50

Abridgment

Probability of Sliding of Soil Masses

Dimitri Athanasiou-Grivas, Rensselaer Polytechnic Institute, Troy, New York

The employment of logarithmic spiral failure surfaces
in slope stability analysis was dictated by the need to
bring analytical models closer to the configuration of
actual failures (1). Initially, such surfaces were as-
sociated with unity safety factor and thus were used only
for computations of the critical heights of slopes (2).
The first attempt to adapt the log-spiral against sliding
was made by Frohlich (3). The analytical expression
used was the following:

r=rye )
where

ro = the initial radial vector,
t(=tang) = the soil strength parameter, and
6 = the angle between r, and r (Figure 1).

The factor of safety (F,) with respect to sliding of a
soil mass is equal to (3)

F, = Mp/Mg (2)

where M; = the moment around an axis of all resisting
forces acting on the sliding mass along the sliding sur-
face, and Ms = the moment of all forces driving the soil
mass towards sliding.

After moments M; and Ms are expressed analytically,
Equation 2 becomes Equation 3

F, = Mg/Ms = 1+ {(c/9){(s3 - r) [2t] - 2o}
+[ag +rgef® Ht x t x sin(uly + 8)] 3)

where

r,, ry = radial vectors (Figure 1a),

S =the resultant of all driving forces acting
on the sliding mass (Figure 1b),

a, =the distance between the center of the
spiral and S (Figure 1a),

6 =the angle between ry and the normal to the
direction of S,

6, = the angle between r, and ry,

p = a parameter that determines the center of
rotation and receives values between zero
and infinity, and

¢,t(=tan®) = the soil strength parameters.

In the above equation, all variables are treated as
single-valued quantities. However, in soils, values of
material parameters exhibit a considerable variation
(4). The same is true (1) for the geometric factors in
Equation 3 (i.e., angles 6, and 5; distances r,, ry, and
a.; and quantity p). Thus, a more reliable approach to
the measure of safety of a soil slope must take into ac-
count uncertainties such as material parameters and the
shape and location of the failure surface.

PROBABILITY OF SLIDING

In recent years, the use of probability theory and sta-
tistical analysis has provided an alternative to the de-
termination of the factor of safety. In its classical
formulation, sliding of a soil slope is assumed to occur

when the calculated moment of all resisting forces (Ms)
becomes smaller than that of the driving forces toward
failure (Ms); that is, Sliding = [Ms< Msl. The prob-
ability of failure in sliding is then defined as p: =

PIM: <Ms] = PIM:/Ms <11, where P[ ] indicates the
probability that the driving forces exceed available
strength. In Equation 3 the expression Ms/M, = F, <1
isidenticaltoc/S[(r% - r2)/2t] -2, <0, i.e., the num-
erator of the second term of the right side of Equation
3 becomes negative. Therefore, the expression for p;
becomes

pe =P{(c/S)[(t3 - 13)/2t] -3, < O} or
Pe = Plc(r3 - rip/2t < Sag] 4)

The quantity (r% - rj)/2t, in Equation 4, is equal to
twice the area (A) of the region OBMAQ, shown in Fig-
ure la, or

(2 -th)/2t = 2A (5)

and the quantity Sa, gives the moment, say M,, of the
driving forces around the center of the sliding surface;
i.e,, M, = 8a,. In the case where the value of the fac-
tor of safety is equal to unity, or (2¢) A = M,, the mo-
ment M, varies in proportion to the area A, the co-
efficient of proportionality being the double value of the
¢ strength parameter. If this product is denoted by M,
i.e., if

M =2cA =c(13 - 13)/2t (6)

and the expressions for M and M, are introduced into
Equation 4,

Pe=P[M <M,] N

The uncertainty of the value of M reflects the uncer-
tainties of the strength parameters ¢ and t and, also, of
the location of the center 0 of the sliding surface (the
latter is determined by the geometric factors h, and 6,).
From Equation 6 it can be seen that the value of M (ran-
dom variable) ranges between zero (lower limit) and in-
finity (upper limit). As was the case with other random
variables (1), it can be assumed that M follows a log-
normal distribution. Under this assumption, the prob-
ability density function of M is (5)

M) = 1/0/ 27 oy M) exp{-42[(InM - M)/oy] 2} (8)

where 0 < M < @ and M and ox denote the mean value and
standard deviation of M, respectively.

Combining Equations 7 and 8, the following expres-
sion for the probability p; of sliding of the soil mass is
then derived:

Mg
pr = f f(M)dM = F(M,) €)]
0

where F(M,) = the cumulative log-normal distribution
evaluated at M..
As M is taken to be log-normally distributed, the



Figure 1. Logarithmic-spiral sliding surface and
polygon of forces.

a. Log-spiral Mode of Sliding b.

variable x, which is equal toInM, isnormally distributed.
If the coefficient of variation and mean value of x are
denoted by S, and p,, respectively, then

S, = [In(VE + 1)] % (10a)
and
Bx =1n(M) - 82/2 (10b)

Introducing the normalized variable z, defined as
z = (InM - p,)/S,, the expression for the probability of
sliding p: becomes:

pe =P[M <My] =Pz < z5] = ¥(zg) a1

where z, = the value of z evaluated at M = M,, and ¥( )=
the well-tabulated cumulative standard normal distribu-
tion.

STATISTICAL VALUES OF MOMENT (M)

Equations 10 and 11 can be solved provided that the mean
value (M) and standard deviation (oy) of M are deter-
mined. For a given surface of sliding (.e., (% - r%) =
constant = b), Equation 6 suggests that the value of mo-
ment M depends on the strength parameters ¢ and t and
the geometrical constants r, and ry. Equation 6 can be
reduced to

M=bc/t (12)

where b = /(r3 - rf). If ¢ and t are independent random
variables, the mean value M and variance Var(M) of M
can be found by means of a Taylor series expansion of
the function M(c, t) around the point M(C, t), where T and
t denote the mean values of ¢ and t, respectively (6);
i.e.,

M =M, 1) +%{[(32M)/dc?] Var(c) + [(82M)/dt2] Var(t)} (13a)

Var(M) = (3M/9c)? Var(c) + (3M/3t)? Var(t) (13b)

where Var(c), Var(t) are the variances of ¢ and t, re-
spectively, and the derivatives are evaluated at the mean
values of the variates.

From Equation 12 one has
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Polygon of Forces

T,0,8

aM/dc = b/t, 92M/dc? =0, aM/dt = - be/t?,
02M/0t2 = 2bc/t? (14)

Combining Equations 13 and 14,

M =b [ct? + ¢ Var(t)]/t? (15a)
and
Var(M) = b2 [t2Var(c) + c?Var(t)]/t* (15b)

The coefficient of variation Vy of M can be determined
from Equations 15 as

Vy = o/M ={ T/[ct? + ¢ Var(t)]} [t2 Var(c) + c? Var(t)] % (16)

where Vy is independent of the constant b. _

In Figure 2, the mean value of the quantity M/b is
plotted versus the mean value (1) of the strength param-
eter t for various values of ¢. Studies of the variability
of the soil strength parameters t and ¢ have indicated
(4) that their coefficients of variation V, and V, approach
values of 15 and 70 percent, respectively. These same
values for V, and V, have, therefore, been adopted in
this paper.

EXAMPLE

The slope shown in Figure 3 has a height h = 9.75 m
(32 ft) and an angle g = 40°. The mean values and co-
efficients of variation of the strength parameters of the
soil, determined from conventional triaxial tests, are
also shown in the figure. The moist unit weight of the
soil is assumed to be 1762 kg/m® (110 1b/ft®). The
probability of failure, or the reliability of this slope, is
to be determined.

Three random factors in Equation 1 reflect the un-
certainty of (a) the location of the center of the rupture
surface, (b)the point of initiation of the rupture surface,
and (c) the value of the t-strength parameter of the soil
material. A procedure necessary to generate such sur-
faces was presented previously (1). The assumptions
involved are that the failure surface begins at the toe of
the slope and the coordinates 8, and h, of the center of
the log-spiral (Figure 1) follow a beta distribution. In
Figure 3, the mean failure surface can be found through
an application of the Monte Carlo simulation technique
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Figure 2. Influence of the statistical values of strength parameters M/b
on the mean value of the moment (M}.
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Note: 1 kg/m? = 0.2 Ib/ft2

Figure 3. Slope section and soil parameters used for the case study.

Probability of Failure=3.2%

Surface of Sliding

Soil Parameters Coef. of
Variation

I Mean Value

= parameter {1799 (kg/m<) IW
parameter | 0,364(3=20°)] 15%

Unit Weight: v = 1762 (kg/m>)

Note: 1 kg/m? = 0.2 Ib/ft?, 1 kg/m® = 0.06 Ib/ft°,

(1). The center of the log spiral has coordinates h, =
22.81 m (74.83 ft) and 8, = 0° (Figure 1). The quantities
ry and 8, are thus equal to 17.42 m (57.14 ft) and 43°,
respectively.

The driving moment (M,) due to the weight of the
sliding soil mass is equal to M, = Wa, (3), where a, is
shown in Figure 1. Area A (determined by Equation 5)
and distance a, {(measured graphically in Figure 3) are
equal to 42.67 m*/m (140 ft*/ft) and 6.1 m (20 ft), re-
spectively. Therefore, Mo =7y - A - a. = (1762) (42.67)
(6.1) = 458 626 J/m (154 ft-tons/ft).

From Figure 2, fort = 0,364 and € = 1797.3 kg/m®
(368.3 1b/ft*) we find M/b ~ 5053 kg/m® (1035 1b/ft?),
where b = (r} - ri)/2 = [(22.81)% - (17.42)*1/2 = 103.15 m®
(1167.27 £t*).

Therefore, M = (5053) (103.15) = 521 234 J/m (604.1
ft-tons/ft).

The coefficient of variation M (V) is found from
Equation 16 to be equal to 70 percent.

For M = 521.234 J/m® (604.1 ft-tons/ft) and Vy = 70
percent, Equation 10 yields S; = 0.6315 and p, = 12.96.
The probability of sliding of the slope can now be deter-
mined from Equation 11 as follows:

pr = Plz <zy] = W(-1.8485) ~3.2% an

DISCUSSION AND CONCLUSIONS

Statistical analysis and probability theory can be used
as alternatives to conventional (deterministic) methods
for evaluation of slope stability. In this paper, the re-
liability of a soil slope against sliding was evaluated
from its probability of failure. This was defined as the
probability that the resisting moment My was exceeded
by the driving moment M. Sliding was assumed to oc-
cur along a log-spiral path. This assumption is con-
sistent with results obtained through stochastic modeling
of the propagation of failure surfaces (7).

As the variation of the unit weight (¥) of the soil is
relatively small, ¥ was assumed to be constant. Thus,
moment M was expressed as a function of only two ran-
dom variables: strength parameters ¢ andt. The vari-
ability of ¢ and t in the expression for the moment M
was investigated by means of a Taylor series expansion
of M(c, t) around the point M(c,t). It should be noted that
this method gives only approximate values for the mean
and variance of M. If greater accuracy is required, a
more precise procedure, possibly a simulation approach,
should be employed.

In the illustrative example it was found that the prob-
ability of failure of the slope was approximately 3.2 per-
cent or, out of 100 identical slopes, on the average, 3.2



would fail. The reliability of this slope is then said to
be equal to 96.8 percent.

Based on the results of this study, it is concluded
that

1. The probabilistic model developed here can be
used to find a value of the probability of failure (or, the
reliability) of a soil slope. This depends on the slope
geometry and on the statistical values of the soil param-
eters.

2. The method can be applied to either deep or shal-
low failures. The kind of failure is reflected in the prob-
ability density functions of the coordinates of the center
of the sliding surface.
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Soil-Culvert Interaction Method for

Design of Metal Culverts

J. M. Duncan, University of California, Berkeley

A simple and rational method for the design of metal culverts, the
soil-culvert interaction method, is described and compared to currently
used design procedures. The principal advantage of the soil-culvert
interaction method over those previously developed is that it provides
a logical procedure for determining minimum required depth of cover,
by consideration of the bending moments caused by live loads. Pre-
viously, minimum depths of cover have been determined empirically,
using field experience. Values of minimum cover and maximum fili
height determined using the soil-culvert interaction method are com-
pared with values from published fill-height tables. The comparisons
show that the soil-culvert interaction method gives values that are in
good agreement with design experience for a wide range of corruga-
tions and culvert diameters.

A simple method for design of metal culvert structures
has been developed to provide rational procedures for
designing culverts with deep or shallow cover. Design
for deep cover is based on consideration of ring com-
pression forces. Design for shallow cover is based on
consideration of both ring compression forces and
bending moments. The method, the soil-culvert inter-
action (SCI) method, is applicable to circular pipes,
pipe arches, and arches constructed of corrugated steel
or aluminum. It may be applied to structures having
stiffening ribs that are curved to conform to the shape
of the culvert barrel and attached to the barrel at
frequent intervals. However, it is not applicable to
soil bridge structures, which use straight ribs, fin
plates, and sometimes strut to stiffen the upper part of
the structure. The SCI method has been found to give
values of maximum and minimum cover that are in good
agreement with design experience as reflected in pub-
lished fill-height tables and with the observed behavior
of culverts in the field.

BASIS FOR SCI METHOD

The SCI design procedure is based on the results of
finite element analyses, which modeled boththe culvert
structure and the surrounding backfill. Detailed re-
sults of the analyses and comparisons with field mea-
surements were described by Duncan (1). Similar
analyses were performed by Allgood and Takahashi (2),
Abel and others (3), and Katona and others (4). The
analyses on which the SCI method is based simulated
the placement of backfill around and over the structure,
and subsequent application of live loads on the surface
of the backfill. Nonlinear and stress-dependent stress-
strain relationships for the backfill soils were employed
in the analyses. The results of these analyses were
used to derive coefficients for ring compression forces
and bending moments for design.

STEPS IN SCI DESIGN PROCEDURE

1. Calculate the rise/span ratio (R/S). The defini-
tions of rise and span as used in this procedure are
shown in Figure 1.

2. Calculate the maximum ring compression force

P =K, 7S + KppyHS + K LL )
where
P = ring compression force (kN/m);

ring compression coefficient or backfill,
from Figure 2 (dimensionless);

K,



