Vehicle Size and Weight Regulations, Permit Operation, and Future Trends

Robert D. Layton and William G. Whitcomb, Civil Engineering Department, Oregon State University, Corvallis

Abstract

This paper reviews current limits on truck sizes and weights, present practices in permit issuance, and current trends in vehicle sizes and weights. Present legal limits on sizes and weights are summarized, and the permit operations of several states are reviewed. Future trends in the sizes and weights of trucks are indicated. Problems of and implications for the present highway system are identified and discussed.

The size and weight of commercial vehicles operating on the public highways of this nation are controlled by various federal, state, and local regulations $(1,2,3)$, including the provisions of the Federal-Aid Highway Act (U.S. Code, Vol. 5, section 127, 1956 and 1974). While these limits are fixed, all of the states allow movements exceeding them through the use of oversizedoverweight vehicle permits available by special application. Some permits are issued annually on a routine basis. Other "one time only" moves can be extremely complicated and require extensive engineering study before a decision on the permit can be made. The trends shown in vehicle sizes and weights through permit operation reflect potential future changes in truck transportation.

The objectives of this paper are

1. To present a summary of present legal limits on sizes and weights,
2. To summarize permit operations of several states,
3. To indicate future trends in the sizes and weights of vehicles, and
4. To discuss some problems in the present system and suggest improvements that might be made.

SUMMARY OF LEGAL LIMITS

Historical Perspective

The public good has been served through government regulation of the size and weight of commercial vehicles. The reasons justifying these regulations were probably best summarized by the Interstate Commerce Commission (ICC) in 1941; the reasons included protection of existing highways and bridges, conservation of state resources, promotion of safety, and control of competition between different forms of transportation.

Before 1956, individual states had exclusive jurisdiction in the regulation of vehicle size and weight. However, in that year, the federal government entered the arena with the passage of the Federal-Aid Highway Act of 1956. Section 127 of that act stated that no federal highway funds were to be allocated to states that allowed vehicles to operate on the Interstate systems with singleaxle loads in excess of $80 \mathrm{kN}(18000 \mathrm{lb})$, tandem-axle loads in excess of 140 kN (32000 lb), gross vehicle weights exceeding 325 kN (73280 lb), and overall width greater than $245 \mathrm{~cm}(96 \mathrm{in})$. However, if the state limits established in July 1956 were greater than those described above, then the higher limits were to continue in effect. These regulations effectively restricted truck sizes, since federal aid constituted the major portion of the funds for new highway construction and rehabilitation.

Studies after passage of that act concluded that the
limits could indeed be raised (4). After much heated debate, the Federal-Aid Highway Act of 1974 amended the 1956 act by raising single-axle and tandem-axle limits to 90 and 150 kN (20000 and 34000 lb), respectively. Gross vehicle weights were to be determined by the "bridge" formula but were not to exceed 355 kN (80 000 lb). Specifically, the bridge formula is
$W=0.227[3.28 \mathrm{LN} /(\mathrm{N}-1)+12 \mathrm{~N}+36]$
where

$$
\begin{aligned}
\mathrm{W} & =\text { overall gross weight on any group of two or more } \\
& \text { consecutive axles as the mass in megagrams, } \\
\mathrm{L}= & \text { distance in meters between the extreme of any } \\
& \text { group of two or more axles, and } \\
\mathrm{N}= & \text { number of axles in the group under consideration. }
\end{aligned}
$$

References for actual calculation of the gross vehicle weight are available (5). This bridge formula relationship demonstrates that, if gross vehicle weights are increased, an increase in vehicle length and the number of axles may be required on short bridge spans to maintain the bridge stresses at an acceptable level. For long bridge spans the large dead loads relative to the live loads make it possible to increase gross vehicle weights.

Weight Limits

The present legal weight limits for steering axles, single axles, tandem axles, and the entire vehicle are summarized by state in Table $1(1,6,7)$. These loads range from $80 \mathrm{kN}(18000 \mathrm{lb})$ to $105 \mathrm{k} \overline{\mathrm{N}}(24000 \mathrm{lb})$ for a single axle and 140 to $200 \mathrm{kN}(32000$ to 44000 lb$)$ for a tandem axle as shown in Figure 1. Tandem axles are normally defined as axles with a spacing between 100 and 245 cm (40 and 97 in) apart. Most single-axle maximums are between 80 kN and 100 kN (22000 lb), whereas load limits for tandems are primarily in the range of 140 $160 \mathrm{kN}(32000-36000 \mathrm{lb})$.

The method for determination of gross vehicle weight (GVW) is indicated in the final column of Table 1. For GVW calculation, most states rely on the bridge formula itself or a table of weights using a combination of factors included in the bridge formula calculation. It should be noted that some states, such as Michigan, impose seasonal weight limitations lower than normally allowed (1).

Geographical distributions of single- and tandem-axle and GVW limits are included in Figures 2, 3, and 4. It is noteworthy that practically all the states that had single- and tandem-axle weights higher than the 1956 legislated maximums are located on the East Coast. On the other hand, states west of the Mississippi are regulated by the federal limit on axle loads. The distribution of gross vehicle weight limits is just the opposite. States east of the Mississippi have limits lower than the federally imposed 355 kN (80000 lb), while states west of the Mississippi typically have limits greater than the federal maximum. Movements exceeding the federal limits in the western portion of the country require routine permits.

Length Limits

A summary of state regulations with regard to the length of straight trucks, truck trailers, and tractor-

Table 1. Axle and GVW limits.

State	Vehicle Weight (kN)				
	Steering Axle	Single Axle	Tandem Axle	GVW	GVW Basis:
Alabama	63.5	$\begin{gathered} 90 \\ (100)^{\prime} \end{gathered}$	$\begin{gathered} 175 \\ (200)^{t} \end{gathered}$	$\begin{gathered} 355 \\ (410)^{t} \end{gathered}$	B
Alaska	$2.0^{\text {b }}$	90	150	$(485)^{t}$	T
Arizona	NS	90	150	$\begin{aligned} & 355 \\ & 470 P^{8} \end{aligned}$	T
Arkansas	55.5	80	140	325	A
California	55.5	90	150	355	T
Colorado	NS	$\begin{gathered} 90 \\ (80)^{r} \end{gathered}$	160	$\begin{gathered} 355 \\ (380)^{t} \end{gathered}$	B, V
Connecticut	$2.5{ }^{\text {b }}$	100	165	325	V
Delaware	$3.0{ }^{\text {b }}$	90	$\begin{gathered} 160 \\ (180)^{r} \end{gathered}$	355	T, V
Florida	$2.5{ }^{\circ}$	100	200	355	B
Georgia	NS	90	180	355	B
Hawaii	$=$	105	151	360	B
Ida ho	$3.5{ }^{\text {b }}$	90	150	$\begin{aligned} & 355 \\ & 470 P^{3} \end{aligned}$	B
Illinois	NS	80	140	325	T, V
Indiana	$3.5{ }^{\text {b }}$	$\begin{gathered} 80 \\ (100)^{?} \end{gathered}$	140	325	
Iowa	NS	80	145	325	T
Kansas	NS	90	150	$\begin{aligned} & 355 \\ & 380 \end{aligned}$	T, B
Kentucky	$2.5{ }^{\text {b }}$	$\begin{gathered} 90 \\ (95)^{r} \end{gathered}$	$\begin{gathered} 150 \\ (160)^{p} \end{gathered}$	$\begin{aligned} & 355 \\ & 365 \end{aligned}$	A
Louisiana	$3.0{ }^{\text {b }}$	90	150	355	A
Maine	$2.5{ }^{\text {b }}$	100	$\begin{gathered} 150 \\ (170)^{p} \end{gathered}$	355	B, V
Maryland	NS	100	$(185)^{5}$	330	T, V
Massachusetts	$3.5{ }^{\text {b }}$	100	160	355	T, V
Michigan	$3.0{ }^{\text {b }}$	90	150	$\begin{array}{r} 355 \\ 605 \end{array}$	A, B
Minnesota	53.5	90	150	355	B
Mississippi	63.5	80	140	325	T
Missouri	NS	$\begin{gathered} 80 \\ (100)^{t} \end{gathered}$	140	325	T
Montana	NS	$90 \mathrm{P}^{5}$	$150 \mathrm{P}^{8}$	$\begin{aligned} & 340 \\ & 470 P^{3} \end{aligned}$	T
Nebraska	$\begin{aligned} & 80.0 \\ & 90.0 \end{aligned}$	$\begin{aligned} & 85 \\ & 90 P^{8} \end{aligned}$	150	$425 p^{k}$	T
Nevada	NS	90	150	355, (485) ${ }^{\text {t }}$, $575 \mathrm{P}^{5}$	B
New Hampshire	$2.5{ }^{\text {b }}$	100	160	355	B
New Jersey	$3.5{ }^{\text {b }}$	105	160	355	B
New Mexico	$2.5{ }^{\text {b }}$	95	150	385	T
New York	$3.5{ }^{\text {b }}$	100	160	355	B
North Carolina	$2.5{ }^{\text {b }}$	90	170	355	V
North Dakota	$2.5{ }^{\text {b }}$	90	150	$\begin{gathered} 355 \\ (470)^{p} \end{gathered}$	B
Ohio	$3.0{ }^{\text {b }}$	90	150	355	T
Oklahoma	NS	90	150	$\begin{gathered} 355 \\ (100)^{p} \end{gathered}$	T
Oregon	$2.5{ }^{\text {b }}$	90	150	$\begin{aligned} & 355 \\ & 470 p^{8} \end{aligned}$	T
Pennsylvania	$3.5{ }^{\circ}$	105	165	325	V
Rhode Island	NS	100	160	355	V
South Carolina	NS	$\begin{gathered} 90 \\ (100)^{\prime} \end{gathered}$	$\begin{gathered} 155 \\ (175)^{r} \end{gathered}$	$\begin{aligned} & 355 \\ & 360 \end{aligned}$	B
South Dakota	NS	90	150	$\begin{gathered} 355 \\ (425)^{t} \end{gathered}$	T
Tennessee	53.5	80	140	325	A
Texas	$3.0{ }^{\text {b }}$	90	150	355	B
Utah	NS	90	$160 \mathrm{P}^{8}$	$\begin{aligned} & 375 \mathrm{P}^{\mathrm{b}} \\ & 470 \mathrm{P}^{\mathrm{s}} \end{aligned}$	B
Vermont	$2.5{ }^{\circ}$	$\begin{gathered} 100 \\ (105)^{t} \end{gathered}$	$\begin{gathered} 160 \\ (170)^{r} \end{gathered}$	355	T
Virginia	$3.0^{\text {b }}$	$\begin{aligned} & 90 \\ & 95 \end{aligned}$	$\begin{gathered} 150 \\ (160)^{r} \end{gathered}$	355	T
Washington	$\begin{aligned} & 2.5^{b} \\ & 3.0^{d} \end{aligned}$	90	150	$\begin{aligned} & 355 \\ & 470 \end{aligned}$	B
West Virginia	NS	90	150	355	T
Wisconsin	58.0	90	150	355	B
Wyoming	NS	90	160	$\begin{gathered} 355 \\ (450)^{r} \end{gathered}$	B
Washington, D.C.	$80.0^{\text {e }}$	100	170	325	T
Note: $1 \mathrm{kN}=225 \mathrm{lbf}$,					
${ }^{\text {a }}$ GVW basis: $T=$ gross weight controlled by a table of axle spacing up to a specified maximum; $\mathrm{A}=$ gross weight controlled by axle limits up to, in most states, a specified maximum; $\mathrm{B}=$ gross weight controlled by "bridge" formula; and $V=$ gross weight controlled by maximum limits for specific vehicle types. ${ }^{6}$ Per 25 mm (1 in) of tire width. ${ }^{\text {c }}$ Maximum for each wheel is allowable tire pressure x tire area up to $53 \mathrm{kN}(12000 \mathrm{lb})$. ${ }^{d}$ For tires greater than 30 cm (12 in) wide. ${ }^{-} 80-355 \mathrm{kN}(22000-80000 \mathrm{lb})$ allowed with wide tires. ' Numbers in parentheses signify non-Interstate limits where different from Interstate limits, ${ }^{\text {ePermits required. }}$					

semitrailer, tractor-trailer, and truck trailer combinations is included in Table 2. The range of allowable maximums for combination lengths is about $17.0-24.5 \mathrm{~m}$ ($55-80 \mathrm{ft}$). Double and triple trailers are allowed to operate by permit in many states, yielding an effective length maximum of $32.0-33.0 \mathrm{~m}$ (105-108 ft) as shown in Figure 5. Most state regulations allow either 17.0 or 20.0 m (55 or 65 ft) in length under routine, non-permit operation as illustrated in Figure 6.

The geographical distribution of maximum lengths for combinations exhibits a marked division approximately midway between the East and West Coasts as shown in Figure 7. Roughly one-half of the western states allow legal maximums exceeding $20.0 \mathrm{~m}(65 \mathrm{ft})$, while states to the east are restricted to combination lengths less than or equal to 20.0 m (65 ft) under nonpermit operations.

In addition, nearly half of the states in the East do not allow the operation of multiple combinations on their highways. In the West, this is considered common practice; all of the states allow the operation of "double" truck-trailer configurations and five states allow 'triple" operations as shown in Figure 8. Doubles are configurations with a truck-tractor attached to a semi-trailer, which is pulling a full trailer. A triple combination typically includes a truck-tractor followed by a semitrailer and two full trailers. (The operation of these vehicles is sometimes restricted to time of day and by weather limitations.) The lack of uniformity in legal configurations from state to state presents problems for the hauler passing through a state that regards certain configurations as illegal that are completely legal in adjacent states. The economic implications resulting from this practice are discussed later.

The maximum length for single trucks varies from $10.5-17.0 \mathrm{~m}$ ($35-56.6 \mathrm{ft}$) and exhibits no geographical pattern. The lack of uniformity in this area of regulation is readily apparent in Figure 9.

Height and Width Limits

The regulation of vehicle height and width is the most uniform of the many size and weight limits. This is most likely due to the physical restrictions placed by structure heights passing over the highway and by previous uniformity of lane widths. In approximately 87 percent of the states, maximum height is $410 \mathrm{~cm}(13.5$ ft). Maximum width is 245 cm (96 in) in 80 percent of the states ($1 \mathrm{~cm}=0.39 \mathrm{in}$). Examination of the lists of exceptions below shows that even the excepted states have uniformity among themselves.

$\underline{\text { State }}$	Width Limit (cm)
Connecticut	260
ldaho	260
Maryland	260
Massachusetts (over 45 kN)	260
Rhode Island	260
Washington	260
Hawaii	275
All other states	245

State	Height Limit (cm)
Arizona	425
California	425
Colorado	425
District of Columbia	380
Idaho	425
Maine	425
Montana	425

State	Height Limit (cm)
Nebraska	440
Nevada	425
Utah	425
Washington	425
Wyoming	425
All other states	410

In the final analysis, only Hawaii has established width limits in excess of 245 or 260 cm (96 or 102 in), and only the District of Columbia restricts vehicle heights less than 410 cm (13.5 ft).

The present maximum width of 245 cm is primarily limited by present roadway geometrics. The present manufacturing technology is capable of increasing axle widths up to 260 cm . However, increases beyond 260 cm would require significant retooling. Operation of vehicles on the Interstate system, where pavement lanes of 365 cm (144 in) or greater predominate, probably would not be as impaired by vehicle width increases up to or beyond 260 cm as much as city streets or local roads would. On these facilities, lane widths of 305335 cm (120-132 in) are often found.

A significant number of structures would need to be raised on the highways, including the Interstate system, if vehicle heights were increased. Clearances of approximately 425 cm (14 ft) have been permitted by many jurisdictions in the past. Those clearances have been reduced by pavement overlays under overcrossings. Clearances would be further reduced if gross vehicle weights were increased and pavement sections were reconstructed to carry the additional loads.

PERMIT OPERATIONS

Use of Oversize-Overweight Permits

The need for regulation of the size and weight of vehicles has long been recognized to provide safety to the traveling public, to conserve the highway transportation facilities, and to regulate competition among transportation modes. However, all states have recognized the need to allow vehicles and loads exceeding these limits to move over our highways when such movements can be shown to be in the best interests of society and when no feasible alternative exists. Use of the public highways by oversize-overweight vehicles is controlled by state authorities through the issuance of special vehicle permits.

Permits are obtained through state agencies, usually, but not always, the state transportation agency. Most applications require similar information including name, address, vehicle dimensions, weight information, and route information. In addition, movers are required to post a bond to cover possible problems and to demonstrate to state authorities proof of liability and property damage insurance of a certain amount. Application is made, and at times issuance is routine. However, there are times when movements require an engineering analysis and review of the route requested to determine the possibility of pavement and/or bridge damage. The permit fees seldom reflect the costs incurred by such analyses.

Number of Permits Issued

In 1969, a national inventory of permit issuance was

Figure 1. Distribution of 1977 axle maximum weights.

Figure 2. Single-axle maximum weights.

Figure 3. Tandem-axle maximum weights.

undertaken to determine basic data necessary for further study of the scope and economic impact of oversizeoverweight permit operation (8). Samples of permits issued for the year 1966 were coded and the data processed into a variety of classifications. The summary

Figure 4. Combination GVW maximum weights.

of all oversize and overweight permits issued is included in Tables 3 and 4 (10). Total number of permits issued was 2151282 . Forecasts for 1975 were on the order of 3.9-4.7 million permits.

Since this study, no other comparable compilation of data on the frequency of issuance of oversize-overweight permits has been undertaken. For this report, several states were contacted directly, and requests were made regarding the frequency of permit issuance. The table below was constructed with data supplied by several of the states contacted; data for 1966 are from Roy Jorgensen and Associates (8). While it is risky to draw substantial conclusions from these limited data, a conservative estimate would indicate that at least 3.0 million permits were issued in 1975.

State	No. Permits Issued		
	1966	1975	Percentage Change
Idaho	24466	23488	-4
Kansas	51491	~ 60000	16
Michigan	94099	76895	-18
Nevada	5641	8716	55
Pennsylvania	151774	247314	63
Texas	234514	325533	39
Utah	25540	65785	157

Table 2. Vehicle and combination length limits.

State	Length (m)			Remarks
	Straight Truck	Semi/Full Trailer	Combination	
Alabama	12.0	NS	17.0	-
Alaska	12.0	13.5	21.5	-
Arizona	12.0	NS/40	20.0	32.0 m with permit, I-15 only
Arkansas	12.0	NS	20.0	-
California	12.0	12.0/12.0	20.0	-
Colorado	10.5	NS	20.0	-
Connecticut	17.0	NS/ 12.0	17.0	-
Delaware	12.0	12.0/NS	20.0	-
Florida	12.0	NS/ $10.5,12.0$	17.0	$10.5 \mathrm{~m}, 2$-axle; $12.0 \mathrm{~m}, 3$-axle; 33.5 m toll roads
Georgia	17.0	NS	17.0	-
Hawaii	12.0	NS	17.0, 20.0	17.0 m tractor-semitrailer, 20.0 m other
Idaho	12.0	NS	23.0, 29.0	23.0 m designated highways, permits required
Illinois	13.0	13.5	17.0, 18.5	17.0 m tractor-semitrailer, 18.5 m other
Indiana	11.0	NS	$20.0,30.0$	30.0 m toll road only
Iowa	12.0	NS/10.5	18.5	-
Kansas	13.0	NS/13.0	$20.0,33.0$	33.0 m toll road only
Kentucky	10.5	NS	17.0, 20.0	17.0 m tractor-semitrailer, 20.0 m tractor-semitrailer, both on designated highways only
Louisiana	10.5	NS	20.0	- ${ }^{\text {g }}$
Maine	13.5	$13.5 / 15.5$	17.5	- 0 -
Maryland	12.0	NS	$17.0,20.0$	20.0 m designated highways only
Massachusetts	10.5	NS	17.0	-
Michigan	12.0	NS	18,0, 20.0	20.0 m tractor-semitrailer and trailer
Minnesota	12.0	13.5/13.5	17.0	-
Mississippi	10.5	NS	17.0	-
Missouri	12.0	NS	$17.0,18.5,20.0$	17.0 m tractor-semitrailer, 18.5 m motor vehicle transporters, 20.0 m other
Montana	12.0	NS	18.5	21.5 m permit, 26.0 m permit on designated highways
Nebraska	12.0	NS/12.0	18.5, 20.0	18.5 m tractor-semitrailer, 20.0 m other
Nevada	12.0	NS	23,0, 32,0	32.0 m permit
New Hampshire	10.5	NS	17.0	. 0 m pror
New Jersey	10.5	NS/10.5	17.0	-
New Mexico	12.0	NS	20.0	-
New York	10.5	NS/10.5	17.0, 33.0	33.0 m toll road only
North Carolina	10.5, 12.0	NS	17.0	$10.5 \mathrm{~m}, 2$-axle; $12.0 \mathrm{~m}, 3$-axle
North Dakota	12.0	NS	20.0	$10.5 \mathrm{~m}, 2$-axle; $12.0 \mathrm{~m}, 3$-axle
Ohio	12.0	NS	17.0, 20.0, 30.0	17.0 m tractor-semitrailer, 20.0 m other, 30.0 m toll road
Oklahoma	12.0	NS	20.0	- 0 m
Oregon	12.0	12.0/NS	$23.0,32.0$	23.0 m designated highways, 32.0 m permit only
Pennsylvania	10.5	NS	$17.0,30.5$	30.5 m toll roads only
Rhode Island	12.0	$12.0 / \mathrm{NS}$	17.0	-
South Carolina	10.5, 12.0	NS	$17.0,18.5$	Over 10.5 m need 3 axles, 18.5 m auto transports
South Dakota	10.5	NS	18.5, 24.5	24.5 m designated highways
Tennessee	12.0	NS	17.0	-
Texas	13.5	NS	20.0	-
Utah	13.5	13.5/13.5	20.0, 23.0, 33.0	23.0 m permit, 33.0 m designated highways, permit
Vermont	18.5	NS	18.5	-
Virginia	12.0	NS	17.0	-
Washington	10.5	12.0/NS	23.0	23.0 m permit
West Virginia	10.5, 12.0	NS	15.5, 17.0	$10.5 \mathrm{~m}, 2$-axle; $12.0 \mathrm{~m}, 3$-axle; 17.0 m designated highways
Wisconsin	10.5	13.5/13.5	18.0	-
Wyoming	18.5	NS	26.0	26.0 m daylight operation only
Washington, D.C.	12.0	NS	17.0	- ${ }^{\text {m }}$ (

Note: $1 \mathrm{~m}=3.3 \mathrm{ft}$.

Figure 5. Maximum and minimum sizes and weights for 1977.

Figure 6. Distribution of 1977 combination maximum lengths.

Figure 7. Combination maximum lengths.

Figure 8. Multiple combinations.

Figure 9. Straight truck maximum lengths.

The increase in permits issued is matched by a desire on the part of commercial vehicle operators for larger and heavier loads. It is likely that greater numbers of permits will be issued in the future with the increasing use and public acceptance of longer vehicles (i.e., triple trailers in several western states) and government recognition of the short-run fuel savings from larger, heavier loads. This of course comes at a time when transportation fuel is receiving attention as a significant portion of our national energy picture. However, the increased energy and economic efficiency provided to truck operators must be evaluated against increased construction and maintenance costs and energy.

Trends for the Future in Size and Weight Regulations

Studies $(9,10)$ have indicated possible new higher size and weight regulations as illustrated in Table 5. Winfrey reported benefit-cost ratios on the order of 2 to 15 for a single-axle limit increase to $115 \mathrm{kN}(26000 \mathrm{Ib})$ and tandem-axle increase to $200 \mathrm{kN}(44000 \mathrm{lb})$ for several highway types (9). The Goals Report has indicated that single unit length rather than total vehicle length should be the concern of highway regulatory agencies (10). All indications are that the vehicle of the future will be larger and heavier, and perhaps wider.

Larger and heavier vehicles have been seen to improve the efficiency of operation by reducing operating costs, particularly labor costs, and increasing operating energy efficiency (11). However, increased gross vehicle weight may create damage to existing bridges and pavements unless vehicle lengths are increased sufficiently and more axles are added to retain lower axle loadings. Further, the influence of increased vehicle size and weight on safety must be considered. A major research project by the Federal Highway Administration is presently studying this impact in depth.

CONCLUSIONS AND RECOMMENDATIONS

At the moment, a major problem regarding the regulation of commercial vehicle size and weight is the lack of uniformity among states. This has caused considerable costs to carriers at locations where crossing state lines has meant the necessity of changing vehicle configuration. A classic example is the approximately $130-$ km (80 -mile) section of I-90 in Pennsylvania. Both New York (on I-90) and Ohio allow the operation of doubles. Pennsylvania does not. Operators are forced to break down the doubles combinations and travel through Pennsylvania in single configurations. One source has

Table 3. Overdimension permits issued in 1966.

State	Overlength Only	Overwidth Only	Overheight Only	Overlength and Overwidth	Overlength and Overheight	Overwidth and Overheight	Overlength, Overwidth, Overheight	Oversize Dimensions Not Specified	Total Oversize
Alabama	333	5966	300	900	67	700	1966	0	10232
Arizona	2948	10640	631	16182	74	2881	1715	0	35071
Arkansas	3597	18893	167	18407	0	1904	2115	0	45083
California	3405	33273	2739	16461	336	18563	13319	59	88155
Colorado	3248	17151	664	16138	210	6322	4820	0	48553
Connecticut	2106	10549	527	10753	32	1222	2110	0	27299
Delaware	2662	5780	70	8127	0	175	420	0	17234
Florida	3099	3733	293	27085	27	1584	5622	0	41443
Georgia	1436	12665	248	22365	0	957	5210	0	42881
Idaho	749	7577	101	13163	21	962	1690	0	24263
Illinois	2272	29906	603	24687	115	3348	2444	231	63606
Indiana	1907	10726	270	29466	356	1570	13372	140	57807
Iowa	1334	5963	333	600	100	1364	4878	33	14605
Kansas	1195	12340	533	24929	36	6851	5428	0	51312
Kentucky	2009	7812	50	16401	0	715	1287	0	28274
Louisiana	8392	22415	952	31886	250	5473	14250	0	83618
Maine	1318	6229	27	6646	60	363	346	0	14989
Maryland	1745	607	36	39664	213	71	759	0	43095
Massachusetts	1301	3366	0	8602	0	1	3	0	13273
Michigan	6572	14687	173	36078	180	1016	4406	0	63112
Minnesota	5211	11157	169	14117	104	1697	1874	34	34363
Mississippi	474	18691	344	13701	104	1442	1778	0	36534
Missouri	7327	21485	362	23015	70	2467	1830	0	56556
Montana	304	22223	562	2	29	0	14	0	23134
Nebraska	841	6221	315	10928	42	10896	1594	19	30856
Nevada	0	5359	0	0	0	0	0	0	5359
New Hampshire	644	2731	0	5242	6	83	254	0	8960
New Jersey	5011	19695	543	17459	97	2115	3795	0	48715
New Mexico	1322	9009	379	12047	194	2512	2892	0	28355
New York	1874	11143	68	29280	0	238	1798	753	45154
North Carolina	202	4755	126	23288	25	683	1846	0	30925
North Dakota	532	3903	342	5477	157	1888	2295	0	14594
Ohio	1163	20150	499	27656	259	5345	5805	0	60877
Oklahoma	8134	22922	1991	28687	198	10651	15080	0	87663
Oregon	3833	6082	274	12095	137	1283	6698	0	30402
Pennsylvania	244	45506	122	87352	3904	366	14030	0	151524
Rhode Island	137	555	15	579	4	77	65	0	1432
South Carolina	1095	3090	81	19361	60	1130	226	0	25043
South Dakota	757	7596	62	7488	24	1056	527	19	17529
Tennessee	1850	7736	82	16054	112	135	873	692	27534
Texas	34926	48614	3638	55799	882	26096	61132	0	231087
Utah	3998	2128	81	2280	365	285	5227	0	14365
Vermont	160	1115	19	2906	9	47	19	0	4275
Virginia	4858	10646	531	25584	143	570	3329	0	45661
Washington	8636	26487	355	19326	0	4069	3905	0	62778
West Virginia	2626	9986	311	9946	289	1714	2036	14	26922
Wisconsin	6791	5566	66	5658	66	924	4585	0	23656
Wyoming	2833	12699	1033	7733	533	4000	1567	0	30398
Washington, D.C.	243	196	39	316	136	179	874	0	1983
Total	157655	607724	21126	851916	10026	137990	232108	1994	2020539

claimed that nearly $5700 \mathrm{~m}^{3}$ (1.5 million gal) of diesel fuel are lost annually in this operation (12).

Clearly, these nonuniform regulations do pose a problem for just keeping informed. A study currently under way has as its objective a quantification of the costs of this nonuniformity.

One report listed some problems regarding permit issuance in the year 1966 (8). The most important of these was the variance in laws, regulations, and philosophies. While this aspect of permit issuance was only briefly discussed in this paper, the investigation done does not indicate that any strides toward uniformity have taken place. Conversations with public utilities officials indicated that some steps toward uniformity have been made in rate regulation; however, the progress in oversize-overweight vehicle permits is questionable.

This investigation also indicated a paucity of data regarding permit issuance by each state. Only about 33 percent of the states contacted had raw data regarding the numbers of permits issued. The classification of these data was extremely difficult. One state kept a monthly record of permits issued divided into six classifications based on vehicle type. Over 50 percent of the entries for every month were in the miscellaneous category.

A good data base on the movements of oversized permit vehicles would help in the evaluation of the benefits and costs incurred by increasing vehicle sizes and weights. Larger, heavier loads can cause a significant
increase in the damage to pavements if axle loads are increased. Bridges can also be damaged by increasing vehicle weights. Short-span bridges are most affected by increased axle loads. Medium-span bridges would be adversely affected by increased gross vehicle weights. However, long-span bridges would not be significantly influenced by increased loading, since the live load would be small relative to the dead load for the bridge. The effect of increasing vehicle load on bridge decks has not been adequately quantified at this time; however, increased axle loads are felt to be a major contributor to accelerated bridge deck deterioration. The knowledge of permit movements combined with information on illegal overloads can be used effectively to evaluate the efficacy of increasing vehicle size, to set permit fees, and to assess overload penalties.

For intelligent study and proper decisions to be made, it is necessary for the raw data to be available. Considerable work needs to be done in this area so that an accurate and reliable data base, locally and nationally, will be available for assessing appropriate permit fees and to perform further research in this area.

The trend of increased vehicle size and weight may be expected to continue. Increased vehicle size and weight yield efficiency in the form of reduced operating costs and decreased fuel consumption per unit of payload. However, construction and maintenance costs and energy may be expected to increase. The magnitude of this trade-off must be evaluated not only with respect to

Table 4. Overweight permits issued in 1966.

State	$\begin{aligned} & \text { GVW } \\ & \text { Only } \end{aligned}$	Axle Only	GVW and Axle	Unknown	All
Alabama	0	0	0	0	0
Arizona	5050	0	0	0	5050
Arkansas	67	0	7452	34	7553
California	103	0	45068	0	45171
Colorado	1362	35	35140	12889	49426
Connecticut	272	111	11555	32	11970
Delaware	-	-	-	-	-
Florida	0	0	7514	0	7514
Georgia	0	0	7073	0	7073
Idaho	19	21	4403	20	4463
Illinois	29	57	20097	1000	21183
Indiana	5903	5933	1201	273	13310
Iowa	4435	33	0	4393	8861
Kansas	325	36	13131	0	13492
Kentucky	0	0	8392	615	9007
Louisiana	53	0	8502	351	8 906
Maine	0	0	3899	0	3899
Maryland	108	0	12810	36	12954
Massachusetts	-	-	4240	=	4240
Michigan	-	-	0	27632	27632
Minnesota	414	419	3314	=	4147
Mississippi	5615	184	54	456	6309
Missouri	4835	0	0	0	4835
Montana	249	1110	3724	7060	12143
Nebraska	2085	63	2039	0	4187
Nevada	0	107	1117	176	1400
New Hampshire	6	0	4247	21	4274
New Jersey	11793	0	38	295	12126
New Mexico	46	0	3475	0	3521
New York	77	0	22081	753	22911
North Carolina	5690	607	2124	0	8421
North Dakota	3954	124	0	2607	6685
Ohio	0	30	31273	0	31303
Oklahoma	88696	0	0	0	88696
Oregon	10500	0	7200	478	18178
Pennsylvania	100	100	29700	0	29900
Rhode Island	118	0	184	0	302
South Carolina	0	21	179	0	200
South Dakota	251	12	2380	0	2643
Tennessee	42	66	4307	692	5107
Texas	789	4703	86071	0	91563
Utah	0	0	12253	81	12334
Vermont	0	0	658	12	670
Virginia	0	0	12225	0	12225
Washington	22209	909	15	0	23133
West Virginia	2474	86	6682	0	9242
Wisconsin	233	6558	3906	0	10697
Wyoming	500	0	9232	0	9732
Washington, D.C.	56	0	1539	20	1615
All	178458	21325	440494	59926	$\begin{array}{r} 700203 \\ +12803^{\mathrm{a}} \\ \hline \end{array}$
Grand total					713006

${ }^{\text {* }}$ Michigan issued 12803 permits that exceeded axle limits and that, in other states, would have
exceeded gross limits.
gross vehicle weight and axle loadings, but also for specific truck configurations.

A cursory evaluation indicates that a truck may be increased in gross vehicle weight if axle loads are not increased and the weight is spread out over an increased length. Maintaining present legal axle loads would eliminate pavement damage, damage to short-span bridges, and the potential accelerated wear of bridge decks. Triple trailers could meet these restrictions. However, the impact of increasing the length and weight on safety must also be considered. The effects that this configuration and increased weight would have on safety are not well defined at this time. More comprehensive research and evaluations must be performed to confirm the efficacy of increasing vehicle size and weight.

ACKNOWLEDGMENTS

We wish to express our gratitude to the U.S. Department of Transportation, whose financial assistance made this

Table 5. Past, present, and proposed sizes and weights.

Application	Actual 1956-1975	$\begin{aligned} & \text { Actual } \\ & 1975 \end{aligned}$	FHWA Research Proposal ${ }^{\text {a }}$	$\begin{aligned} & 1985 \\ & \text { Proposed } \end{aligned}$
Weight, kN				
Single axle	80	90	115	115
Tandem axle	140	150	200	200
Maximum GVW ${ }^{\text {c }}$	325	355	535	535
Width, cm	245	245	260	260
Length, m				
Single trailer	$=$	-	-	13.5
Double or triple trailer	-	-	-	8.5
Single-unit vehicle	-	-	12.0	13.5
Overall combination vehicle	-	-	20.0	-
Tractor-semitrailer	-	-	17.0	-
Note: $1 \mathrm{kN}=225 \mathrm{lb} ; 1 \mathrm{~cm}=0.39 \mathrm{in} ; 1 \mathrm{~m}=3.3 \mathrm{ft}$.				
${ }^{\text {a }}$ See NCHRP report (11). ${ }^{\text {b }}$ Se	See Fleet Owner (12).		${ }^{\text {c Subject to }}$ to ridge formula.	

research possible. The contents of this report reflect our views, and only we are responsible for the facts an accuracy of the data presented here. The contents do not necessarily reflect the official views or policies of the U.S. Department of Transportation.

REFERENCES

1. State Motor Carriers' Handbook-Sizes and Weights: Taxes and Fees. Western Highway Institute, San Francisco, CA, 1976.
2. J. W. Fuller. Current Issues in the Regulation of Motor Vehicle Sizes and Weights. Washington State Univ., Pullman, PhD thesis, 1968.
3. Federal Regulation of the Size and Weight of Motor Vehicles. 77th Congress, 1st Session, U.S. Government Printing Office, House Doc. 354, 1944.
4. Recommended Policy on the Maximum Dimensions and Weights of Motor Vehicles to Be Operated Over the Highways of the United States. AASHTO, Dec. 7, 1964; revised Jan. 15, 1968, Feb. 23, 1973, and Feb. 18, 1974.
5. How to Apply Formula "B" for Vehicles in Regular Operation. Western Highway Institute, San Francisco, CA, Technical Rept. 1-75, 1973.
6. Federal Size and Weight Update. GO-Transport Times of the West, Oct. 1977.
7. Truck and Bus Sizes and Weights. Motor Vehicle Manufacturers Association of the United States, Inc., Detroit, MI, 1977.
8. Roy Jorgensen and Associates. OversizeOverweight Permit Operation on State Highways. NCHRP, Rept. 80, 1969.
9. R. Winfrey and others. Economics of the Maximum Limits of Motor Vehicle Dimensions and Weights. Environmental Design and Control Division, Offices of Research and Development, Federal Highway Administration, Rept. FHWA-RP-73-70, Vol. 2, Sept. 1968.
10. U.S. Government Interagency Study of Post-1980 Goals for Commercial Vehicles. Washington, DC, June 1976.
11. Changes in Legal Vehicle Weights and Dimensions: Some Economic Effects on Highways. NCHRP, Rept. 141, 1973.
12. Doubles and Triples-Needed Aid to Trucking Economy. Fleet Owner, Vol. 70, Mar. 1975, p. 89.
Publication of this paper sponsored by Committee on Surface Freight Transport Regulation.
