure. 

Railroads requesting a commuter fare increase 
either make no effort to determine the number of people 
diverted to other modes of transportation as a result of 
the fare increase or come up with unrealistic figures. 
Outside of a few general models for transit diversion 
in relation to fare increases (1, 2), little has been done 
to determine the relationship between fare increases 
and ridership for rail transit, not to mention commuter 
railroads. 

The problem of not having a model that measures 
passenger diversion attributable to a given fare in­
crease for commuter railroads is significant. Not only 
is the diversion figure important in the economic 
analysis of a fare increase, it is a key factor in deter­
mining environmental and transportation impacts of com­
muter service. Government policy in recent years 
has been advocating mass transportation as a mitigating 
measure to traffic congestion and hazardous levels of 
air pollution and more recently to energy consumption. 
Economically, an accurate diversion figure is needed 
to project passenger revenues and to determine whether, 
in fact, the fare increase is the solution. 

The general objective of this paper is to present a 
model developed to determine the diversion of com­
muter rail users as a direct result of a fare increase 
and to compare this with other transit diversion models 
(3). Also, the model should be easy to understand be­
cause many of its users will be nontechnical people, 
many of whom represent railroads or transit agencies 
in a legal capacity. Therefore, the simplistic model 
resulting from the limited scope of this research will 
be beneficial. On the other hand, the model must be 
accurate enough to provide the user with a reasonable 

estimate of the diversion so that the resulting impacts on 
transportation, the environment, and revenues can be 
determined. 

CHICAGO MODEL 

A model for Chicago, developed by the Interstate Com­
merce Commission (4), determined the functional rela­
tionship between the diversion of commuter rail pas­
senger traffic to other modes of transportation and 
commuter fare increases by analyzing data provided 
by the six Chicago area commuter railroads. These 
data included monthly revenue passenger volumes for 
a period of at least 52 months that dated as far back as 
1969 and rate increases that occurred during the same 
period. A computerized forecasting program (with 
seasonal variation capabilities) was used to determine 
the historic trend of each railroad with respect to 
growth or decline. 

The linear function that resulted from the regression 
analysis is 

Y = 0.52(X)- 3.68 (I) 

where X is greater than 7 percent and 

X fare increase in percent and 
Y diversion of passenger traffic in percent. 

The relationship is graphically represented in Figure 1. 
The analysis also revealed that there is no significant 

diversion for an increase in fares averaging 7 percent 
or less. For fare increases of greater than 7 percent, 
there is an expected 0.5 percent diversion for each 
additional 1 percent increase in fares in excess of 7 
percent. For example, if a railroad increased its 
fares an average of 13 percent, it can expect a diversion 
of passenger traffic to other modes ()f transportation of 
approximately 3 percent. 
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Figure 1. Loss of ridership from fare increases on Chicago commuter rail lines. 
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DATA COLLECTION 

As an extension of the Chicago model, additional data 
from a sample of the commuter railroad systems in the 
United States were analyzed. 

The group consisted of six major urban areas with 
commuter railroads and was intended to be representa­
tive of commuter rail service in this cowitry. The six 
major urban areas surveyed were Boston, Chicago, 
New York City, Philadelphia, San Francisco, and Wash­
ington, D.C. 

The survey encompassed 16 railroads that provide 
commuter rail service in these urban areas. The data 
analyzed included rate increases, monthly passenger 
cowits, and any wiusual circumstances such as strikes 
that might affect ridership. The study period was five 
years, beginning January 1, 1970. 

DETERMINATION OF DIVERSION 

New passenger losses or gains were determined by 
forecasting ridership after a fare increase, using the 
relationship derived for the period prior to the rate 
increase. Ridership forecasts, in addition to fares, 
considered such variables as automobile operating 
costs, travel times, levels of service, the cost of 
alternate modes of transportation, etc., some of which 
were not used in the final analysis because of insuf­
ficient data and statistical insignificance. 

A forecast of ridership for the six-month period 
following the fare increase was compared to the actual 
ridership for that period; and the difference yielded 
the net passenger loss or gain for that period. Diver­
sion was then determined by factoring out that portion 
of the net loss or gain attributable to the historic trends 
developed previously. Fare increases were fowid to 
have a tendency to accelerate the rate of ridership 
losses and to reverse a positive trend. Diversion is, 
therefore, made up of those passengers directly af­
fected by the fare increases who, after the six-month 
period, have not returned to the trains and are not ex-

plained in the historic growth rate of the railroad. 
If, after this procedure, ridership increased during 

the six-month period, it was assumed that the fare in­
crease was accompanied by service improvements or 
an external condition that could increase ridership and 
offset the fare increase (e.g., sharp rise in automobile 
operating costs). Because of time constraints and data 
limitations, further analysis along this line was not 
performed. However, the effect of service improve­
ments and/ or increased costs of other modes of trans­
portation on fare increases warrants further study. 

DIVERSION CURVE 

Eighteen usable data points resulted from the analysis 
of the data. These data points show the relationship 
between a specific fare increase and the resulting 
diversion. The next task was to manipulate the data 
pairs in such a manner that a general relationship be­
tween fare increases and diversion resulted. Since 
regression analysis is a proved method of curve fitting, 
it was also used in this portion of the analysis. 

The two sets of data analyzed separately by linear 
regression resulted in the following relationships: for 
time factor included (period between fare increases con­
sidered) 

DIV= 0.3(FARE INC)+ 0.5 

and for time factor excluded 

DIV= 0.2(FARE INC)+ J.Q . 

where DIV is diversion in percent, and FARE IN"C is 
fare increase in percent . A graphical representation 

(2) 

(3) 

of these relationships is shown in Figure 2. Once again 
it should be noted that other methods of curve fitting 
were considered, but the linear regression provided the 
best fit. 

Rather than using the separate relationships, we de­
rived a single relationship representative of both. It is 



Figure 2. Diversion of commuter rail ridership from fare increases. 
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simply an equation averaging the coefficients of both; it 
defines a line midway between the two. The resulting 
equation is to be used as a general, nationwide relation­
ship relating diversion (in percent) to fare increases 
(in percent). The diversion equation is 

DIV= 0.25(FARE INC)+ 0.75 (4) 

The derived relationship shows that for every 10 percent 
increase in fares a loss in ridership of 3,25 percent will 
occur. 

CONCLUSIONS 

The diversion model developed in this paper presents a 
general technique for evaluating the impact of a fare in­
crease on commuter rail ridership. Although the 
diversion rate may differ from railroad to railroad and 
from urban area to urban area, the model can be used 
to determine a general diversion value applicable any­
where in the country. Furthermore, the methodology 
provides a framework in which railroads and transit 
properties, or any other agency, can develop their own 
relationships or assess the impact of a specific rate 
increase. 

As stated previously, the methodology was con­
strained by the availability of data, time, and the cap­
ability of the computer system used. Nonetheless, a 
thorough investigation has been made using the available 
resources. The result is, as stated previously, a 
methodology and simplistic model that can be used 
nationwide to delineate the relationship between fare 
increases and concomitant ridership losses. Based on 
the analyses performed, it can be concluded that 

1. A ridership loss of approximately 3 percent can 
be expected for every 10 percent increase in commuter 
rail fares, 

2. Although commuter rail riders and other transit 
riders display different user characteristics, they ap-
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pear to be affected similarly by fare increases, 
3. An increase in commuter fares, when accom­

panied by an increase in service, does not necessarily 
result in ridership losses, and 

4. User and system characteristics differ throughout 
the country. 

It should be noted that the assumption that passenger 
gains occurred as a result of service improvements 
was made because of the limited scope of this research 
and in an effort to simplify the analysis. 

It is important that the results of this research be 
meaningful and consistent with existing concepts. The 
relationship developed found ridership to be fare in­
elastic. The fare elasticity was calculated to be -0.325, 
which approximates that of the generally accepted fare 
elasticity of -0.3. The similarity of the fare elasticities 
can be attributed to the model's being developed by using 
proved analysis procedures for forecasting. Also, 
transit users are not that unlike, regardless of transit 
mode. Furthermore, the approach to the problem and 
types of data selected for analysis are not any different 
from those used for other fare studies on other transit 
modes. 

Most of the research related to fare elasticities was 
done for either bus or rail rapid transit. Consequently, 
and for lack of a better alternative, these relationships 
were used in the past for commuter rail. By develop­
ing this diversion model for commuter rail, nothing new 
has been proved that would revolutionize fare studies, 
but it did prove that the generally accepted relationship 
can be used for commuter rail with confidence. 
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Impact of the Relative Transit and 
Highway Service Levels on 
Trip Distribution 
W. Thomas Walker, Delaware Valley Regional Planning Commission 

The purpose of this investigation is to measure the im­
pact of the public transit service level on the destination 
choices of trip makers. It ls often hypothesized that trip 
makers will have a tendency, fi rst, to make more trips 
to areas with a relatively high level of public t r ansit , 
particularly iI the service there is s uperior to that pro­
vided by the auto and, s econd, to make fewer t rips to 
areas with poorer transit accessibility. This propensity 
is measured by comparing the error in travel volumes 
predicted by a standard Bureau of Public Roads highway 
time gravity model with the relative transit and highway 
service levels, as measured by the disutility difference 
measure used in most utilitarian modal split models. A 
well-defined and logical bias in gravity model output was 
discovered with respect to the relative transit and high­
way service levels. The impact of this bias on simu­
lated person trips is evaluated by correcting the gravity 
model output and comparing the corrected and uncor­
rected trip tables. 

GRAVITY MODEL TRIP DISTRIBUTION 

Doubly constrained gravity models were calibrated on 
the basis of highway travel times for three trip purposes: 
home-based work, home-based nonwork, and non-home­
based nonwork (1). The formulation of the models was 
the standard Bureau of Public Roads (BPR) gravity model 
(2). For the most part, the procedures outlined in that 
report were followed during the calibration process. 

The formulation of the BPR gravity model is 

where 

T iJ = number of trip interchanges from zone i to 
zone j, 

P 1 =number of trip productions in zone i, 
A 3 = number of attractions in zone j, and 

(I) 

F, 1 =empirically derived highway travel time factor, 
which expresses the overall areawide effect of 
spatial separation on trip interchanges between 

zones t 1 minutes apart. This factor approxi­
mates 1/tn. 

Specific zone-to-zone adjustment factors, or K­
factors, were not used in this application of the BPR 
gravity model. 

The trip data used to calibrate the gravity model were 
obtained from 1960 Penn-Jersey travel survey data, 
which were reformatted into standard production­
attraction format and trip tables built for each purpose 
on the basis of an 832-zone area system. 

Highway travel times were obtained from a 1960 
street and highway network, which was coded to the 
same zone system. Highway speeds were inserted into 
the network from a look-up table on the basis of func­
tional class and area type. The highway travel times 
were then updated with terminal and interzonal times 
and with bridge penalties across the Schuylkill and Dela­
ware rivers. These parameters were calibrated by 
using recommended BPR procedures. The updated set 
of highway travel times was used for all three trip pur­
pose models . 

BIAS WITH RESPECT TO RELATIVE 
TRANSIT AND HIGHWAY 
SERVICE LEVEL 

The Test 

If the public transit service level has a measurable im­
pact on the distribution of person trips, then a distribu­
tion solely on the basis of highway travel time should 
lead to an underestimation of person trips for inter­
changes with good transit service and poor highway ser­
vice, and should lead to overestimation where transit 
service is poor relative to highway service. This hy­
pothesis was tested by comparing the relative transit 
and highway service levels (as measured by the disutil­
ity or impedance difference measure shown in Equation 
2) with the ratio of the 1960 gravity model synthetic trips 
to 1960 survey person trips. This comparison was done 
for each of the three trip purposes and for total trips. 



Figure 1. Coded transit network. 

ID= K1 (TE- HE)+ K2(TR- HR)+ K3 (TF- HOP - PKG) 

+ K4(TRFR +I)+ 200 

where 

ID = disutility or impedance difference, 
HE = highway out-of-vehicle time, 
TE = transit excess or out-of-vehicle time, 
HR = highway in-vehicle time, 
TR = transit in-vehicle time, 
TF =transit fare (cents, in 1960 dollars), 

HOP =highway operating cost (in 1960 dollars), 
PKG= auto parking cost, 

TRFR = number of transit transfers, 
K1 = 2.50, 
K2 = 1.67, 
Ka= 1.0, and 
K4 = 16.0, 

(2) 

This impedance difference is similar to the standard 
disutility measure used in most modal split models (3, 4). 

The 1960 transit travel times and costs were obtafue'd 
from a morning peak-hour transit network with travel 
times and headways taken from operating schedules. The 
network as it existed in 1960 is shown in Figure 1. Coded 
to the same 832-zone area system as the highway net­
work, it contained all significant commuter rail, 
subway-elevated, and bus facilities within the 1960 
Penn-Jersey cordon line. The same morning peak-
hour network was used for all three trip purposes. 

Results 

The ratio of 1960 synthetic to 1960 survey trip inter­
changes was plotted versus the transit-highway disutility 
difference for home-based work, home-based nonwork, 
non-home-based, and total trips. The curves clearly 
showed a systematic bias in the magnitude of synthetic 
trip interchanges with respect to the relative transit and 
highway service levels. This bias exists for all three 
trip purposes; its magnitude is greatest for home-based 
work trips and least for non-home-based trips. 

INCLUDING THE TRANSIT SERVICE 
LEVEL 

Correction Procedure 
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Several approaches are available for attempting to cor­
rect the bias with respect to .the relative highway and 
transit service levels. The most common approach is 
to construct a combined interzone time or impedance 
measure and then to calibrate the gravity models on this 
basis. An appealing way to accomplish this is to con­
struct a weighted average of the highway and transit ser­
vice levels, using some function of the percentage of 
transit as a weighting factor. However, this approach 
is difficult to calibrate, and most studies simply assume 
an arbitrary weighting scheme. 

Rather than adopt an arbitrarily calibrated formula­
tion that would use an estimated modal split to weight 
the highway and transit travel times, the inverse of the 
bias curve was used to calculate an adjustment factor 
that would then be translated into a revised highway 
travel time through the inverse of the gravity model fric­
tion curve. As was shown in the previous section, the_ 
difference in bias curves for each trip purpose was only 
marginal. Therefore only the total-purpose curve was 
used to adjust the travel times; this resulted in one re­
vised travel time matrix for all three trip purposes. 
The inverse total person trip bias curve shown in Equa­
tion 3 was fitted by least squares. 

z-1 = 1.299 - o.ooo 87(10) (3) 

The coefficient of determination of the above equa­
tion was 0. 64. In estimating bias corrections, z-1 was 
constrained to vary between 1.2 and 0.8. 

It should be noted that this process is similar to the 
more usual practice of weighting the travel times with 
respect to the percentage of transit, since the bias is 
measured with respect to a disutility or impedance dif­
ference similar to the relative service measure used in 
most post-distribution modal split models. 

However, it is more appropriate for two reasons. 
First, it is based on an explicit measurement of the bias 
with respect to the transit service level and hence was 
calibrated with base-year data. Second, it does not re­
quire recalibration of the existing highway time-based 
trip distribution model, which was performing reason­
ably well. 

Impact of the Combined Skim Adjustment 
on Person Trips 

The combined skim adjustment was applied to the esti­
mation of 1977 person trips for the nine-county Delaware 
Valley region, and the results were compared with the 
output of the gravity models by using a set of highway 
interzone travel times. When the resulting differences 
were aggregated to superdistricts, the average change 
was approximately 16 percent of the mean trip inter­
change volume. Spatially, the combined skim adjust­
ment reduced circumferential movements, which had a 
poor level of transit service relative to highway; it also 
increased radial movements, which had relatively good 
transit service. 

The combined skim adjustment tended to increase the 
average trip length in high-speed rail corridors because 
these facilities provide generally good service relative 
to the automobile for longer movements but poor service 
for trips involving short interstation movements. 
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CONCLUSIONS 

After examining the model results, I have drawn the fol­
lowing conclusions. 

1. A highway-based gravity trip distribution model 
has a measurable bias in the Delaware Valley region 
with respect to the relative public transit and highway 
service levels. 

2. This bias is well defined, rational, and statisti­
cally significant for home-based work, home-based non­
work, and non-home-based trips. 

3. The bias vari es only marginally by trip purpose; 
only the non-home-based trips are significantly different 
from home-based work trips and total tr ips. 

4. The highway time- bas ed gravity model has a sig­
nificant tendency to underestimat e pe11son- tr ip inter­
changes even when the transit and highway s ervice levels 
are equal. 

5. The correction of the bias results in significant 
changes in the synthetic person-trip tables. This change 
is primarily a shift of person trips from circumferential 
corridors with poor transit to radial corridors with rela­
tively good public transportation service. 

The above results were obtained for the Delaware 
Valley region, which has an extensive public transpor ta­
tion sr stem- some 2900 r oute kilometers (1800 r oute 
miles of surface transit service and some 1100 r oute 
kilometers (700 route miles ) of high- type rail facilitles. 
However, the basic conclusions can probably be gen­
eralized to other regions that now have or are considt:r-
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ing some form of high-speed public transit service, be­
cause the total amount of transit service may not be as 
significant as the relative quality of transit service in 
individual corridors. 
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Automobile Availability per Worker: 
A Transportation-System-Sensitive 
Socioeconomic Variable 
R. Ian Kingham, National Cooperative Highway Research Program 

Environmental and energy impacts of transportation are 
related to vehicle-kilometers of travel. To reduce 
vehicle-kilometers traveled, strategies are needed to 
attack its two components: the number of vehicles and 
the distance the vehicles move. Transit has been sug­
gested as an alternative to driving the automobile to 
work (thereby, presumably, leaving the automobile 
parked at home) and as an alternative to owning a second 
or third car . The research reported in this paper was 
an exploration of possible relationships between transit 
and automobile ownership and a determination of causal­
ity if such relationships were found (!_) . 

RESEARCH OBJECTIVES AND 
APPROACH 

The general objective of the research reported in this 
paper was to investigate the impact of a viable transit 
alternative on household decisions to have automobiles 

for use in making home-based trips. The specific ob­
jectives were, first, to determine differences in auto­
mobiles available per worker (APERW) between house­
holds in areas served by transit and similar areas not 
served by transit and to determine causality, and, 
second, to recommend socioeconomic variables that 
appear to have hif;h correlation and possible causal ef­
fects on APERW for consideration in travel demand 
models. 

Automobile availability per worker was used in this 
research rather than car ownership or car availability 
because of findings from other completed or ongoing re­
search. In recent years there has been general agree­
ment among travel demand forecasters that car owner­
ship should be replaced by car availability in mode­
choice models (2). It is argued that mode choice and, 
in fact, travel behavior in general are influenced more 
by the cars available to a household than by the cars 
owned by the household. Company cars and rental cars 



Figure 1. Greater Laurel study area. 
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are included in the more general term "car availability." 
Charles River Associates (3) further modified car avail­
ability by dividing it by the number of employed workers 
in the household and noted that APERW could reflect com­
petition for the automobile within households. There­
fore, it was hypothesized that APERW would correlate 
more strongly with mode choice and would be more 
strongly affected by the presence of transit. 

STUDY SETTING 

The study was carried out in Laurel, Maryland~ which 
has a population of 48 000 and an area of 23 km (9 
miles2

) and is located approximately midway between 
Baltimore and Washington, D. C. Figure 1 shows the 
principal subdivisions of "Greater Laurel." Approxi­
mately one-half of the population resides in South Laurel. 
It is the West Laurel, Laurel, and South Laurel areas 
that are important to this research because of socioeco­
nomic similarities but vastly different transit service. 
Within South Laurel, varying density permits an inves­
tigation of any transit service and household-type inter­
action on APERW. 

The transit service hypothesized to influence APERW 
is an express commuter service operated by Greyhound, 
using intercity coaches, from Laurel to Washington, 
D. C. Buses depart from the city and proceed along 
US-197 at 10-min intervals from 6:30 to 8:00 a.m. 
Similar service is offered during the afternoon peak 
period. Principal office areas in Washington are served 
directly. Running time per tr ip is 35-45 min (minor 
preferential treatment); cost is $0.825. It is estimated 
that the service carries 525 passengers in each direction 
per day. 

Other transit service is provided by the B&O Rail­
road, which supplies three trains per day in each direc­
tion during peak periods to employment centers in the 
vicinity of Capitol Hill . Running times are less than for 
competing bus or car, but the remoteness of the Wash­
ington station from the office complexes forces many to 
transfer to other transportation modes to reach employ­
ment destinations. Trip fares by rail vary from $0 .89 
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to $1. 60, depending on whether a commitment is made 
to a monthly or a weekly pass. 

Automobile competition with transit is substantial. 
One limited-access highway (Baltimore-Washington 
Parkway) and a primary highway (US-1) enter the city 
of Washington. 

DATA BASE 

Ninety-two percent of all households in the study area 
were given a questionnaire to complete and return to 
convenient pick-up areas. In addition to socioeconomic 
and sociodemographic questions, respondents were asked 
to identify all work trips and the modes taken for all 
family members. 

The response rate, considering all households in the 
study area, was 4.2 percent. For this small response, 
it could be expected that biases would exist in the data 
set because of under-reporting or over-reporting of var­
ious population segments. Thus, a study was made of 
the households that responded in each of the study areas. 
Population by dwelling type and the distribution of house­
holds by dwelling type were compared with the most re­
cent estimates prepared by the Maryland National Capital 
Park and Planning Commission (MNCPPC). Also, dis­
tributions of population ages and incomes were compared 
with updated census data. Last, the response rate of 
bus and train households was determined for comparison 
with observed ridership. 

The comparisons showed that biases existed as fol­
lows: 

1. Single-family households responded at a greater 
rate than did either apartment or townhouse households; 

2. Higher-income households responded at a greater 
rate than did lower-income households; 

3. Households with adults in the 30-50 age group 
responded at a greater rate than did other households; and 

4. Households with bus and train work trips re­
sponded at a greater rate than households having only 
automobile work trips. 

Income, dwelling type, and choice of mode are vari­
ables thought to be most important to automobile avail­
ability. Bias from income and dwelling type were con­
sidered by segregating the data on those bases. The 
bias arising from mode split required the following 
weighting factors to be used for all households: (aJ 
households with auto work trips only, 1.41; (b) house­
holds with 1 or more bus work trips, 0.34; and (c) house­
holds with 1 or more train work trips, 0.31. 

FINDINGS 

The finding of others, that the variable automobiles­
available-per-worker is strongly related to mode choice, 
was corroborated. 

For work trips to Washington, D.C., the percentages 
carpooling or using transit greatly decreased with in­
creasing automobiles available per worker. Figure 2 
shows the mode choice of trip makers at various levels 
of APERW. Its effect was larger than any other socio­
economic variable investigated in this study. Variables 
investigated in addition to APERW were dwelling type 
(apartment, single-family home), income, life cycle 
(number of adults, existence of children), and sex of 
traveler. The influence of all these variables was small 
or negligible once the influence of APERW was accounted 
for. 

A significant but small reduction in APERW appears 
to be the result of establishment of express bus service 
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Figure 2. Mode choice for 
work trips by automobiles per 
worker. 
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Figure 3. Differences in 
automobiles per worker between 
transit and automobile-only 
households. 
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for households having (a) Washington, D. C., work-trip 
destinations and (b) a free choice. 

Households having a free choice were defined as those 
having 1975 household incomes in excess of $15 000 and 
having two or more adults. The income criterion re­
flects the ability of a household to own more than one 
car. For incomes above $15 000, income was found to 
have negligible effect on APERW. The number of adults 
criterion identifies a market having two or more auto­
mobiles and, hence, the flexibility to give up an auto­
mobile and still remain with at least one. The one-
adult household usually had one automobile and was 
apparently reluctant to give it up for a transit service 
that served only the peak-period work trip. 

Comparisons of APERW for bus, train, and automo­
bile households are made separately for single-family 
households and apartment households in the discussion 
that follows. This was the only variable, other than in­
come and number of adults, observed to have an effect 
on the APERW-transit relationship. Figure 3 shows the 
distribution of APERW for bus, train, and auto house­
holds. An auto household was defined as one having no 
bus or train work trips. The difference between bus 
and automobile-only households was statistically sig­
nificant. The probability of chance variation for single­
family homes was 7. 5 percent and for apartments 1. 4 
percent. 

A study of the data revealed that a high percentage of 
bus trips were from households with easy access to the 
bus, i.e., in Laurel and South Laurel. Therefore, it was 
hypothesized that a comparison of households having 
D.C.-bound work trips would reveal a lower APERW for 
Laurel and South Laurel households. Again, for the free 
choice market a statistically significant difference was 
observed for both single-family homes and apartments. 

The probabilities of chance variation were 20 percent 
and 23 percent respectively, indicating a weak relation­
ship. A control group, however, showed a chance vari­
ation of 56 percent. The mode split for D. C. -bound trips 
was 13 percent by bus, 4 percent by train, and 83 per­
cent by automobile. The low transit split tends to ex­
plain the 20 and 23 percent chance variations. 

The findings to this point assume that no other effects 
could be identified that would explain the differences in 
the distribution of APERW between the two areas. There 
was a possibility however, that certain urban structure 
characteristics (such as the closeness of households to 
employment areas) could be responsible for the differ­
ences. Where walk trips are feasible for work and 
shopping trips, lower APERW could be anticipated. 
These factors were investigated and could be accounted 
for. Removing the city of Laurel data, where walk trips 
did occur, did not change the differences observed. 

Inasmuch as the household survey was conducted at 
only one point in time and the survey instrument did not 
inquire of bus riders whether they sold their second or 
third automobiles because of the existence of bus service, 
it is pure conjecture at this point that transit was re­
sponsible for the reduction in car availability. People 
could have moved into the area because of the transit 
service and their desire to own fewer automobiles. 
Ferrari and Shindler (4) and Dunphy (5) also have found 
that automobile ownership rates varied with the relative 
level of service provided by the transit and highway sys­
tems. However, neither study could determine causality. 

We explored the causality question by examining the 
survey forms for bus riders to determine how the re­
spondents answered the question on transit experience. 
Specifically, the form asked Have you ever used public 
transportation? and then Where? This allowed each 
household to be rated on previous transit experience. 
Ratings were high, medium, low, and none. It could be 
anticipated that if the majority of bus households fell into 
the high experience category, people had moved into the 
area because of the bus service. If, however, the ma­
jority had no previous transit experience, it can be in­
ferred that but for the existing Greyhound service these 
households would have the same automobile per worker 
characteristics as households making work trips to other 
destinations. High transit experience was attributed to 
households claiming experience from cities having rapid 
transit, medium experience to households claiming ex­
perience with large bus systems, and low experience to 
those who professed experience with small-town bus sys­
tems. No experience was attributed if only the Grey­
hound service between Laurel and D. C. was noted. The 
results of this assessment are given below. 

Households Having Transit 
Experience 

Medium to 
High None to Low 

Locale No. Percent No. Percent 

City 4 27 11 73 
West Laurel 4 40 6 60 
South Laurel 15 39 23 61 

All 23 40 

These results suggest that the majority of bus riders 
have had little experience and, therefore, could be ex­
pected to have sold their second and/or third cars when 
they became regular bus riders. 

To this point, variables affecting free choice house­
holds have been described. For those households of 
lower income there was a predominant trend (74 percent) 
to one automobile per worker. Households having less 



than one APERW were principally apartments and town­
houses (82 percent); households having more than one 
APERW were principally single-family homes (78 per­
cent), A trend of increasing APERW with greater num­
bers of adults and larger households was evident. An 
influence of transit could not be identified, possibly be­
cause very few lower-income households had members 
working in D. C. and were hence served by transit. 
Therefore, an APERW model for this subgroup should 
include the variability of household size in addition to 
dwelling type and, possibly, transit availability. 

APPLICATION OF FINDINGS 

In mode-choice models for work trips, APERW is a 
variable preferred over auto ownership or auto avail­
ability because (a) it is intuitively better, in that it re­
flects competition within a household for the automobile, 
and (b) the research findings show its correlation with 
mode choice to be statistically equal to or better than 
that of car availability. Group quarters or extremely 
large households can be accommodated in the data base 
without statistical analyses. 

APERW is influenced by (a) the presence of a transit 
alternative, (b) the household composition (specifically 
the number of adults), (c) income, (d) dwelling type, and 
(e) household size (in the case of low-income households). 
For small satellite-type urban areas and suburban 
areas it is recommended that APERW models be esti­
mated separately for three subgroups of the population, 
as follows: 

. 1. Households with two or more adults and (1975) 
incomes in excess of $15 000, 

2. Households with two or more adults and (1975) 
incomes less than $15 000, and 

3. Households with one adult. 

The first group has a free choice. Households in the 
group are able to afford more than one car and, depend­
ing on household composition, have need for more than 
one car unless travel needs can be satisfied by public 
transportation. The potential exists for APERW to be 
estimated using only dwelling type and transit level-of­
service variables. The second group can ill afford more 
than one car. The study has shown that APERW models 
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for the second group should consider household size, 
dwelling type, and perhaps transit service. The third 
group has a need for only one automobile. Thus, in 
most instances, it can be assumed that a one-adult 
household will have one automobile. 

Provision of a high level of bus service will have some 
impact on reducing APERW for subgroups 1 and 2, but 
the impact is small even lf transit is available to all em­
ployment destinations. Therefore, transit service alone 
cannot be an effective strategy in reducing automobile 
availability per worker, 
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Trucks in the Traffic Assignment 
Process 
John R. Hamburg, John R. Hamburg and Associates, Inc., Bethesda, Maryland 

In order to deal with truck impacts, separate truck as­
signments are necessary so that the truck portion of the 
traffic stream on a highway link may be identified. 

In some cities there are highways, parkways for ex­
ample, on which trucks are specifically excluded. Then 
there are structures (e.g., overpasses and underpasses) 
whose very physical characteristics bar vehicles over 

a given height or weight. Conversely, there are routes 
whose signing encourages through truck travel. In dense 
urban areas, a separate assignment network should be 
built for trucks to reflect the policies and prohibitions 
on trucks. Moreover, if no such policies exist, separate 
network capacity should still be included within the 
assignment because such capability is necessary to test 
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and evaluate the utility of such policies. 
There are distinct differences among trucks in terms 

of size, weight, acceleration characteristics, number 
of axles, number of wheels, etc. Two classes of trucks 
are recommended. One is "auto-like" trucks, and these 
should be lumped in with autos. The second class would 
be heavy trucks and would be assigned separately. The 
criterion to be used is that auto-like trucks have four 
tires and heavy trucks have six or more tires. 

A zone-to-zone trip table of truck trips is required 
to pursue separate truck assignments. Standardized 
procedures have been developed by FHW A to synthesize 
a table if an origin-destination survey is not available. 

In addition to a truck trip table, the user should have 
some ground counts of truck volumes so that he or she 
can verify the simulation of touting and also generation 
and distribution, if this is required. Ideally, the truck 
link counts should be extensive enough to give a truck 
vehicle-kilometers of travel (VKMT) estimate against 
which simulated truck VKMT can be compared as a 
control. 

Most existing assignment programs permit only one 
class of vehicles-autos, trucks, autos and trucks, or 
autos and truck "auto equivalents"-to be assigned. As­
signing autos first and then trucks gives autos the pre­
ferred paths and tends to route trucks over longer paths 
if congestion is present and a capacity restraint mech­
anism is used. Concurrent assignment of autos and 
trucks with a separate account of truck volumes on links 
avoids the problem. 

IMPACT OF TRUCKS ON HIGHWAY 
CAPACITY 

Simplified View of Capacity 

A simplified approach to the capacity of signalized in­
tersections can be taken by finding the time required 
for the nth vehicle in a queue to clear the intersection 
and equating this to the green time. This approach is 
the basis for capacity determination in the microassign­
ment process, in which all vehicles in the queue are 
assumed to be equally spaced and to accelerate uni­
formly to a specified average velocity approximately 
equal to the speed limit. 

There are two (mutually exclusive and exhaustive) 
cases to be considered: 

1. No vehicle in the queue reaches the specified 
velocity by the time it clears the intersection. 

2. One or more vehicles in the queue reach the 
specified velocity before clearing the intersection. 

In the following formulations, which were written 
in customary units, let 

t(n) = time for nth vehicle to reach the intersection, 
Cl = reaction time of the first vehicle (seconds), 
C2 reaction time of other queued vehicles 

(seconds), 
D = spacing of vehicle (feet), 
V = free flow velocity (feet per second), 
a = acceleration rate, 

N2 the number of the queue position from which a 
vehicle can accelerate to free flow velocity by 
the intersection, presuming the green time 
allows it (N2 - V2 / 2Da), 

t = time spent accelerating (seconds), and 
t, = time spent traveling at terminal velocity 

(seconds). 

Since the nth vehicle in the queue cannot start mov-

ing until the vehicle immediately ahead of it moves, the 
time for the nth vehicle to clear the intersection is the 
sum of the reaction time of the first vehicle, the reac­
tion time of the following n - 1 vehicles, and the time 
for the nth vehicle to travel to the intersection. 

For the first case this is 

t(n) = C1 + (n - I) C2 + t (I) 

But, since the average velocity of the nth vehicle in this 
case is at/2 = nD/t, from which t = v'2nD/a, then 

(2) 

For the second case, where one or more vehicles 
reach average velocity before clearing an intersection 
(n > Nz), we must add a term to Equation 1 that accounts 
for the time spent traveling at terminal velocity by the 
nth vehicle. Therefore, for case 2 

t(n) = C1 + (n - 1) C2 + t. + V/a (3) 

But 

V / a = the time to reach V and 
V / 2 = the average velocity during t. 

Therefore (V / a) (V /2) = V2 / 2a = the distance covered in 
t, so that t. = [nD - (V2 / 2a)]/V. Finally, substituting 
for t. + (V /a) in Equation 3, we get 

t(n) = C1 + (n - l)C2 + (nD/V) + (V/2a); N > N2 (4) 

The first vehicle in the queue to reach terminal 
velocity at the intersection (N2), providing that there is 
sufficient green time, can be found by dividing the dis­
tance required to achieve terminal velocity by the aver­
age spacing of vehicles in the queue: N2 = distance/ 
spacing= (V/2)(V/a)(l/D) = V2/2aD. Therefore, the 
time required for this vehicle (N2) to clear the inter­
section is 

(5) 

As an example, if we let C1 = 1.9, C2 = 1.4, V = 44 
ft/s, a= 4.4 ft/s-1, and D = 25, then substituting these 
values in Equation 5 gives t(N2) = 22.82 s. Thus, for 
green times in excess of 23 s, given the above con­
stants, Equation 4 would be utilized. However, for 
green times in the range of 15-23 s, Equation 4 gives 
essentially the same results as Equation 2, and there­
fore the following discussion will be in terms of Equa­
tion 4, which carries the assumption that the traffic 
stream will reach the terminal velocity during the green 
phase. 

Equation 4 can be expressed as a linear function of 
the form t(n) = K + bn, by setting b = C2 = D/V and k = 
C 1 - C2 + V /2a. Then, by substituting the values given 
above, we get t(n) = 2n + 5.5. This can also be thought 
of as an expression for capacity. For instance, if an 
hour is divided into cycles of duration C (seconds) and 
green time of G (seconds), the hourly capacity of a lane 
of through traffic is 

Cupacity = <G - k)/b x 3600/C = 1800 [(G - 5.5)/C] (6) 

Note that, if the green time is 100 percent of cycle time 
and cycle time is one hour (approximately free flow 
conditions), the lane capacity is about 1800 vehicles per 
hour, which seems about right. 

Using Equation 6, the hypothetical hourly capacities 



for different signal splits and cycle lengths would be 
as shown in the table below. 

Green Time Cycle Length (s) 
(s) 60 80 100 

30 735 551 441 
40 1035 776 621 
50 1335 1001 801 

Turning to commercial vehicles, we can estimate their 
capacities given a homogeneous stream. In the next 
table, hypothetical acceleration rates to a terminal 
velocity of 30 mph are given for automobiles, single­
unit trucks, semitrailers, and buses. Also shown are 
recommended maximum lengths (AASHO) and an esti­
mate of spacing for each of several vehicle types. 

Acceleration Maximum Estimated 
Rate Length Spacing 

Vehicle Type (mph/s) (ftl (ft) 

Auto 3.0 N/A 25 
Single-unit truck 1.5 40 45 
Semitrailer 1.0 55 60 
Other combination 1.0 65 70 
Bus 2.5 40 45 

By using the table above, we can calculate the capac -
ity coefficients for trucks and buses in the same form 
as automobiles. The next table gives the capacity coef­
ficients by vehicle type. 

Vehicle Type 

Auto 
Single-unit truck 
Semitrailer 
Other combination 
Bus 

Terminal 
Velocity - 30 
K b 

5.50 
10.50 
20.95 
20.95 
10.50 

1.97 
2.42 
2.76 
2.99 
2.42 

By assuming that the ratio of green time to cycle length 
equals 0.5 and that cycle time is 60 s, the hourly capac­
ities shown below are obtained. 

Ratio of 
Hourly Capacity Autos to Trucks 
Cycle Time Cycle Time 

Vehicle Type 60 s 90 s 60 s 90 s 

Auto 746 802 1.00 1.00 
Single-unit truck 483 570 1.54 1.41 
Semitrailer 197 349 3.78 2.30 
Other combination 182 322 4.10 2.49 
Bus 483 520 1.54 1.41 

The above exercise points up the sensitivity of truck 
capacity to the assumed acceleration rate, which, of 
course, varies by truck size, load, and grade. Also, 
the ratio of auto to truck capacity gives a measure of 
equivalence ranging from 1.4 to 4.1, depending on truck 
size, acceleration assumed, and signal length. 

Estimating the Capacity for Mixed Autos 
and Trucks 

Weighted Capacities 

In the last table above, hourly capacities for each vehicle 
type and two signal splits are shown. One way to esti­
mate the capacity of a mixed stream would be to weight 
auto capacity by the proportion of automobiles in the 
stream and truck capacity by the proportion of trucks in 
the stream. For example, assuming truck capacity to be 
six per cycle and 90 percent of the traffic stream, weighted 
capacity would be 11.4 (0.1 x 6 + 0.9 x 12 = 11.4). 
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Converting to Auto Equivalents 

Alternatively, since in the example above trucks have 
only one-half the capacity of autos, we could convert to 
auto equivalents by multiplying each truck by two. If 
we continue to assume twelve autos per signal cycle, 
we can calculate the vehicle capac~ty for different mixes. 
For example, a fifty-fifty split of autos and trucks would 
give eight vehicle equivalents for the four trucks and the 
four autos, or a vehicle capacity per cycle of eight. 

Analysis of Queue Composition 

By assuming that trucks are distributed in the traffic 
stream, the number of autos per truck can be obtained 
by the ratio of the proportion of autos to the proportion 
of trucks. Thus, any given proportion of trucks in the 
traffic stream can be thought of as a queue of vehicles 
containing one truck and P./Pr autos. To assess the 
impact of the presence of the truck on capacity, we need 
simply calculate the capacity for that queue for each of 
the different positions of the truck in the queue; the 
mean of those capacities is the average capacity for 
that mix. 

For example, assume that the percentage of trucks 
is 10 percent. Then for every nine autos there will be 
one truck. If we calculate the capacity of the signal for 
each of the different positions of the truck in the queue 
and average these capacities, we will have the average 
capacity for a traffic stream with 10 percent trucks. 

In Table 1 we have calculated the time in seconds 
for the queue to clear the intersection within 30 s under 
varying assumptions of the number of trucks in the 
queue. Note that, with a queue of six vehicles, all will 
clear even if all six are trucks. For seven vehicles, 
seven will clear if three or fewer are trucks. For eight 
vehicles, eight will clear when one vehicle is a truck 
or all vehicles are autos. For nine or more vehicles 
up to twelve in the queue, only all-auto queues will clear. 

Table 1 has been converted to a capacity chart as shown 
in Table 2. The probability for any of the conditions in 
Table 2 can be calculated if the proportion of trucks in 
the traffic stream is known. For instance, assuming 
that 10 percent of all vehicles are trucks, the probability 
of four trucks in the queue of seven vehicles is P4 = (71/ 
4!3!) (0.14 x 0.93

) = 0.002 551 5. 
The probability for each of the outcomes in Table 2 

has been calculated assuming that 10 percent of the 
traffic stream is trucks. These probabilities, when 
multiplied by the capacity (vehicles clearing the green 
phase) associated with each probability, yield the 
weighted average capacity. For Table 2 this is 9.14. 
Thus the presence of 10 percent trucks in the stream 
reduces capacity from 12 to 9.14, a reduction of some 
24 percent. 

Comparison of Methods of Estimating 
Capacity 

The following table reveals that the two shortcut methods 
(methods 1 and 2 above) seriously understate the impact 
of trucks on capacity, especially for the higher travel 
percentages. 

Proportion 
of Trucks 

0 
O.ot 
0.05 

Method of Adjustment 
Weighted 

Vehicle Capacities 
Equivalents (PTCT + PACA) 

12.00 12.00 
11.88 11.94 
11.43 11.70 

Presence 
of Truck 
in Queue 

12.00 
11.60 
10.28 
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Proportion 
of Trucks 

0.10 
0.25 
0.50 
1.00 

Method of Adjustment 
Weighted 

Vehicle Capacities 
Equivalents (PTCT+PACA) 

10.91 
9.60 
8.00 
6.00 

11.40 
10.50 
9.00 
6.00 

Presence 
of Truck 
in Queue 

9.14 
7.54 
6.53 
6.00 

While it is true that, overall, traffic rarely contains 
10 percent or more of those vehicles having sizes and 
acceleration characteristics that match our assump­
tions, truck routes commonly carry high percentages 
of heavy trucks. Even when only 5 percent of the traffic 
is trucks, a reduction of 14 percent in capacity would 
be expected. Yet, the two alternative techniques show 
only a 3-5 percent reduction in capacity. Therefore, 
for any careful analysis of truck impact on capacity, 
the queue analysis for capacity impact analysis would 
be recommended. 

It would be possible, however, to use an equivalency 
table to approximate this capacity impact. The number 
of vehicles in a mixed queue that can clear a given 

Table 1. Time for nth vehicle to clear intersection. 

Number of Number of Trucks In Queue 
Vehicles 
In Queue 0 2 3 4 5 6 

6 17.8 24.6 25.8 27.0 28.1 29.1 30.0 
7 20.0 27.0 28.2 29.3 30.4 
8 22.0 29.4 30.5 
9 24.0 31.75 

10 26.0 
11 28.0 
12 30.0 
13 31.9 

Table 2. Intersection capacity for 30 s with different queue lengths and 
proportions of trucks. 

Number Number of Number of Vehicles Probability Assum-
In Trucks Able to Clear In Ing 10 Percent 
Queue In Queue 30 s Trucks In Traffic 

7 4 or more 6 0.003 
8 2, 3, or 4 7 0.184 
8 1 8 0.383 
9 9th vehicle 8 0.043 

let truck 
10 10th vehicle 9 0.039 

let truck 
11 11th vehicle 10 0.035 

let truck 
12 12th vehicle 11 0.031 

lat truck 
12 0 12 0.282 

amount of green time can be approximated by knowing 
the proportion of trucks in the stream, the capacity of 
autos, and the capacity of trucks. Jn our example 
above we can calculate such an equivalency table as 
mixed capacity= capacity of autos/proportion of autos + 
proportion of trucks. 

Auto Capacity of 12 and Truck 
Capacity of 6 
Proportion of Trucks 

0.01 
0.05 
0.10 
0.25 
0.50 
1.00 

Value of K 

4.448 
4.346 
4.129 
3.366 
2.675 
2.000 

From the table above for 10 percent trucks, we have 
9.14 = 12/(0.9 + O.lK); K = 4.129. We have calculated 
the K values for the truck proportions used in the 
previous table. 

It would be possible to generate a series of tables 
that give the equivalency as a function of signal green 
time, auto and truck acceleration and spacing as­
sumptions, and terminal speed. The user would then 
be able to use the same capacity restraint mechanism 
he or she now uses but with trucks properly weighted. 

CONCLUSIONS 

These calculations have led to the following conclusions: 

1. Separate but concurrent assignment of the truck 
origin-destination matrix over the highway network and 
retention of the link truck volumes is desirable for 
many subregional and neighborhood planning problems; 

2. Provision for a truck network designation is 
desirable so that truck routes or truck prohibitions or 
both can be considered in the assignment process; 

3. As a minimum, trucks should be divided into light 
or auto-like trucks and heavy trucks; 

4. Even a small proportion of trucks in the traffic 
stream can result in substantial reduction in street 
capacity (this capacity reduction, however, is not a 
simple linear reduction proportional to the percentage 
of trucks in the vehicle stream); and 

5. The reduction in capacity from trucks in the 
traffic stream can be represented by a straightforward 
algorithm that weights trucks differentially according 
to their proportion in the traffic stream. 

Pub/lcation of this paper sponsored by Committee on Passenger Travel 
Demand Forecasting. 
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Abridgment 

Modified Simulation Technique for 
Mode-Choice Analysis 
Charles D. Dougherty, Delaware Valley Regional Planning Commission 

The Delaware Valley Regional Planning Commission 
(DVRPC) is the agency responsible for the development 
and maintenance of regional travel demand forecasting 
models for the bi-state Philadelphia metropolitan area. 
The nine-county region, with a 1970 population of 5.2 
million people living in an area of 992 6 km 2 (3 833 miles2

), 

is the fourth largest metropolitan area in the nation. 
The regional transportation system is a highly de­

veloped and completely interrelated network of transit 
and highway facilities whose present configuration is the 
result of nearly three centuries of growth. It is esti­
mated that in 1970 this system was required to serve 
the travel needs of nearly 12 million person trips on an 
average day. 

Travel demand estimation for large, complex metro­
politan areas is a very resource-consuming effort. The 
computer time cost and work hours of effort to apply the 
standard DVRPC simulation process make such applica­
tion in some studies unreasonable. Yet, the level of 
detail in the standard process may be quite appropriate 
for that study. It was the intention of DVRPC to de­
velop a technique that would utilize as much of the 
standard simulation modeling process as possible with 
the greatest reduction of cost. One such technique, 
referred to as the modified simulation technique (MST), 
is discussed here. To properly set the context of MST, 
the standard DVRPC simulation process will first be 
described. 

STANDARD DVRPC SIMULATION 
PROCESS 

The DVRPC travel demand modeling concept (1) follows 
the traditional four-step process: trip generation, trip 
distribution, mode choice, and trip assignment (Figure 
1). The trip generation (step 1) uses a disaggregate 
trip rate model. This step requires extensive knowledge 
of the magnitude and location of regional activities such 
as land use, employment, and the demographic char­
acteristics of the resident population. Trip distribution 
(step 2) uses a typical gravity formulation stratified by 
trip purpose. The separation variable in the DVRPC 
model is a composite highway and transit travel time. 

The third step of the travel-forecasting process, 
mode choice, estimates the proportion of the trips be­
tween two zones that will use the transit system and the 
proportion that will use the highway system. Figure 2 
is a more detailed diagram of step 3. The diagram 
shows that there are three tasks (A, B, and C) that must 
be performed for both transit and highway prior to the 
estimation of mode trips. Task A, code/ edit networks, 
involves describing in numerical terms every link in 
the two networks [over 40 000 links on more than 
13 300 km (8300 miles) of facilities]. In addition, the 
levels, types, and interrelationships of the service pro­
vided by the transit network must also be numerically 
described. 

Task B within the mode-choice estimation (step 3) is 
the determination of the "best" path (a successive com­
bination of links) between every pair of zones in the 
region (1342 zones, roughly 1.8 million pairings for 
both the highway network and the transit network). In 

the DVRPC process, the best path is defined as the one 
that costs the least to take. Cost is actually the sum of 
the dollar value of perceived time and out-of-pocket 
cash. This type of cost is felt to describe the network's 
resistance to free flowing, instantaneous travel and is 
referred to as the impedance to travel. In task C, the 
component parts of this impedance are skimmed off the 
network and cataloged. 

Task D, the estimation of transit mode and highway 
mode trips from the person trips of step 2, requires 
knowledge of the available transportation system (supply), 
knowledge of the flows to be handled by that system 
(demand), and knowledge of the environment in which 
the demand will seek satisfaction from the supplied sys­
tem. This environment includes the social, economic, 
and policy aspects of urban activity and their spatial 
orientations. The mode-choice estimating model relates 
this knowledge to predicting the percentage of trips 
likely to use the transit mode and the percentage likely 
to use the highway mode. The multiplication of these 
percentages by the person trips from step 2 yields the 
person trips on each mode. The DVRPC mode-choice 
estimating model is a post-distribution, stratified 
diversion curve formulation that primarily relates dif­
ferences in highway and transit travel time and cost to 
mode percentages. The stratifications are by trip pur­
pose, principal transit submode of best transit path, 
and auto availability. 

The final step of the standard (DVRPC) simulation 
process (step 4) is the assignment of the various types 
of trips to the transportation system networks. 

MODIFIED SIMULATION TECHNIQUE 

The modified simulation technique (MST) is applicable to 
the study of changes in mode choice resulting from 
changes in service level, skip-stop or express service, 
station spacing, and shifts in route alignment. The 
underlying assumption is not that the primary transit 
submode route does change, but that the specific links 
of the path might change. The primary impact of these 
service changes will be in the level of transit mode 
choice for a given trip interchange. 

The MST procedure is as follows: first, the standard 
regional simulation process is rWl with the transit 
facility fully coded into the network as a base case; 
second, the impedance catalog is modified to reflect 
the service changes embodied in each alternative to be 
studied; and, third, the mode-choice model (step 3, 
task D) is rerun for each alternative. 

The heart of the MST lies in how the impedance 
catalog is modified. Figure 3 shows the flow of effort 
in the MST. 

Subtask 1 (determine station geographic market area) 
uses the data file on best transit paths to identify station 
market areas. Using the UTPS program USTOS and a 
special DVRPC program STATMKTS, a zone-to-station 
correspondence table is constructed. This table identi­
fies the transit line station used by each zone in the 
base case. 

Subtask 2 (redefine station market area) requires the 
analyst to examine the description of the alternative 
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Figura 1. DVRPC standard simulation process Step I 
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Figure 3. Modified 
simulation technique. Tnndt 
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and the zone-to-station correspondence table and decide 
for each zone the station of choice under the conditions 
of the alternative. This task relies on the experience 
of the analyst and his or her familiarity with the ser­
vice areas and travel behavior. 

Subtask 3 (modify impedances) is divided into three 
potential levels of impedance modification. Level 1 
accounts for the change in impedance resulting from 
any redefinition of the station market areas. Typically 
this level of modification occurs when a station is re­
moved from the base case line. Trips that formerly 
used the removed station must use stations closer to 
or farther from their destinations, resulting in longer 
or shorter trips. The level 1 impedance change will 
be plus or minus the difference in running time between 
the old and new station of choice. Level 2 accounts for 
the changes in trip impedance resulting from changes 
in the line-haul operation that change interstation run­
ning times or station waiting times. Level 3 accounts 
for changes in impedance resulting from longer or 
shorter approach trips to the transit station. This type 
of change occurs when stations are removed from con­
sideration or when the horizontal alignment of the line 
changes. Some changes may also require a change in 
approach mode and additional fare payments. 

DVRPC has written a computer program, MODTIMPD, 
which reads in the zone-to-station correspondence table, 
the interstation impedance change matrix, the station 
reassignment table, and the trip-end access and egress 
impedance change table along with the skimmed im­
pedance catalog. The output of the program is a modi­
fied impedance catalog. This modified impedance 
catalog is supplied as input to the mode-choice model 
for each alternative. The zone-to-station correspondence 
table can be used to reformat the new transit trip tables 

Sub- Task 2 

Redefine Station 
Market Area 

Level 1 
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to get an interstation volume matrix. 

CONCLUSION 

Modal 
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Hodel 
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The modified simulation technique does provide a useful 
and cost-effective means around the expense of the 
standard simulation process. Of course, its applic­
ability is limited to those studies where the underlying 
assumption of "no significant change in primary transit 
submode route" is considered a reasonable approxima­
tion. The procedure has been used by DVRPC for the 
screening of preliminary alternatives in the city of 
Philadelphia study of replacement alternatives for the 
Frankford Elevated rapid transit line (_g_). 
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