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parking is a non-capital-intensive improvement that is 
well suited to use as a TSM strategy. This improvement 
is being used in local corridors and busy intersections 
or blocks to improve traffic flow. However, certain 
parking strategies have both short-range TSM and long­
range planning aspects. For example, street parking 
can be eliminated at little cost, and this will improve 
local traffic flows and reduce accidents. However, 
when substantial amounts of on-street parking are 
eliminated, most cities have to provide additional off­
street parking. This procedure is usually expensive, 
ranging from the purchase of land to the construction of 
parking garages, and takes considerable time to plan 
and implement. Thus, this strategy is more suited to 
use as a long-range planning element. 

The majority of parking strategies are, in fact, long­
range planning elements. For example, a freeze on the 
number of parking spaces within a city would take con­
siderable planning to implement to ensure that mobility 
and the economic life of the affected area were main­
tained. These improvements, although not necessarily 
capital intensive, would require complementary strat­
egies that, for the most part, would be expensive. 

CONCLUSIONS 

The environmental, economic, and energy issues of 
recent years have caused new emphasis to be placed on 
using parking management strategies to reduce automo­
bile travel and increase the use of public transportation. 
Based on a review of the literature and the results of a 
survey questionnaire of U.S. cities, the following con­
clusions are offered. 

1. Parking management strategies are not widely 
used on an areawide basis. 

2. Parking sfrategies in the realm of TSM actions 
include (a ) providing snort-term par king, (b) eliminating 
on- sh'eet parking, and (c) strictly enforcing parki ng 
regulations. Most other strategies can have a dramatic 
effect on an urban area and are being implemented care­
fully over a long period of time. Thus, some parking 
strategies are short-range in nature and others are more 
appropriately part of the long-range element. 

3. Parking strategies generally have diverse effects 
on an urban area. For example, encouraging short-term 

on-street parking may attract shopping trips and help 
revitalize the central business district. However, this 
will increase overall vehicle kilometers of travel, which 
will counter attempts to reduce air pollution and con­
serve energy. 

4. There have been very few attempts to evaluate the 
effectiveness of parking controls, and little is known 
about the interrelationships between parking management 
strategies and supporting services. 

5. There are few legal problems associated with im­
plementing parking controls; however, public, political, 
and business opposition act as a deterrent to their im­
plementation. 

6. The use of parking policies to improve air quality, 
conserve energy, or attain other national goals may not 
achieve beneficial results in many urban areas, but could 
produce strong public opposition and cause economic de­
cline of the central city. 

7. In most cities, there is no perceived local prob­
lem that would require the extensive use of parking regu­
lations to limit automobile travel. 

8. Parking management policies may have beneficial 
effects in urban communities if they are applied gr ad­
ually to alleviate local problems and promote achieve­
ment of local planning goals. 
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Freeway Incident-Detection 
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With States 
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Incident-detection algorithms are a part of an overall freeway-traffic 
management system. These algorithms provide indications of the 
probable presence of freeway incidents by processing electronic sur· 
veillance data. In this paper, a class of algorithms that are designed 
to discriminate patterns in the data peculiar to incidents are de· 

scribed. The generic structure of these algorithms is the decision tree 
with states, the states corresponding to distinct traffic conditions. 
Ways to calibrate algorithm thresholds are described and applied to 
the algorithms. Performance evaluations based on traffic data from 
the Los Angeles system are presented. 



An important function of freeway traffic management is 
the detection of and response to freeway incidents. Past 
research (1, 2) and operating experience have dem­
onstrated that the detection of incidents can be automated 
through the use of specific incident-detection algorithms 
that operate on electronic surveillance data to produce 
indicators of the probable presence of an incident. The 
previously developed algorithms, however, are less ef­
fective than is desirable for operational use because they 
generate a high level of false alarms. This paper de­
scribes several new algorithms that are based on a gen­
eralization of the structure of the California algorithm, 
the decision tree with states, and that have been dem­
onstrated to have significantly improved performance 
through evaluations based on a large amount of real sur­
veillance data. 

The results reported here represent a portion of the 
results obtained in the study; they are more fully re­
ported elsewhere (3, 4, 5, 6, 7, 8) and have also been sum-
marized (9). - - - - - -

The study was empirical in nature, being based en­
tirely on a large amount of data obtained from the Los 
Angeles and Minneapolis freeway surveillance systems. 
In all, more than 10 000 000 vehicle-sensor crossings 
and approximately 150 incident events were used in the 
developments and evaluations. This is by far the most 
extensive data base ever used in research on incident­
detection algorithms. Although more detailed data were 
available from the Los Angeles system, the data used 
in the algorithms were 20- and 30-s occupancies and 
volumes, averaged over all lanes at a station. 

The research involved, first, an evaluation of pre­
viously developed algorithms (3). This evaluation indi­
cated the superiority of occupancy-based algorithms, 
especially those that use occupancy values at adjacent 
stations on the freeway. Algorithms based on double 
exponential smoothing were among the best found, but 
the multiplicity of incident indications they generated 
was deemed to be an operational disadvantage. Subse­
quent evaluations (5) established that the California 
algorithm is the best of these, in that its detection-false 
alarm performance is best and, moreover, the incident 
indication was consistently associated with the actual 
location of the incident. This result contradicts earlier 
findings (1). A detailed examination of these earlier 
findings and our findings, however, showed that the 
bases for the conclusions were different. Generally, 
our findings emphasized detection rate performance at 
much lower false-alarm rates. 

The results of these evaluations were used for the 
principal portion of the study, that of developing and 
evaluating new algorithms (which is the subject of this 
paper). The development of new algorithms initially 
followed two paths. The first, which was based on a 
complex, time-series approach (5), did not provide ef­
fective algorithms for the heavier traffic regimes that 
were our principal concern, but it does hold promise for 
light-to-moderate traffic regimes. The second path was 
based on extensions to the structure of the California 
algorithm. 

Further attention was given to the effects of geomet­
rics, sensor configurations, malfunctioning sensors, and 
weather and to means for identifying the lane of the in­
cident (5). 

The next section of this paper describes and analyzes 
the California algorithm and introduces the decision tree 
with states as a generic structure for several new 
incident-detection algorithms. Following this, we define 
the measures of performance, and detection and false­
alarm rates and describe how the multiple thresholds in 
an algorithm can be calibrated to give an optimum trade­
off curve in terms of these measures. 
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The several new algorithms and one old one are in­
troduced after a discussion of the patterns in traffic data 
whose identification played a major role in the develop­
ment of the new algorithms. Performance evaluations 
are presented for these algorithms. 

CALIFORNIA ALGORITHM 

As a preliminary to the introduction of decision trees 
with states as a general structure for incident-detection 
algorithms, we will describe the structure of the Cali­
fornia algorithm and how its elements relate to patterns 
in traffic data. Of all previously defined incident­
detection algorithms, the California algorithm is clearly 
superior (3, 5). Furthermore, the California algorithm, 
as compared with other algorithms, has the unique char­
acteristic that three functions, rather than a single one, 
of the traffic data are used and that these functions (or 
features as we will henceforth refer to them) are selected 
to distinguish, in combination, patterns in the traffic 
data specifically related to incidents. 

The several features-OCC, DOCC, OCCDF, 
OCCRDF, and DOCCTD-that are used in the California 
and the other algorithms to be described here are de­
fined below [station indexes (i) increase in the direction 
of travel]. 

Feature Description Definition 

OCC(i, t) Occupancy at station 
i, for time interval t 
(percent) 

DOCC(i, t) Downstream occu- OCC(i + 1, t) 
pancy 

OCCDF(i, t) Spatial difference in OCC(i, t) - OCC(i + 1, t) 
occupancies 

OCCRDF(i, t) Relative spatial dif· OCCDF(i, t)/OCC(i, t) 
ference in occu-
pancies 

DOCCTD(i, t) Relative temporal [OCC(i + 1, t-2)-0CC(i + 1, t)) I 
difference in OCC(i + 1, t - 2) 
downstream occu-
pancy 

All features involve only the use of occupancy, measured 
as the average over all instrumented lanes at a single 
location on the freeway and over a 1-min interval. 

Algorithms based on features involving volume and 
the volume-to-occupancy ratio were also investigated 
but were generally found to be inferior (3). 

The California algorithm is described in Figure 1. 
This algorithm, as originally defined, used in place of 
DOCCTD a similar feature in which OCC (i+ 1, t- 5) 
replaced OCC (i+ 1, t - 2) as it appears in the definition 
of DOCCTD given above. The latter version is some­
times referred to as the modified California algorithm. 
It is seen that three features are used that have three 
corresponding thresholds. This algorithm is an example 
of a decision tree. The algorithm is executed in a se­
quence of steps, starting at the top, or root node (see 
Figure 1). The first test is made, and a branch to the 
left (OCCDF :.: T1) or right (OCCDF < T1) is followed. In 
this instance, a branch to the right yields a final desig­
nation of incident-free conditions, which are coded here 
as a state value of 0. Otherwise, subsequent tests are 
made in a similar manner, until a final designation of 
incident or incident-free is made. 

This algorithm is executed for each adjacent pair of 
sensor stations, i.e., for sections of the freeway bounded 
by the sensor stations, at regular intervals of 20 s (as 
in Los Angeles), 30 s (as in Chicago and Minneapolis), 
or 1 min (as in our study). 

The structure of the California algorithm derives 
from a consideration of the pattern of traffic data that 
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typically arises when an incident occurs. An example 
of this pattern is given in Table 1, which uses actual 
values of occupancy taken from the Los Angeles system. 
The pattern that develops can be explained on a theoreti­
cal basis, but it is sufficiently evident that here we ap­
peal only to driving experience and simple facts. The 
incident reduces the capacity of the freeway at the site 
of incident. If the resultant capacity is less than the 
volume of traffic upstream, congestion builds up (i.e., 
queueing develops); the boundary of the congested region 
propagates in an upstream direction on the freeway at 
a typical speed of 8 to 16 km/ h (5 to 10 mph) (although 
this speed depends on the particular values of the capac­
ity at the site and the upstream volume). The congested 
area includes the upstream sensor stations in an orderly 
sequence following the occurrence of the incident. 

Downstream of the site of the incident, the freeway 

Figure 1. California algorithm. 

---
INCIDENT-FREE CONDITIONS 

I NC IDENT corm ITI ONS 

Table 1. Occupancy values: incident data set 74051501, Santa 
Monica Freeway eastbound. 

1-Min Occupancy at station' 

Time 21 22 23 24 25 26 27 

7: 05 15 17 15 16 16 17 15 
7:06 15 18 13 13 15 16 15 
7:07 16 16 15 15 15 15 14 
7:08 14 17 17 15 17 15 15 
7:09 15 17 17 16 16 15 16 
7: 10 16 18 18 19 15 15 14 
7:11 17 17 19 17 16 16 15 
7: 12 18 19 15 17 18 15 15 
7: 13 15 19 17 16 20 18 20 
7: 14 16 17 17 17 18 18 25 
7: 15 18 19 18 16 17 20 21 
7:16 18 17 17 18 19 15 23 
7:17 17 21 17 19 21 14 17 
7:18 14 20 19 17 43 10 19 
7: 19 15 21 20 30 33 10 11 
7: 20 14 18 18 47 32 10 13 
7: 21 14 16 34 30 29 9 11 
7: 22 16 14 30 38 37 12 10 
7:23 15 19 21 37 32 10 10 
7:24 15 27 20 46 33 11 9 
7:25 17 37 27 36 36 11 11 
7:26 25 32 43 30 32 12 11 
7: 27 26 20 26 33 40 11 12 
7:28 44 20 20 42 44 12 10 
7: 29 37 38 20 40 30 15 11 
7: 30 27 42 28 41 25 l4 14 
7: 31 26 32 37 30 27 14 14 
7:32 34 25 29 29 37 11 12 
7:33 30 22 33 43 27 14 12 
7:34 28 35 37 32 24 13 13 
7:35 26 44 38 32 22 12 12 
7:36 35 28 28 29 22 14 13 
7: 37 54 33 27 30 29 12 14 
7: 38 35 42 23 29 30 12 13 
7:39 30 37 21 41 29 13 13 
7:40 49 31 24 36 40 14 13 

Note: Incident occurred at 7:15:40 between stations 25 (upstream) and 26 (downstream). 

'Station indexes increase in direction of travel. 

is cleared of traffic; the boundary of the cleared region 
propagates downstream at a speed that may be as high 
as 80 km/h (50 mph). 

Thus, an incident creates, after some interval of 
time, a significant difference in occupancy values at the 
sensor stations bounding the site of the incident. The 
features OCCDF and OCCRDF are intended to measure 
this effect. Two features are used (rather than OCCRDF 
alone, for example) to avoid problems in light traffic 
where OCCRDF might be briefly large due to normal 
fluctuations in traffic data. 

However, other normal conditions can also produce 
significant differences in occupancy values. Geometric 
bottlenecks are a frequent source of such differences. 
The occurrence of an incident can often be distinguished 
by the fact that the downstream occupancy decreases 
rather abruptly, so that the feature DOCCTD would have, 
briefly, an unusually large value. This is the third fea­
ture used in the California algorithm. 

DECISION TREES WITH STATES 

In freeway operations, it is desirable not only to detect 
the occurrence of an incident, but also to know when it 
has terminated. A simple means for accomplishing this 
is to augment the California algorithm in the manner 
suggested in Figure 2. Note that we now make use of 
four state values: 0 corresponds to incident-free con­
ditions, 1 corresponds to termination, 2 corresponds 
to the initial detection of the incident, and 3 corresponds 
to the continued presence of incident conditions. The 
state values are retained for each section and used in 
the subsequent application of the algorithm. For ex­
ample, Figure 2 shows that the first test in the algorithm 
is state :.: 2. This is a decision tree with states. 

We have found this general structure to be useful in 
a variety of ways; many more state values can be identi­
fied to provide a more refined classification of the traf,;; 
fie condition. 

Aey algorithm based on a decision tree can be defined 
by a data structure and a general algorithm for running 
down the tree. As a result, such algorithms are very 
easy to implement and extremely fast to execute. De-

Figure 2. Refinement of California algorithm (algorithm 2): 
example of decision tree with states. 

STATE DESIGNATES 

INDICENT-FREE CONDITIOl~S 

INCIDENT TERMINATED 

INCIDENT OCCURRED 

l NC !DENT CONT!NU l NG 



tails of these matters are beyond the scope of this paper, 
but can be found elsewhere ~. £., J). 

PERFORMANCE MEASURES AND 
THRESHOLD CALIBRATION 

Up to this point, we have been concerned with features 
and the algorithm structure. Completion of the specifi­
cation of an algorithm requires specification of the set 
of thresholds, e.g., T1, Tz, and Ta in Figure 1. As pre­
viously implemented, the thresholds for the California 
algorithm were determined by a trial-and-error pro­
cess. A commonly used set is T1 = 8, Tz = ,0.5, and T3 = 
0.15. Our purpose here is to describe a systematic 
threshold-calibration technique. This technique is de­
signed to yield optimal performance as measured by 
false-alarm and detection rates. 

Four possibilities arise when an incident-detection 
algorithm is executed, as indicated below. 

Condition 
Indicated by 
Algorithm 

Incident-free 
Incident 

Actual Condition 

Incident-free Incident 

Missed detection 
False alarm Detection 

By accumulating the results over a number of tests and 
defining N, = total number of tests performed by the 
algorithm and N,A = total number of false-alarm signals 
generated by the algorithm, we can compute the false­
alarm rate as 

o: =false-alarm rate (percent) = 100 x NFAINF 

Next, by defining Nr = number of incidents and No= 
number of incidents detected, we have 

(3 =detection rate (percent) = 100 x N0 /N1 

(I) 

(2) 

To determine that a valid detection has been made, 
we must define the spatial and temporal deviations al­
lowable between the actual incident event and the detec­
tion event. Our assessments required detections in a 
time interval beginning 5 min before and ending 20 min 
after the estimated time of occurrence and correspond­
ing to the actual section on which the incident occurred 
or the next downstream section. 

Other measures are also of interest, e.g., the mean 
time to detect but, in the interest of brevity, we shall 
confine our attention in this paper to the measures de­
fined above. Information pertaining to the mean time 
to detect can be found elsewhere (5). 

The false-alarm and detection rates clearly depend 
on the choice of threshold set, which we will denote as 
a whole by T. Suppose there is a requirement on the 
detection rate; if an allowable threshold set T is one for 
which /3(T) ., y, y is the minimum detection rate speci­
fied. Of all such threshold sets, the best one is that 
which minimizes the false-alarm rate. This leads to 
consideration of the problem 

min ( o:(T) 1{3(T) ;. y} 
T 

The solution of this problem yields a threshold set T*(y), 
a detection rate 13[T*(y)J ., y, and a false-alarm rate 
a[T*(y)J. By varying the parameter (y), one obtains cor­
responding threshold sets and false-alarm rates. Thresh­
old calibration is thus reduced to a sequence of con­
strained minimization problems, where the functions in­
volved [cx(T) and /3(T)] are defined by application of the 
algorithm to the available data. This procedure was 
mechanized in our study and used extensively to produce 
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threshold sets. Details of the procedures and software 
are available elsewhere (5, 7). 

Note the inherent trade-off: as the requirement on 
the detection rate is increased, the corresponding best 
false-alarm rate is also increased. The results of the 
calibration are therefore in the form of a trade-off 
curve. 

PATTERNS IN TRAFFIC DATA 

In the course of developing and evaluating incident­
detection algorithms, we have discovered that certain 
types of patterns in the traffic data appear repeatedly and 
have developed an understanding of traffic conditions 
that provides rational explanations for the appearance 
of such patterns. In this section, we describe and ra­
tionalize these patterns so that the directions used in 
the development of the algorithms can be more easily 
understood. 

Incident Patterns 

Depending on the nature of an incident and the traffic 
conditions prevailing at the time, the pattern that the 
traffic data develop in the presence of that incident may 
be one of five types. 

The first type is the most distinctive in that it is the 
most easily discriminated from patterns associated with 
incident-free conditions. This pattern occurs when the 
capacity at the site of the incident is less than the vol­
ume of oncoming traffic so that a queue develops up­
stream. Simultaneously, a region of light traffic de­
velops downstream. An example of this pattern is il­
lustrated by the occupancy data given in Table 1. This 
pattern is clearest when traffic is fl.owing freely before 
the incident occurs. 

The second type of pattern occurs when the prevailing 
traffic condition is freely fl.owing but the impact of the 
incident is less severe (for example, as might result 
from a lane blockage that yields a capacity at the site of 
the incident that is greater than the volume of oncoming 
traffic). This situation is more difficult to distinguish 
from certain incident-free patterns and, therefore, may 
not result in a detection. 

The third type of pattern occurs, again, in freely 
flowing traffic, but the impact of the incident is not no­
ticeable in the traffic data. This may occur when the 
incident is a disabled vehicle in the median. Incident­
detection algorithms cannot be expected to detect inci­
dents of this sort. 

The fourth type is one that occurs in heavy traffic 
when the capacity at the incident site is less than the 
volume (and the capacity) of traffic downstream. This 
difference leads, generally, to a clearance in the re­
gion downstream of the incident. Here the traffic pat­
tern evolves rather slowly, and a distinguishable pattern 
develops only after several minutes. Obviously, a very 
severe incident in which several lanes were blocked 
would result in rapid development of the pattern, but the 
more typical situation is one involving a slowly develop­
ing pattern. 

The fifth type occurs in heavy traffic in which the 
capacity at the site of the incident is not less than the 
downstream volume. The effects are then localized and 
are not noticeable in the traffic data. Incident-detection 
algorithms cannot be expected to detect incidents of this 
sort. 

Patterns in Incident- Free Traffic 
That Tend to Produce False Alarms 

Four types of patterns occur under incident-free con-
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ditions that are similar to incident patterns and therefore 
tend to produce false alarms. The first of these is that 
related to malfw1ctioning detectors (5). 

The second type arises in heavy traffic in which in­
dividual vehicles experience significant speed variations. 
This phenomenon shows up in traffic data in the form of 
compression waves that propagate in a direction counter 
to the flow of traffic. Several such waves can be seen 
in the occupancy data given in Table 2. An examination 
of these data shows significant station-to-station dif­
ferences in occupancies of the same magnitude as is 
seen in patterns related to incidents. This pattern is 
the most significant contributor to false alarms for algo­
rithms identified before OUl' work (at least as measured 
with respect to the Los Angeles data). 

The third is associated with abnormal geometrics, 
for example, that which is found at freeway-to-freeway 
interchanges. 

The fourth is associated with bottlenecks (for ex­
ample, at locations that have a substantial volume of on­
ramp traffic). These bottleneck locations are such that 
the total demand exceeds the capacity of the freeway. 
Examples of these latter two types of patterns are given 
elsewhere ~). 

Consequences for Algol'ithm 
Development 

It should be evident from this disucssion that effective 
incident-detection algorithms require more than an iden­
tification of a discontinuity in the traffic data-there are 
numerous such occurrences in incident-free data. The 
algorithms we have developed explicitly account for the 
differences in the detailed nature of the discontinuities 
found in the traffic stream under incident and incident­
free conditions. Our developments have led to algo­
rithms that can always detect the first type of incident 
pattern and can sometimes detect the second and fourth. 
At the same time, certain algorithms have been devel­
oped that are invulnerable to compression waves. 

Incidents in light traffic are not generally detected by 
the algorithms we have developed. Tignor (10) has 
investigated the application of single-exponential smooth­
ing to the detection in this regime. Another potentially 
effective means for detecting such incidents involves 
the use of traffic correlation and is discussed elsewhere 
(§_). 

SEVERAL NEW ALGORITHMS 

The algorithm depicted in Figure 2 is a slight modifica­
tion of the California algorithm. We now wish to turn to 
descriptions of several new algorithms that have been 
developed to discriminate more effectively, based on a 
qualitative assessment of patterns in traffic data, and 
that have, in fact, been found to have superior perfor­
mance. In all, our reseai-ch yielded·lO algorithms (in­
cluding, essentially, the California algol'ilhm and 2 
simple variants). Our discussion here will be limited 
to a discussion of two of these, which for consistency 
with the references cited are denoted as algorithm 7 and 
algorithm 8. 

Many-but not all-disturbances in incident-free traf­
fic are short-lived and, although they may produce an 
incident signal, the associated incident-continuing state 
value does not last long (if it is produced at all). This 
is in contrast to the majority of incidents that produce 
a discontinuity in the traffic stream that generally lasts 
at least several minutes. Thus, it has been suggested 
that improved performance might be obtained by requir­
ing that the discontinuity persist for a period of time. 

The state feature of the binary-tree structure we have 

adopted provides a convenient way to include a persis­
tence requirement. In its simplest form, one sets the 
state value equal to, for example, 1 when a discontinuity 
is first detected and then signals an incident (state value 
equal to, for example, 2) if the next test (for that station 
or section) indicates that the discontinuity has persisted. 

Algorithm 7, which is illustrated in Figure 3 and has 
the same state values as algorithm 2, incorporates this 
persistence requirement and involves replacement of 
DOCCTD by DOCC, the occupancy at the downsti·eam sta­
tion. This choice is based on the observations that (a) the 
most common cause of false alarms in the California al­
gorithm is a compression wave that moves in a direction 
counter to the fl.ow of the traffic and (b) in heavy traffic 
that has compression waves, the downstream occupancy 
rarely drops below 20 percent (in the Los Angeles data), 
whereas incidents generally produce downstream occu­
pancies substantially less than 20 percent. 

The application of the threshold-calibration method­
ology described above yielded the performance measures 
and threshold sets given in Table 3. 

Compression waves in heavy traffic are a principal 
source of false alarms, and some success in eliminating 
such false alarms is obtained by using algorithm 7. Fur­
ther efforts to improve performance in heavy traffic in­
volved attempting to account for the regularity in the pat­
tern of traffic associated with compression waves. 

Consider the data given in Table 2 for an incident-free 
data set. As we have noted, compression waves are 
manifested by sudden large increases in occupancy that 
move through the traffic stream in a direction counter to 
the direction of travel. Attempts were made to account 
for this pattern through the use of correlation analysis 
(5), but the patterns were not sufficiently regular for 
this technique to be successful. 

Therefore, we considered a more gross way to ac­
count for the observed patterns. As Table 2 shows, a 
large increase at one station is typically followed some 
2 to 5 min later by a large increase at the next station 
upstream. The typical station spacing in Los Angeles 
is 0.8 km (0.5 mile), corresponding to a shock wave 
speed of 9. 7 to 24 km/h (6 to 15 mph). The fact that a 
compression wave has passed over a station can be 
captured by the simple test shown in Figure 4, where 
T5 = 30 and Tz = -0.250 have been found to be effective. 

Of course, incidents also produce patterns that would 
yield positive results for this test. In heavy traffic that 
has compression waves, one would expect that a positive 
result for this test would be followed, typically within 5 
min, by a positive result at the next station upstream. 
Thus, incidents are distinguished by the absence of a 
compression wave at the downstream station in the pre­
vious 5 min. 

Algorithm 8, which is shown in Figure 5 and has state 
values as defined below, uses the state feature in an un­
usual way. 

State Designates 

0 I ncident·free 
1 Compression wave downstream in this minute 
2 Compression wave downstream 2 min ago 
3 Compression wave downstream 3 min ago 
4 Compression wave downstream 4 min ago 
5 Compression wave downstream 5 min ago 
6 Tentative incident 
7 Incident confirmed 
8 Incident continuing 

Essentially, this algorithm suppresses incident detec­
tion at any station for a period of 5 min after detection 
of a compression wave at the downstream station. This 
algorithm, which has both a persistence requirement 
and a continuing incident state, may appear to be com-



Table 2. Occupancy values: incident-free data set 74090454, San 
Diego Freeway southbound. 

1-Min Occupancy at Station' 

Time 

7: 10 
7: 11 
7: 12 
7: 13 
7: 14 
7: 15 
7: 16 
7: 17 
7: 18 
7: 19 
7:20 
7: 21 
7:22 
7:23 
7:24 
7:25 
7:26 
7:27 
7:28 
7:29 
7:30 
7: 31 
7: 32 
7: 33 
7: 34 
7: 35 
7: 36 
7: 37 
7: 38 
7:39 
7:40 
7:41 
7:42 
7:43 
7:44 
7:45 

32 

15 
13 
16 
13 
14 
14 
14 
13 
14 
16 
21 
14 
14 
14 
13 
24 
39 
23 
26 
31 
30 
31 
37 
50' 
53 
48 
29 
37 
38 
40 
53 
37 
41 
38 
56 
64 

31 

20 
21 
19 
18 
22 
20 
18 
21 
24 
26 
24 
26 
52 
27 
26 
21 
20 
21 
24 
26 
60' 
41 
29 
26 
22 
21 
28 
33 
29 
25 
23 
47 
30 
26 
24 
25 

30 

20 
19 
20 
16 
17 
20 
18 
19 
21 
32 
47 
32 
32 
23 
21 
22 
23 
65' 
43 
26 
22 
21 
27 
35 
31 
32 
33 
28 
44 
38 
43 
44 
42 
38 
29 
24 

29 

18 
18 
19 
18 
18 
26 
25 
36 
48 
28 
19 
27 
22 
20 
21 
62 ' 
38 
29 
28 
29 
35 
30 
26 
22 
21 
21 
39 
26 
21 
21 
19 
22 
23 
21 
33 
38 

"Station indexes increase in direction of travel , 
blarge-occupancy value indicative of compression wave. 

Table 3. Thresholds and performance results . 

Algorithm T1 T, 

7 

"Held fixed 

5.4 
6. 8 

15 .0 
9.9 
9.5 

21.3 
29.9 

8.1 
12. 9 
13.1 

9.6 
13 .1 
21.6 
26 .6 

0.325 
0. 307 
0.335 
0. 552 
0.629 
0,646 
0.685 

0. 313 
0.360 
0. 358 
0. 359 
0.393 
0. 301 
0.322 

10.2 -0.443 
13.1 -0.296 
18.l -0. 310 

5.2 -0.401 
24.4 -0, 392 

0.011 
0.056 

-0.050 
- 1.112 
-1. 746 
-2 .080 
-1.959 

16.8 
16.6 
15. 8 
12. 3 
12. 5 
13.9 
13.4 

0.312 28. 8 30 
0.309 15.9 30 
0.356 18.5 30 
0.590 27.9 30 
0. 579 13. 0 30 

28 

22 
22 
21 
30 
25 
44 
34 
26 
29 
31 
26 
26 
29 
50' 
30 
23 
23 
22 
23 
22 
22 
17 
23 
37 
29 
25 
21 
22 
20 
21 
30 
36 
38 
31 
29 
27 

27 

26 
28 
32 
25 
23 
29 
26 
21 
25 
26 
39• 
21 
19 
18 
22 
26 
28 
30 
23 
30 
24 
26 
18 
22 
26 
22 
24 
30 
23 
20 
23 
26 
28 
22 
23 
27 

Detection 
Rate 
(;t) 

82 
71 
61 
51 
41 
31 
20 

59 
51 
49 
41 
37 
31 
20 

61 
51 
41 
31 
20 

26 

22 
26 
26 
25 
24 
26 
24 
25 
21 
25 
~3 

22 
23 
24 
26 
24 
23 
23 
25 
23 
23 
24 
26 
24 
26 
23 
23 
27 
24 
27 
24 
23 
26 
25 
22 
24 

False­
Alarm 
Rate 
(%) 

1.341 
0. 883 
0.346 
0.169 
0.064 
0.026 
0. 011 

0.134 
0.050 
0.043 
0.029 
0.017 
0.006 
0.004 

0.177 
0.038 
0.024 
0.010 
0.003 

plex because it involves 21 decision nodes, but its com­
ponents have straightforward interpretations ~). 

Application of the threshold calibration methodology 
yielded the performance measures and threshold sets 
given in Table 3. 

ONE OLD ALGORITHM 

T0 compare the new algorithms with a popular approach 

Figure 3. Decision tree 
for algorithm 7. 

0 INCIDENT-FREE 

1 TENTATIVE I NC IDENT 

1 I NC !DENT OCCURREO 

3 INCIDENT CONTINUING 

Figure 4. Test for 
presence of compression 
wave. 
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to the construction of incident-detection algorithms­
double exponential smoothing-we include here a brief 
description of one further algorithm, designated algo­
rithm 11 (5). This was the best performing of this type 
of algorithm that we considered. The basis for this type 
of algorithm is the smoothing of surveillance data, e.g., 
OCCDF(t), according to 

(3) 

and 

S2(tl = cxs, (t) +(I - OI) S2(t) (4) 

These derived functions, s,(t) and S2(t), are used to pro­
vide a forecast, e.g., of OCCDF(t), and the accumulated 
forecast error is then used as the basis for the algo­
rithm. 

Results of calibration and evaluation of algorithm 11 
are given below. 

Threshold 

-3.29 
-3.88 
-4.52 
-5.06 
-6.14 
-7.52 

Detection 
Rate(%) 

71 
61 
51 
41 
31 
20 

False-Alarm 
Rate(%) 

0.705 
0.373 
0.200 
0.126 
0.048 
0.021 

COMPARISON OF ALGORITHM 
PERFORMANCE 

Algorithms 2 and 11 are compared in Figure 6 on the 
bases of detection and false-alarm rates. At higher 
false-alarm rates, algorithm 11 has a slight advantage; 
at lower false-alarm rates, suitable for most opera~ 
tional purposes, algorithm 2 is clearly superior. 
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To provide an independent evaluation of algorithm 
performance, the ability of algorithms 2, 7, and 8 to 
detect incidents in an expanded data base involving 118 
incidents was tested. (A data base with 50 incidents 
was used for the calibration). The results are shown 
in Figure 7. Algorithm 8 is generally superior, because 
of its superior handling of comp~ession waves (present 
in much of the Los Angeles data); algorithm 7 gives 
somewhat poorer performance (but it is much simpler); 
and the California algorithm, algorithm 2, generally 

Figure 5. Decision tree for an equivalent form of 
algorithm 8. 

gave the poorest performance. 
These relative performances held up when tested by 

using data taken from the Minneapolis system, thus pro­
viding evidence for the transferability of the research 
results to other freeway surveillance systems. 

CONCLUSIONS 

In this paper we have discussed the advantages asso­
ciated with using (a) the persistence and (b) the shock-

COMPRESS ION WAVE 

Figure 6. Comparison of performance: algorithms 
2 and 11. 100 a CALIFORNIA ALGORITHM 

Figure 7. Comparison of performance: algorithms 
2, 7, and 8. 
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wave detection capabilities to limit the occurrence of 
false alarms. These capabilities were built into two 
new incident-detection algorithms that are identified as 
algorithm 7 and algorithm 8; they have been shown to 
provide performance that is superior to that of the most 
commonly, previously used algorithm-the California 
algorithm. 

Both algorithms 7 and 8 are primarily intended for 
use dur i ng mode1·ate to heavy traffic (as are most pr e­
viously developed i ncident- detection algorithms). De­
tection of incidents under low-volume conditions has 
been and continues to be an unresolved problem. Al­
though it is sometimes important to be able to detect 
incidents at times of low volume, the greater need is 
for good incident-detection algorithms in moderate-to­
heavy traffic conditions. It is during these times that 
traffic management is seriously hampered by undetected 
incidents. These algorithms can be implemented by 
using FORTRAN (6). 

In the course of this work, we also identified an al­
ternative approach for the construction of incident­
detection algorithms for low-volume applications. This 
approach is based on the use of a traffic-correlation 
analysis (5). Based on preliminary results, it appears 
that traffic correlation is most consistent in the light ­
to-moderate volume regime at speeds of about 80 km/h 
(50 mph). However, additional work will be required 
before this approach can be im plemented. 

We also investigat ed ways to identify the la ne(s) in 
which an i ncident lia d occun ed (5). T he lane location 
is imP,Ortant from the poi1rt of view of communicating 
specific i nformation to drivers via changeable mes sage 
signs or radio and also from the point of view of using 
appropriate ramp-control strategies for managing the 
freeway disturbance. The lane-location algorithm, 
which was effectively tested on the data base available, 
also appears to be potentially useful in reducing the fre­
quency of false alarms in bottlenecks. The actual use 
of the lane-location algorithm for this slightly differ ent 
purpose has not been attempted to date; however, we 
believe it offers considerable merit and should be con­
sidered in future research on this subject. 
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Field Evaluation of Messages for 
Real-Time Diversion of 
Freeway Traffic for Special Events 
Conrad L. Dudek, Graeme D. Weaver, Donald R. Hatcher, and 

Stephen H. Richards, Texas Transportation Institute, Texas A&M University 

This paper presents the results of special-event route-diversion studies 
conducted in Dallas to evaluate 14 primary-candidate real-time messages 

that had resulted from extensive human-factors laboratory studies. The 
messages were displayed on matrix signs located on the freeway. The re-




