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Methods of analyzing parallel drains for highway cut-slope stabilization 
are introduced. The analysis procedure is based on the prediction of the 
phreatic surface location within a soil mass under steady-state seepage. 
Relative effectiveness of alternate drain spacings is determined by esti· 
mating the steady-state phreatic surface at a profile located midway be
tween drains and by using analysis procedures for the design of parallel 
drains in agricultural field drainage. Applications are made to seepage 
from an infinite-slope source. Mathematical analyses for estimating 
steady-state phreatic surfaces at a blanket drain and cut-slope intercept 
with an infinite-slope seepage source are also introduced. An illustrative 
design problem is worked out in detail. 

Since their introduction by the California Highway De
partment in 1939, drilled-in parallel drains have proved 
to be an effective means of achieving highway cut-slope 
stabilization (1). Unfortunately, little has been written 
on the analysis of the use of parallel-drain spacing for 
this purpose. In practice, drain spacings ranging from 
3 to 15 m (10 to 50 ft) are often selected on the basis 
either of experience (1) or of the carrying capacity of 
the drai11pipe (2). A design criterion is needed by which 
a designer can-evaluate, before installation, the effec
tiveness of alternate parallel-drain spacings in lowering 
the groundwater, or phreatic, surface at a profile lo
cated midway between the drains. A relative stability 
analysis can then be made to evaluate drainage alterna
tives. 

A recent article by Kenney, Pazin, and Choi (3) intro
duced a design criterion for evaluating the relative ef
fectiveness of horizontal parallel drains based on pre
dicting the increase in stability (factor of safety) without 
analyzing phreatic surface drawdown directly. Their 
solution was compared with that introduced in this paper 
in an earlier uncondensed draft (4). 

BASIS FOR PARALLEL-DRAIN ANALYSIS 

Drainage analysis in this paper is based on the following: 

1. A predetermined maximum infinite-slope phreatic 
surface developed under seepage parallel to a drainage 
barrier in an unconfined aquifer (phreatic surface I in 
Figures 1 and 2)-seepage is assumed to be steady state 
at this critical condition; 

2. An undrained steady-state phreatic surface ex
tending from phreatic surface I to the intercept with the 
cut slope (phreatic surface U in Figures 1 and 2); 

3. An estimated steady-state phreatic surface for a 
blanket drain installed at the same attitude as the paral
lel drains (phreatic surface Din Figures 1 and 2), ex
tending from phreatic surface I to the drain; and 

4. A steady-state phreatic surface estimated to exist 
at a profile midway between and parallel to two adjacent 
parallel drains (phreatic surface Min Figures 3 and 4). 
The rationale used is that, if drains are spaced infinitely 
far apart, phreatic surface M equals phreatic surface U; 
if spaced infinitely close together, phreatic ·surface M 
equals phreatic surface D. 

FLOW-NET ANALYSES: PHREATIC 
SURFACES I, U, AND D 

Flow-net solutions are possible for estimating phreatic 
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surfaces U and D by using equipotential drops (ah) from 
the infinite-slope phreatic surface I: 

t.h = h sin () cos () (I) 

where h equals depth from phreatic surface to the drain
age barrier and 0 equals slope of the drainage barrier. 
Figure 1 shows the results of the flow-net analyses for 
phreatic surfaces U and D. Flow-net analyses are time 
consuming, and mathematical solutions that can be used 
to approximate these phreatic surfaces would be faster 
and readily adaptable to computer analyses. 

MATHEMATICAL ANALYSES: PHREATIC 
SURF ACES U AND D 

Mathematical solutions for phreatic surfaces U and D are 
not readily found in the literature for infinite-slope seep
age conditions. I have modified solutions by Casagrande 
and Kozeny ( 5, 6) developed for a reservoir seepage 
source to approximate phreatic surfaces U and D from 
an infinite-slope source. One can expect good correla
tion for phreatic surface U with the results of flow-net 
analyses for cut slopes with horizontal-to-vertical ratios 
of 1 :1 (45°) or flatter. For cut slopes steeper than 45", 
one may use a graphical approximation based on Casa
grande' s modified basic parabola (5, 6) procedure in con
junction with the following Equation 10 plotted with the 
origin at the toe of the cut slope. 

Applications of mathematical solutions for phreatic 
surfaces U and D for seepage emanating from a reservoir 
source, as they apply to the procedure presented in this 
paper, were made in an earlier draft(!). 

Phreatic Surface U 

The vertical distance from the toe to the phreatic surface 
intercept of the cut slope from flow-net analysis (Figure 
1) is 

t.hw = hw sin 1J cos () (2) 

where hw is the vertical distance from the toe to the pro
jection of phreatic surface I. If the cut slope intercepts 
the drainage barrier, hw = h. Corrected for approximate 
mathematical analysis, 

Set Xu = 0 at Yuo = hw sin() cos() (I + tan 2 IJ)(l + tan 2 (3) (3) 

where fJ is the cut slope. For positive values of ~ 
(toward the toe) 

Yu =Xu tan{3 (4) 

At the toe, Yu = 0 and ~0 = Yu 0/tan {J. For negative val
ues of ~ (toward phreatic surface I) 

Yu = (aXu2 - 2Y uo Xu + Y ud )y, (5) 

where a equals tan2 a. At the intercept with phreatic 
surface I 

Y m = hi - Xu1 tan 1J (6) 



and 

Xu 1 = (h,2 - Y uo 2 )/ (2hi tan 0 - 2Y uo ) (7) 

where h1 = hw + ~o tan e. 

Phreatic Surface D 

At the intercept of the drain with the barrier set Xo = 0 
and 

Yoo = h sin 0 cos () (I + tan 2 O) (8) 

Phreatic surface enters the drain vertically at (positive 
value for Xo) 

X00 = Y, h sin 0 cos 0 (9) 

For negative values of Xo (toward phreatic surface I) 

Yo =(aX02 -bYno Xn +Yno 2) Y. (10) 

where a = tan2 e and b = Y0 0/ Xoo + aXo 0/ Y00• At the inter
cept with phreatic surface I 

Y 0 1 = h - X01 tan () 

Figure 1. Flow·net 
analyses for phreatic 
surfaces U and D. 
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Figure 2. Mathematical analyses for 
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and 

Xo1 = (h 2 -Y00
2 )/ (2h tan 0 - bY00 ) (1 2) 

If the drain does not intercept the barrier, a solution 
is possible by setting Xo = 0 at the end of the drain and 
using h = hw as previously defined. 

PARALLEL DRAINS FOR AGRICULTURAL 
DRAINAGE 

Parallel drains have been used successfully in agri
cultural drainage to lower the phreatic surface to pre
determined levels (7, B). Design criteria exist for both 
steady-state and tranSlent-state infiltration of rainfall 
or irrigation water concentrated by a drainage barrier 
(see Figure 5). The analysis is two-dimensional, and 
vertical recharge is assumed. 

Steady-State Analysis 

Where rainfall is frequent, a steady-state analysis is 
made for the drain spacing (S) required to maintain the 
phreatic surface at the appropriate level. Figure 5 
shows an idealized cross section across two parallel 
drains under steady-state drainage. The Dutch have 
pioneered the analysis for the steady-state case, and 
several solutions are possible (8). The most useful for 
adaptation to cut-slope stabilization is the Hooghoudt 
equation: 

(13) 

where 

K. =hydraulic conductivity (permeability) of the soil 
above the drainpipe, 

Kb =hydraulic conductivity (permeability) of the soil 
below the drainpipe, 

V = drain discharge velocity (or rainfall recharge 
rate), 

h. = maximum phreatic surface height above the drain 
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Figure 3. Results of analyses for phreatic 
surfaces M using three drain spacings. 
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at a profile midway between the drains, 
S = drain spacing, 
D = depth from the drain to the drainage barrier, and 
d = reduced equivalent depth corresponding to D 

(reduced to account for extra resistance at the 
drainpipe caused by radial flow). 

For the case where D < 1/4S, the relationship be
tween d and D has been developed based on work by Ernst 
and Hooghoudt (~. 

d = D/[ I+ (8D/1rS) ln(D/1Tr0 )] (14) 

where r 0 is the radius of the drainpipe. 
The typical drilled-in drainpipe used in cut-slope 

stabilization is slotted PVC plastic with an inside di
ameter of 3.8 cm (1.5 in). Figure 6 shows the rela
tionship, by Equation 14, between d and D for this drain
pipe at various drain spacings. 

If the soil is assumed to be homogeneous, then K. = 
Kb = K, and Equation 13 can be rewritten as an equation 
for drain spacing: 

S= l[4Khm (2d+hm)JfVJI> (IS) 

Transient-State Analysis 

In the case of intermittent recharge, such as with irri
gations or high-intensity rainfall, transient- or non
steady-state analysis is used. Figw·e 5 shows an ideal
ized cross section across two parallel dralns under 
transient-state drainage. The solution for drain spac
ing (S) is based on lowering the phreatic sul'face de
veloped by one irrigation (h 0 ) to a required level (h<) 
within the time span (drain-out time) (t) between ir
rigations so that the following irrigation will not in
crease the phreatic surface beyond h0 • Several methods 
of solution are available; the most useful for adaptation 
to cut-slope drainage is the modified Glover-Dumm equa
tion (8) for the drawdown ratio in the form 

(16) 

where O!t = ['IT 2 K(d + %~) t]/N.S2 > 0.2, N. is effec
tive porosity (specific yieldJ of the soil, and K and d are 
as defined for Equations 13 and 15. 

PARALLEL DRAINS FOR HIGHWAY 
CUT-SLOPE DRAINAGE 

The conditions are somewhat different for highway cut-
slope drainage than they are for agricultural drainage. 

x) ft. 

maximum groundwater conditions expected during the de
sign life of the high:111ay, (b) recha.rge at the drains pri
marily from seepage flow along the drainage barrier, 
and (c) a three-dimensional analysis. 

Figure 7 illustrates the three-dimensional nature of 
a typical parallel-drain installation for highway cut-slope 
stabilization. For cross section B-B1 or C-C1, as long 
as seepage is steady, the midpoint phreatic surface 
heights ht and h 0 , resp.ectively, will not vary with time 
the way agricultural parallel drains do in the transient 
state. However, the midpoint phreatic surface height 
does decrease with successive down-slope cross sec
ti6ns (ht < hJ. This .suggests that the two-dimensional 
transient-state analysis {Equation 16) may be altered to 
a three-dimensional ·s teady-state analysis (see Figures 
5 and 7) by assuming that drains are installed parallel to 
the g1:adient of the drainage barrier and defining drain
out time (t) as the time required for seepage to travel be
tween successive down-slope cross sections (C-C1 to 
B-B1). 

In addition, the 'steady-state analysis (Equation 15) 
may be applicable to the conditions at the end of the 
drain (cross sect.ion C-C1) if the discharge velocity (y) 
is defined as a comparable recharge velocity moving 
along the drainage barrier. 

Alteration of the modified Glover-Dumm equation for 
the three-dimensional steady state can be done as follows. 
A replacement for drain-out time (t) to represent the 
time required for seepage to travel between successive 
down-slope cross sections can be derived by using 
Darcy's law (1). A variety of solutions is possible de
pending on thefollowing: 

1. How the hydraulic gradient i, equal to ratio be
tween slope distance and slope height, is defined; 

2. Whether this hydraulic gradient is assumed con
stant for a specific vertical cross section; and 

3. How the flow distance ( Z) between successive 
cross sections is determined. 

Figure 4 illustrates a typical flow situation that might 
exist on a profile that is midway between drains (M). The 
most representative hydraulic gradient (i) between suc
cessive cross sections is somewhere between the phre
atjc surface gradient (Ahp/P) and the barrier gradient 
~b8/B). Also, the most representative .flow distan 
(Z) is somewhere between P and B. The mean values 
of flow distance and hydraulic gradient are defined, re
spectively, as 

Z = (P + B)/2 (17) 

Long-term highway cut-slope drainage by parallel drains and 
must be based on (a) steady-state seepage analysis of the 



i =(~hp + ~h8 )/(P + B) (18) 

From Darcy's law (1) we can derive an expression for 
drain-out time (t) -

Q=KiA (19) 

Where Q is seepage quantity, A is cross-sectional area 
normal to the flow, and K and i are as previously defined. 
Also discharge velocity is 

V= Q/A =Ki (20) 

and seepage velocity is 

V, = V/N0 = Ki/N0 = Z/t (21) 

where N., z, and t are as previously defined. 
In terms of drain-out time (t), 

t = Z/V, =Ne Z/Ki (22) 

Substituting Equation 22 into Equation 16 yields the draw
down ratio 

(23) 

where 

at= [1T
2 (d + Yiy'h;;h,) Z]/S 2 i>0.2 (24) 

Alteration of the Hooghoudt equation for the three
dimensional case by substituting V = ki into Equation 15 
yields 

Figure 4. Definition of hydraulic gradient, drainage distance, and 
drawdown ratio between successive cross sections. 
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S = { (4 hm (2d + hm )]/il'1' (25) 

When the drain contacts the drainage barrier, d = O, and 

(26) 

Equations 25 and 26 can be used in conjunction with 
phreatic surfaces U and D to estimate the practical range 
of drain spacings to be considered in the analysis. The 
hydraulic gradient is defined in the same manner as in 
the derivation of Equation 18. For the case where the 
drain contacts the barrier, the minimum practical drain 
spacing is 

Smin~ {4 Yno 2 /sin ((45° +li)/2])y, (27) 

where Y00 is from Equation 8, and the maximum practi
cal drain spacing is 

(28) 

where hu and 0u are height above the drain at the barrier 
and slope at that point, respectively, of phreatic sur
face U. 

ILLUSTRATIVE PROBLEM 

To illustrate how the above analysis might be used in an 
actual design problem, consider the highway cut illus
trated in Figures 1 and 2. 

Recommended Procedure 

A more complete procedure that incorporates this method 
directly into a slope-stability analysis was given in an 
earlier draft (4). The following procedure pertains to 
drainage analysis only. 

1. Construct phreatic surface U using either flow-net 
analysis or mathematical analysis or both (Equations 1-7). 

2. Construct phreatic surface D using either flow-net 
analysis or mathematical analysis or both (Equations 1 
and 8-12). 

3. Estimate Sm;n and Smax using Equations 25-28 and 
select trial drain spacings. 

4. Construct the phreatic surface M for the trial 
drain spacings. All should fall between phreatic sur
faces U and D. 

5. Begin the analysis at the intercept of phreatic 
surfaces D and I from flow-net analysis or Equations 
11 and 12. 

Figure 6. D versus d for a drainpipe of 3.8·cm (1.5-in) inside diameter. 
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6. Divide into cross sections from intercept D-I(Xot) 
to the intercept of phreatic surface U with the cut slope 
(~ 0). Cross sections should be spaced far enough apart 
so that ll!t > 0.2 in Equation 24. Usually spacing larger 
than S/10 will satisfy this requirement. 

7. For negative values of Xo, analyze as if the drain 
::inn <lrainae;P. harriP.r WP.rP. hoth JocatP.d on phrP.atic sur
face D. 

8. Between successive cross sections, determine 
drawdown ratio, ht/h0 , through trial-and-error relax
ation between estimation (see Figur e 4) and calculation 
(Equation 23). Two or three trials are usually sufficient. 

Solution 

Infinite-slope conditions are h equals 4.0 m (13 ft) and 
a = 20°. Refer to Figures 7 and 8 and construct all phre
atic surfaces from the same X- Y axis located at the toe 
of the cut. 

Step 1. Phreatic Surface U 

From columns 5 and 6 of Figure 8, calculate Equation 3 
at~= O: 

Figure 7. Three
dimensional highway 
cut-slope drainage 
with recharge along a 
drainage barrier. 
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Yuo = hw sin 0 cos e (1 + tan20) (1 + tan2'9) = 1.2 m (3.9 ft) 
Then, with Equation 4 at the toe, Yu = 0 and ~o = Yuo / 

tan p = 1.8 m (5 .9 ft) 
From EC\uation 5 for negative values of ~. we get 
Yu = (tan 0JG - 2 Yuo ~ + Y~0)Yi and 
Yu= (0.132~ - 2.40 ~ + 1.44)1> 
Plot at 
X = ~ - ~o = ~ - 1.8 
Intercept with phreatic surface I by Equation 7 for 
h1 = h~ + ~o tan e = 2.9 m (9. 7 ft) 
so that 
~' = (h~ - Y~0)/(2h 1tan0 - 2Yu0) = -27 .5 m (-90.3 ft) 
at 
X = ~ 1 - ~0 = -29.4 m (-96.2 ft) 

Step 2. Phreatic Surface D 

From columns 9 and 10 of Figure 8, one can use Equation 
8 at the contact of the drain with the barrier; Xo = 0 and 
Yoo = h sin 0 cos 0 (1 + tan20) = 1.4 m (4. 7 ft) 
Equation 9 for phreatic surface intercept with drain is 
Xoo = % h sine cos 0 = 0.6 m (2.1 ft) 
Equation 10 for negative values of Xo, where 
a= tan20 = 0.132, gives 
b = Yoo/ Xoo + aXoo/Yoo = 2.32 
where 
A Y0 = conver s ion to common axis (see Figure 7) = 3.2 m 

(10.6 ft ), 
Yo = (ax! - bY00Xo + Y~0)~ + A Y~, and 
Yo = (0. 132X: - 3.35Xo + 2 .08)~~ + 3.2 . 
Then plot at X = Xo + AXo, where AXo is the conversion 
to common axis (see Figure 7)or-13.4 m (-44.0 ft) 
x = Xo - 13.4 
Equation 12 for intercept with phreatic surface I gives 
Xor = (h2 

- Y~0)/(2h tan 0 - bY00) = -29.2 m (-95.8 ft) 
Begin drain-spacing analysis at Xo = -30.5 m (-100 ft) 
and at X = Xo -13.4 = -43.9 m (-144 ft). 

Figure 8. Analysis for phreatic surface Min the problem in Figure 3 with a 4.6-m (15-ft) drain spacing. 



Step 3 

Equation 27 gives 
Sm;n ~ (4 Y~0/ (sin [ (45° + e) /2) JJY' ~ 3 m (10 ft) 
From Figure 8, at Xo = O, hu =Yu - You = 3.6 m (11.9 ft), 
and Bu = 21.8°, Equation 28 gives 
Sm,.~ (4 h!/(sin [(Su+ e)/2] JJY' ~ 12 m (40 ft) 
Use trial drain spacings S = 4.6 m (15 ft), 9.2 m (30 ft), 
and 13. 7 m (45 ft). 

Step 4. Phreatic Surface M 

See columns 11 and 12 of Figure 8 for the solution for 
S = 4.6 m (15 ft). Similar analyses were made for S = 
9.2 m (30 ft) and S = 13.7 m (45 ft). The resulting 
phreatic surfaces are plotted in Figure 3. 

CONCLUSIONS 

1. A method of estimating phreatic surfaces at the 
midway profile between parallel drains is introduced. 
Because of the large number of assumptions made in the 
derivation of practical mathematical analyses, the results 
must be considered approximate only. 

2. The analysis procedure can be based on flow-net 
analysis or on a completely mathematical analysis. Using 
the mathematical analysis has the advantage in that it can 
be computerized by using the procedure from Figure 8 
for an infinite-slope seepage source. 

3. For a typical problem, the analysis procedure 
resulted in a range of drain spacings from 4. 6 to 13. 7 m 
(15-45 ft), which coincides well with the range commonly 
used in practice. 

4. Further study is needed to define the optimum 
cross-sectional spacing to use in the analysis of a given 
drain spacing S. The analysis is sensitive to the cross
sectionai spacing used. Using a wider spacing <.1X in 
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Figure 8) between cross sections results in a greater 
predicted drawdown. An optimum cross-sectional 
spacing (,6X) as a function of drain spacing (S) is ex
pected and needs to be verified by model study and ex
perience. 
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Evaluation of Pavement Systems for 
Moisture-Accelerated Distress 
S. H. Carpenter, M. I. Darter, and B. J. Dempsey, Department of Civil 

Engineering, University of Illinois, Urbana 

The occurrence of moisture-accelerated distress (MAD) caused by poor 
internal drainage in a pavement is predictable after examining components 
of the pavement and its environment. MAD is defined as any distress 
primarily caused or accelerated by moisture. A fast, inexpensive method 
for identifying existing and potential MAD has been developed and pro· 
vides a valuable tool to the maintenance engineer managing a system of 
pavements and the design engineer evaluating a single pavement for pos
sible rehabilitation. In the procedure for evaluating MAD the following 
are done: Extrinsic and intrinsic factors are predicted, the condition of the 
pavement surface is surveyed, and the pavement is tested. Each of these is 
considered a level of refinement in determining the occurrence of MAD 
in the pavement system and represents increased cost. The extrinsic fac
tors in level one are concerned with climatic influences on the moisture 
state of the pavement. The intrinsic factors are examined for likelihood 
of internal drainage problems caused by the materials and cross section 
being used. This provides an index of potential MAD problems. In 
the condition survey any existing distress on the pavement surface is 
directly measured. The final step is to conduct physical tests of the 
pavement, if it is felt that inadequate information has so far been ob· 
tained. This testing may be either destructive or nondestructive. By 

the final evaluation stage, one has sufficient working knowledge to 
make an accurate judgment as to the existence of or the potential for 
occurrence of MAD. One or more alternative maintenance and reha
bilitation strategies can be selected, based on the evaluation results, 
to reduce or prevent MAD. The final selection of the alternative is 
based on the present condition of the pavement, traffic level, 
economics, and future requirements. 

The data presented in this paper are part of an evalua
tion manual developed for field use by pavement engi
neers. The manual provides complete descriptions of 
how to identify pavements with poor internal drainage 
that potentially could deteriorate prematurely. Four 
distinct components have been examined that show a 
relationship to moisture-accelerated distress (MAD): 
extrinsic factors, intrinsic factors, condition survey, 
and testing. 




