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Rainfall Intensity-Duration-Frequency 
Curves Developed From (not by) 
Computer Output 
Brian M. Reich, Pima County Flood Control District, Tucson 

Thirty-two years of maxima observed at Tucson International Airport 
from the National Oceanic and Atmospheric Administration's recording 
raingage are used to prepare a sheet of intensity·duration-frequency 
curves commonly used in the design of storm drainage for small urban 
areas. The example is employed to stress the need for examining com· 
puter printouts of mathematical statistical analysis of the rains and their 
logarithms by plotting data on four types of probability paper. Stress is 
laid on dangers of blindly extrapolating a mathematical distribution that 
does not fit recorded amounts for the long return periods in which engi
neers are usually interested. Misapplication of scales involving a loga· 
rithmic transformation are discussed. The fact that longer durations may 
require a different type of frequency paper than do shorter durations is 
illustrated and rationalized on the basis of the physical process. Internal 
compatibility of results for 2-, 5-, 10-, 50-, and 100-year estimates of 5-, 
10-, 20-, 30-, 45-, 60-, 120-, and 180-min rainfalls is preserved when ex
amining a tabular array of as many as five frequency analyses on one of 
these 48 cells. 

Intensity-duration-frequency (IDF) curves are a long
standing tool of the storm-drain designer (1, 2, 3). A 
U.S . Weather Bureau publication (4) gave depths of 
maximum rainfall for various durations and return pe
riods on many separate maps. Since then, recording 
gages have provided additional data on rainstorms, often 
more than doubling record lengths at newer sites. 

Local governments and consulting engineers may wish 
to prepare their own intensity-duration-frequency 
curves, like Figure 1, from their most up-to-date gage 
records. The purpose of this paper is to discuss topics 
that an engineer must consider while preparing such de
sign curves. 

There is an urgent need for engineers to gain at least 
a "feel" for statistical techniques. The availability of 
canned digital computer programs to fit preselected 
statistical distributions places the responsibility on the 
user for testing the validity of those automated analyses 
with respect to his or her particular data or engineering 
application. In outlining various means for exercising 
necessary discretion, this paper will refer to common 
statistical terms, concepts, and equations. They will 
be introduced in an informal, intuitive vein. Readers 
desiring additional pragmatic explanations of these ex
treme value statistics may wish to study Magnitude and 
Frequency of Floods (5). That 50-page review of terms 
and methods also contains complete tables needed in 
computation and various g ra ph papers needed in plotting 
extreme rainfall data. T wo excellent texts (6, 7) were 
recently published for engineers with deeper-and wider 
interests in statistics. 
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Figure 1. Rainfall IDF curves from U.S. Weather Service recording 
gage, Tucson. 
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Table 1. Maximum rainfalls of various duration for each year at the 
Tucson Airport U.S. Weather Service recording gage. 

Date• 

9/24/1943 
9/ 15/ 1944 
7/ 27/1945 
7/ 17/1946 
8/8/1947 
7/24/ 1948 
8/8/1949 
9/7/1950 
8/2/1951 
7/ 5/1952 
7/ 29/ 1953 
6/24/ 1954 
8/3/195 5 
8/12/1956 
8/3/1957 
7/29/1958 
7/3/ 19~9 
8/21/1960 
8/22/1961 
9/ 26/ 1962 
9/4/ 1963 
7/ 24/ 1964 
7/25/1965 
7/24/1966 
7/29/1967 
7/16/1968 
8/1/1969 
10/2/1970 
8/ 12/ 1971 
7/ 16/ 1972 
8/23/ 1973 
7/7/1974 

Maximum Rainfall (mm) 

Duration of Maxima (min) 

10 20 30 

14.0 26 .7 47.5 57.4 
10 .2 15.2 22.9 26.4 
6.9 10.2 30.0 39.4 
9.4 13.5 19 .6 21.1 
4.1 6.1 9.7 14.2 

14.0 23.6 34.0 40.1 
8.4 11.7 16.0 17.0 
8.1 12.2 17.3 19.3 
5.6 9.1 13.2 15.2 
9.4 12 .2 22.1 23.9 
5.1 7.6 13 .0 17.0 
9.9 15.7 26.7 30.2 

17.5 30.7 48.0 53.1 
7.4 10.2 11.7 11.7 
5.6 8.6 11.9 14.2 

10.7 18.8 29.0 34.5 
11.9 17.0 22.9 29. 7 

4.8 7.6 9.4 10. 7 
11.7 20.8 35.6 41.7 
3.6 5.1 10.2 11.9 
6.6 11.2 17.0 19. 1 

11.4 17.5 19.8 22.9 
5.6 10.2 15.5 16.3 
7.6 13.0 17.5 22 . 1 
5.3 7.4 9.9 13.0 
7.1 8.4 11 .7 11.9 
6.4 11.4 14.0 14.0 
8.1 15.2 29 .0 29. 7 
8.4 12.4 14.5 14. 7 

10.2 14.0 25 . 1 34.0 
3.8 5.6 5.8 7.4 
9.4 11.4 21.3 25. 7 

Note: 1 mm= 0.039 in. 

45 60 

59.2 59. 7 
26.9 27.2 
46. 7 47.5 
21.3 24.1 
15.2 18.3 
45.0 46.2 
18.0 21.8 
21.1 21.1 
16 .5 16.8 
25.l 25.4 
18.0 18.3 
30.5 30.5 
55 .9 56.4 
17 .0 18.0 
15. 7 16.0 
38.9 42.2 
33.8 34.3 
11.7 12.2 
52.8 56.4 
14.2 15. 7 
19.3 19 .6 
25.9 28. 7 
16.5 16.8 
26.2 28.2 
13.7 13.7 
12.2 14.0 
15.0 16 . 8 
29 . 7 30.5 
15.2 15. 7 
36.8 37.6 

7.9 7.9 
26.9 27.9 

120 

62.5 
30.0 
51.8 
26 .9 
18.3 
47.0 
27. 7 
24.4 
17.0 
25.7 
18.5 
31.5 
57.2 
18.5 
19.1 
68.8 
34.3 
12.4 
59.4 
17. 5 
19.6 
45.0 
18.3 
34.5 
15. 7 
14. 7 
16.8 
30.5 
18.0 
39. 4 

7.9 
30. 7 

180 

64.5 
31.0 
54.1 
26 .9 
18.3 
47.5 
32.8 
26 . 7 
17.0 
25. 7 
18.5 
32.0 
57.9 
18.5 
25 .4 
79 .2 
34 .3 
12.4 
62 .2 
17.5 
19.6 
45.2 
18.3 
35.1 
16.0 
15 .0 
16.8 
40.9 
20 .6 
39.4 
11.4 
31.8 

11 Date refers to largest rainfall with shonest duration for that year. Maximum of longest 
duration often fell on a different day. 

140 

w 
I-
:::> z 
:ii1 
a:: 
~ 

"' a:: w 
I-
w 
::E 
:J 
...J 
::!' 

Figure 2. Pluviograph showing temporal variation of rainfall intensity 
within a convective storm. 
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With a view to side-stepping a dry discourse on prob
ability theory and the many mathematical constraints 
on its application, I have adopted a "how-to" format 
here. An example of deriving IDF curves for Tucson 
is pursued as a setting for introducing discussions on 
the various decisions. 

EXAivllNING THE DATA 

The speed of an electronic computer may stimulate the 
impulse to keypunch the data. After running the 
cards through one of the readily available statistical 
programs, such as the Water Resources Council's (8) 
log-Pearson Type III package, the engineer can look at 
Lile vd11LouL Lo ::>ee what, say, the 100-year value "is". 
However, this neglects one of our best resources, ob
served measurements. In addition to revealing erro
neous entries, examination of raw data can provide use
ful clues to understanding the physical process of in
terest. 

0 rigins of the Data 

Table 1 presents the information on which the Tucson 
analysis was based. To eliminate any ambiguity, Fig
ure 2 has been developed to illustrate where tabulated 
rainfall amounts typically come from. 

In this sample storm, the largest amount of rain in 
any continuous 5-min period was the 17 .3 mm (0 .68 in) 
that fell in the second, third, fourth, fifth, and sixth 
minutes. If this had been the largest 5-min amount in 
one calendar year it would have been published by the 
National Weather Service and entered in Table 1. Fur-



thermore, the maximum 10-min amount for the year 
can fall during the same rainstorm. The maximum rain 
for a longer duration, say, 20 min in the example of 
Figure 1, can also begin at a diffe1·ent time than that for 
5 min. 

Annual maximum amounts recorded in Table 1 for 
long durations such as 180 or 120 min can occur on dif
ferent days or even in other seasons than that year's 
very short-duration extremes. 

Unfortunately, digital recorde1·s, which only punch 
their paper tape every 15 min, have recently been re
placing many pen-and-chart l'ecording .raingages. The 
high intensities of very short duration will no longe1· be 
l'ecorded, and underestimation will be accentuated by 
the random asynchrony between clock time and pulses 
of heavy rain. 

Before 1935 the U.S. Weather Bureau analyzed 
tipping-bucket charts from .first-01·der stations onto "ex
cessive precipitation" forms. The latter quantity was 
defined as a ny portion of storm rain.fall whose intensity 
exceeds 0.25 mm/ min (0.01 in/min) wit h a threshold of 
5 .08 mm (0. 20 in) of storm total. Even in the humid 
regions of the United States such storms have generally 
high-intensity rainfalls lasting 2 h or less. After 1935 
the format was changed so that the most intense period 
of a storm was listed first, followed by its next most 
intense period, followed by its next, until the entire pe
riod of excessive precipitation was accumulated. An 
engineer fortunate enough to be working with records 
that go back so far should be aware of the difference. 

Sampling Error 

Returning to the real Tucson data in Table 1, we first 
observe that the highest values for short durations oc
curred in 1955. They were 50 percent greater than any 
extreme occurring in the subsequent 20 years. The sec
ond highest values had been encountered in the first year 
of recording, 12 years before 1955. 

It is easy to realize how drastic the influence would 
be on the mean, or on other statistical computations, if 
one began the observations one year later. This should 
force us to see that even a 30-year record could, by 
chance, miss the high values that are of great signif
icance to designs for 100-year or even 25-year floods. 

These obvious comments derive from the statistical 
notion of sampling error, which simply states that any 
finite record length is merely a sample of a hypothet
ically infinite "population" of values. The mean of the 
population, µ, will never be known; all we can do is 
estimate it by the sample mean, X. Greek symbols are 
reserved for population values, while Roman symbols 
are used for variables comprising samples, like X, and 
sample estimates derived from them. 

The mathematical statistician will use population 
parameters when writing equations to describe, say, the 
distribution of 5-min annual maximum rainfalls through
out the possible size nnge of this variable. The applied 
statistician at best will only be able to substitute a sam
ple estimate for each parameter needed in the theoreti
cal equation. Some parameters or statistics are esti
mated fairly well from a sample; others are not. For 
example, if we only had the latest 16 years of this 5-
min rainfall maximum, our estimate of the mean would 
be 7 .62 mm {0.300 in). Had our father used only the 
1ir::1l 16 years, his sample estimate would have been 
9.12 mm (0.359 in) , almost 20 percent greater than ours. 
The 32 years of data give 8 .38 mm (0 .'330 in), which is 
a better estimate of the mean, but the population mean, 
µ, remains ellusive. 
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Plotting the Data 

The human mind is limited in its ability to digest a col
umn of numbe1·s and can be greatly aided by a gra.phic 
display of the same information {see Figure 3). lf 
points lie approximately on a straight line, then a 
straight line should be fitted through them by eye, and 
so labeled. In this way one may estimate a longer re
turn period rain on the basis of many obse1·vations 
rather than simply on the largest rain recorded so far. 
Extrapolation is strictly justified only if the plotted set 
of data points displays no systematic deviation from a 
line. Implicit is the assumption that the distribution of 
these rainfall values follows the mathematical equation 
used in generating this particular type of probability 
paper. If the data exhibit a distinct curve away from 
the line or a marked s-shape, analysis with this type of 
paper or corresponding mathematical equation should 
be abandoned. Different types of probability paper 
should be tried until approximate linearity is achieved 
{§_). 

The horizontal placement of each point is achieved 
by assigning a rank m to each value in a list of the N 
observations rearra.nged from largest (m = 1) lo 
smallest (m = N) . These ranks enable us to assign a 
P. value lo each data point according to a plotting posi
tion formula. When using extreme value paper, some
times called Gumbel for the man who introduced this 
statistical distribution in the United States, the best 
plotting position was shown by Gringorten (9) to be ap-
proximately -

Pc= (m - 0.44)/(N + 0.12) (I) 

P. is the probability that a rainfall equal to or larger 
than the specified number of millimeters will occur in 
one year. The return period in years for such an ex
treme is 

T=l /Pc (2) 

This cumulative probability, P., appears as the axis 
of Figure 3. It is seen to have a value of 0 .01 toward 
the right. Commercially available paper may have high 
probability values, like 0.99, on the right that decrease 
toward the left. In that case, the numbers correspond 
to the probability of nonoccur rence, 

(3) 

Mathematically Fitting a Line 

A generalized formula for hydrologic frequency analysis 
is 

X= X +Ksx (4) 

in which the mean is 

(5) 

and the standard deviation is 

(6) 

Both X and sx can be obtained from the series of annual 
maxima. K is the frequency factor that depends on the 
length of record used to estimate X and sx, as well as 
on the probability paper selected, whose capital initial 
is subscdpted. Table 2 gives KE for use when the plot 
of data exhibits satisfactory linearity on extreme value 
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Figure 3. Plot of 1943 through 1974 annual maximum series RETURN PERIOD (YEARS) 
of 5-min rainfall on EV probability paper. 
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Table 2. Flood frequency factor (KE) for extreme value line through 
Gringorten plotting. 

Frequency 

Re cording Length (years) 
.tteturn 
Period 15 20 30 50 100 200 

1.111 -1.167 -1.154 -1.140 -1.127 -1.116 -1.110 
2 -0 . 155 -0 . 158 -0.100 -0 , 162 -0 . 163 -0_ 163 
2.33 0.023 0.018 0.013 0.009 0.005 0.004 

10 1.431 1.404 1.376 1.352 1.332 1.320 
50 2.832 2.775 2.724 2.680 2.643 2.622 

100 3.411 3.354 3.294 3.242 3.197 3. 172 
200 3.997 3.931 3.862 3.801 3. 750 3.720 
500 4.771 4.693 4.611 4.539 4.479 4.443 

paper (see Figure 3). Earlier published tables had as
sum ed Gumbel's mathemati cal .fitting through data plot ted 
according to the Weibull formula 

Pe = m/(N +I ) (7) 

which has been in popular use for normal and log-normal 
paper as well. After this Tucson study a compromise 
formula 

Pc = (m - 0.4)/(N + 0.2) (8) 

has been shown (10) mathematically to suit all four flood 
frequency papersconsidered he re . 

Application of Ta ble 2 and Chow's Equation 4 to our 
32 years of 5-min annual maximum rainfalls is simple. 
The 100-year estimate becomes 

X ioo yr = X + 3.284 sx = 8.374 + 3.284(3 .251) = 19.051 mm (9) 

The mean and standard deviation, sx, can be obtained 
from pocket calculators . Similarly, 
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X 2.33 yr = 8.374 + 0.012(3.251) = 8.413 mm (IO) 

This is virtual_!y equal to the mean of the series of an
nual maxima, X = 8.382 . The equality would be perfect 
for an infinit ely long theoretical population. Computation 
of a third point with Equation 4 and Table 2 should verify 
the mathem atical straight line (Gringorten) in Figure 3. 

Attention should be drawn to the fact that the mathe
matically fitted extreme value line resulls from substi
tuting X and Sx into Equation 4. It is simple to program 
a comput er to print out estimated rain with 25-, 100-, 
01· even 500-year return periods. The simple computer 
did not, howeve1·, examine a plotted data for linearity. 
If that c1iterion i s vi olated, the comput er output is mis
leading; that is, errors would result from using the 
wrong model. 

Other Probability Pape rs 

The extreme vali1e rliRt.ribution was introduced because 
it has long been used by the U.S . Weather Service in 
analyzing short-duration i·ainfall maxima. They have 
just produced maps (11) for 5- through 60-min rains for 
the 37 eastern st at es from mathematically fitting this 
distribution, which has the sy nonym Fis her-Tippett Type 
I. Their analysis comes close to the application of 
Equation 4, without the influence of Gringorten's theory. 
Vast amounts of hourly data were analyzed from about 
1900 stations with 25 years of data, and minute-by
minute examinations were made for an additional 200 
stations averaging 60 years' recoi·d l ength. 

For such short durations the re is also a theoretical 
jus tification for applying t he EV, or Gumbel, distribu
tion. This will be discussed later with r espect to the 
Tucson data, where Figure 3 shows how close the 5-min 
annual series plots to a straight line. The Gringorten 
mathematical fit is also seen to closely approximate my 
own eye fit. 

Local preparation of ID F curves will usually involve 
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frequency analysis of only one raingage, so the engineer 
will be able to rapidly analyze the data graphically and 
with different types of probability distributions. More
over, the search for IDF curves often necessitates the 
frequency analysis of rains for such long durations that 
the theoretical justification for the EV distribution is no 
longer valid. Figure 4 shows how systematic non
linearity of plotted 180-min rainfall maxima shows the 
invalidity of extrapolating a Gringorten line, or use of 
Gumbel-type equations. It thus behooves an investigator 
to try other statistical or probability distributions that 
may suit those data better. The simple way to achieve 
this is to plot the annual series on different probability 
papers. 

Log-extreme value paper is seen in Figure 5 to re-

Figure 4. $-shape of data plotted by Gringorten's formula 
showing EV distribution invalid for 180-min rainfalls in 
Tucson. 
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move the curved toe exhibited by points with P. greater 
than 0.2 on Figure 4. The horizontal grid of log-extreme 
value paper is basically the same as it is on EV paper. 
A theoretical line can be fitted by applying Equation 4 
and Table 2 to the statistics computed from the loga• 
rithms of individual annual maxima. After replacing 
each annual maximum X by L =log X, one may proceed 
to obtain the mean and standard deviation of the trans
formed series L and SL· The modified application of 
Equation 4 gives an estimate 

log X = L +KE s1 (I I) 

This produces the theoretical straight line in Figure 5. 

Log Scales 

Data points may appear to be closer to the straight line 
in Figure 5 than to that in Figure 4. One should rec
ognize the deceptive tendency for log-paper to apparently 
reduce the scatter of large values. The second-largest 
and largest appear closer to the logarithmic straight line 
in Figure 5 than to the eye-fit straight line in Figure 4. 
In fact, they are progressively 12.7 and 40.6 mm (0.5 
and 1.6 in) of rain from the theoretical log-extreme 
value prediction. To emphasize this point the log-EV 
line, computed from Equation 11, was transformed back 
to linear units and added onto Figure 4 as a dotted curve. 

A second problem of straight-line extrapolation on 
log paper is also emphasized by this dotted curve in 
Figure 4. The larger six or ten data points suggest a 
curve whose slope decreases with progressively longer 
return periods. The theoretical log-EV curve must, by 
definition, always have a constantly increasing slope. 
This is a violation of observations of large rains that 
particularly relate to our engineering interest in pre
dicting for large return periods. Moreover, our un
derstanding of the physical world suggests that the data 
should curve toward a horizontal asymptote representing 
a probable maximum precipitation (PMP) of all the 
moisture than can be drawn out from the finite overlying 
atmosphere. No one will deny that the log-EV curve 
gives the best representation of the 27 smaller data val
ues in Figure 4, but that is not generally the domain of 
engineering interest . 

Log-Normal and Normal Distributions 

The classic log-normal (LN) paper, still favored by the 
Soil Conservation Service, is shown in Figure 6. This 
type of paper should al ways be tried in the search for 
the model that best fits a set of data. The attention 
that the Water Besources Council (WRC) has forced 
~) on the log-Pearson Type m (LP III) makes it im -

Figure 5. Log-extreme value paper improving 
linearity of 180-min rainfalls from Tucson. 
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portant for engineers to understand the LN distribution, 
which is a special case of the LP Ill. 

In Figure 6, the eye fit of this LN to 180-min rains 
was an acceptably straight line m the range around 5 to 
10 years, fo r which it was used in Table 3. Graphically 
small deviations of points plotted at 20 and 40 years are 
actually more significant because the log transformation 
squeezed the vertical scale. T rue deviations were l eas 
when plotted on normal (N) paper. Extrapolation to the 
right side gave the best 50- and 100-yea r 180-min esti
mates, as signified by the arrows on the eye N line in 
Ta.blo 3. 

One of the earliest probability distributions used was 
this so-called normal distribution. Its characteristic 
can be seen from Figure 7 to be a symmetrically chang
ing spacing of the probability lines on either side of 
P. = 0 .5. This symmetry is due to its assumption that 
data will have a zero skewness coefficient, CSX. The 
latter statistical parameter can be evaluated, albeit with 
considerable trouble and risk of error, by hand compu
tation as follows: 

CSX= [N ~ (X- X)3 J / [(N - I) (N - 2) (sx )3 ] 

Figt•re 6 . Ex<1mplP. of 
classical log-normal 
analysis for 1 BO·min 
rainfalls. 

5 

4 
LOG-NORMAL PAPER 

>-- (USE WEI BULL PLOTTING) 

(1 2) 

~ 

Engineers soon found that much of their hydrologic 
data had positive skewness. For instance, the highest 
floods were often of an order of magnitude greater than 
fiuuds Lhal uccu1· reU l0atlie r fi~eq_uently. This :relative 
largeness in the numerator of Equation 12 was greatly 
amplified by cubing the terms before summing. An 
escape from this problem was sought by making a log 
transformation; this was accomplished through the non
linear spacing along the vertical axis of Figure 6 . The 
apparent scaling down of larger values was to have 
drawn the entire annual series of the logarithms into a 
straie;ht linP.. 1f t his were perfectly achieved, then the 
data set would have a zero value for the coefficient of 
skewness of the logs, where 

CSL = [ N ~ (L - L )3 J / [ (N - I )(N - 2Hsd J (1 3) 

The advantage of the LN or N distributions is the ex
treme simplicity of fitting a mathematical curve. If a 
straight line effectively passes through a whole set of 
points on N pape r, Lhe Lheo1•etical line could be fitted 
as follows: 

X at P. = 0.5, 
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Table 3. Array of 
Return Period (years ) 

rainfalls expected for 
eight durations and four Preferred 10 50 100 
return periods from Duration Order or 
various curves. (min) Curve Comment mm mm/ min mm mm/ min mm mm/ min mm mm/ min 

Eye EV Good 10.1 2.08 13.1 - 3. 1Y 16,H - 3.35 18.3 - 3.65 
10 Good 17 .3 1. 73 21.6 - 2 .16 30.5 - 3.05 34.0 - 3.40 
20 Fair 28 .2 •• 1.41 34.5 - 1. 73 49.8 - 2.49 56 .4 - 2 . 82 
30 S-shape 33.0 - 1.10 41.1 - 1.37 57c2 - 1.90 64 . 8 - 2 . 16 

Gringorten Unacceptable 36 .3 44.7 63 .3 69 .6 
Eye EV 37.3 - 0.83 47 .5 71.4 

80.81 45 Eye LN 38.1 48.3 - 1.07 74.4 - 1.46 86 .4 - 1.69 
Theory LN 34.8 43.4 65.5 75. 7 
Eye N 39 .1 48.8 66.0 71.6 
Gringorten Unacceptable 37.6 46.0 64.8 72.6 
Eye EV 37.6 47.5 70 .1 

79 .0 I 60 Eye LN 38.1 - 0.63 51.1 - 0.85 83.6 99.3 
1.32 Theory LN 35.8 45.2 66.0 76.2 -

Eye N 50.8 66.5 - 1.11 79.3 
Gringorten Unacceptable 

41.41 
51.8 68.6 82.8 

Eye EV 3 45 .0 
0 .36 55. 1 73.2 92 . 71 120 Eye LN 2 43 .2 56 .6}- 94 .0}- 0 71 111. 8 - 0 .80 

Eye N 1 45 .5 56 . 9 
0.47 76 .7 . 83 .6 

Theory LN 40. 6 51.1 76 . 7 88.7 
Gringorten 43.4 55 . 1 78 .2 88.9 
Eye EV 45.2 57. 7 87.4 99.1 

180 Eye LN 45.7 - 0.25 60.2 - 0 .33 96.5 114.3 
Eye N 46 .2 59. 5 81.8 - 0 .45 89.7 - 0 .50 
L-Gringorten Unacceptable 41.4 55 . 1 112 .0 149.9 

Notes: 1 mm = 0.039 in. 
Arrows point to intensity corresponding to selected value. 

iii 



X + Sx at P. = 0.159, and 
X - Sx at P. = 0.841. 

When fitting a theoretical LN line, antilogs must be 
taken, before plotting the line, according to 

LatP.=0.5, 
L + SL at P, = 0.159, and 
L - SL at P. = 0.841. 

Log-Pearson Type III 

Nonlinearities of data, such as those seen in Figures 6 
and 7, persisted to frustrate the mathematician. In 1923 
Pearson developed a system of twelve types of curves 
to fit various degrees of upswing or flattening of data. 
The very next year this empirical system of curve fit
ting was applied to New York flood problems by H. A. 
Foster (12). Pearson's curve fittit1g was again dis
cussed inE. E. Foster's excellent text (13) in 1948. 

When the U.S. Army Corps of Engineers (14) pro
posed using Pearson's Type III (LP III) curve in 1962, 
they suggested that the log transformation be made to 
floods before proceeding with the computations. The 
procedure promulgated by the U.S. Water Resources 
Council first in 1967 and again in 1976 (8) requires the 
user to first take the log of each piece of data and then 
calculate their statistics: L, SL, and CSL. The last 
value is used to select Kp for various return periods, T, 
from Table 4. Substituting KP values into Equation 14 
and taking antilogs yield the LP III curve 

Figure 7. Normal paper suggesting empirical prediction 
line for large return periods and long duration rainfalls. 
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log X = L + Kp SL (14) 

The introduction of the third parameter, CSL, gives 
additional flexibility for closer fitting through observed 
points. Unfortunately, CSL is highly susceptible to sam-
pling error caused perhaps by the presence of an abnor-
mally large (outlier) maximum. Alternatively, another 
sample in time may by chance contain many values far 
smaller than its mean, which could cause CSL to become 
very negative. The great dangers of using LP ill in pre-
dieting values for 100-year return periods (E_, 15) lies in 
extrapolating curvature dictated by this error-prone 
CSL. The problem of determining CSL has led some 
authors to recommend the use of regional skewness, but 
that appears to be equally variable, and has led others 

Table 4. KP values for log-Pearson Type Ill analyses . 

P, 

0.90 0.429 0.10 0.02 0.01 0.002 

T 

CSL 1.111 2.33 10 50 100 500 

3.0 -0 .660 -0 .284 1.180 3 . 152 4.051 6.205 
2.9 -0 .681 -0.274 1.195 3.134 4.013 6. 117 
2.8 -0. 702 -0.263 1.210 3.114 3.973 6.017 
2.7 -0. 724 -0 .251 1.224 3.093 3.932 5.922 
2.6 -0. 747 -0.238 1.238 3.071 3.889 5.825 
2.5 -0.771 -0.226 1.250 3.048 3.845 5. 728 
2.4 -0. 795 -0.213 1.262 3.023 3.800 5.628 
2.3 -0.819 -0.200 1.274 2.997 3. 753 5.527 
2.2 -0.844 -0.185 1.284 2.970 3.705 5.425 
2. 1 -0.869 -0.171 1.294 2.942 3.656 5.321 
2.0 -0.895 -0.155 1.302 2.912 3.605 5.215 
1.9 -0.920 -0.139 1.310 2.881 3.553 5.108 
1.8 -0.945 -0.125 1.318 2.848 3.499 5.000 
1.7 -0 .970 -0.108 1.324 2 .815 3.444 4.890 
1.6 -0 .994 -0.092 1.329 2 .780 3.388 4.779 
1.5 -1.018 -0.075 1.333 2. 743 3.330 4.667 
1.4 -1.041 -0 .058 1.337 2.706 3.271 4.553 
1.3 -1.064 -0 .041 1.339 2.666 3.211 4.439 
1.2 -1.086 -0 .025 1.340 2.626 3.149 4.323 
1.1 -1.107 -0 .008 1.341 2.585 3.087 4.206 
1.0 -1.128 0.010 1.340 2.542 3.022 4.088 
0.9 -1.147 0.026 1.339 2.498 2.957 3.969 
0.8 -1.166 0.042 1.336 2.453 2.891 3·.850 
0.7 -1.183 0.058 1.333 2.407 2.824 3.730 
0.6 -1.200 0.075 1.328 2.359 2. 755 3.609 
0.5 -1.216 0.095 1.323 2.311 2.686 3.487 
0.4 -1.231 0.111 1.317 2.261 2.615 3.366 
0.3 -1.245 0.126 1.309 2.211 2.544 3.244 
0.2 -1.258 0.142 1.301 2.159 2.4'72 3.123 
0.1 -1.270 0.158 1.292 2.107 2.400 3.001 
0.0 -1.282 0.177 1.282 2.054 2.326 2.878 

-0 . 1 -1.292 0. 193 1.270 2.000 2.252 2.759 
-0 .2 -1.301 0.208 1.258 1.945 2.178 Z.639 
-0 .3 -1.309 0.225 1.245 1.890 2.104 2 .520 
-0 .4 -1.317 0.240 1.231 1.834 2.029 2.401 
-0 .5 -1.323 0.256 1.216 1. 777 1.955 2.283 
-0 .6 -1.328 0.268 1.200 1.720 1.880 2.171 
-0 .7 -1.333 0.283 1.183 1.663 1.806 2.062 
-0 .8 -1.336 0.299 1.166 1.606 1. 733 1.953 
-0.9 -1.339 0.313 1.147 1.549 1.660 1.846 
-1.0 - 1.340 0.327 1.128 1.492 1.588 1. 741 
-1.1 -1.341 0.340 1.107 1.435 1.518 1.647 
-1.2 -1.340 0.353 1.086 1.379 1.449 1.556 
-1.3 -1.339 0.365 1.064 1.324 1.383 1.467 
-1.4 - 1.337 0.405 1.041 1.270 1.318 1.383 
-1.5 -1.333 0 .390 1.016 1.217 1.256 1.303 
-1.6 -1.329 0.400 0 .994 1.166 1.197 1.233 
-1. 7 -1.324 0.410 0 .970 1.116 1.140 1.169 
- 1.8 - 1.318 0 .419 0 .945 1.069 1.087 1.107 
- 1.9 -1.310 0.427 0.920 1.023 1.037 1.051 
-2 .0 -1.302 0.439 0.895 0.980 0.990 0 .998 
-2 . 1 -1.294 0 .444 0.869 0 .939 0.946 0.952 
-2 .2 -1.284 0.451 0 .844 0.900 0.905 0.909 
-2 .3 -1.274 0 .459 0.819 0.864 0 ,867 0.870 
-2.4 -1.262 0.465 0.795 0 .830 0.832 0.833 
-2 .5 -1.250 0.470 0. 771 0.798 0.799 0.800 
-2 .6 -1.238 0.473 0. 747 C..768 0. 769 0. 769 
-2 . 7 -1.224 0.476 0. 724 0.740 0. 740 0. 741 
-2 .8 -1.210 0.479 0.702 o. 714 0.714 0.714 
-2.9 -1 . 195 0.480 0.681 0.689 0.690 0.690 
-3 .0 -1.180 0.481 0.660 0.666 0.667 0.667 



42 

Table 5. Parameters from fitting IDF equation through observed 
intensities at eight durations. 

Return Period (years) 

Parameter 

a 
b 
r ' 

50.1 
17.29 
0.999 

Note: 1 in/h = 25 mm/h, 

10 

trn.o 
18.97 
0.999 

50 

Ul. l 
18.64 
0.995 

100 

lUl.l 
17.91 
0.993 

Appr-oxim~tc 

2-Year 
Partial 
Duration 
<120 Min 

3~.'I 
14 .49 
0 ,999 

to suggest using a zero skewness of the logs. This 
causes the LP III curve to simplify back to the log 
normal. 

Selecting the Frequency Curve 

Mathematical statisticians are developing analytical 
tests for deciding which type of distribution, or model, 
best fits the data. Unfortunately, the sampling error in 
determining the parameters needed by the model's equa
tion complicates the problem, which involves the inter
action between the choice of model and uncertainty as 
to population parameters. Without knowing for certain 
the type of model, e .g ., EV or LN, one cannot say 
whether the deviations of the data from the frequency 
curve are reasonable to expect from such a random pro
cess . Rather than discuss confidence bands within which 
a population estimate of, say, a 100-year rain can be 
expected to lie, this paper will simply consider the pur
pose for which each frequency analysis is performed. 

Sometimes engineers require rainfall estimates for 
return periods from 20 to 100 years. In such a case, 
importance is ascribed to fitting a line through the 16 
larger rains on Figure 7. On the other hand, designs 
may concern nuisance water with return periods beiow 
2 years . In this case, attention would need to be paid 
to the lower part of the elbow in Figure 7. 

With regard to those interesled iu lar~er rains, eye
fitted evaluation should be made to points with P. greater 
than 0.4. For these, Figure 7 displays smaller vari
ability of individual points than does Figure 4, and there
fore takes precedence. Simultaneous consideration must 
be given to Figures 5 and 6, while observing the caution 
recommended with log-scales. The evaluation soon be
comes very complex and beyond the capabilities of an 
electronic computer . If, on the other hand, computer 
output from fitting the EV, log-EV, LN, and LP III was 
simply read, the 100-year estimates would be 110.5, 
204.4, 121.7, and 142.2 mm (1.35, 11.59, 4.79, and 5.60 
in) respectively. 

OBTAINING COMPATIBLE ESTIMATES 
FROM VARIOUS DURATIONS 

An impression of the complexity can be had by studying 
the pros and cons of various frequency curves in Fig
ures 4, 5, 6, and 7 simultaneously. Studies were also 
needed for 120-, 60-, 45-, 30-, 20-, 10-, and 5-min 
durations. For each of these an estimate had to be set
tled upon for the return periods of 5, 10, 50, and 100 
years . Each cell could have involved choices among 
these six frequency curves: Gringorten, eye-fitted ex
treme value, eye-fitted log-normal, theoretically fitted 
log-normal, eye-fitted normal, or log-Gringorten. The 
array of results is presented in Table 3. The ultimate 
choice in each cell is marked with an arrow pointing to 
the equivalent intensity in millimeters per minute. In 
the 5-, 10-, 20-, and 30-min cases data were plotted so 
linearly on EV paper that estimates for all return pe-

riods should be read from that model rather than from 
any other paper. As durations increase, different prob
ability papers serve better at fitting the observed max-
1111a. \Vith 45-min rain the eye E'V and eye L:t'-I yield the 
best 5- and 10-year estimates. Longer durations' esti
mates sometimes are an average of two or more models 
from which arrows emanate. 

Overall consistency within the IDF displayed by four 
curves in Figure 1 is a logical requirement. This con
straint, as well as the frequency desiderata discussed 
above, must also be borne in mind. Thus for each dura
tion in Table 3 intensities must increase toward the 
right. Likewise there must be a systematic decrease 
in the selected intensities down each column. 

Another advantage of consolidating information across 
many frequency anaiyses is that the final curves 
smoothed through various durations in Figure 1 offset 
some sampling error. This is exemplified by the circles 
around the 100-year intensity-duration curve and crosses 
around the 5-year one. They represent the values set
lled 011 in Table 3. Eye fitting of curves through all four 
such sets of points to obtain generally concentric shapes 
provides further reinforcement across various return 
periods. 

intensity Duration Equations 

Generalized relations along such curves and between 
various return periods have been found according to the 
classical equation 

i = a/(b + t) (15) 

where a and b are different constants for each curve in 
Figure 1. They can be evaluated by the linear regres
sion program wired into many pocket calculators by 
transforming Equation 15 to 

it+ ib =a (16) 

whence 

a/i = b + t (17) 

and 

l/i = (b/a) +(I/a) t (18) 

Reciprocals of finalized intensities from Table 3 are 
regressed as the dependent variable against t, the speci
fied durations, that are considered free of error. The 
classical intercept and slope in parentheses can be ma
nipulated to obtain a and b for Equation 15. Results of 
such an analysis are shown in Table 5. The coefficient 
of determination, r 2 ·(giving the fraction of the variation 
in l / i that was explained by the equation), is highly 
satisfactory. 

Once more the computer output need not be followed 
slavishly. The dashed portions of two curves in Fig
ure 1 were sketched by eye where the mathematical 
model seemed to deviate too far from frequency esti
mates selected in Table 3. 

Approximating the 2-Y ear Estimates 

The smaller rainfall intensities that are exceeded every 
2 years or more could cause damage or be a nuisance 
with economic impact, regardless of their occurring 
twice in one year or not at all in others. So strictly 
speaking a so-called "partial duration series" containing 
all events above a certain threshold value should be col
lected for an exact analysis of their statistics. Since 

--



Table 1 of maximum annual rains does not contain that 
type of observation, we will have to content ourselves 
with approximations that seem rational. 

A 2-year partial series (16) conesponds to an annual 
series return period of 2 .. 33years. The 2.33-year esti
mate made by ext1·eme value (G1·ingorten) analysis was 
shown through Equation 4 and Table 2 to almost equal 
the mean o!. the a1U1ual series. Thus it is suggested that 
the mean, X, be used as an approximation for the 2-year 
partial duration rainfall. The curve was not added to 
Figure 1, but a and bas determined from Equation 15, 
in this case for i millimeters per hour and t minutes are 
listed on the right of Table 5. 

CONCLUSION 

Only through the human integration of process and prob
ability understanding can the mass of computer output 
be transformed into design curves for practitioners. 
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