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This paper investigates the application of analysis techniques developed 
by Box and Jenkins to freeway traffic volume and occupancy time series. 
A total of 166 data sets from three surveillance systems in Los Angeles, 
Minneapolis, and Detroit were used in the development of a predictor model 
to provide short-term forecasts of traffic data. All of the data sets were 
best represented by an autoregressive integrated moving-average (ARIMA) 
(0, 1,3) model. The moving-average parameters of the model, however, 
vary from location to location and over time. The ARIMA models were 
found to be more accurate in representing freeway time-series data, in 
terms of mean absolute error and mean square error, than moving
average, double-exponential smoothing, and Trigg and Leach adaptive 
models. Suggestions and implications for the operational use of the 
ARIMA model in making forecasts one time interval in advance are made. 

In computer-supervised traffic-surveillance systems the 
control decisions are often based on forecasts of traffic
stream time-series data gathered in real time. One of 
the many applications of traffic time series in traffic 
surveillance and control is to urban freeways for de
termining control strategies for ramp metering, inci
dent detection, and variable message advisory or warn
ing signs. Most vehicle delay on arterial streets, for 
example, occurs at traffic signals. The sophisticated 
intersection control strategies that have been developed 
to alleviate such delay are based on traffic time-series 
data. These data can also be used to determine changes 
in traffic demand patterns, onset of peak-period condi
tions, and occurrence of traffic congestion during spe
cial events such as concerts and athletic events. 

Computer control strategies usually require forecasts 
of the traffic variables long before implementation. 
These forecasts are based on past observations of the 
variable time series. In freeway surveillance and con
trol systems, a forecast for the next minute is usually 
needed because changes in traffic flow can occur sud
denly. Also, when this forecast is compared with the 
next observation of the traffic variable, it can signal a 
possible change in the traffic-stream behavior and can 
suggest a suitable control response. 

The behavior of traffic time series has been the sub
ject of much theoretical and experimental research work 
in recent years. Two analysis techniques have been 
commonly used: spectral analysis and discrete time
series analysis. Spectral analysis of time series as 
discussed by Jenkins and Watt$ (1) has been applied by 
Nicholson and Swann (2) to make short-term forecasts 
of traffic flow volumesin tunnels. Lam and Rothery (3) 
used the same technique to study the propagation of speed 
fluctuations on freeways. Also, Darroch and Rothery 
(4) used cross-spectral analysis of car-following data to 
e°Xplain the dynamic characteristics of a freeway traffic 
stream. Discrete time-series analysis has l)een used 
by Hillegas, Houghton, and Athol (5), who p roposed a 
Markovian first-order autoregressive model when traf
fic occupancy exceeded 15 percent, and by Breiman and 
Lawrence (6), who explored short- and long-term fluc
tuations in traffic flow. 

PURPOSE 

The purpose of this paper is to investigate the applica-

tion of the techniques developed by Box and Jenkins (7) 
to freeway traffic time series. Polhemus (8) previously 
applied them to a description of local fluctuations in ai..r
traffic operations; Der (9) applied them to Chicago free
way occupancy data; and-Eldor (10) applied them to Los 
Angeles freeway and ramp traffiCdata, although Eldor's 
data consisted of 5-min aggregations of volume time
series data. 

In this paper, Box-Jenkins techniques are used to de
velop a forecasting model based on traffic volumes and 
occupancies by using data from three freeway surveil
lance systems in Los Angeles, Minneapolis, and Detroit. 
A total of 166 time series representing more than 27 000 
min of observation were used in the development and 
evaluation of the model. Table 1 summarizes the data 
sources and types. The data from Los Angeles and 
Minneapolis are described by Payne and Hei.fenbein (11), 
while the data from Detroit are described by Cook and 
Cleveland (12). The Los Angeles data are 20-s volumes 
and occupancies per lane, and the data from Minneapolis 
and Detroit are volumes and occupancies aggregated 
over all lanes at 30- and 60-s intervals, respectively. 
Figure 1 shows representative plots of volume and oc
cupancy time series at detector station 7 of I-35 in Min
neapolis. 

The performance of the model is tested and evaluated 
in comparison with three other ad hoc smoothing models: 
the moving-average model, the double-exponential 
smoothing model, and the Trigg and Leach adaptive 
model. Performance evaluations are based on the fore
casting errors caused by each model. 

BOX-JENKINS APPROACH TO 
TIME-SERIES ANALYSIS 

The Box-Jenkins approach (7) is used here to construct 
a predictor model for freeway traffic-stream variables. 
Let Xt represent a nonseasonal time series of observa
tions taken at equally spaced time intervals. Xt is either 
stationary or reducible to a stationary form Z, by com
puting the difference for some integer number of times d 
such that 

(I) 

where Bis backshift operator defined as BXt = Xt-l• 
Mathematically, a stationa1·y time series is one for 

which the probability distribution of any (K + 1) observa
tions (Zt, ... , zt_,) is invariant with respect to t. Any 
set of observations from a stationary series will have 
the same mean value, µ. 

Many real-time series can be represented by the fol
lowing general class of linear models: 

<I>p(B)( 1 - B)ct (X, - µ) = e" (B) a, 

where 

p, d, q "" nonnegative integers, 
µ =mean of the series, 

~P(B) = autoregressive operator of order P or 

(2) 

1 
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Table 1. Data sources and types. 

Figure 1. Freeway traffic volume 
and occupancy series, Minneapolis, 
1-35, station 7. 

Freeway Detection 
Location Hardware 

Los Angeles Induction loops 

Minneapolis Induction loops 

Detroit ffitrasonic 

a Aggregated over lanes. b Per lane. 
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assumed to be independently distributed as 
N(O, a. 2

). 

The models in Equation 2 are autoregressive integrated 
moving-average (ARIMA) models of order (p, d, q). 

ARilv1A models are fitted to a particular data set by 
a three-stage iterative procedure: preliminary identi
fication, estimation, and diagnostic check. In pre
liminary identification, the values of p, d, and q are 
determined by inspecting the autocorrelations and par
tial autocorrelations of the series or its differences, or 
both, and by comparing them with those of some basic 

Data Description 

Aggregation 
Interval 

Type {s) 

Volume• 60 
Volumeb 20 
Volumeb 60 
Occupancy• 60 
Occupancyb 20 
Occupancy' 60 

Volume .. 30 
Occupancy• 30 

Volume• 60 
Occupancy• 60 

~:30 5:00 

4:30 5:00 

TIME 

No. of 
Intervals 
per Set 

175 
175 
525 
175 
175 
525 

150 
150 

260 
121 
260 

5:30 

5:30 

No. of 
Data Sets 

10 
30 
30 
10 
30 
30 

10 
10 

2 
2 
2 

6:00 
(p.m.) 

6:00 
(p.m.) 

stochastic processes. The sample autocorrelation func
tion is given by 

n-K I n 
rK = ~ [(X1 - X)(X1+K - X)J ~ CXt - X) 2, K = 1, 2, ... 

t=l t=l 

(3) 

where Xis the sample mean and n is the number of ob
servations. The autocorrelation function of a stochastic 
process provides a measure of how long a disturbance 
in the system affects the state of the system in the future. 

In general, the autocorrelation function of a moving
average process of order q has a cutoff after lag q 
(memory of lag q), while its partial autocorrelation 
function tails off. Conversely, the autocorrelation func
tion of an autoregressive process of order p tails off in 



Figure 2. Sample autocorrelations and partial 
autocorrelations, volume data, Minneapolis, 
1-35, station 7. 

Figure 3. Sample autocorrelations and partial 
autocorrelations, occupancy data, Minneapolis, 
1-35, station 7. 

+l 

0 

-1 

+l 

Approximate± 2 Standard 
Error Limits 

o _______ T _______ J1 

SAMPLE AUTOCORRELATION FUNCTION 
OF RAW DATA 

Approximate ± 2 Standard 
Error Limits 

__ J ________ T2 

0 0 

-1 

+l 

0 

-1 

+l 

0 

-1 

--- - - -- T- ---- - - --

SAMPLE PARTIAL AUTOCORRELATION 
FUNCTION OF RAW DATA 

Approximate ± 2 Standard 
Error Limits 

SAMPLE AUTOCORRELATION FUNCTION 
OF RAW DATA 

Approximate + 2 Standard 

']~~:~ -- --,, 
0 ----- --- r--------

SAMPLE PARTIAL AUTOCORRELATION 
FUNCTION OF RAW DATA 

K 

Q = n ~ rr(~) 
i=l 

+l 

0 

-1 

+l 

0 

-1 

+l 

0 

-1 

+l 

0 

-1 

Approximate ± 2 Standard 
Error Limits 

3 

SAMPLE AUTOCORRELATION FUNCTION 
OF FIRST DIFFERENCES 

Approximate + 2 Standard 
Error Limits 

_____ J _________ _ 

SAMPLE PARTIAL AUTOCORRELATION 
FUNCTION OF FIRST DIFFERENCES 

Approximate + 2 Standard 

Err]~~~~: __ __ ---

SAMPLE AUTOCORRELATION FUNCTION 
OF FIRST DIFFERENCES 

Approximate + 2 Standard 
Error Lii;;its 

-___ J ___ --------

SAMPLE PARTIAL AUTOCORRELATION 
FUNCTION OF FIRST DIFFERENCES 

(4) 
the form of damped exponentials or damped sine waves, 
while its partial autocorrelation function has a cutoff 
after lag p. For mixed processes, both the autocor
r elations and partial autocorrelations tail off. Failure 
of the autocorrelation function to die out rapidly sug
gests that differ encing is needed (d > O) . 

Once the values of p , d, and q have been determined, 
the autoregressive and moving-average parameters are 
estimated by us ing nonlinear l east- squares techniques. 
Finally, the goodness of the model fit is checked. If the 
form of the chosen model is satisfactory, then the r e
sulting residuals, at, should be uncor r elated random 
deviations. To test for this, Box and Pierce ( 13) de
veloped an overall test of residual autocorrelations for 
lags 1 through K. They found that the variable 

where n is the number of observations minus the degree 
of differencing and r 1 (a) is residual autocorrelation for 
lag i. Q is appr oximately distributed as a chi-square 
variable with (K-p-q) degrees of freedom. 

MODELING FREEWAY TRAFFIC 
TIME-SERIES DATA 

Three computer programs entitled PDQ, ESTIMATE , 
and FORECAST ( 14) were used in this research to per
form the computations required by the Box-Jenkins tech
nique. Application to all of the time series listed in 
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Table 1 resulted in the same ARTh'IA model, albeit with 
different coefficients. 

Figures 2 and 3 show the sample autocorrelations 
and partial autocorrelations for the representative vol
ume and occupancy series given in Figure 1 and for their 
first differences, The sample autocorrelations of the 
raw data damp off very slowly as lag increases. This 
suggests that differencing is needed. 

The sample autocorrelations of the first differences, 
however, indicate that only the spikes at lags 1, 2, and 
3 are large in relation to their standard error. The 
partial autocorrelations of the first differences gradu
ally tail off. This confirms that the stocha stic process 
gener ating the data is ARTh'IA (O, 1, 3); that is, the first 
differences of traffic data can be represented by a third
order moving-average model: 

(l-B)(X,-µ)=(l-O,B-0 2 B2 -0 3 B3 )a, ,IOI<! (5) 

or simply 

x, -x,_, = z, 
=a1 -0 1 a1_1 -0 2 a1_2 -0 3 a,_3 (6) 

The model in Equation 6 states that the series of dif
fer ences Z1, Z2, . .. , Zt, .. . is a series of moving linear 
combinations of (ao, a1, a2, aa), (a1, aa, aa, a.J( . . ., and 
(a,_s, a,-i, a,-L, a,), .. ., with weightfm1ctions -es, -92, 
-th, l ). It is pe·r haps more meaningful, however, to 
·view the model as showing that s hock a, coming into the 
system at t.ime t will persist over (3 + 1) periods (t{ 
t + 1, t + 2, t + 3) in pr opor tion to (1, -91, -ea, -9:V be
fo r e dissipation . The vector (1, - 91, -9P., - !'3), which 
is the mirro1• image of the weight function (-9 3, -lh, - 91, 

1), ts called the shock-effect function. The coefficients 
of the volume and occupancy series shown in Figure 1 
are 

Standard 
Data Coefficient Error 

Volume 
o, 0.7823 0.0825 
()2 0.0557 0.0105 
03 0.0844 0.0082 

Occupancy 
o, 0.6852 0.0825 
()2 0.0627 0.0099 
()3 0.0741 0.0082 

Diagnostic checking was carried out by inspecting the 
residuals (at). The autocorrelation functions of the re
siduals and the residual plots for volume and occupancy 
data are shown in Figures 4 and 5, where the autocor
relations exhibit no systematic pattern and are all quite 
small. For the volume series, the average of the re
siduals (a) is 0.0221, and the estimated standard error 
of a is 0.2362. This strongly suggests that the at have 
zero mean. Similarly, the average of the residuals for 
the occupancy series is 0.0196 and has an estimated 
standard error of 0.1402, which supports the same con
clusion. 

The values of Q for K = 24 la.gs (a value set in the 
Box-Jenkins progr ams in this study) are 27 .6 and 21.8 
for the volume and occupancy series, respectively. 
When these values of Q are compared with tabulated 
chi-square values with 21 degrees of freedom, they in
dicate that the residuals are white noise at the 0.05 level 
of significance. 

Der (9), in his analysis of two occupancy series from 
the Dan Ryan Expressway in Chicago, suggested an 
ARTh'IA (1, O, 1) process to descri be traffic occupancies. 

However, he reported that a higher-order ARIMA pro
cess such as (O, 1, 3) may be a possible candidate pro
cess . The probleu1 with an AR.Il\IIA (1, 0, 1) process is 
that it assumes that the raw traffic time series is sta
tionary1 which is not always true . Eldor (1 0) evaluated 
the ARThlIA series (O, 1, 1), (O, 1, O), and (O;T, 1). 

Some freeway surveillance systems have detectors 
in all lanes, while other systems have detectors only in 
some lanes. Also, surveillance data are generally ag
gregated over different time intervals, usually 20, 30, 
or 60 s before proce~ssing. The transferability of the 
ARTh'IA (0, 1, 3) model under these conditions was studied 
by applying the model to different time series from the 
three different freeway systems in Table 1. 

Tables 2 and 3 show the range of values of the moving
average parameters for 46 series of volume and occu
pancy aggregated over lanes at a detector station. Al
though there are some differences in the parameter es
timates between or within the different freeway systems, 
it is emphasized that it is the form of the ARTh'IA model 
that is transferable. The differences in parameter es
timates arise from variations in flow characteristics 
and, probably, variations in geometrics and similar 
factors. Eldor (10) also noted that no universal pa
rameters could be identified with his data aggregated 
to 5-min intervals. 

In addition, the data from Los Angeles, which con
sist of 20-s compilations of volume and occupancy per 
lane, provided an opportunity to compare individual lane 
data with data agg1·egated across all lanes at a detector 
station. The ARTh'IA (O, 1, 3) model was applied to 60 
series of 20-s lane volumes and occupancies. The 
model process was found representative in all these 
cases. Tables 4 and 5 give the range of values of the 
moving-average parameters for lane volumes and oc
cupancies. The effect of sampling interval was also 
investigated by aggregating the 20-s observations to 60-s 
observations, which also confirmed the model. There
fore, it is concluded that the model can be successfully 
used in a variety of freeway surveillance configurations 
to provide short-term forecasts of traffic volumes and 
occupancies. 

COMPARATIVE EVALUATION OF 
FORECASTING PERFORMANCE 

This section presents a comparative evaluation of the 
forecasting performance of the model in Equation 6 
against three ad hoc smoothing models: the moving
average model, the double-exponential smoothing model, 
and the Trigg and Leach adaptive model. To facilitate 
the discussion, these smoothing models are briefly re
viewed. 

Moving-Average Model 

The moving average at time t defined over the N previ
ous observations is given by 

N 

m(t,N) = (l/N) ~ X1-K (7) 
K=l 

This model weights each of the previous N observations 
by 1/N, while other earlier observations have zero 
weight. The forecast of X, is 

X, = m(t,N) (8) 

Five values of N (N = 5, 10, 20, 50, and 100) were used 
in the evaluation of the moving-average model in this 
study. 



Exponential Smoothing Model 

It is assumed that the observation Xt can be described 
by a model of the form 

X, = F, + €1 

Figure 4. Residual plots and sample autocorrelations, 
volume data, Minneapolis, 1-35, station 7. 

Figure 5. Residual plots and sample autocorrelations, 
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where F t is a deterministic function of time and ft is a 
s tochastic component. Single exponential smoothing as 
proposed by Brown (15) assumes that F t represents 
some equilibriwn level; the corresponding smoothi ng 
function is given by 
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Table 2. Moving-average 
parameters for volume series 
aggregated over lanes. 

Table 3. Moving-average 
parameters for occupancy 
series aggregated over lanes. 

Table 4. Moving-average 
parameters for 20- and 60-s 
lane volumes, Los Angeles. 

Freeway No. of No. of 
Location Data Sets Obse r vations 

Los Angeles 10 1750 
Minneapolis 10 1500 
Det roit 2 381 

Freeway No. of No. of 
Location Data Sets Obse r vations 

Los Angeles 10 1750 
Minneapolis 10 1500 
Det r oit 2 762 

Moving-Average Parameters 

20- s Series (15 750 observations) 
Lane 
No.' 

1 
2 
3 
4 

0.6081 ± 0. 1263 
0. 8701 ± 0.1245 
0.61 31 ± 0. 1582 
0.6611 ± 0.11 30 

e, 

0.0752 ± 0.1145 
0.0404 ± 0.1133 
0.0296 ± 0.1253 
0.0569 ± 0.0573 

Moving-Average Parameters 

e, e, e, 

0. 7301 ± 0.1885 0. 1777 ± 0.5765 0.0391 ± 0 .1398 
0. 7553 ± 0.1375 0.1519 ± 0. 5249 -0.1530 ± 0.1438 
0 .7420 ± 0.0732 0.0403 ± 0.0671 0 .0012 ± 0 .0143 

Moving-Average Parameters 

e , e, e.. 
0.5611 ± 0.3541 0.1145 ± 0.2711 0 .2596 ± 0.3507 
0.4710 ± 0.2160 0.1307 ± 0.2515 -0.0646 ± 0 .2249 
0.6121 ± 0.1649 0 .0659 ± 0. 1396 0.0704 ± 0 .1678 

60-s Se ries (5250 observations) 

0.0426 ± 0.0742 
0.0401 ± 0.0738 
0.0074 ± 0.09 33 
0 .0276 ± 0.0622 

0.6280 ± 0.1720 
0.7860 ± 0.1127 
0.8180 ± 0.1414 
0.4526 ± 0.35 10 

e, 

0.0311 ± 0. 1766 
0.0056 ± 0.1768 

- 0.0389 ± 0.3 364 
0.1250 ± 0.2358 

0.0085 ± 0.1129 
0.0229 ± 0.1222 
0.0412 ± 0.1466 
0.0437 ± 0.0904 

"Numbering begins with the lane closest to the median and increases toward the right shoulder. 

Table 5. Moving-average 
parameters for 20- and 60-s 
lane occupancies, Los Angeles. 

Lane 
No.• 

1 
2 
3 
4 

Moving-Average Parameters 

20-s Series (15 750 observations) 

e, 

0.6196 ± 0.2786 
0 .7096 ± 0.2353 
0.6672 . ± 0.2394 
0.6539 ± 0.1802 

e, 

0.1971 ± 0.1988 
0 .1037 ± 0 .1234 
0.1658 ± 0.1700 
0,0400 ± 0.0857 

0.0814 ± 0.1261 
0 .0674 ± 0.0776 
0.0211 ± 0.1116 
0.1094 ± 0.1203 

60-s Series (5250 observations) 

o. 7057 ± 0.2856 
0.6284 ± 0.2547 
0.6888 ± 0.3111 
0.5617 ± 0.3655 

e, 

0.1666 ± 0.2337 
0 .1330 ± 0.2681 

-0.0261 ± 0.2991 
0.1855 ± 0.1277 

-0.0581 ± 0.0565 
0.0134 ± 0.1046 
0.0388 ± 0.1448 
0.0431 ± 0.1687 

•Numbering begins with the lane closest to the median and increases toward the right shoulder. 

where S1(t) is the smoothed value of X at time t and et is 
a smoothing constant, 0 < Cll < 1. The function S1(t) is a 
linear combination of all previous observations weighted 
by damped exponential weights. The forecast of Xt is 

(11) 

Note that single-exponential smoothing is equivalent 
to an ARIMA (O, 1, 1) pr ocess where the smoothing con
stant et is set equal to 91 • The double-exponential 
smoothing model assumes that Ft can be described by a 
linear trend. The corresponding smoothing function is 

S2 (t) = cx[S1 (t)] +(I -ex) x S2 (t- l) (12) 

Brown demonstrated that the steady-state response 
of exponential smoothing to a linear trend has a con
stant lag of (1 - W/ ri. Therefore , the forec:a:>t of the 
next observation Xt+i is 

x, +! = </l(t) + t/l ( t) (1 3) 

where ¢(t) is 2[S1(t)J - Sit) and w(t) is {ri/1 - et) [S1(t) -
Sa(t)] . Values of ~ used in the evaluation of the double
exponential smoothing model were 0.1-0.9 in increments 
of 0.1. 

Exponential Smoothi ng with Adaptive 
Respanse 

Adaptive approaches for adjusting the smoothing con-

stant !k have been suggested by many authors, including 
Chow (16), Roberts and Reed (17), and Tl'igg a nd Leach 
(18) . Most of these approachesuse the forecasting per
formance of the smoothing model to determine the proper 
adjustment of the smoothing constant. The following is 
the adaptive approach proposed by Trigg and Leach: 

TS(t) = SE(t)/SAE(t), - I <TS < I 

SE(t) = 'Y x e1 +0 -'Y) x SE(t - I) 

SAE(t) = 'Y x le11 + (I - 'Yl x SAE(t - I) 

where 

TS(t) =tracking signal at time t, 
SE(t) = smoothed error at time t, 

SAE(t) =smoothed absolute error at time t, 
et = forecast error at time t, and 
y =smoothing constant, 0 <')I< 1. 

(14) 

(15) 

(1 6) 

(17) 

Adaptive response of the smoothing constant~ is achieved 
by setting it to equal the absolute value of the tracking 
signal. The Trigg and Leach model was tested by using 
nine values of Cl between 0.1 and 0,9 and three values of 
')I, 0.1, 0.2 , and 0.3. 

In evaluating the four forecasting models, the follow
ing mean absolute error (MAE) and mean square error 



Figure 6. Ratio to Box-Jenkins for mean absolute error. 
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Figure 7. Ratio to Box-Jenkins for mean square error. 
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(MSE) functions were used as evaluation criteria: 

N A 

MAE= (1/N) L 1x, - x,1 
t=l 

N 

MSE = (l/N) L (X1 - Xi)2 

t=l 

where 

Xt =observed variable value at time t, 
X, =predicted value of variable at time t, and 
N = the number of observations. 
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(18) 

(19) 
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MAE indicates the error expected to be associated with 
each forecast, while MSE detects the presence of fre
quent large forecasting errors . 

For the purpose of comparing the smoothing per
formance of the different models, values of MAE and 
MSE of the fitted ARIMA (O, 1, 3) models were chosen 
as a basis. These values ranged from 1.30 to 6.50 for 
MAE, and from 2.80 to 91.41 for MSE. Results of the 
moving-average model it1dicated that both MAE and MSE 
increase with increases in N. When N equaled five, the 
ratio to Box-Jenkins varied between 1.00 and 1.27 for 
MAE and between 1.00 and 1.45 for MSE. Larger values 
of N (10-100) resulted in values of ratio to Box-Jenkins 
of between 1.00 and 2.85 for MAE and between 1.00 and 
6.86 for MSE. 

The best results of the double-exponential smoothing 
model were associated with small values of a. For 
smoothing constants between 0.1 and 0.3 the ratio to Box
Jenkins ranged lrom 1.00 to 1.64 for MAE and from 1.00 
to 1.43 for MSE. 

The Trigg and Leach model did not improve the fore
casts. With large initial values of the smoothing con
stant a between 0.6 and 0.9 and a smoothing constant (y) 
of 0.1, which gave the best results for this model, the 
ratio to Box-Jenkins varied between 1.45 and 8.20 for 
MAE and between 2.08 and 44.34 for MSE. The reason 
for the poor performance of the Trigg and Leach model 
could be the abrupt successive changes in a. Figures 6 
and 7 illusfrate the ranges of the best values of the ratio 
to Box-Jenkins for MAE and MSE for the different 
models. The ARIMA (O, 1, 3) model is seen to be supe
rior: It more accurately represents the stochastic pro
cess generating the traffic data. 

MODEL APPLICATIONS TO SHORT
TERM FORECASTS 

To appreciate the operational value of the ARIMA (O, 1, 3) 
model, one should examine how it can be used in making 
short-term forecasts in real time. 

Let ~,_ 1(1) be the one-step-ahead forecast made at 
time (t - 1) for z,, which wJ1en observed will be rep
resented by Equation 6. If z,_1(1) is the minimum mean
square-error forecast, then its value will be determined 
by the conditional expectation of Zt. given the history 
(H,) of the series up to time t; that is, 

(20) 

Therefore, the forecast error at time (t - 1) is de
termined by subtracting Equation 20 from Equation 6: 

=a, (21) 

Hence, the white noise that generates the process is the 
one-step-ahead forecast en-or. In a similar fashion 

a1-1 = e1 -2 (I) (22) 

and 

(23) 

Consequently, an operational expression for updating the 
forecasts of the model in Equation 6 is 

Z1(1) = - 111 e1.1 (I) - 112 e ,_2 (I) - 11,e,.3 (I) (24) 
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Figure 8. Variability of ARIMA (0,1,3) parameters by location 
and over time. 
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The computational utility of the above expression stems 
from the fact that its application requires computer 
storage only of the latest three forecast errors and the 
current observation. 

The sensitivity of the performance of the ARIMA 
(O, 1, 3) model to variations in the 9 parameters over 
time was tested to a limited extent as follows. A num
ber of volume and occupancy time series, each 150 
60-s time intervals from the Minneapolis 1-35 data were 
br oken into three 50-interval segments. The AR.IMA 
(O, 1, 3) model was applied separately to each segment.. 

The variations in the estimated moving-aver age pa
rameters (01, ~h, and 93) for both sets of series are de
picted in Figure 8. The horizontal scatter of points in
dicates that the parameters do vary over time but no 
consistent pattern in this variation was noted. However, 
due to the limited number of observations used in es
timating the parameters for each 50-interval segment, 
the conclusion that these parameters vary with time 
cannot be accurately drawn. It is also important to note 
that the same form of the AR.IMA (O, 1, 3) model that r ep
resented the 150-observation series represented the 50-
observation segments just as well. 

It may be desirable, although not necessarily war
ranted, to update the moving-average parameters in 
real time. It is believed that a rapid adjustment in the 
parameter estimates- each observation interval, for ex
ample-may deg1·ade the overall forecasting performa ncA 
of the AR.IMA model. Past experience with adaptive
exponential-smoothing models, particularly the Trigg 
and Leach model, has shown that successively changing 
the smoothing constant value over time yielded poten
tially larger forecasting en ors tha n those resulting from 
Brown's original exponential-smoothing models (19). 
The results depicted in Figures 6 and 7 also tendTo con
firm this belief. 

Another important factor that should be taken into 
consideration when one is contemplating real-time up
dating of the model parameters is that of computer 
computational requirements. One way to lower these 
requirements would be to update the parameters only 

ARIMA (0,1,3) MOVING AVERAGE PARAMETERS FOR 
SO-INTERVAL SUBSETS OF THE 150-INTERVAL SERIES 

occasionally, e.g., at the beginning of peak and off-peak 
periods. Parameter updating was not explored in this 
research, in part because the available data sets con
sisted of afternoon peak-period time series only, Fur
ther research along these lines is strongly recommended . 
Operational expressions for updating the moving-average 
parameters 91' 9a, and 63 can be found in Box and 
Jenkins (1_, pp. 162-164). 

SUMMARY AND CONCLUSIONS 

Tn thi.s paper an application of the Box-Jenkins approach 
for modeling traffic time-series data has been p resented. 
An ARIMA (0, 1, 3) model was found to represent volume 
and occupancy data from three different freeway systems 
of varying detector configurations and data-aggregation 
time intervals. The comparative evalua tion of the 
ARil\llA (O, 1, 3) model against some other ad hoc smooth
ing models has indicated the overall superiority of the 
AR.IMA (O, 1, 3) model in providing short-term forecasts 
of traffic parameters. 

The forecasting model described in this paper should 
be of use in real-time computerized freeway traffic
control systems and may be applicable to traffic-signal 
networks. At this writing, the model was being used to 
develop freeway incident-detection algorithms. 
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Automobile Diversion: A Strategy for 
Reducing Traffic in Sensitive Areas 
Ronald H. Borowski, Denver Planning Office, City and County of Denver 

In recent years awareness of the negative impacts of motor-vehicle travel 
has increased. One approach to those impacts is automobile diversion, a 
strategy for reducing vehicle use in congested areas. This paper reports 
on a recent study directed toward developing and evaluating the poten-
tial for automobile diversion in Denver. General traffic problems are 
identified and a potential yardstick for locating affected areas-the en· 
vironmental capacity of city streets approach-is discussed. Benefits and 
problems of notable U.S. background experience in automobile diversion are 
summarized. A detailed breakdown is given of the various transportation 
system management-strategy· formation elements applicable to automo
bile diversion, and several implementation techniques are described. Ad
vantages and disadvantages are also presented to demonstrate the use of 
automobile diversion as a community-improvement tool. Finally, the 
study determines that the potential for automobi le diversion in Denver 
relies on the degree of citizen interBSt, the identification and resolution 
of issues and problems, and sound decision making in the political forum. 

In the fall of 1975, the Urban Mass Transportation Ad
ministration (UMTA) and the Federal Highway Adminis
tration (FHWA) jointly issued urban transportation 
planning regulations directing appropriate local agencies 

to develop transportation system management (TSM) 
plans for their respective urban areas (1). TSM plans 
are intended to document local strategies for improving 
air quality, conserving energy, and improving h'ans
portation efficiency and mobility tlu·ough management of 
existing transportation systems. TSM strategies deal 
with low-capital, short-range, or policy-oriented urban 
transportation improvements. 

Although many TSM strategies have been implemented 
in the Denver transportation system, only recently has 
emphasis been placed on directly identifying and pursuing 
those strategies in an organized and coordinated man
ner. For instance, Denver now has computerized traffic 
control and operations, transit operations, carpooling, 
and va1·ious prete1·ence and restraint programs. These 
management concepts and control strategies, and their 
respective action elements, were developed and imple
mented only when the need became obvious. 

Because of federal emphasis on TSM and the tech
niques already in use in Denver, the Denver Planning 




