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A simple, rapid method of determining the unfrozen water content 
of frozen soils is described in detail. The method uses the first 
pulse amplitude of a pulsed nuclear magnetic resonance analyzer. 
Phase composition curves were obtained for four soils at very high 
total water contents. Three of the soils (Manchester fine sand, Fair
banks silt, and Goodrich clay) had been previously examined by 
another method (isothermal calorimeter). The fourth (Kotzebue 
silt) is a naturally saline soil found in low-lying coastal regions of 
Alaska. This soil was tested both in its natural state and with the 
soluble salts removed. The phase composition curves obtained by 
the nuclear magnetic resonance method are consistent with those 
obtained by using the isothermal calorimeter, but the nuclear mag
netic resonance method saved time, requiring only 48 h. It also pro
vides a high degree of reproducibility and can be used over a wide 
range of temperatures. As expected, the unfrozen water content 
of the saline soil was much higher in its natural state than after re
moval of the soluble salts. In addition, the unfrozen water content 
of all four soils appears to increase somewhat as the total water con
tent of the sample is increased. 

The most commonly used device to determine the amount 
of unfrozen water in frozen soils has been the adia
batic calorimeter. Successful results have been re
ported by Nersesova (1), Nersesova and Tsytovich (2), 
Lovell (3), Kolaian and Low (4), and Williams (5, 6). 
The major disadvantage in using the adiabatic c~lorim
eter is that the heat capacities of all the soil com
ponents must be known. Recently, Anderson and Tice 
(7) used low-temperature differential thermal analy
sis and reported determinations for several homoionic 
derivatives of Wyoming bentonite, kaolinite, and hal
loysite. As a result of this success, an isothermal 
calorimeter was developed and phase composition curves 
for a group of soils encompassing a wide range of sur
face areas have been reported (~, _2). Although each 
technique involves a different set of assumptions, 
the final results are remarkably consistent. One ma
jor disadvantage in using the isothermal calorimeter 
is that the temperature range is restricted to a lower 
limit of about -7'C, the maximum degree to which the 
soil-water can be easily undercooled. It is also dif
ficult to initiate freezing at temperatures much above 
-0. 5° c. 

Recent construction developments (e.g., the Alas
kan pipeline and related facilities) in arctic and 
subarctic regions have made it necessary to be able 
to obtain information on the amounts of unfrozen water 
in frozen soil. Prediction equations of sufficient 
accuracy for general engineering use have been devel
oped (10, 11) whereby phase composition curves can be 
calculated"""trom a knowledge of the specific surface 
areas or the liquid limits of the soils in question. 
The surface area equation has been used in designing 
foundations for drilling platforms and vertical sup
port members (VSMs) for the Alaska pipeline. 

There are many instances, however, when these 
prediction equations are not applicable. In cases 
where large ice lensing occurs, for example, the 
existing methods and equations take into considera
tion the water associated with the mineral constitu
ents only; the unfrozen water that is associated with 
ice grain boundaries and that caused by the presence 

of solutes may not adequately be accounted for. This 
study reports phase composition data for four soils 
at very high water contents (above the saturated paste 
water content) and for one soil (Kotzebue silt) that 
contained a high concentration of soluble salt. (The 
Kotzebue silt was taken from a proposed building con
struction site located at Kotzebue, Alaska.) The net 
effect of the salts is that the freezing temperature 
of the soils in this area is lowered to such a point 
that the supporting members might require refrigerat
ing to prevent settlement. For effective design of 
the thermopiles, phase composition data at various 
water contents and densities for each soil must be 
known. 

The use of nuclear magnetic resonance (NMR) in di
rect measurements of water content in both frozen 
and unfrozen soil-water mixtures has been demonstrated 
by Ducros and Dupont (12), Graham and others (13), 
Wu (14), Hecht and others (15), Touillaux and others 
(16)~Woessner and Snowden (17), Prebble and Curries 
(18), Pearson and Derbyshire~l9), Woessner (20), and 
Tice and others (21). The phase composition data re
ported by Tice an-;r-others (21) were determined by means 
of a pulsed NMR analyzer. This promising new method 
circumvents the limitations of the adiabatic and iso
thermal calorimetric techniques and extends the range 
of temperatures and water contents to include both 
very high and very low values. This technique also 
makes it possible to explore the effect of hysteresis. 

METHODS AND MATERIALS 

The four soils selected for this investigation can be 
considered typical of many soils found in permafrost 
regions. Two came from Alaska and cover extensive 
areas: The Fairbanks silt is a wind-deposited, non
saline silt that covers much of the interior of Alaska; 
the Kotzebue silt is similar in texture to the Fair
banks silt except that it contains large concentra
tions of soluble salts typical of soils found in low
lying coastal regions. The remaining two soils--Man
chester fine sand and Goodrich clay--were selected as 
being representative of sand and clay found in river 
valleys and deltas throughout much of Alaska. 

The soils were sieved through a 300-µm sieve to 
remove the coarser materials. A portion of the Kot
zebue silt was washed six times with distilled water 
to remove the soluble salts and thus to determine the 
effect of salt in the naturally occurring soil on the 
phase composition curve. Titration of the supernatant 
material with silver nitrate revealed no trace of salt. 
All the soils were deaired for 24 h before being placed 
in 19-mm outside diameter test tubes. Distilled, de
aired water was then added to four samples of each 
soil type in progressively larger amounts, above sat
uration. A copper-constantan thermocouple was em
bedded in the center of each sample to allow accurate 
temperature determinations. The test tubes were 
sealed with rubber stoppers to prevent loss of mois
ture during the measurements. After thorough shaking, 
each sample was quickly frozen by immersion in liquid 
nitrogen and was then allowed to thaw. The samples 
were refrozen and brought to temperature in a bath of 
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Figure 1. Unfrozen water content versus temperature for three soils. 
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Figure 2. Unfrozen water content versus temperature for a leached 
and an unleached soil. 
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an ethylene glycol-water mixture. The temperature of 
the bath was regulated by a precision Bayley propor
tional temperature controller to within ±0,03°C 
throughout its range. The bath was vigorously stirred 
by circulating air delivered by a small pump. The 
frozen samples completely surrounded by the coolant 
were allowed to remain overnight for temperature equil
ibration. 

A Praxis model PR-103 pulsed NMR analyzer was op
erated in the 90° mode, with a 0.1-s clock, and at a 
fast scan speed. The first-pulse amplitude was mea
sured for each sample at various temperatures and water 
contents. The test tubes were sequentially removed 
from the bath, wiped dry, and inserted in the NMR 
analyzer probe. First-pulse amplitudes and tempera
ture were recorded, and each sample was returned to 
the bath. Determinations took about 4 s each. After 
all the samples were analyzed at a given temperature, 
the bath temperature was changed. About 1 h was al
lowed for the samples to equilibrate at the new tem
perature. After the last determination, the samples 
were removed from the bath and brought to room temper
ature. After shaking, first-pulse amplitudes were re
corded for each specimen at room temperature. Four 
such readings were taken and averaged to obtain a 
reference value for each specimen. Water contents 
were determined gravimetrically, and a ratio of the 
gravimetric water content to first-pulse amplitudes 
was formed for each. Unfrozen water contents were 
calculated by multiplying first-pulse amplitudes by 
their respective ratios to obtain a value for each 
temperature (l!_). 

RESULTS AND DISCUSSION 

The test results are shown in Figures 1 and 2 and 
given in Tables 1-5. Only the highest and lowest 
water contents are shown in Figures 1 and 2. In 
general, one concludes that the unfrozen water con
tent increases somewhat as the sample water content 
is increased. The data all conform to the familiar 
power law found earlier by Anderson and Tice (8). As 
expected, higher values were found in the saline soils. 
The effect of solutes in increasing the unfrozen water 
content was approximately equal to that predicted from 
considerations of the ionic strength of the soil solu
tion (22). The data also agree well with the isother
mal calorimeter data of Anderson and Tice (8) for 
Fairbanks silt and unpublished data for Man-;;-hester 
fine sand and Goodrich clay determined by the same 
Lt!c.:l1u.iq u~. 

Complete phase composition data for those four 
soils were obtained in about 48 h. To obtain these 
data by isothermal calorimeter or other methods used 

Table 1. Unfrozen water content versus temperature at various percentages of sample water content for Fairbanks silt. 

37.5 41.3 51.1 58 .1 69 .5 

Unfrozen Unfrozen Unfrozen Unfrozen Unfrozen 
Temperature Water Temperature Water Temperature Water Temperature water Temperature Water 
(•c) Content (%) (•cJ Content (%) ('C) Content (%) {°C) Content (%) (·c) Content(%) 

-0.2 6.1 -0.2 4. 8 -0.3 6. 6 -0.2 8.3 -0.2 7. 7 
-0.4 5.0 -0.4 3. 7 -0.4 5.4 -0.4 6.5 -0.4 6 3 
-0.6 4.5 -0. 5 3.3 -0.4 5 0 -0.6 5,5 -0.5 5.5 
-0.7 4.4 -0.8 3.4 -0.9 5.0 -0.8 5,4 -0.8 5.3 
-1.0 4.3 -0.9 3.2 -0.9 4.4 -0.9 4.8 -1.0 5.1 
-1.1 3.8 -1 .0 3. 2 -1 .0 4.6 -1.1 4. 6 -1.2 4.5 
-2 .0 3,5 -2.0 2. 8 -2 . 1 3. 5 -2.0 4.0 -2 .1 4.1 
-2.9 3.1 -2. 8 2.4 -3.9 3. 3 -3.0 3.5 -3.0 3.4 
-4.2 2. 8 -4 .1 2. 1 -4.1 2.9 -4 .2 3.0 -4.0 2.8 
-5.2 2.6 -5.3 2. 2 -5.2 2 7 -5 .2 3.0 -5 .2 2.11 
-6. 5 2.3 -6. 6 1.9 -6. 5 2.4 -6. 6 2. 6 -6.4 2 3 
-7 .o 2.3 -6.9 1.9 -6.9 2.4 -7 , 1 2. 6 -7.1 2.2 
-8.3 2.2 -8.3 2.0 -8. 3 2.4 -8.2 2.2 - 8.4 2.3 
-9.9 2.4 -9. 7 1.9 -9 . 8 2.2 -9.8 2.2 -9 , 8 2.2 
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Table 2. Unfrozen water 81. 7 89.2 99. 7 
content versus 
temperature at various Unfrozen Un[rozen Unfrozen 

percentages of sample 
Temperature Water Temperature Water Temperature Water 
("C) Content(%) ("C) Content(%) ("C) Content(%) 

water content for 
Goodrich clay. -0.2 19.4 -0.2 20.1 -0.2 20 .9 

-0.5 19.0 -0.5 16.8 -0.4 16.9 
-0.8 15.8 -0.7 14.6 -0.8 14.6 
-0.8 13.9 -0.9 13.0 -1.0 13.8 
-1.1 13.5 -1.1 12.5 -1.0 12 . 7 
-1.3 11.4 -1.3 10.8 -1.2 11.4 
-2. 2 9.6 -2.2 8.9 -2.2 8.9 
-3.1 8.3 -3.1 7.6 -3.1 7.6 
-4.2 6.2 -4.3 6.3 -4.3 6.5 
-5.2 5. 7 -5.2 5.4 -5.2 5. 7 
-6.6 4.6 -6.6 4.4 -6. 7 4.4 
-7.3 4.6 -7 .2 4.3 -7 .2 4.4 
-8.4 4.3 -8.6 4.1 -8.5 4.1 
-9.9 3.8 -9.9 3.6 -9.9 3.7 

Table 3. Unfrozen water 43.3 48.5 60.2 66.2 
content versus 
temperature at various Unfrozen Unfrozen Unfrozen Unfrozen 

percentages of sample Temperature Water Temperature Water Temperature Water Temperature Water 
("C) Content('~) ("C) Content(%) ("C) Content(%) ("C) Content(%) 

water content for 
Kotzebue silt (unleached). -0.3 32.6 -0.5 42.4 -0.4 47.6 -0.4 49.8 

-0. 7 28.2 -0. 7 32.0 -0.6 37.4 -0.7 38.6 
-1.l 21.9 -1.0 22.9 -0.9 27. 5 -0.9 27.6 
-1.3 19.1 -1.2 20.3 -1.1 23.7 -1.0 24.9 
-1.4 16. 7 -1.4 17.2 -1.2 20.1 -1.1 21.1 
• J. 7 14.2 -1.6 15.0 -1.4 17.6 -1.4 18.1 
- 2.6 9.9 -2.6 10.0 -2.5 12.3 -2.5 12.9 
- 3.7 8.1 -3.6 7.8 -3.4 10.2 -3.2 10.6 
-4.6 6.0 -4.4 6.5 -4.4 3.1 -4.0 8.7 
-5.8 5.6 -5.5 6.0 -5. 3 7.2 -5.0 7.6 
-7 .2 4.8 -6.9 5.4 -6.8 6.2 -6.9 6.4 
-7 .5 4.4 -7.4 4.9 -7.4 5.8 -8.2 5.9 
-8.7 4.1 -8.6 4.7 -8.7 5.6 -9.8 4.7 
-9.9 2.5 -10.1 3.9 -10.0 4.6 

Table 4. Unfrozen water 44.3 47.8 61.4 71.4 
content versus 
temperature at various Unfrozen Unfrozen Unfrozen Unfrozen 

percentages of sample Temperature Water Temperature Water Temperature Water Temperature Water 
("C) Content (%) ("C) Content (%) (OC) Content (%) (OC) Content(%) 

water content for 
Kotzebue silt (leached) . -0.2 4. 7 -0.2 4.4 -0.2 4.4 -0.2 5.2 

-0.4 3. 7 -0.4 3.5 -0.4 3. 8 -0.4 4.4 
-0.5 3.4 -0.6 3.3 -0.6 3.7 -0.6 4.1 
-0.8 3.3 -0.8 3.2 -0.8 3.7 -0. 8 4.0 
-1.2 3.5 -1.0 3.2 -1.0 3.3 -1.1 4.0 
-1.2 3.0 -1.2 2. 7 -1.2 3.1 -1.2 3.8 
-2.1 2 .4 -2.1 2.3 -2.1 2.4 -2. l 2. 7 
-2.8 2.1 -3.0 2.0 -2.9 2.1 -2.9 2.6 
-4.0 1.9 -4.9 1.7 -4.1 1.8 -4.0 2.1 
-5.2 1.8 -5.1 1.6 -5.0 1. 7 -5.2 1.8 
-6.4 1.5 -6.4 1.4 -6.4 1.5 -6.3 1.7 
-6. 7 1.5 -6.9 1.4 -7.1 1.4 -7.1 1.6 
-8.3 1.4 -8.2 1.3 -8.3 1.4 -8.3 l.4 
-9.9 1.4 -9.9 1.2 -9.8 1.2 -9 .8 1. 6 

Table 5. Unfrozen water 24.3 28.0 29.0 38.6 
content versus 
temperature at various Unfrozen Unfrozen Unfrozen Unfrozen 

percentages of sample Temperature Water Temperature Water Temperature Water Temperature Water 
(oc) Content(%) (OC) Content(%) (oc) Content(%) (oc) Content(%) 

water content for 
Manchester fine sand. -0.3 3.1 -0.3 3.5 -0.3 3.6 -0.3 3.8 

-0.4 2.5 -0.5 2.9 -0.3 3.0 -0.4 3.2 
-0.6 2.4 -0. 7 2.4 -0. 7 2.8 -0. 7 2.8 
-0. 7 2.5 -0.9 2. 6 -0.8 2.8 -0.9 2.9 
-0.9 2.3 -1.0 2.4 -1.0 2.4 -1.0 2.8 
-1.2 2.2 -1.3 2.4 -1.2 2.3 -1.2 2.9 
-2.0 1.9 -2.l 2.1 -2.2 1.9 -2.1 2.2 
-2.9 2.0 -2.9 1.9 -3.0 1.8 -3.0 1.9 
-4.4 1.6 -4.3 1.6 -4.3 1.6 -4.3 1. 7 
-5.1 1.5 -5.3 1.6 -5.2 1. 5 -5.2 1.5 
-6.6 1.3 -6.5 1.3 -6.5 1.5 -6.6 1.4 
-7.1 1.3 -7.2 1.4 -7.2 1.3 -7.1 1.3 
- 8.9 1.3 -8.2 1.6 -8.4 1.4 -8.4 1.6 
-9.0 1.3 -9.9 1.4 -9. 7 1.3 -9.9 1.2 
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earlier would have required several months. This is 
one of the most important values of the NMR method. 
In addition to a savings in the time required to ob
tain phase composition data, the high degree of· re
producibility of data · obtained by this method makes it 
possible to investigate hysteresis and other second
order effects. The me thod also appears to be readily 
adaptable to use in the field where rapid measure
ments are required. Further work toward this end is 
now in progress. 
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