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Comprehensive urban land-use models designed in the past to predict the 
effects of large, capital-intensive transportation facilities on the spatial 
distribution of urban activities are not well suited for predicting the im­
pacts of newer policies to control and manage existing facilities. This 
paper describes a case study that develops two alternative models with a 
much sharper, policy-oriented focus and substantially reduced require­
ments for data and computational resources. The case selected for study 
involves the hypothetical adoption of transportation control measures to 
improve air quality in the Denver central business district and the poten­
tial impact of controls on retail activity. The two models are a cross­
section, lagged-adjustment regression that identifies determinants of ag­
gregate sales at any location and a set of disaggregate travel demand 
n'odels that predicts the equilibrium between shopping trips and retail 
ac~jvity. The forecasts of both models are consistent in predicting sub­
stantial declines in retail activity in response to restrictions on automobile 
access and negligible offsetting effects of improvements in transit service. 
It is concluded that compensatory nontransportation measures that en­
hance downtown amenities or the uniqueness of downtown retail oppor­
tunities may offset the negative influence of reduced accessibility. 

With the increasing importance of transportation system 
management and transportation control plan strategies, 
transportation planners have been called on to forecast 
the impacts of new policy options that existing planning 
~ools are ill-suited to simulate. Comprehensive urban 
activity, or land-use, models present an obvious ex­
ample of this deficiency. Because they attempt to fore­
cast the spatial distribution of all urban activities for 
the entire metropolitan area, these models invariably 
require a large data base, a major calibration effort, 
and substantial computational resources. Moreover, 
because of their generality, they often do not specify 
carefully the behavioral structure that lies behind ob­
served location patterns. As a result, important deter­
minants of location decisions are omitted from the 
models, and policies that affect these determinants can­
not be accurately represented. 

This paper demonstrates an alternative approach to 
activity system modeling that focuses more narrowly on 
a specific set of policies and a specific activity of in­
terest. The policy selected for study is the adoption of 
transportation contl·ol measures to improve air quality 
in the central business district (CBD). The impact of 
interest is the response of retail activity in the CBD, 
an issue that has raised widespread concern among re­
tailers who fear that transportation controls will under­
mine their competitive position. The potential impact 
of transportation controls on retail activity is examined 
in a case study of Denver, Colorado. [A more detailed 
discussion of this issue and of the Denver case is avail­
able elsewhere (1).] By sacrificing comprehensiveness 
and focusing on a single policy issue, the modeling 
strategy described in this paper requires substantially 
fewer data and resources, incorporates a much richer 
description of the determinants of retail activity, and 
forecasts the impacts of a wider range of policies than 
do comprehensive activity allocation models. 

Two separate models have been developed to illus-

trate this approach. The first, termed the aggregate 
model, is a cross-section, lagged-adjustment regres­
sion that identifies determinants of aggregate sales at 
any location. It was constructed to make use of statis­
tical skills and data sources that should be commonly 
available to local planning agencies. The second, the 
disaggregate model, predicts the destination, mode, and 
frequency of individual shopping trips and uses these pre­
dictions to determine retail activity at any site. Its pur­
pose is to provide a particularly detailed representation 
of the behavior that underlies shopping travel. The 
models are first described in detail, and then model pre­
dictions for the Denver case are presented. 

AGGREGATE MODEL 

The aggregate model is a cross-section regression that 
specifies retail sales at different locations as a function 
of market characteristics such as access to households, 
household income, and noon-hour shopping by nearby 
workers. An important objective of this methodology is 
the use of data that are readily available to the local 
planning agency. In Denver, the best such data are those 
originally assembled for the calibration of the Denver 
EMPIRIC activity allocation model. All data used to 
estimate the aggregate model have therefore been taken 
from this source. Each observation in the regression 
model is one of the geographic zones for which the 
EMPIRIC data are reported. The level of retail sales 
in each zone, which is not reported directly in the 
EMPIRIC data set, has been estimated from EMPIRIC 
information on retail employment by applying sales per 
employee ratios computed from the Census of Retailing. 
In cities where information equivalent to the Denver 
EMPIRIC data has not already been collected, all the in­
formation required for the aggregate model could be as­
sembled from readily available sources such as census 
publications and local transportation network informa­
tion. 

The focus of the model is on estimating the sensitivity 
of sales to the access of stores to customers. For each 
retail zone, accessibility to households throughout the 
metropolitan area is defined for the EMPIRIC model as 

N 

Ai=~ H; · f(t;;) (I) 
j= J 

where 

A1 = accessibility of stores in zone i to households, 
N = total number of zones, 

HJ = number of households in zone j, 
t1J =travel time between i and j, and 

f( ) = a travel impedance function. 



The form of the impedance function is the gamma func­
tion, 

(2) 

where a, b, and Y are empirical parameters that have 
been estimated for the Denver EMPIRIC model to be 
a= 3.434, b = 0.314, and Y= 3.0922. 

The stores in zone i do not operate in isolation but in 
competition with retailers in all other zones in the met­
ropolitan region. Their competitive position depends 
not only on their accessibility to potential customers but 
also on the access of competitors to this market. It is 
useful, therefore, to introduce a slightly modified acces­
sibility measure for retailers in each zone. This modi­
fied measure, which has been named competitive acces­
sibility, is simply the access to customers of stores in 
zone i divided by the average of access measures for all 
competitive zones: 

(3) 

i~j 

Because of arbitrary variations in zonal retail sales 
caused by variations in zone size, the dependent variable 
has been defined as sales per zone acre (the models de­
scribed here were caliln·ated in U.S. customary units of 
measurement, and therefore no SI units are given). The 
estimated relation between sales and competitive access 
takes the form 

Sf = a0 (AJA-j}"l (4) 

where Sf· is sales in zone i per zone acre. If all zones 
were equally accessible, sales in each would be ao . The 
coefficient a1 measures the percentage change in sales 
with respect to a 1 percent change in competitive acces­
sibility. 

Equation 4 implicitly assumes full adjustment of sales 
to current levels of accessibility. To satisfy this as­
sw11ption, retail centers must expand in areas where 
access to households has recently increased and con­
tract where access has recently declined. Households 
must adjust shopping patterns in favor of centers that 
have become mo1·e accessible to them and those whose 
growth has created greater shopping opportunities. 
Such adjustments typically take many years. New 
stores a1·e not opened immediately nor are existing ones 
closed in response to changes in demand. Households 
continue to be governed by shopping habits acquired in 
the past. These lags in adjustment can be explicitly 
modeled so that 

where 

sr = current sales, 
st= fully adjusted sales, and s:-1 = sales in the past period. 

(5) 

Current sales depend on the relative size of fully ad­
JllSted sales and last-period sales and on 8, which mea­
sures the fraction of the disparity that is closed in the 
cunent period. If, fo1· example, 8 = 0.4 and fully ad­
justed sales are 10 percent above those achieved in the 
past, current sales will rise by 4 percent. 

Substituting Equation 4 into Equation 5 and taking nat­
ural logs yield 
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(6) 

Equation 6 shows the basic form of the regression 
model, which can be easily estimated by linear regres­
sion techniques. In the central role accorded acces­
sibility as a determinant of retail sales, this model re­
sembles earlier wo1·k by Lakshmanan (2) and Laksh­
manan and Hansen (3, 4). However, the specification 
employed here is qUite dissimilar. 

The model actually estimated for Denver is somewhat 
more complex. To measure the separate effects of 
automobile and transit accessibility on retail sales, 
measures of each are included separately as explanatory 
variables in the regression equation. Both of the acces­
sibility variables are of the form just described. They 
differ from one another in numerical value because of 
differences in travel times by automobile and by bus. 

As indicated at the beginning of this section, several 
variables other than access to households are likely to 
be important in explaining variations in retail sales. 
These variables are included in the regression to con­
trol roughly for forces that operate simultaneously with 
accessibility to determine retail sales rather than to 
provide precise measures of their impacts. Therefore, 
the form of their appearance in the regression has been 
determined by the requirement that they be easily avail­
able from the EMPIRIC data set and that they be com­
patible with the functional form in Equation 6. Careful 
specification of functional form is not as important for 
these variables as for accessibility, for which precise 
measures of impact are the principal objective of the 
study. 

Because sales depend not only on accessibility to 
households but also on levels of income in the most ac­
cessible markets, income in these markets is the first 
control variable. For each retail zone, it is measured 
by the fraction of households in the zone with incomes in 
the lowest 15 percent of the regional income distribu­
tion. The second control, which accounts for the im­
pact of noon-hour shopping by white-collar workers, is 
the number of service, government, finance, insurance, 
and real estate workers in the zone. Because this num­
ber can vary arbitrarily with zone size, the variable 
has been defined as white-collar workers per zone acre. 

The sales equation used for empirical analysis is 

ln Sf = Ellna0 + Elo:1 ln(CJCi) + Ela2 Ln(TJTi) + 81 ln Y; 

+ 82 lnE; +(I - El)lnS/-1 + e 

where 

C1 /CJ = competitive access to shoppers 
traveling by automobile, 

T1 /TJ = competitive transit access, 

(7) 

Y1 = the proportion of households in i with 
incomes in the lowest 15 percent of the 
regional income distribution, 

Et = number of white-collar workers in i 
per zone acre, 

e = a random, standard normal error, and 
0!1, i5, and 8 = parameters. 

Empirical results are given in the table below. All 
coefficients are significantly different from zero (0 .01 
level) with the expected signs except for transit access, 
which is both insignificant and incorrect in sign. Be­
cause there are no plausible circumstances in which im­
proved transit access should i·educe retail sales, the 
combination of incorrect sign and statistical insignifi­
cance argues strongly that the true effect of transit on 
sales is zero. Therefore, the equation has been re­
estimated without transit access as an explanatory vari-
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Figure 1. Structure of disaggregate model system. 
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able, a procedure that constrains its coefficient to be 
zero. These results are also given in the table: 

Variable 

Automobile access ( 1970) 
Transit access ( 1970) 
Low-income residents ( 1970) 
White-collar workers (1970) 
Last-period sales ( 1960) 
Constant 

With Transit 
Access Variable 

Coeffi-
cient t-Ratio 

0.327 3.09 
-0.081 -1.25 
-0.330 -2.92 
0.209 3.82 
0.598 13.34 
3.424 

Without Transit 
Access Variable 

Coeffi · 
cient t-Ratio 

0.271 2.82 

-0.351 -3.15 
0.200 3.68 
0.585 13.38 
3.238 

R2 for the model results with and without the transit ac­
cess variable was 0.834 and 0.833 respectively. The 
number of observations was 153 in both cases. 

The reestimated results can be used to measure the 
responsiveness of sales in any zone to changes in the 
travel time for shoppers arriving by automobile. First, 
note from Equation 7 that the estimated speed of adjust­
ment (B) can be determined by subti-acting the coefficient 
of last period sales from 1. According to the reesti­
mated estimates given in the table, therefore, if cur­
rent market conditions imply equilibrium sales 100 per­
cent greater than those of 10 years earlier, 41.5 per­
cent of the full adjustment will have occurred over the 
decade. This observation implies that the measured 
coefficient of automobile access, as given in the re­
estimated results in the table above, represents only 41.5 
percent of the true responsiveness of sales to access 
(~i), a conclusion confirmed by Equation 7. Therefore, 
a 100 percent increase in automobile access leads to a 
fully adjusted rise in retail sales of 0.271/0.415 = 0.653 
or 65.3 percent. Finally, by using the relation between 
access and travel time shown in Equations 1 and 2, sub­
stituting into Equation 2 the values of the a, b, and y 
parameters estimated for the Denver EMPIRIC model, 
and using the actual 1970 travel times of shoppers driv­
ing to the CBD, it can be shown that an increase in 
travel time of 10 perc ent leads to a 15.6 percent reduc­
tion in the automobile access variable. This relation 
in turn implies that a 10 percent increase in travel time 
to the CBD will cause an ultimate decline in CBD sales 
of 0.156 x 0.653 = 0.102 or 10.2 percent. Analogous 
methods can be used to estimate the sales impact of any 
policy that restricts automobile access to the CBD. 

DISAGGREGATE MODEL SYSTEM 

The disaggregate model system focuses on individual 
shopping trips and treats retail activity as simulta ... 
neously determined with people's shopping choices. It 
is derived from some of the basic Lowry model concepts 
but is based on a more sophisticated set of models than 
has been used previously. The number of shopping trips 
to each destination is predicted by separate submodels 
for home-based shoppers and for workers who shop 
during the noon hour. Shopping trips are linked to ag­
gregate retail activity by two intuitively plausible rela­
tions. First, shoppers' choices of shopping destina­
tions are influenced in part by the scale of retail activity 
at each destination as well as the level of service pro­
vided by the transportation system; and, second, the 
scale of retail activity at any location expands or con­
tracts in accordance with the number of people who 
choose to shop there. The entire model system is 
shown in Figure 1. 

H ome-Related Shopping Submodel 

The home-related submodel used in the disaggregate 
model system is based on the short-range generalized 
policy (SRGP) model developed by Cambridge Systemat­
ics for the Metropolitan Transportation Commission in 
San Francisco. This model accepts as input a sample 
of households and predicts for each household (among 
other things) the expected frequency of shopping trips and 
the probability that each trip will go to every potential 
destination by both automobile and transit. These pre­
dictions are then appropriately factored to represent 
the population as a whole. 

The destination-mode choice predictions are pro­
duced by a disaggregate choice model. Because such 
models are based on the decisions of individual house­
holds or travelers, they eliminate the need for aggre­
gating various segments of the population either geo­
graphically or demographically. Model parameters, 
therefore, are in theory not subject to aggregation 
bias. Because they can be estimated by using very 
small samples, disaggregate choice models also offer 
the potential for significantly reducing the costs of data 
collection. However, most importantly, disaggregate 
choice models are based on a clear, credible, and con­
sistent theory of how decision makers choose among 
available alternatives. 

Choice theory is concerned with the behavior of an 
individual decision maker confronted with a mutually ex­
clusive set of alternatives from which one and only on.e 
can be selected. The individual decision maker n asso­
ciates some level of utility with each available alterna­
tive i. Denote this utility as U1n, and denote the set of 
alternatives available to individual n as Dn. 

According to Lancaster (5), each alternative and 
decision maker can be characterized by a set of at­
tributes. Thus, the utility of the i th feasible alterna­
tive to decision maker n can be expressed as follows: 

(8) 

where 

U1n = utility of alternative i to individual n, 
V1 = a vector of attributes describing alternative i, 

and 
w. = a vector of attributes describing decision 

maker n. 

A more convenient expression for the utility function 
can be developed by defining a vector z1• = g(V1 , Wn), 



where g is some vector-valued function. Thus, u1• = 
U1n (Zi.). 

Each decision maker is assumed to evaluate the at­
tributes of every alternative and select the one yielding 
the greatest utility. However, since some of the attri­
butes are unobserved, variables are improperly mea­
sured, or utility relations are misspecified, it is gen­
erally impossible for an observer to determine precisely 
which alternative any decision maker will select. How­
ever, by making suitable assumptions about the distri­
bution of the unobserved elements in the utility function, 
it is possible to predict the probability with which any 
alternative will be selected. When each utility is a ran­
dom variable, the probability that alternative i is se­
lected from any set of alternatives D. is 

(9) 

Within the class of random utility model forms, the 
most generally applicable have been what Manski ~) de­
fines as linear in the parameters with additive distur­
bances (LPAD). In this case, it is assumed that 

(10) 

where f3 is a vector of parameters and <10 is a random 
variable. 

The LP AD form used in this study is the multinomial 
logit model. This model was chosen for a variety of 
practical and theoretical reasons including the lack of 
alternative methods for modeling decision problems with 
large choice sets and the substantial existing base of 
successful prior applications. The logit model relies 
on the assumption that the <1.'s are independently and 
identically distributed with the Gumbel distribution; i.e., 

( 11) 

By using this distribution, McFadden (2) demonstrates 
that 

(12) 

The parameters of this model can be estimated by maxi­
mum likelihood. Such estimates are consistent, asymp­
totically normal, and asymptotically efficient. McFadden 
also demonstrates that under relatively weak conditions 
such estimates exist with probability approaching unity 
and are unique. 

Note that the set of available alternatives D. can vary 
from decision maker to decision maker. For example, 
a traveler without a driver's license or an available auto­
mobile would not generally be viewed as having the al­
ternative of driving alone. 

In the destination-mode choice component of the home­
related shopping model, each feasible mode and shopping 
destination in the metropolitan area is an alternative 
available to the household. The utility of each alterna­
tive i and the probability of its being selected are deter­
mined by the attributes given in the table below. The 
coefficients given in the table are estimates of the {3' s 
in the utility function and show how a unit of each at­
tribute affects the utility of any alternative i. There­
fore, for example, the utility of any destination-mode 
alternative is reduced by the travel time and cost that 
it entails and increased by the scale of retail activity 
as measured by total retail employment and retail em­
ployment density. 

Variable in Logit Model 

Constant for automobile mode 
Constant for CBD destinations 
Dummy for CBD destinations in 
automobile utility function 

Number of automobiles divided by 
household size 

LN [total travel time (min) x income ($)] 
Out-of-pocket cost for automobile in 

cents per mile 
Transit cost (cents) x household size 
Density of retail and service employ­
ment per acre in destination zone 

LN (retail and service employment 
in destination zone) 

Estimated 
Coefficient 

0.797 
1.184 

-0.946 

5.330 
-0.130 

-0.021 
-0.022 

0.006 

0.494 
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t-Ratio 

2.21 
-1.74 

5.95 
-10.57 

·10.08 
-4.55 

4.22 

13.70 

The estimates in the table have been derived from data 
on San Francisco shoppers and applied to predict shop­
ping travel in Denver. The constant for the automobile 
mode, however, has been recalibrated for Denver by a 
nonstatistical procedure described below. Therefore, 
there is no t-ratio for that coefficient. Summary sta­
tistics for the model as estimated from the San Fran­
cisco data include: L*(O) (the value of the log likelihood 
function when all parameters are zero, i.e., whe'1 every 
alternative has the same probability) = -2477; L*(B) (the 
value of the log likelihood function at the maximum like­
li11ood coefficient values)= ~1610; X2 

= 1733 [this statistic 
is equal to -2 [L*(O) - L*(,8)], asymptotically distributed 
as chi square with the number of degrees of freedom 
equal to the number of parameters estimated, and pro­
vides a test against the null hypothesis that all param­
eters are zero}; NOBS (the number of households in the 
sample) = 572; NCASES (the number of available alterna­
tives in excess of one per household used in the estima­
tion) = 43 846; and the percentage of households for which 
the alternative with the highest nonstochastic component 
of utility was actually selected= 14.3 . 

The coefficients given in the table above are estimates 
of the ,B's in the utility function and show how a unit of 
each attribute affects the utility of any alternative i. 
Therefore, for example, the utility of any destination­
mode alternative is reduced by the travel time and cost 
that it entails and increased by the scale of retail activ­
ity as measured by total retail employment and retail 
employment density. 

In addition to the destination-mode choice predictions, 
a second component of the home-related shopping sub­
mode! predicts the expected frequency of shopping trips 
from home. The frequency model is a single nonlinear 
equation in which the daily total of household home-to­
shop and shop-to-home vehicle trips (Q) is a function of 
household size (X,), household income (X2), home-zone 
retail employment density (X 3), and the expected utility 
of a shopping trip (X.). The functional form of the 
model, together with the coefficients estimated by non­
linear least squares for the SRGP model, is given by 

Q = 0.609/{0.0737 +exp l-0.342X1 - 0.515X2 

+ 0.115 (lnX3)- 0.527X4l} (13) 

Most of the relations described in Equation 13 are 
self-explanatory. For example, the total number of 
daily shopping trips increases where household income 
is high but decreases where the residential zone of the 
household is characterized by a high density of retail 
employment. A high level of home-zone retail employ­
ment presumably leads households to substitute short 
shopping trips on foot for the journeys by transit and 
automobile that are predicted by the model. 

The expected utility of a shopping trip (X.), which is 
positively related to the number of trips, requires fur-
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ther definition. It measures the expected value of the 
utility produced when a shopper makes a trip to the 
mode-destination alternative that yields the highest pos­
sible satisfaction. Mathematically, 

X, = E[Max(U;nll (14) 

It can be shown (8) that, whenever the utility of each in­
dividual alternatfVe is a random variable characterized 
by the Gumbel distribution, as is true in the logit model, 
the expected utility of a shopping trip can be expressed 
as 

X4 = E[Max (U;nll =In ~ e~'in (15) 

All the information required to calculate X4 is, there­
fore, available from the destination-mode component of 
the home-related shopping submode!. The variable X4 
is the critical link between the frequency component and 
the destination-mode component. Since it includes all 
of the level-of-service and socioeconomic variables 
12:iven in the previous table, its inclusion iri the frequency 
model makes the frequency of shopping travel responsive 
to transportation policy. 

To predict home-related shopping travel in Denver, 
the home-related shopping submodel has been run by 
using 253 households sampled from the 1971 Denver 
home interview survey. Household residential locations 
and alternative shopping destinations are described by 
a total of 274 separate zones, and forecasting results 
are summarized at the level of 10 superzones, one of 
which is the CBD. Sample results have been appro;o. 
priately factored to represent the entire population. 

Two modeling issues must be addressed here. First 
is the issue of transferability. Can models estimated 
for San Francisco legitimately be used to predict shop­
ping travel in Denver? Since these models are based on 
the decisions of individual households, it should be pos­
sible to estimate a model in one city and use at least 
some of the estimated parameters in another as long 
as the cities have populations with similar tastes. 
Atherton (9), Atherton a nd Ben-Akiva (10), and Pecknold 
and Suhrbfer (11) all p1·esent evidence that most param­
eters are transferable among U.S. cities as diverse as 
Boston, Milwaukee, New Bedford, Philadelphia, San 
Francisco, and Washington. The only exceptions are 
constant terms that determine mode shares and total 
daily shopping trips. Therefore, the automobile con­
stant in the preceding table and the two constant terms 
in the frequency model have been adjusted so that the ag­
gregate mode shares and the total daily shopping trips 
predicted for the Denver region match reported Denver 
values derived from the 1971 home interview survey. 
For the logit model, this procedure chooses a value for 
the constant that is the maximum likelihood estimate for 
the Denver sample, conditional on the values of the 
transferred parameters. 

A second issue arises because shopping destinations 
specified in the destination-mode model are not the in­
dividual shopping centers available to households but 
groups of shopping centers that represent the sum of 
shopping opportunities in each destination zone. Esti­
mation of a disaggregate behavioral model is possible 
when alternatives are grouped as long as the model is 
structured to guarantee the following property: When 
any two destinations with identical characteristics are 
combined, the resulting probability of choosing the com­
bined zone is equal to the sum of the two probabilities 
for the destinations treated separately. Lerman (12) 
has shown that this property, termed homogeneitY,-can 

be guaranteed in a logit model if the model 
includes a variable that represents the natural log of 
group size and if its coefficient is constrained to unity. 
In the original SRGP destination-mode model, the nat­
ural log of retail employment was chosen to measure 
group size. This choice, however, is unsatisfactory 
for the home-related shopping model. In the home­
related shopping model, retail employment in any zone 
is determined endogenously by a simultaneous process 
in which shoppers are attracted to places with high re­
tail employment and varied shopping opportunities and 
retail employment grows or declines in step with con­
sumer demand. Constraining the retail employment 
coefficient to unity in the destination-model artificially 
inflates the number of shoppers who choose destinations 
where retail employment is high and tends to preclude 
equilibrium levels of zonal retail employment at values 
other than zero or infinity. Therefore, for use in the 
home-related shopping model, the original SRGP 
destination-mode model has been reestimated without 
the constraint. It is the set of coefficients from the 
reestimated model that is shown in the prece<;ling 'table. 
Had it"been possible to completely respecify the 
destination-mode model, homogeneity could have b~en 
preserved by choosing another measure of group size, . 
such as acreage of the destination zone. Budget limita­
tions precluded this option. 

Work-Related Shopping Trip Submodel 

The second source of shopping trips represented in the 
disaggregate model is noon-hour shopping by workers. 
To forecast noon-hour trips, a model of work-related 
shopping trips originally developed for a study of the 
Bunker Hill area of Los Angeles has been adapted (13). 
Because the noon-hour model was originally estimated 
only for workers in the CBD, the work-based shopping 
model has been applied only to Denver's downtown 
zones. Noon-hour shopping is generally considered a 
substantial fraction of total sales only in the CBD. 

Like the destination-mode component of the home­
related submodel, the work-related model is a joint 
multinomial logit model. The probability that a worker 
will select any one of several mode-destination alterna­
tives d~pends on the utility yielded by the attributes of 
each. Relevant attributes and coefficients that mea­
sure their contribution to utility are given below [the 
coefficients are taken from the Los Angeles travel de­
mand model (13)]: 

Variable in Logit Model 

Autoniobi le mode constant 
Walk mode constant 
Minibus mode constant (free fare) 
Regional bus mode constant ($0.25 fare) 
Total travel time in minutes 
Out-of-pocket travel cost for automobile in cents 

per mile 
Trip attraction density per acre at destination 
Employment per acre at origin zone (zero-frequency 

alternative only) 
Zero-frequency constant 
LN (area of destination zone in acres) 

Estimated 
Coefficient 

-0.592 
0.115 

-2.376 
-2.434 
-0.052 

-0.008 
0.032 

0.008 
8.578 
1.000 

Unlike the home-related shopping analysis, the destina­
tion, mode, and frequency of work-related shopping are 
predicted by a single choice model. During any noon­
hour period, each worker may make a single trip, de­
scribed by a particular mode-destination combination, 
or may choose not to travel at all. The alternative of 
no travel (zero frequency) is explicitly included in the 
set of alternatives. 



The work-related model has been applied to each of 
five zones in the Denver CBD. These zones provide the 
geographic detail that describes both the location of 
workplaces and the alternative shopping destinations. 
Note in the table that this model makes no use of the 
socioeconomic characteristics of workers; such data are 
not likely to be readily available for forecasting. For 
this reason, the model predicts travel behavior for a 
representative worker at each workplace zone rather 
than operating on a sample of travelers as in the home­
related model. For each workplace zone, it predicts 
the share of workers who choose each mode-destination 
alternative and the share who choose to make no trip at 
all. Total daily shopping travel is obtained by multi­
plying these shares times the total number of workers at 
each workplace zone. 

Two adjustments have been made in applying the Los 
Angeles model to Denver. In the Los Angeles model, 
the attractiveness of each shopping destination is deter­
mined by its trip attraction density, which predicts, for 
example, that the number of shopping trips to any zone 
depends on the amount of retail floorspace per zone acre. 
For Denver zones, we have employment figures but no 
data for floorspace. For use in the model, employment 
figures have been converted. to floorspace by using typi­
cal ratios of CBD floorspace per employee estimated 
from Boston data. 

Second, the coefficients of the Los Angeles model im­
ply an unrealistically low value of time for noon-hour 
shoppei·s: $0.15/h. This low value resulted from Los 
Angeles data in which money costs were constant for all 
trips by each mode except automobile. As a result of 
the high correlation between cost and mode, coefficients 
of the cost variable and of the constants representing 
different modes are poorly specified, although their com­
bined effects are correctly estimated. Evidence on work 
trips for several cities indicates that workers often value 
travel time in the range of $3.00 to $5.00/h (11). We 
have therefore readjusted the coefficients of cost and of 
each modal constant so that the combined effect of the 
constant plus cost remains identical to that estimated by 
the Los Angeles model but the cost coefficient is con­
sistent with a value of time of $ 3 .85 / h. This adjustment 
is embodied in the results given in the table above. 

Tests of Policy and Equilibration 
Procedure 

Before the impacts of new transportation policies can 
be estimated, both the home-related and work-related 
shopping models must be run to predict a base number 
of trips to each destination zone given existing policy. 
Because both models predict the number of trips rather 
than the number of shopping visits per trip tour, some 
average number of shopping visits per trip must be as­
sumed. For work-related shopping, evidence from Los 
Angeles suggests an average of 1.25 shopping trip ends 
per work-based shopping tour. To estimate the number 
of trip ends per home-based trip, we relied on estimates 
by downtown Denver merchants that the number of shop­
pers visiting each store is evenly divided between home­
based shoppers and workers· on noon-hour trips. The 
disaggregate model system produces this result for CBD 
destinations if an assumption of two shopping trip ends 
per home-based trip is made. This asswl)ption has been 
adopted for all home-related trips. For both kinds of 
trips, the extra shopping visits that make up the tour 
are assumed to take place in the same superzone as the 
original home-based or work~based link of the trip. 

To test any policy, the first step of the equilibration 
procedure is to modify level-of-service variables to re­
flect the effect of the policy on the Denver transporta-

tion system. Then both the home-related and work­
related models are run to forecast total shopping trip 
ends for each zone. These results are aggregated to 
the 10-superzone level. 
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The change in shopping trip ends in each superzone 
is then computed as a percentage of base-year values. 
The percentage change in zonal retail employment is 
assumed to be equal to the percentage change in shopping 
trip ends. This procedure generates new levels of both 
retail and total employment in each zone. Both the 
home- and work-related submodels are run again with 
the revised employment levels as inputs, and the re­
sulting trip-end forecasts are used to further revise re­
tail and total employment. The process is repeated un­
til the changes in trip ends and retail employment in 
each zone are relatively small. 

Trial runs of several iterations of the model have in­
dicated that, for many different policy options, the 
change in trip ends at each iteration is a constant frac­
tion of the change at the previous iteration. Given this 
pattern of convergence and an initial change of ti.Ji in 
the number of trip ends in zone i, the total change can 
be approximated by 

Afi + pLD; + p'Afi + p'L'll; + . .. = L'IJ;~:>; = L'IJi/(1- p) 
j=O 

(16) 

where p is the fraction that relates changes in trips at 
successive iterations. In accordance with a previously 
specified assumption, retail employment in any zone is 
expected to change ultimately by a percentage equal to 
the total change in shopping trip ends. From Equation 
16, this percentage is given by 

[L'IJJ(I - p)] /J; (17) 

where Ji is the number of trip ends before the policy 
change. 

This approximation greatly reduces the number of 
iterations required to operate the entire model system 
because AJ1 is computed at the first iteration and a rea­
sonable estimate of p can be obtained in two or three 
iterations. This approximation has been used for all 
policy analyses in this paper. 

It must be noted that the exact mathematical proper­
ties of the iterative equilibration procedure are still un­
known and that the limited computational experience ob­
tained in this study is insufficient to reach any definitive, 
empirically based conclusion about the stability of the 
model. Trial runs that led to the approximation adopted 
above indicated some instability after the first several 
iterations, and changes in the definition of zones and 
superzones affected the pattern of convergence. The 
conceptual appeal of the disaggregate system argues 
strongly for further research into its convergence prop­
erties and further refinement of its specification. 

TRANSPORTATION CONTROL POLICIES 
AND ESTIMATED IMPACTS 

Both the aggregate and disaggregate models have been 
used to estimate the impact of several hypothetical 
transportation control measures on retail sales in the 
Denver CBD. These measures include 

1. Implementation of an automobile-free zone or 
elimination of convenient parking spaces so that a shop­
per arriving by automobile must walk an extra 2.5 min 
after parking, 

2. A similar policy that leads to an extra 5 min of 
walking after parking, and 

3. A 5-min reduction in waiting time for a transit 
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Table 1: Tests of policy impacts: aggregate and 
disaggregate models. 

Policy 

Increase in one-way walk 
time for parkers 

2.5 min 
5.0 min 

Reduction of 5.0 min in 
one-way wait time for 
transit riders 

trip to or from the CBD (for noon-hour bus trips within 
the CBD, for which average wait times are currently 
estimated at 5 min, a reduction of 2.5 min has been as­
sumed). 

The results, which are given in Table 1, raise several 
issues worthy of brief discussion. 

Both models forecast a substantial sensitivity of re­
tail sales to reductions in access for shoppers who 
travel by automobile and negligible impacts for improve­
ments in transit service. When a seemingly insiguifi­
cant 2.5 min is added to automobile trips to the CBD, 
the forecasted drop in retail activity ranges from 17 .5 
to nearly 30 percent. Policies that restrict automobile 
access and seek to preserve demand for downtown 
shopping by improving transit service will likely fail and 
precipitate instead a decline in the downtown retail cen­
ter. Transit improvements that are politically and fi­
nancially possible may be more effective offsets to re­
ductions in automobile access in cities like Boston and 
New York, where transit service is already extensive 
enough to attract large fractions of riders to downtown 
destinations. The vast majority of American cities, 
however, resemble Denver more closely than they re­
semble Boston or New York. 

The availability of two estimates of policy impact ob­
tained by using completely dissimilar techniques illus­
trates an important benefit of the narrowly focused 
modeling strategy described in this paper. The ability 
to model the same policy simultaneously with alternative 
models is a result of the reduced cost inherent in less 
comprehensive models. The alternative results can be 
compared for consistency, and their quantitative fore­
casts can be used as bounds for policy impacts. If the 
forecasts produced by different methodologies are at 
least qualitatively consistent with one another, as in this 
case, confidence in their accuracy is enhanced. 

The structure of the disaggregate model makes it 
possible to identify two separate sources for the decline 
in retail activity that accompanies a reduction in auto­
mobile access: an initial response to the change in 
level of service and subsequent adjustments that rein­
force the first response as shoppers react to changes in 
the size of retail centers and the shopping opportunities 
they offer. The immediate impact of transportation 
policy may represent only a fraction of the ultimate 
change in activity. According to the disaggregate model, 
a 2.5-min increase in the time of an automobile trip 
leads directly to a 5 .5 percent decline in retail activity. 
However, the chain of further adjustments by shoppers 
who find the smaller retail center less attractive induces 
a further decline of 24.3 percent. 

For any reduction in automobile access, the aggre­
gate forecast of overall decline in retail activity is sub­
stantially smaller than the disaggregate forecast. This 
disparity may well result from an excessive disaggre-

Ultimate Percentage Change 
in Trip Ends and Retail Em-
ployment (disaggregate model) 

Total Ultimate Response to Response to 
Percentage Change Change in Change in 
in Sales Level of Retail Center 
(aggregate model) Service Size Total 

-17. 5 -5. 5 -24.3 -29.8 
-32.7 -9 .9 -32.7 -42.6 

±0.0 -t-0 .8 +4.3 +5.1 

gate estimate of consumer response to changes in the 
size of retail centers. Recall that the source of this esti­
mate is the equilibration procedure described earlier 
in this paper and that both this procedure and its results 
are subject to the uncertainties mentioned there. Fur­
ther insight into this issue must await further investi­
gation into the convergence properties of the disaggre­
gate system. 

Finally, the impacts described in this paper are those 
that result solely from transportation policies. Trans­
portation control plans may also include compensato1·y 
nontranspo1tation measures that enhance the attractive­
ness of downtown amenities or the uniqueness of down­
town retail opportunities. If reductions in automobile 
access to downtown retail areas are required to meet 
environmental standards, careful consideration should 
be given to such measures so that efforts to improve air 
quality do not unintentionally further erode the urban 
core. For example, total automobile restriction in cer­
tain areas accompanied by improved pedestrian ameni­
ties l1as, at l east in Europe, succeeded in offsetting the 
negative in.fl.uence of reduced accessibility . This is only 
common sense . If shopping in the CBD offers a unique 
or especially pleasant experience, because of the ameni­
ties or the products available there, shoppers should be 
more willing to bear marginal reductions in convenience 
to shop downtown. 
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Optimizing Urban Mass Transit 
Systems: A General Model 
Alan Black, Graduate Program in Planning, University of Texas at Austin 

This paper describes a model for determining the general dimensions of 
an optimal mass transit system for an idealized urban area. The model 
is based on a circular city with a definite center and with density declin­
ing uniformly from the center in all directions according to the negative 
exponential function . The transit system consists of radial routes that 
emanate from the center and contain discrete stops. Only trips to or 
from the center are considered, and travel is assumed to occur only in 
radial and circumferential directions. The model represents total com­
munity costs of the system, defined to include travel time, operating 
costs, equipment, and construction. A recursive procedure was devised 
to find a simultaneous minimum with respect to the spacing of routes, 
number and spacing of stops on each route, and average headway. Nu­
merical analyses were conducted for six hypothetical cities by using vary­
ing values for the parameters of the density function. In each case, three 
types of transit systems were compared: conventional bus service, buses 
on exclusive lanes, and rail rapid transit. The optimal system in the larg­
est city examined was exclusive bus lanes; in the other five cases, the 
optimal system was conventional bus service. Other interesting relations 
that appeared in the results are summarized. 

The United States has entered a new era of massive in­
vestment in urban mass transit, prompted by the willing­
ness of Congress to authorize billions of dollars in fed­
eral aid for local transit systems. However, there is 
yet no systematic procedure for allocating these re­
sources and determining whether a transit proposal is 
worthwhile. Each proposal is evaluated on an ad hoc 
basis, and considerable weight is given to the zeal of the 
proponents, political pressures, and the current avail­
ability of funds. Choice of technology has become a 
major issue in many areas, and the question of whether 
medium-sized cities should proceed with huge invest­
ments in fixed-guideway transit systems is particularly 
controversial. 

This paper summarizes a dissertation aimed at de­
termining the dimensions of an optimal tr ansit system 
for an idealized urban area (1). The approach was to 

hypothesize a circular city with a definite center and 
with dens ity declining uniformly from the center in all 
directions. The transit system consists of routes that 
emanate from the center and contain discrete stops. By 
use of integral calculus, a model was derived that rep­
resented the total community costs of building and using 
such a system. By use of differential calculus, a pro­
cedure was developed to optimize the principal design 
variables in the system: the number of radial routes, 
their length, and the number and spacing of stops on 
each route. Numerical analyses compared three com­
mon forms of conventional transit: buses on city streets, 
buses on exclusive lanes, and rail rapid transit. 

Such an abstract model cannot be mechanically ap­
plied to the complex, irregular pattern of a real city. 
Abstraction is an unavoidable compromise if a model is 
to be made mathematically tractable. Similar ap­
proaches have been followed in many previous studies 
of transit optimization. A few of these will be cited 
here; a fuller review can be found elsewhere (1). 

Most previous studies can be divided into two geo­
metrical approaches. One of these assumes a gridiron 
network of transit routes laid on a homogeneous infinite 
c ity, usually with a uniform density of tr ip ends . What 
may have been the fi rst s tudy of this type was done by 
Creighton and others {2) and involved both highway and 
transit grids; the object was to find the optimal com­
bination of investment in the two modes. Holroyd (3) 
assumed a single grid of bus routes and derived a solu­
tion for the optimal spacing of routes and frequency of 
service. Two dissertations, one by Mattzie at Carnegie­
Mellon (4) and the other by Woodhull at Rensselaer 
Polytechnic (5), also dealt with grid systems of transit 
routes. -

The second approach is to examine a single transit 
line. Often one terminal is assumed to be in the central 




