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Optimizing Urban Mass Transit 
Systems: A General Model 
Alan Black, Graduate Program in Planning, University of Texas at Austin 

This paper describes a model for determining the general dimensions of 
an optimal mass transit system for an idealized urban area. The model 
is based on a circular city with a definite center and with density declin
ing uniformly from the center in all directions according to the negative 
exponential function . The transit system consists of radial routes that 
emanate from the center and contain discrete stops. Only trips to or 
from the center are considered, and travel is assumed to occur only in 
radial and circumferential directions. The model represents total com
munity costs of the system, defined to include travel time, operating 
costs, equipment, and construction. A recursive procedure was devised 
to find a simultaneous minimum with respect to the spacing of routes, 
number and spacing of stops on each route, and average headway. Nu
merical analyses were conducted for six hypothetical cities by using vary
ing values for the parameters of the density function. In each case, three 
types of transit systems were compared: conventional bus service, buses 
on exclusive lanes, and rail rapid transit. The optimal system in the larg
est city examined was exclusive bus lanes; in the other five cases, the 
optimal system was conventional bus service. Other interesting relations 
that appeared in the results are summarized. 

The United States has entered a new era of massive in
vestment in urban mass transit, prompted by the willing
ness of Congress to authorize billions of dollars in fed
eral aid for local transit systems. However, there is 
yet no systematic procedure for allocating these re
sources and determining whether a transit proposal is 
worthwhile. Each proposal is evaluated on an ad hoc 
basis, and considerable weight is given to the zeal of the 
proponents, political pressures, and the current avail
ability of funds. Choice of technology has become a 
major issue in many areas, and the question of whether 
medium-sized cities should proceed with huge invest
ments in fixed-guideway transit systems is particularly 
controversial. 

This paper summarizes a dissertation aimed at de
termining the dimensions of an optimal tr ansit system 
for an idealized urban area (1). The approach was to 

hypothesize a circular city with a definite center and 
with dens ity declining uniformly from the center in all 
directions. The transit system consists of routes that 
emanate from the center and contain discrete stops. By 
use of integral calculus, a model was derived that rep
resented the total community costs of building and using 
such a system. By use of differential calculus, a pro
cedure was developed to optimize the principal design 
variables in the system: the number of radial routes, 
their length, and the number and spacing of stops on 
each route. Numerical analyses compared three com
mon forms of conventional transit: buses on city streets, 
buses on exclusive lanes, and rail rapid transit. 

Such an abstract model cannot be mechanically ap
plied to the complex, irregular pattern of a real city. 
Abstraction is an unavoidable compromise if a model is 
to be made mathematically tractable. Similar ap
proaches have been followed in many previous studies 
of transit optimization. A few of these will be cited 
here; a fuller review can be found elsewhere (1). 

Most previous studies can be divided into two geo
metrical approaches. One of these assumes a gridiron 
network of transit routes laid on a homogeneous infinite 
c ity, usually with a uniform density of tr ip ends . What 
may have been the fi rst s tudy of this type was done by 
Creighton and others {2) and involved both highway and 
transit grids; the object was to find the optimal com
bination of investment in the two modes. Holroyd (3) 
assumed a single grid of bus routes and derived a solu
tion for the optimal spacing of routes and frequency of 
service. Two dissertations, one by Mattzie at Carnegie
Mellon (4) and the other by Woodhull at Rensselaer 
Polytechnic (5), also dealt with grid systems of transit 
routes. -

The second approach is to examine a single transit 
line. Often one terminal is assumed to be in the central 
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business district (CBD), and only trips to or from this 
terminal are considered. The object is usually to find 
the optimal spacing of s tops. So~e studies have as
sumed uniCorm spacing, but the more interesting have 
allowed for variable spacings. An eal'ly study of vari
able spacing of stops was made by Schneider (6). Vuchic 
(J_) later did a fuller analys is of the problem. -Both re
searchers assumed a constant density of boarding pas
sengers along the line and came to the conclusion that 
interstation spacings should increase as one approaches 
the CBD. This is oppos ite to conditions normally found 
on radial rail routes in which the spacings become 
smaller near the CBD. 

A third geometrical approach was taken by Byrne (8), 
who assumed a circula1· city of given radius and for ffie 
case in which population density varies only with dis
tance from the center, derived a solution for the optimal 
number of radial routes. Byrne presented results for 
four density functions including' the negative exponential. 
The model described here has a similar geometry and 
also uses the 11egative exponential fuuction but it in
volves simultaneously solving for the optil~al number of 
radials and optimal length of radials as well as other 
variables. 

DESCRIPTION OF THE MODEL 

The hypothetical city is a complete circle, uniform 
throughout its 360 degrees, uninterrupted by barriers 
or irregularities, and extending to infinity. The city 
has a center that is taken to represent the CBD. The 
transit network consists of an unknown number of radial 
lines that emanate from the center and extend an unknown 
distance. Each line has discrete stops and access is 
possible only at these fixed points, whi~h must be de
termined. Because of the assumed symmetry of the city 
the radial lines are equally spaced. Each has the same ' 
number of stops, spaced in the same way, and is of the 
same length. 

The transit system serves a given amount and distri
bution of travel demand. Demand is highest at the center 
and declines with increasing distance from the center. 
Demand is assumed to be constant (i.e., land use, trip 
generation, and modal split are held constant). Every 
trip must be made, and the only alternative to using 
transit is walking. 

To make the problem mathematically ma nageable 
only trips to 0 1· from tile CBD (assumed to be trips t~ or 
from the point at the center) we1·e co'nsidered. In most 
cities, such CED-oriented trips represent roughly half 
of all transit trips. This is the largest market for tran
sit, and it dominates the design of transit networks. 

It was assumed that travel can occur only in radial or 
circumferential directions but that otherwise it can occur 
anywhere on the city's surface. There are no circum
ferential transit routes; all circumferential travel is on 
foot. Each inbound traveler starts from his or her ori
gin and walks in a circumferential arc to the nearest 
radial transit route. There the traveler has a choice 
between walking inward or outward until reaching a stop. 
He or she chooses the stop that minimizes the total time 
from origin to destination. Close to the center some 
travelers find it fa s ter to walk all the way and ~ot use 
the t rans it service. 

It was asswnecl that inbound a nd outbound trips are 
equal in numbe1· and fol'm m irror images of each other. 
On each radial transit route, vehicles shuttle back and 
forth between the center and outer terminal, stopping at 
all designated stops . 

Objective 

The objective selected was to minimize total community 
costs, measured in dollars. Total costs were defined 
to include capital investment for guideway and vehicles 
operating costs, and the door-to-door travel time of ' 
travelers. It would be desirable to include other types 
of community costs, such as externalities and intangi
bles, but they were omitted because of the difficulty of 
measuring them or converting them to dollar values. 

The approach to measuring time costs was to calcu
late the distance traveled from door to door and to esti
mate average speed on the portions of the route tra
versed. There are several components in door-to-door 
travel time. One of these is the time spent in the transit 
vehicle, which must be divided into two parts. The first 
is the time that would accrue if the vehicle moved at its 
cruising speed from the rider's point of embarkation to 
the point of debarkation. The second component con
sists of the additional time penalties incurred when the 
vehicle accelerates, decelerates, and waits at stops to 
load and discharge other passengers. 

Two other components of door-to-door travel time 
were included. One is walking time-the time it takes 
a traveler to walk from origin to boarding stop or from 
where he or she gets off to his or her final destination. 
The other is waiting time, which depends on the sched
uling of vehicles. It was assumed that average waiting 
time is half the scheduled headway (the time between suc
cessive buses or trains). 

Operating costs depend on a number of factors, but 
here they were based solely on vehicle kilometers. This 
appears to be the most significant relation and also the 
simplest. 

The 1·e are two major types of capital costs : fixed 
fac ilit ies (s ltCh as i·oaclbed, structures , and stations ) and 
l'Unni11g equipment (bus es a11d trains). In analyzing a 
specific proposal, detailed estimates of capital costs are 
based on engineering drawings. This cannot be done for 
a hypothetical city; hence, the cost of fixed facilities was 
based on kilometers of guideway and number of stations. 
Equipment costs were estimated on the basis of the num
ber of buses or train cars required to serve peak-period 
demand plus an allowance for vehicles out of service. 

The daily time and operating costs and the one-time 
investment costs were put on a comparable basis through 
the annual cost method although it is actually average 
weekday costs that are represented in the model. For 
capital costs, an expected life span and interest rate 
were assumed, and the equivalent annual cost was cal
culated . This was converted to average weekday cost 
by assuming a number of weekday equivalents for a year. 

Decision Variables 

The most important decision variables in designing such 
a system are 

1. The number of radial routes (N), 
2. The number of s tops on each radial route (z), 
3. The length of each radial route (xz), and 
4. The spacings between stops on each route. 

The spacings between stops are implied in the set of 
variables X1, xa, xa, ... , x., where x1 is the distance 
from the city center to the i th stop. Thus, the spacing 
between the second and third stops is given by x3 - x2• 

Another variable-scheduling of service-is also 
within the control of the transit authority. There is an 
important relation between frequency of service and 
route spacing, and they should be optimized simulta
neously. Freq1.1ency of service was represented by av
erage headway over the full day (h). 



Role of the Density Function 

To develop the model, one must know the locations of 
the trip ends on the surface of the city. Each trip has 
one end at the center, but the other end is elsewhere. 
The approach was to adopt a function that relates the 
density of these outer trip ends to distance from the city 
center. 

There remained the question of what function to use. 
A considerable body of literature, starting with the 
landmark article by Clark (9), suggests that the negative 
exponential function represents the relation between 
population density and distance from the city center. 
However, few studies have dealt with the density of trip 
ends. Furthermore, a review of the literature-de
scribed elsewhere (10)-revealed that there is now much 
debate over the proper function for population density. 
Researchers have used a variety of equations and ob
tained close fits to empirical data with many of them. 

Therefore, some empirical research was conducted 
by using population and travel data from transportation 
studies of 12 metropolitan areas of the United States that 
range in size from New York to Syracuse. Regression 
analysis was used to fit data on six population and trip
end variables to four alternative equations: linear, ex
ponential, power curve, and normal curve. The findings 
are described elsewhere (11). 

Of particular concern was the density of CED-oriented 
transit trip ends. Data for this variable were available 
only for six medium-sized cities. The analysis showed 
that the exponential function yielded the highest correla
tion coefficient for four of the cities. For the other two 
cities, the normal curve gave the highest correlation 
but the exponential function was almost as good. In all 
cases, the exponential function had a high correlation 
that ranged from 0.880 to 0.993. 

As a consequence, the negative exponential function 
was selected for inclusion in the model. The specific 
equation is 

D(r) = Ae-"' 

where 

D(r) = density of trip ends at distance r, 
r = distance from the center, 
e = base of natural logarithms, and 

A and b =parameters. 

DERIVATION OF THE MODEL 

(I) 

The model consists of a single equation, derived by in-

Figure 1. Relation between tributary areas and locations of transit stops. 
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tegral calculus, that represents the total community 
costs of the transit system. Deriving the equation in
volves summing up the kilometers traveled, minutes 
spent in travel, and costs for the entire city. Because 
of the assumed circular nature of the city, the problem 
lends itself to the polar coordinate system rather than 
the Cartesion coordinate system. In the polar system, 
any point r, e is identified by its distance from the ori
gin r and the angle e between a ray from the origin and 
a given axis. 

Each stop on a route draws travelers from a tribu
tary area that can be drawn on a map. There is also a 
circular area around the center from which people walk 
to the center and do not use transit. Therefore a route 
with z stops serves a sector that is divided into z + 1 
n·ibutary areas. This is shown in Figure 1 for a route 
with only three stops (plus the CBD terminal). 

The bouildary between the tributary areas of adjacent 
stops must be determined by finding the point at which a 
traveler is indifferent; that is, the total travel time to 
the CED is equal whichever stop is used. This calcula
tion is incorporated into the model. The variable g1 rep
resents the distance from the center to the boundary be
tween those who walk in to stop i - 1 and those who walk 
out to stop i. 

Describing the derivation of the entire equation would 
be impossible in this space. Therefore, the approach 
is illustrated by deriving the person kilometers traveled 
on transit vehicles. This is done for inbound travelers 
for a system with three stops, as shown in Figure 1. 
This requires determining the number of passengers who 
board at each stop and multiplying by the distance from 
the stop to the center. For the first stop, it is neces
sary to integ1·ate the density functlon between the inner 
and outer boundaries of the tributary area (g1 and g2) and 
to multiply this by X1. The resulting derivation is 

(2) 

Notice that this is integrated over the full circle; it rep
resents the travel by all persons who board at the first 
stop on all radials. Since the city is radially symmetri
cal, the behavior on each radial is identical, and there 
is no point in calculating them separately. 

For passengers who board at the second stop, the 
only differences are that the limits of the tributary area 
are g2 and g3 and each passenger rides x2 • Hence, the 
expression for person kilometers has the same form as 
Equation 2, or 

(3) 

For persons who board at the third stop, the expression 
is 

(4) 

Adding these together, we get the total person kilometers 
traveled by transit: 

(2rrA/b2) [e·bg1 (I+ bg1)(xi) + e·b •2 (I+ bg2)(x2 -x1) 

+ e·b<J (I + bg3)(x3 - x,)] (5) 

This is for a system with just three stops on each radial. 
For a larger system, there would be more terms since 
it is necessary to make a separate derivation for each 
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stop. However, all the expressions are identical in 
mathematical form; only the designation of the variables 
must be altered. Thus, the equatio11 for a tfu·ee-stop 
system can be extrapolated to a s ystem with mol'e stops. 

The derivation proceeded in a s tep -by-step (01· stop 
by- s top) fa s hion. The mos t difficult par t was determin
ing the kilometers walked in a radial direction. This 
had to be done separately for those who walk inward and 
those who walk outward. For a system with z stops, it 
was necessary to derive expressions for 2z + 1 separate 
areas. But again, all the expressions turned out to be 
identical in mathematical form. 

Kilometers traveled was converted to person minutes 
of travel time by applying appropriate values of average 
speed. Waiting time and time for delays from stops 
were added to obtain total person minutes of travel time. 
This was converted to dollars by applying the assumed 
monetary value of travel time. Then expressions for 
operating, construction, and equipment costs were de
rived and added to get total community costs. 

When the expressions for all cost components are 
added together, a considerable amount of cancellation 
and simplification is possible. The total cost equation 
for a system with three stops is as follows (certain por
tions of the calculations given in this paper were done in 
U.S. customary units, and in these instances no SI units 
are given): 

y = { (4rrAc2 t/b 3 ) [ 1 + e·b••(2 + bx 1 ) + e·b•2 (2 + bx2 ) 

+ e·bx3 (2 + bx 3)- e·b81 (2 + bg1 ) 

- e·bg2 (2 + bg2 ) - e·bg3 (2 + bg3 )] } 

+ (2rr2 Ac2 t/N b3 ) + (2NKqx 3 /h) 

+ [ (2rnNV /ph)(c1 x 3 + 3d + L)] + (1Nx3 + 3JN) 

where 

y = total costs, 
x1 =distance from center to i th stop (km), 

(6) 

g1 = distance from center to boundary between tribu
tuy ar eas ~or s top i - 1 and stop i (km), 

C2 =walking speed (min/ Jun), 
t = value of travel time (dollars/ min), 

N =number of radial routes, 
K =length of dall y transit s ervice period (min), 
q =oper ating cos t per vehicle mile (dollars ), 
h = headway between buses or trains (min>, 

m = spare vehicle factor, 
V = equivalent daily cost of a vehicle (dollars), 
p = ratio of peak-period headway to aver age all-day 

headway, 
c1 = cruising speed of transit vehicle (min/km), 
d = delay for a stop (min), 
L =layover time (mi11), 
I = equivalent daily cost of a mile of guideway 

(dollars ), and 
J =equivalent daily cost of a station (dollars). 

The right-hand side of Equation 6 is divided into five 
p ar ts, each of which has a recognizable significance, so 
that the equation can be r ewritten in verbal form as fol
lows : Total costs = radial travel, delay, and waiting 
time + circumferential travel time + operating cost + 
equipment cost + construction cost. 

FINDING THE OPTIMAL SOLUTION 

The total cost equation for a system with z stops on each 
radial has z + 2 decision variables . These are N, h, and 
the set of z variables t ltat represent the distance from 
the center to each of the stops (x1, x2, X31 ••• , x.). x, 
is also the length or the route. 

To find a global minimum for all the variables , one 
starts by taking the partial derivative of the equation with 
respect to each variable and s etting each result equal to 
zero. This yields a set of z + 2 equations that contain 
z + 2 unknowns. The next step is to find a s imultaneous 
solution for the z + 2 equations that will specify the 
optimal solution. But all of the equations are nonlinear, 
and no general analytical method exists for finding the 
simultaneous solution to a set of nonlinear equations. 
Consequently, an approximating procedure was de
veloped to find the optimal solution. 

The set of equations does have a special structure 
that can be exploited to develop a recursive procedure. 
Most of the equations contain three unknowns, but there 
is one that contains only two. The equations can be se
quenced so that, by assumi ng a value for one variable, 
values can be calculated for all the other variables. 
When this has been done, one equation remains. In
serting the previously calculated values in this equation 
provides a check on whethe1· a simultaneous solution has 
been obtained. 

Usually a simultaneous solution will not occur at first 
because the process began by guessing the value for one 
variable. Therefore, the recursive procedure must be 
em bedded in a search pr ocedure to find the right starting 
value. A classical one-dimensional search technique 
known as the regula fals i method was adopted for this 
purpose. This involves making two trials with arbitrar
ily selected values, comparing the results, and calcu
lating a "best guess" for a third trial. The method 'con
tinues with successive trials, always comparing the re
sults of the two previous trials, until convergence is 
r eached. The recurs ive procedure and the regula falsi 
method were implemented in a computer program that 
proved efficient in approximating a simultaneous solution 
for the set of equations. 

There is a further, unusual dimension to the problem. 
To carry out the procedure just described, one must 
specify the number of stops because this determines the 
number of unknowns and equations. Howeve1·, the num
ber of stops is itself an mlknown of some importance. 
Thus, at t}le start, the number of equations to be solved 
is unknown! This problem was handled by embedding the 
above procedure in an overall search for the optimal 
number of stops. This was done by using the Fibonacci 
search method, which successively eliminates groups 
of integers until it locates the integer that gives the op
timum. 

NUMERICAL ANALYSIS 

The computer program was used to calculate optimal 
transit systems for a number of hypothetical cases. Two 
interests were of primary importance in the selection 
of the tests : 

1. Choice of technology-What is the best transit 
mode for a particular city? Tests were run for the three 
best known types of conventional transit service: (a) 
ordinary bus service in which buses run in mixed traffic 
on surface streets, (b) exclusive bus lanes, and (c) rail 
rapid transit. These are referred to as local bus, bus
way, and rail. 

2. Impact of the density profile-What effect does the 
density of trip ends have on the optimal transit system? 
Tests were made for six hypothetical cities with different 
values for parameters of the density function. The three 
transit modes were compared for each city so that op
timal transit systems were calculated for 18 cases. 



The table below gives the regression and correlation 
coefficients obtained for the exponential function for six 
metropolitan areas: 

City A -b -r 

Detroit 3427 0.286 0.966 
Cleveland 4043 0.275 0.992 
Pittsburgh 2345 0.355 0.880 
Buffalo 2145 0.384 0.974 
Rochester 2705 0.724 0.993 
Syracuse 1285 0.632 0.935 

The value of A is the density of trip ends per square 
mile at the city center (these numbers represent only the 
outer ends of trips, which is why they seem low). The 
value of b indicates the rate of decline in the density of 
trip ends per square mile with each mile of increased 
distance from the city center. The higher the absolute 
value of b, the more compact the city. 

It was decided to make tests with combinations of two 
A values (2000 and 4000) and three b values (0.25, 0.50, 
and 0.75). Each city is given a "name" that signifies 
the two parameter values: for example, city 4/25 is the 
case where A = 4000 and b = 0.25. The total number of 
person trips made in each city can be determined from 
the following result: 

i 2n r~ 
Jo Ae-b' rdrdli = (27rA/b2

) 

Table 1. Dimensions of optimal local bus systems. 

Length 
Number of Each Average Number Total 
of Route Spacing of Route 

City Stops (km) (km) Radials (km) 

4/25 19 25.42 1.34 60 1526.2 
2/25 19 25.43 1.34 43 1082.8 
4/50 13 12.54 0.96 22 273.6 
2/50 13 12.55 0.97 16 195.0 
4/75 10 8.27 0.83 12 101.3 
2/75 9 7.72 0. 86 10 75.6 

Note: 1 km= 0.62 mile. 

Figure 2. Spacing between stops for optimal local bus systems 
for cities with A = 2000. 
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The person-trip totals for the six hypothetical cities are 
given below: 

City Person Trips 

4/25 402 124 
2/25 201 062 
4/50 100 531 
2/50 50 265 
4/75 44 680 
2/75 22 340 

Numerical analyses also require specifying values 
for a large number of parameters that mostly represent 
cost and performance characteristics of the transit sys
tem. The literature was surveyed to ascertain reason
able values for all parameters. Many of these depend 
on the transit mode being analyzed, but some (such as 
the interest rate-assumed to be 10 percent-and the 
value of travel time-set at $2.40/h) are common to all 
modes. 

Local Bus System 

Dimensions of the optimal systems for the six cities are 
given in Table 1. As one would expect, the larger the 
city is, the larger is the optimal transit system. The 
optimal number of stops ranges from 9 to 19; the op
timal length of each route from 7.72 to 25.43 km (4.8 to 
15.8 miles); and the optimal number of radials from 10 
to 60. Thus, there is considerable variation in the op
timal values, which clearly depend on the density profile. 

The value of A has little effect on the optimal number 
and spacing of stops or the optimal route length. The 
value of b has much more influence: The more compact 
the city is, the shorter are the routes, the fewer are the 
stops, and the closer is the spacing between stops. 

Where A does have an impact is on the numbe1· of 
radials (although the b parameter remains dominant). 
City 4/25 has twice as many trips as city 2/25, and the 
optimal number of radials increases from 43 to 60. This 
suggests that the response to a uniformly distributed in
crease in demand should be to increase the number of 
routes rather than the frequency of stops on existing 
routes. 

The optimal value for average headway ranges from 
8.6 to 20.6 min; it is influenced by both the A and b val
ues. When the value of A is doubled, optimal headway 
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is reduced by less than half. This suggests that, when 
bus trips are added to handle increased demand, they 
should be distributed between existing routes and newly 
created routes (which will reduce both walking and wait
ing). 

The pattern of spacing between stops is also of inter
est. The same pattern was found in all cases and per
sisted in the busway and rail alternatives. To illustrate 
this pattern, the interstop spacings for the three cities 
with A = 2000 are shown graphically in Figure 2. The 
pattern has the following features: 

1. Starting from the center, the spacing decreases 
outward to a point about four-fifths the length of the route. 

2. From this point to the outer terminal, the spacing 
gradually increases. 

3. The first stop has a much larger spacing than any 
other, but variation among the others is very slight. One 
could generalize by saying that, except for the first stop, 
the spacing should be approximately uniform. This 
seems more realistic. than the optimal spacing pattern 
derived by Schneider (~ and Vu chic (.'.!}. 

Busway System 

The principal difference in the busway system is that it 
involves construction costs for guideway and stations in 
return for which the buses achieve higher speeds and 
lower operating costs. Table 2 gives the dimensions of 
the optimal busway systems. These are substantially 
smaller than the local bus systems for the corresponding 
cities in terms of number of stops, number of radials, 
and total kilometers of route. 

The average spacing between stops is greater in all 
cases than for local bus. This is a concomitant of faster 
bus speeds: the faster the speed of transit service is, 
the farther people will walk to use it. The delay for a 
stop also increases, which further increases the spacing. 

The value of A has more impact on the number of 
stops and on route length than it does in the case of local 
bus. This is undoubtedly because each station and kilo
meter of route entails a construction cost. Doubling the 
number of trips distributes this capital cost more and 
justifies a higher level of investment. 

Optimal headways are much lower for busway than 
for iocal bus. '!'his ls apparently because the busway 

Table 2. Dimensions of optimal busway systems. 

Length 
Number of Each Average Number Total 
of Route Spacing of Route Headway 

City stops (km) (km) Radials (km) (min) 

4/25 13 24.48 1.88 16 401.6 2.35 
2/25 11 22.64 2.06 12 272.7 3.45 
4/50 7 10.19 1:46 9 87.1 4.90 
2/50 5 8.75 !. 75 6 56.5 7.40 
4/75 4 5.64 1.41 6 33.3 7.60 
2/75 3 4.37 1.46 5 21.0 8.50 

Note: 1 km= 0.62 mile, 

Table 3. Dimensions of optimal rail systems. 
Length 

Number of Each 
of Route 

City stops (km ) 

4/ 25 11 23 .85 
2/ 25 9 21.17 
4/50 5 8.64 
2/ 50 4 6.97 
4/ 75 3 4.40 
2/ 75 1 1.93 

Note: 1 km= Q_62 mile. 

involves high costs for stations and route kilometers 
(versus zero cost for local bus) but the operating cost 
per vehicle kilometer is much lower. The outcome is 
a smaller route structure with better service. 

Rail System 

The principal difference between the busway and rail ai
ternatives is that rail is more capital intensive. For 
rail, the costs of building a station and a route kilometer 
were assumed to be twice as great. The cost of a rail
car was assumed to be more than four times greater than 
the cost of a bus. 

Table 3 shows the dimensions of the optimal rail sys
tems. Each is smaller than the optimal busway system 
for the same city. The number of stops and the length 
and the number of radials are all reduced. The slightly 
greater average spacing between stations results from 
an assumed higher cruising speed and larger delay for 
a stop with the rail alternative. 

The rail model was slightly different from the one 
used for the bus alternatives in that it included a feature 
that also optimized the average length of trains. The 
results are given in the last column of Table 3, which 
shows that, in cities with greater total demand, trains 
should be longer. This in itself is not surprising, but 
note that optimal headway is not greatly reduced in the 
larger cities. This suggests that greater demand should 
be handled by running longer, rather than more frequent, 
trains. 

Comparison of the Three Modes 

The busway had the least total cost for the largest city 
examined-city 4/25. The local bus system had optimal 
cost for the other five cities. The rail system had the 
highest cost in all cases. 

The computer program calculates many other char
acteristics of the optimal systems. It is of interest that 
in two cases the busway system had the highest average 
travel speed from origin to destination, whereas the 
iocai bus system was highest rn the other tour. The rail 
alternative turned out poorly in this regard because 
walking was assumed to be the only mode of access, and 
walking distances were quite high. This suggests the 
importance of supplementing rail lines with feeder bus 
service. 

The optimal headways are of interest because increas
ing the frequency of service is a common policy objec
tive. The busway system was best in all cities, and 
rail was uniformly second. This again demonstrates 
that when there is a construction cost the optimum pro
duces a small route structure with frequent service. 
When there is no construction cost, the route structure 
is much larger, and service on each route is less fre
quent. 

Average 
Average Number Total Number of 
Spacing of Route Headway Cars per 
(km ) Radials (km ) (min) Train 

2.17 l l 265.0 8.55 3.58 
2 .35 8 179 .3 10.00 2 .75 
!. 73 6 55.7 8.00 1.45 
!. 74 5 35.8 9.05 1.03 
1.47 5 20.9 9.20 1.00 
1.93 5 9.7 9.70 1.00 



CONCLUSIONS 

The model appears to give a reasonable representation 
of total costs for different types of transit systems in 
cities with different density profiles. The results indi
cate considerable sensitivity to the form of transit ser
vice and the parameters of the density function. There 
are weaknesses in the current formulation; improve
ments and extensions are certainly possible. It would 
be desirable to make transit demand (the number of 
trips) and land-use configuration (implied by the density 
profile) sensitive to the provision of transit service, to 
include trips not going to or from the CBD, and to add 
some type of feeder routes to the radial Un.es. 

The study indicated that an areawide rail transit sys
tem, without supplementary conventional bus service, 
is less economical than an areawide busway system with 
the same limitation within the range of density parame
ters examined (roughly those of medium-sized American 
cities). This finding depends on the values assumed for 
the cost and performance parameters, especially con
struction cost. Some medium-sized cities may contain 
sectors that have atypically high densities that would 
justify a rail line. There also may be situations in 
which alignments can be obtained at unusually low cost
perhaps underused railroad rights-of-way or the median 
strips of freeways. Any situation that involves atypically 
low costs for land acquisition and construction is more 
likely to warrant a rail line. This also applies to the 
busway system, which proved more expensive than con
ventional bus service in five of the six hypothetical 
cities. 

It is surprising that ordinary bus service did so well 
in the comparison. This was largely because a dense 
network and close spacing of stops produced substantially 
shorter walking distances than did the alternatives. This 
underlines the importance of complementing high-speed 
main-line facilities with a pervasive feeder system or 
parking facilities at stations or both. 

Both the A and b parameters of the density function 
affect the optimal transit system, but the b parameter 
has much more influence. Its major impact is on the 
length of radial routes and the number of stops. The 
average spacing between stops did not vary much from 
city to city. 

Factors that vary in response to the A parameter can 
be interpreted as sensitive to scale. The results indi
cated that some economies of scale exist, but they are 
not overly significant. They seem to be largest when 
construction costs are involved. 

Historical evidence is conclusive that the values of 
A and b have been declining in cities all over the world, 
which means that cities are becoming more dispersed 
and less centralized. It is noteworthy that the only city 
in which the busway alternative was optimal had the low
est value of b (city 4/ 25). Therefore, the historical de
cline of b values-although certainly related to increas-
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ing use of the automobile-does not necessarily spell 
doom for fixed-guideway transit systems. What happens 
is that trip lengths become longer, which makes it more 
worthwhile to introduce high-speed capital facilities. 

This view conforms with the understanding of trans
portation planners. In most cities, the total number of 
trips to and from the CBD has remained fairly constant 
for years. However, homes are moving outward, and 
people are coming to the CBD from farther and farther 
away. This means that some radial transit improve
ments that could not be justified in the past may be war
ranted in the future. 
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