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Incident-Detection Algorithms 
Part 1. Off-Line Evaluation 
Moshe Levin and Gerianne M. Krause, Bureau of Materials and Physical 

Research, Illinois Department of Transportation, Oak Park 

Five incident-detection algorithms of the pattern-recognition type were 
evaluated off-line by using incident and incident-free data collected on 
Chicago's expressways under various traffic and environmental condi­
tions. Algorithm efficiency was evaluated in terms of detection and 
false-alarm rates and mean-time-to-detect. Evaluated were a comparative 
analysis of algorithm efficiency, the effect of lateral detectorization on 
algorithm performance, a hierarchical analysis of threshold effectiveness, 
and the effect of incident severity on algorithm performance. Although 
no specific algorithm was found to be superior for levels of detection 
lower than 95 percent, for higher levels of detection one algorithm de­
veloped by Technology Services Corporation was found to be best. The 
algorithms did not differ statistically in mean-time-to-detect, which 
ranged from 2 to 4 min, rendering this parameter ineffective in algorithm 
selection. The relation between detection rate and false-alarm rate, how­
ever, was found to be the critical criterion for algorithm selection. Fea­
ture thresholds developed for detector-lane incidents were found to be 
less sensitive to traffic-flow disturbances than were thresholds developed 
for non-detector-lane incidents, thus yielding lower false-alarm rates. 
Analysis of algorithm performance under various traffic and environ­
mental conditions revealed that thresholds developed for a representa­
tive sample of incidents were effective when used on the "rush wet", 
"nonrush dry", and "nonrush wet" traffic data. Therefore, less effort 
was needed to develop the set of thresholds. Thresholds developed for 
accidents occurring on the detector lane proved to be effective in detect­
ing accidents and nonaccident incidents on both the detector and non­
detector lanes. 

Freeway incident-management systems that offer various 
levels of service to the motoring public have been in op­
eration for quite some time. In essence, each such sys­
tem provides some or all of the following system ele­
ments: 

1. Detection of traffic-flow abnormalities, 
2. Incident identification, 
3. Traffic-management strategies and tactics to be 

implemented through driver communication and control 
subsystems, and 

4. Early removal of incidents by motorist-aid sub­
systems. 

The comprehensiveness of the incident-management 
system and the level of sophistication of its elements 
will determine the operational efficiency of the system. 

A key element of such a system is the detection of 
traffic-flow abnormalities and their identification as 
capacity-reducing incidents. A positive identification 
will normally activate the control, driver communica­
tion, and incident-handling subsystems. Obviously, a 
missed incident or a false alarm will affect the efficiency 
of the management system and its credibility. But the 
incident-detection process uses algorithms that relate 
certain measured relations among traffic characteris­
tics to calibrated thresholds to yield a decision with re­
gard to the incident. 

The Federal Highway Administration (FHWA) con­
tracted with Technology Services Corporation (TSC) to 
evaluate existing algorithms (1) and to develop new ones 
(~). The evaluation included pattern recognitions (~, !_) 
and time-series algorithms (_§_,fil. The Illinois Depart­
ment of Transportation (IDOT) has assumed the task of 
the off-line and on-line evaluations of the selected algo­
rithms developed by TSC. The facilities of IDOT's 
Traffic Systems Center will be used for this. 

The specific objectives of the research reported here 
were 

1. To determine the efficiency of the selected TSC 
algorithms in detecting incidents on the Chicago-area 
expressway system for various traffic and environ­
mental conditions, 

2. To develop algorithm thresholds compatible with 
the traffic characteristics of the expressway system and 
various environmental conditions, 

3. To determine the effect of the existing level of 
detectorization on algorithm performance, 

4. To determine the effect of incident severity on 
algorithm performance, and 

5. To compare the efficiency of TSC algorithms with 
a pattern-recognition algorithm developed locally. 

ALGORITHM DESCRIPTION 

This section describes the structure of the incident­
detection algorithms evaluated in this research. They 
include five pattern-recognition algorithm s, four of 
which were de.veloped by TSC (2 ); the filth was developed 
locally in the course of the research. 

The research effort of TSC included the development 
of 10 incident-detection al gc:n·ithms. Algorithms 1-7 are 
variations on the classic California algorithm (3), while 
8 and 9 use, in addition to those elements of algorithm 
7, a feature that suppresses incident detection at any 
station for 5 min after detection of a compression wave 
at the downstream station. Algorithm 10 attempts to 
detect incidents occurring in light-to-moderate traffic 
that do not lower capacity below the volume of oncoming 
traffic. 

Of these 10 algorithms, 4 were selected for evalua­
tion: algorithms 7, 8, 9, and 10. Preliminary investi­
gation indicated algorithm 7 to be a superior form of the 
California algorithm. Algorithm 8, which is identical 
to algorithm 9 except for an added persistence check, 
was found to have, according to TSC's investigation, a 
slightly lower false-alarm rate (FAR) but a longer mean­
time-to-detect (MTTD) than algorithm 9. Although algo­
rithm 10 did not perform especially well, it was in­
cluded in the off-line evaluation because it represents 
a first attempt to solve the problem of detecting inci­
dents that do not produce marked traffic-flow discon­
tinuities. 

The TSC algorithms are in binary decision-tree form; 
at each node of the decision tree a feature value is com­
pared with a user-specified threshold value to determine 
whether an incident is to be signalled. Obviously the ef­
fectiveness of the algorithm depends on the thresholds 
chosen. 

TSC developed a program for optimizing threshold 
selection. This program, called CALE, uses a random­
number generator that produces increments to be added 
to the current optimal threshold vector to produce a new 
threshold vector for evaluation. After a predetermined 
number of iterations, the threshold vector with the low­
est false-alarm rate, given a certain level of detection, 
is termed the optimal threshold vector at that level of 
detection. 
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Before CALB was used to calibrate the algorithms 
for the off-line evaluation, a detailed study was per­
formed to determine how best to set certain user­
supplied parameters needed by CALB in the algorithm 
calibration process. The point was to ensure selection 
of the best threshold vectors for use in the algorithm 
evaluation. 

Finally, the four TSC algorithms selected were com­
pared with algorithm 16-14, one in a series of pattern­
recognition algorithms developed in the course of this 
research (7). 

Following is a detailed description of the above algo­
rithms; the meanings of the features involved in each 
algorithm are given in the listing below. 

Feature Name 

OCC(t) 

DOCC(t) 

OCCDF(t) 
OCCRDF(t) 
SPEED(t) 

DOCCTD(t) 
SPDTDF(t) 
OCCRDF(t-1) 
UPDF(t) 
UPRDF(t) 
DNDF(t) 
DNRDF(t) 
DPDNDF(t) 
UPDNR1(t) 
UPDNR2(t) 
RDF(t) 

Definition 

Minute average occupancy measured at upstream 
detector at time t 

Minute average occupancy measured at downstream 
detector at time t 

OCC(t) - DOCC(t) 
OCCDF(t)/OCC(t) 
Minute average speed calculated at upstream 

detector at time t 
[DOCC(t-2) - DOCC(t)] /DOCC(t-2) 
[SPEED(t-2) - SPEED(t)] /SPEED(t-2) 
[OCC(t-1) - DOCC(t-1 )] /OCC(t-1) 
OCC(t-1) - OCC(t-2) 
UPDF(t)/OCC(t-1) 
DOCC(t-2) - DOCC(t-1) 
DNDF(t)/DOCC(t-2) 
UPDF(t) = DNDF(t) 
UPDNDF(t)/OCC(t-1) 
UPDNDF(t)/[OCC(t-1) - DOCC(t-1)] 
OCCDF(t)/[OCC(t-1) - DOCC(t-1 )] 

Algorithm 7 differs from the classic California algo­
rithm in the following three ways. Whereas the Cali­
fornia algorithm produces an incident signal whenever 
OCCDF, OCCRDF, and OOCCTD are greater than asso­
ciated thresholds, algorithm 7 replaces DOCCTD with 
OOCC, suppresses incident signals after the initial de­
tection, and contains a persistence requirement that 
OCCRDF lie ~realer Utan lhe lhre~huld iur two cunsticu ­
tive minutes (Figure 1). 

Algorithm 9 congists of algorithm 4 (a variant of the 
California algorithm) coupled with a compression-wave 
check and uses features DOCC and DOCCTD. It works 
as follows. First, a compression-wave check is made. 
H it succeeds, then algorithm 4 is not applied until five 
consecutive minutes have passed without a compression 
wave. If it fails then algorithm 4 is immediately applied. 

Algorithm 8 is algorithm 9 with an OCCRDF­
persistence requirement added. It can also be thought 
of as algorithm 7 incorporated with the 5-min 
compression-wave check (Figure 2). 

Algorithm 10 separates traffic data into light, mod­
erate, and heavy traffic by using the feature OCC. No 
incident check is applied to light-traffic data. Algorithm 
7 is used under heavy-traffic conditions, and under mod­
erate conditions OCCRDF and SPDTDF, a temporal 
speed change feature , are applied (Figure 3). 

Algorithm 16-14 is a pattern-recognition algorithm 
developed locally by using occupancy-based features ob­
tained through intensive observations of traffic behavior 
on different parts of the Chicago-area expressway sys­
tem (Figure 4). 

DEVELOPMENT OF DATA BASE 

The data base was divided into two parts: incident data 
used to compute an algorithm's detection rate (DR) and 
MTTD and incident-free data used to calculate an algo-

rithm's FAR. The surveillance data that make up each 
set consist of 20-s occupancies and volumes from each 
main-line detector on the relevant directional freeway. 
The data base includes a total of 100 incident and 14 
incident-free data sets. 

In the collection of incident data sets, "incident" was 
limited to mean unplanned physical obstructions of the 
traveled lanes. The incident data were collected by 
monitors at IOOT' s Traffic Systems Center. Indica­
tions of a potential incident came in two ways. In the 
most common case, the data collector would spot a dis­
turbance in the traffic-stream variables by monitoring 
the expressway system map panel, occupancy maps on 
the display, or typer output of the surveillance system. 
In these cases, the monitor would activate a program 
for saving the surveillance data from the affected direc­
tional expressway (the data-collection program kept a 
30-min historical file of surveillance data that enabled 
the requisite 15 min of pre-incident data to be saved, if 
an incident was detected by the monitor within 15 min of 
its occurrence), The monitor then requested the IDOT 
Communication Center to dispatch an emergency patrol 
vehicle (EPV) to the area for confirmation and identifi­
cation. In other cases, an incident would be reported 
by a field unit before signs of it appeared in the surveil­
lance data. When traffic-stream measurements began 
to manifest signs of the incident's effect on traffic oper­
ations, data saving was initiated. 

The incident data were collected to represent the 
following factors: 

1. Rush or nom·ush tra.ffic conditions (R, NR), 
2. Wet or dry pavement conditions (W, D), 
3. Accident (10-50) or nonaccident incident (10-46) 

incident type (AI, NAI) according to Illinois State Police 
code, and 

4. Detector lane or non-detector-lane (DL, NDL) 
incident lateral location. 

Figure 5 shows the stratification of the incident data 
and the code of each stratum. The meanings of the codes 
are explained below. 

Code 

R 
RW 
RD 
RD-0 

RD-1 
RD-50-1 
RD-50-0 

RD-46-1 

RD-46-0 

RD-50 
RD-46 

Interpretation 

Rush 
Rush wet 
Rush dry 
Incident occurring on nondectector lanes during rush dry 

period 
Incident occurring on detector lane during rush dry period 
Accident occurring on detector lane during rush dry period 
Accident occurring on nondetector lanes during rush dry 

period 
Nonaccident incident occurring on detector lane during 

rush dry period 
Nonaccident incident occurring on nondetector lanes 

during rush dry period 
Accident occurring during rush dry period 
Nonaccident incident occurring during rush dry period 

NR, NRW, NRD, NRD-0, NRD-1, NRD-50-0, NRD-46-0, 
NRD-50-1, and NRD-46-1 have the same interpretation 
as above except that they refer to the nonrush period. 

The collection of incident-free data sets involved the 
use of the same data-saving software as employed in the 
incident data collection. Verification of these data as 
incident-free was carried out with the use of a helicopter. 
Nearly 30 h of incident-free data were collected to ap­
propriately represent rush, nonrush, wet, and dry 
conditions. 



Figure 1. Decision tree for algorithm 7. 1 
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Figure 3. Decision tree for 
algorithm 10. 
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Figure 5. Incident-data stratification. 
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OFF-LINE EVALUATION 

The ultimate goal of the off-line evaluation was to ob­
tain for the tested algorithms optimal sets of thresholds 
related to various traffic and environmental conditions. 
These sets could then be implemented in an operational 
on-line incident-response system. To achieve that goal 
off-line evaluation was divided into four major tasks: 

1. Comparative analysis of algorithm efficiency, 
2. Evaluation of the effect of lateral detectorization 

on algorithm performance, 
3. Hierarchy analysis of the threshold effectiveness, 

and 
4. Evaluation of the effect of incident severity on 

algorithm performance. 

Algorithm efficiency could be determined by three 
related parameters: 

1. DR: percentage of detected incidents out of all 
incidents that affect traffic and occur during a specified 
time period; 

ALL 
tlOO) 

2. FAR (off-line definition): percentage of incident 
messages (ls) out of all messages (ls and Os) where 
messages are p.roduced at specific inte.rvals (i.e. , 
every 1 min) out of representative incident-free data; and 

3. MTTD: the mean delay between the apparent 
occurrence of incidents, as estimated from changes in 
upstream and downstream occupancy values, and their 
detection time by the algorithms during a certain period 
of time. 

Comparative Analysis of Algorithm 
Efficiency 

The comparative analysis of the tested algorithms was 
performed by running each of the five algorithms-7, 8, 
9, 10, and 16-14-through the various incident and 
incident-free data strata, by using TSC's CALE pro­
gram, which had been modified for the Traffic Systems 
Center's computer. The CALB evaluation of these algo­
rithms was performed for six nominal detection rates 
of 75, 80, 85, 90, 95, and 99 percent and for three 
incident data categories: ALL, RD, and NRD. The 
strata of RW and NRW included only six and eight in­
cident cases, respectively, and were excluded from 
the detailed analysis. 

A comparison of the DR-FAR relationships of algo-
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rithms 9 and 16-14 with those of algorithms 7, 8, and 
10 indicated that algorithms 9 and 16-14 experienced 
relatively high FAR across the whole DR spectrum. At 
the same time, however, their DR-MTTD relationships 
seemed to be more favorable than those of the other 
algorithms. However, because in many cases the dif­
ferences in MTTD for the various algorithms were not 
found to be statistically significant, the relatively poor 
DR-FAR relationships between algorithms 9 and 16-14 
suggested their elimination from further analysis even 
though favorable results were indicated for algorithm 9 
(2). However, for the sake of representative analysis 
and future on-line evaluation, it was decided to elimi­
nate only algorithm 9. 

Overall, the three algorithms (7, 8, 10) produced bet­
ter DR-FAR relationships for the NRD category than for 
the RD category. Over the investigated range of the DR, 
the FAR for the NRD category ranged from 0.00 to 0.01 
percent, while the range for the RD category was from 
0.02 to 0.11 percent. 

Within the RD category no single algorithm display­
ing inva,· iably better FARs over the DR spectrum could 
be found. However, for the higher DRs (0.95 and above), 
algorithm 7 was the most efficient. Also, the same 
algorithm was found to yield the fewest FARs over the 
whole DR spectrum for the NRD category. 

The time-to-detect analysis used the optimal sets of 
thresholds developed for the DR- FAR relationships. The 
MTTD for the RD and NRD categories ranges from 1.9 
to 4.4 min and from 3 .6 to 6.2 min, respectively. The 
results for the ALL category (2.2-4.6 min) represent, 
to a large extent, the combinations of the RD and NRD 
results. 

Within the RD category, algorithm 7 displayed the 
lowest MTTD for DRs higher than 9 5 percent. For 
lower DRs, no single, most efficient algorithm could be 
found. Within the NRD category no single algorithm dis­
played invariably lower MTTD over the whole DR spec­
trum. 

Further insight into the differences in MTTD between 
algorithms for the various incident data categories was 
gained from the Kolmogorov-Smirnov test and the Mann­
Whitney U-test (8) for thresholds representing the 9 5 
percent detectionlevel. This level was selected for its 
assumed applicability to an operating on-line system. 
The results of the statistical analyses for algorithms 7, 
8, 10, and 16-14 are presented in Table 1. From this 
table it can be seen that, as far as the MTTD is con­
cen1ed, no statistically significant difference (0.05 level 
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Table 1. Comparison of algorithm 
Algorithm No. Apparent Statistically 

performance at 95 percent detection Traffi c Sample Best Be st Algorithm 
rate for ALL, RD, RW, NRD, and NRW Category Size 7 10 16-14 Algorithm (for MTTD) 
conditions. 

ALL 99 
FAR, <fo 0.019 0.0297 0.0231 0.11 7 
MTTD, min 3.39 2.85 3.68 2.28 16-14 None· 
SD, min 3.25 3.01 3.42 3.05 

RD 54 
FAR,1> 0.056 0.0786 0.067 0.26 7 
MTTD, min 2.23 2.75 2.88 1.26 16-14 None• 
SD, min 1.60 2.15 2.65 1.83 

RW 6 
FAR, <f, 0 .0336 o.o 0.045 0.045 8 
MTTD, min 2 .83 3.99 2.50 2.33 10 None•,b 
SD, min 0.69 2.89 5.02 3.03 

NRD 32 
FAR, <f, 0.002 0.002 0.005 0.018 7 
MTTD, min 3.73 3.56 2.87 3.22 10 None• 
SD, min 3.75 3.77 2.49 4.72 

NRW 8 
FAR, <f, 0.005 0.005 0.005 0.009 7, 8, 10 
MTTD, min 2 .71 2. 63 2.50 1.88 16-14 None"''b 
SD, min 2.31 1.99 2.24 2.15 

• Kolmogorov-Smirnov test at the 0.05 level of significance. b Mann-Whitney U-test at the 0.05 level of significance. 

Table 2 . Comparison of algorithm 
Algorithm No. Apparent Statislically 

performance at 95 percent detection Trame Sample Best Best Algorithm 
rate for RD and NRD conditions. Category Size 10 16-14 Algorithm (for MTTD) 

RD-1 28 
FAR, % 0.0449 0.0449 0.0336 0 ,112 10 
MTTD, min 2.96 2.69 3.18 1.26 16-14 16-14'" 
SD, min 1.93 1.93 3.49 1.14 

RD-0 26 
FAR, <fo 0. 0561 0.0673 0.0673 0.112 
MTTD, min 2.28 2.32 3.07 2. 56 None•,b 
SD, min 1.84 1.91 3.09 2.22 

NRD-1 
FAR, ~ 0.0 0.0 0.0 0.014 None 
MTTD, min 2.12 2.12 2.12 2.75 None None•,b 

so. min l.89 1.89 1.89 2.5 
NRD-0 24 
FAR,~ 0.0 0.0047 0.0094 0.014 7 
MTTD, min 4 .08 4.04 4.08 4.13 None None•,b 

SD, min 4.06 4 .16 2.74 5.69 

a Kolmogorov-Smirnov test b Mann-Whitney test. 

of significance) was found between the algorithms at the 
9 5 percent detection level for all the incident categories. 

It seems, then, that the DR-FAR relationship is more 
representative of the difference among algorithms than 
the DR-MTTD relationship and should be the major cri­
terion for selecting algorithms. 

Based on the results in Table 1, algorithm 7 was the 
apparent best for the ALL, RD, NRD, and NRW cate­
gories at the 9 5 percent detection level, while algo­
rithm 8 was the apparent best for the RW category at 
the same detection level. 

Evaluation of the Effect of Lateral 
Detectorization on Algorithm 
Performance 

In the design process of a freeway surveillance and con­
trol system there is always the question of a trade-off 
between the level of detectorization (longitudinal and 
lateral) and the gains in terms of conh·ol and incident­
detection effectiveness. 

The Chicago expressway system under surveillance 
uses full detector stations every 4.8 km (3 miles) and 
single-detector stations, usually on lane 2 (lane 1 being 
the inner lane), every 0.8 km (0.5 mile). The analysis 
presented in this section compares the performance of 
algor ithms 7, 8, 10, and 16-14 as related to incidents 
occurring on the detector lane (DL) versus those occur­
ring on the nondetector lanes (NDL) under RD and NRD 
conditions. The results suggest that for both conditions 

the optimal thresholds obtained for incidents occurring 
on DL are less sensitive to discontinuities in traffic 
flow, as expressed in lower FAR, than those obtained 
for incidents occurring on NDLs. 

This is explained by the fact that, generally, incidents 
occurring on DL have higher feature values that require 
less sensitive thresholds , which lower FAR. Incidents 
occurring on NDL have a somewhat attenuated impact 
when measured off another lane; this requires more 
sensitive thresholds (lower val ue) and risks a high FAR. 

For the RD category, the relationship between the 
DR and MTTD is more favorable for incidents occurring 
on NDLs than for those occurring on DL. This trend 
could be explained by the fact that FAR increases with 
DR, while MTTD decreases with DR, which yields a 
decrease in MTTD with an increase in FAR. Thus, for 
a certain DR, the FAR on the DL is higher than the one 
experienced on NDL, which yields a higher MTTD. This, 
however, is not the case for the NRD category. The 
reason could be the small sample of incidents (eight) oc­
curring on DL in the NR category. 

In order to find out whether there was a statistically 
significant difference between the MTTD for incidents 
on DL and for those on the NDL for both RD and NRD 
categories, the Kolmogorov-Smirnov test was conducted 
(g 5 per cent detection level). For RD and NRD categor ies , 
tests were made for algorithms 7 and 10, respectively, 
because each was the most efficient algorithm at that 
detection level. According to the Kolmogorov-Smirnov 
test, no significant differences between MTTD were 



Table 3. Comparison of algorithm performance at 95 percent detection 
rate for RD conditions. 

Algorithm No. 
Trame Sample 
Category Si ze 8 10 16-14 

RD-50-1 18 
FAR, % 0.0225 0.0225 0.0562 0.0337 
MTTD, min 4.94 4.83 2.05 2.77 

RD-50-0 12 
FAR, f 0.0562 0.0562 0.0786 0.1123 
MTTD, min 2.92 3.83 3.08 2.41 

RD-46-1 
FAR, % 0.0562 0.0562 0.0562 0.1123 
MTTD, min 2.11 2.22 2.11 1.89 

RD-46-0" 14 
FAR, % 0.1123 0.0786 0.0562 0.1235 
MTTD, min 0.93 1.35 3.21 2.92 

"This was the only category that displayed a significant difference , 

Table 4. Effect of incident severity on algorithm performance. 

Alg-orithm No~ 

Trame Sample 
Category Size 10 16-14 

RD-46 23 
FAR,% 0.056 0.078 0.078 0.112 
MTTD, min 2.31 2,36 2.36 2.27 

RD-50 30 
FAR,% 0.056 0.078 0.078 0 .112 
MTTD, min 2.17 2.53 2. 53 1. 59 

RD-46-1 9 
FAR, { 0.045 0.045 0. 045 0.112 
MTTD, min J. 34 3.44 2. 89 1.89 

RD-50-1 18 
FAR,% 0.022 0.056 0.045 0.033 
MTTD, n.1in 4.94 2.05 3.22 2.77 

RD-46-0 14 
FAR,% 0.112 0.078 0.056 0.123 
MTTD, min 0.93 1.35 3.21 2.92 

RD-50-0 12 
FAR, % 0.056 0.056 0. 07 1j 0.112 
MTTD, min 2.92 3.83 3.08 2.41 

found for RD and NRD categories at the 0.10 level of 
significance. 

The above analyses suggest that the relation between 
DR and FAR is more critical than that between DR and 
MTTD" 

As to the relative performance of the individual algo­
rithms within the various incident data categories, 
Table 2 presents, for the 9 5 percent level of detection, 
the MTTD, the standard deviation of the detection time, 
and the FAR for algorithms 7, 8, 10, and 16-14 and for 
the incident data categories RD-1, RD-0, and NRD-0. 
The Kolmogorov-Smirnov and Mann-Whitney tests were 
conducted for significant differences in MTTD. The re­
sults of these tests are also presented in terms of the 
statistically best algorithm compared with the apparent 
best. According to these tests, no single algorithm 
proved to be superior to the others with respect to 
MTTD for the RD-0, NRD-1, and NRD-0 categories. 
Algorithm 16-14, however, proved to be the best for 
the RD-1 category. Considering FAR, algorithm 10 
seemed to be the best for the RD-1 category, while 
algorithm 7 excelled in the RD-0 and NRD-0 categories. 
No apparent best algorithm was found for the NRD-1 
category. 

Additional analysis was made of the differences in 
FAR and MTTD for accident and nonaccident incidents 
(AI and NAI) occurring on both DL (50-1, 46-1) and NDL 
(50-0, 46-0). Optimal thresholds were obtained for 
each particular situation. The analysis included tests 
for significant differences in MTTD among and within 
the RD for algorithms 7, 8, 10, and 16-14 at the 9 5 per­
cent detection level using the Kolmogorov-Smirnov and 
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Mann-Whitney tests at the 0.05 level of significance. The 
results of this analysis are presented in Table 3. 

From this table it can be seen that, as far as MTTD 
was concerned, there was no significant difference for 
AI and NAI that occurred on either DL or NDL for each 
of the tested algorithms. Also, no significant differences 
in MTTD were found among algorithms within the cate­
gories RD-50-1, RD-50-0, and RD-46-1. Algorithm 7, 
however, was found to be the best within the RD-46-0 
category. 

As far as FAR was concerned, thresholds that were 
developed for AI and NAI occurring on DL yielded equal 
or better results than thresholds developed for AI and 
NAI occurring on NDL for all the tested algorithms. 
This is to be expected, because thresholds for detecting 
incidents on DL could be less sensitive to discontinuities 
in traffic flow than thresholds for incidents on NDL. 

With regard to the individual categories, algorithms 
7 and 8 performed the best for RD-50-1, RD-50-0, and 
RD-46-1, whereas algorithm 10 excelled in the RD-46-1 
category. The local algorithm 16-14 yielded relatively 
high FAR for all categories tested. 

The above results indicate that MTTD, unlike the 
FAR, did not prove to be a major criterion in the se­
lection of algorithms. 

It seems that, in order to generate low FAR, thresh­
olds developed for incidents on DL should be used even 
though the probability of incident occurrence is naturally 
higher on NDL than on DL. However, these less sensi­
tive thresholds would reduce the rate of detection of in­
cidents occurring on the NDL. 

Evaluation of the Effect of Incident 
Severity on Algoritlrn1 Performance 

One of the considerations in selecting a particular set of 
thresholds for the operation of a certain algorithm could 
be its relative effectiveness in detecting AI and NAI, 
which usually differ in their impact on traffic flow. As 
shown previously, thresholds for incidents occurring on 
DL are less sensitive in terms of FAR than those for in­
cidents occurring on NDL. However, the effectiveness 
and efficacy of thresholds developed separately for AI 
and NAI are yet to be evaluated. 

Table 4 presents a comparison of MTTD and FAR, at 
the 9 5 percent detection level, for algorithms 7, 8, 10, 
and 16-14, between AI and NAI occurring either on DL 
or NDL or on both. As can be seen from Table 4, as 
far as MTTD was concerned, the Kolmogorov-Smirnov 
and Mann- Whitney tests did not show any significant 
difference at the 0.05 level. As far as FAR was con­
cerned, thresholds that were developed for the accident 
data performed better than those developed for the non­
accident data in all cases. This, of course, is predict­
able, because AI would have a greater disruptive impact 
on traffic flow than NAI would. 

The question that remains to be answered concerns 
the effectiveness of thresholds developed for AI in de­
tecting NAI. Analysis showed that thresholds developed 
for accident data on DL at the 9 5 percent detection level 
detected only 78 percent of NAI on that lane for algo­
rithms 7 and 8 (FAR = 0.22 percent) and detected all 
NA! for algorithm 10 (FAR = 0.56 percent}. It seems 
that, if FAR is the major criterion, then thresholds de­
veloped for accidents (RD-50-1) could be used to detect 
other incidents (RD-46-1). This also holds true for 
RD-46-0 and RD-50-0 for algorithms 7, 8, and 10. 

Hierarchy Analysis of Threshold 
Effectiveness 

The effort involved in developing the input necessary for 
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Table 5. Threshold hierarchy Algorithm No. 
analysis. 

Thresholds Compared DR FAR 

ALL on RD v. RD on RD 0.92 0.056 
0.96 0.056 

RW on RD v. RD on RD 0. 85 0.034 
0.96 0.056 

NRD on RD v. RD on RD 0.92 0.056 
0.96 0.056 

NRW on RD v. RD on 0.92 0.056 
RD 0.96 0.056 

ALL ori RW v. RW on 1.00 0.056 
RW 1.00 0.034 

RD on RW v. RW on 1.00 0.056 
RW 1.00 0.034 

NRD on RW v. RW on 1.00 0.056 
RW 1.00 0.034 

NRW on RW v. RW on 1.00 0.056 
RW 1.00 0.034 

ALL on NRD v. NRD on 1.00 0.005 
NRD 0.96 0.005 

RD on NRD v. NRD on 1.00 0.014 
NRD 0.96 0.005 

RW on NRD v. NRD on 0.90 0.009 
NRD 0.96 0.005 

NRW on NRD v. NRD on 1.00 0.005 
NRD 0.96 0.005 

ALL on NRW v. NRW on 0.87 0. 005 
NRW 0.87 0.005 

RD on NRW v. NRW on 1.0 0.014 
NRW 0.87 0.005 

RWon NRW v. NRW on 0.75 0.009 
NRW 0.87 0.005 

NRD on NRW v. NRW on 0.87 0.005 
NRW 0.87 0.005 

RD on RD-0 v. RD-0 on 0.96 0.056 
RD-0 0.96 0.056 

RD-I on RD-0 v. RD-0 0.77 0.045 
on RD-0 0.96 0.056 

RD on RD-1 v. RD-1 on 0.96 0.056 
RD-1 0.96 0.045 

RD-0 on RD-1 v. RD- I 0.96 0.056 
on RD-I 0.96 0.045 

RD on RD-46 v. RD-46 0.96 0.056 
on RD-46 0.96 0.056 

RD-50 on RD-46 v. 0.96 0.056 
RD-46 on RD-46 0.96 0.056 

RD on RD-50 v. RD-50 0.97 0.056 
on RD-50 0.97 0.056 

RD-46 011 RD-50 v. 0.97 0.056 
RD- 50 on RD- 50 0.97 0.056 

RD-0 on RD-46-0 v. 0.93 0.056 
RD-46-0 on RD-46-0 0.93 0.056 

RD-46 on RD-46-0 v. 1.0 0.078 
RD-46-0 on RD-46-0 0.93 0.056 

RD-1 on RD-46-1 v. 1.0 0.045 
RD-46-1 on RD-46-1 1.0 0.045 

RD-46 on RD-46-1 v. 1.0 0. 056 
RD-46-1 on RD-46-1 1.0 0.045 

RD-0 on RD-50-0 v. 1.0 0.056 
RD- 50- 0 on RD- 50- 0 1.0 0.056 

RD-50 on RD-50-0 v. 1.0 0.078 
RD-50-0 on RD-50-0 1.0 0.056 

RD-1 on RD-50-1 v. 0.95 0.045 
RD- 50-1 on RD- 50-1 0.95 0.022 

RD-50 on RD-50-1 v. 0.95 0.078 
RD- 50-1 on RD- 50-1 0.95 0.022 

an optimal on-line incident-detection system could be 
enormous. Part of this effort lies in developing thresh­
olds appropriate for various environmental, geometric, 
and traffic conditions. In addition, for freeway sys­
tems that have low levels of detectorization, the ques­
tion exists as to whether thresholds representing AI or 
NAI on either DL or NDL should be used. 

This section evaluates the efficiency, in terms of DR, 
FAR, and MTTD, of applying lower-level thresholds to 
higher-level incident data categories (i.e., thresholds 
developed for the ALL category are tested on the RD 
category). The object of such an analysis is to investi­
gate the possibilities of reducing the amount of effort 
required to develop the optimal sets of thresholds. 

10 

MTTD DR FAR MTTD DR FAR MTTD 

3.40 0.90 0.067 2.52 0.93 0.056 3.25 
2.23 0.96 0.078 2. 75 0.95 0.067 2.88 
3.63 0.64 0.000 5.43 0. 81 0.045 4.21 
2. 23 0.96 0.078 2.75 0.95 0.067 2.88 
3. 36 0.83 0.045 2.86 0.87 0.056 2.21 
2.23 0.96 0.078 2.75 0.95 0.067 2.88 
3.40 0.83 0.045 2.86 0.87 0.056 2.21 
2.23 0.96 0.078 2. 75 0.95 0.067 2.88 
2.33 1.00 0.067 2.33 1.0 0.056 2.50 
2.83 1.00 0.000 3.99 1.0 0.045 2.50 
2.16 1.00 0.078 2.16 1.0 0.067 2.50 
2.83 1.00 0.000 3.99 1.0 0.045 2.50 
2.21 0.84 0.044 2.80 1.0 0.056 1.99 
2.83 1.00 0.000 3.99 1.0 0.045 2.50 
2.33 0.84 0.044 2.80 1.0 0.056 1.99 
2.83 1.00 0.000 3.99 1.0 0.045 2.50 
3.78 0.96 0.014 3.61 1.0 0.009 4.28 
3.93 0.96 0.005 3.67 0.96 0.005 2.87 
3.46 1.00 0.023 3.46 0.93 0.019 4.23 
3.93 0.96 0.005 3. 67 0.96 0.005 2.87 
4.38 0.68 0.009 4.27 0 .97 0.005 4.71 
3.93 0.96 0.005 3.67 0.96 0.005 2.87 
3.78 0.68 0.009 4.27 0.96 0.005 2.87 
3.93 0.96 0. 005 3.67 0.96 0.005 2.87 
2.71 1.00 0.014 2. 62 0.87 0.009 5.14 
2.71 1.00 0. 005 2.63 1.0 0.005 2.87 
2.50 1.00 0.023 2.50 1.0 0.019 6.00 
2.71 1.00 0.005 2.63 1.0 0.005 2.50 
7 .14 0.75 0.009 3.34 0.87 0.009 5.14 
2. 71 1.00 0.005 2.63 1.0 0.005 2.50 
2.85 1.00 0.005 2.63 1.0 0 .005 2.50 
2.71 I.OD 0.005 2.63 1.0 0.005 2.50 
2.47 0.96 0.078 2.04 0.92 0.067 3.04 
2.28 0.96 0.067 2.32 0.96 0.067 3.07 
2.45 0.77 0.045 3.15 0.69 0.033 3.72 
2 .28 0.96 0.067 2.32 0.96 0.067 3.07 
1.99 0.96 0.078 1. 81 0.96 0.067 2.74 
2.96 0.96 0.045 3.77 0.96 0.033 3.18 
1.84 0.96 0.067 1.88 0.96 0.067 2.77 
2.96 0.96 0.045 3.77 0.96 0.033 3.18 
2.31 0.96 0.078 2.05 0.96 0.067 2.86 
2.31 0.96 0.078 2.18 0. 96 0.078 2.36 
2.31 0.87 0.067 2.44 0.91 0.078 2. 56 
2.31 0.96 0.078 2 .18 0.96 0.078 2.36 
2.17 0.97 0.078 1. 83 0.93 0.067 2.89 
2 . 17 0.97 0.067 2.56 0.97 0.078 2. 53 
2.17 0.97 0.078 2.03 0.94 0.078 2.03 
2.17 0.97 0.067 2.56 0.97 0.078 2.53 
1.84 0.93 0.067 2.00 1.0 0.067 2.43 
1.84 1.0 0.078 1.35 1.0 0.056 3.21 
1.35 0.93 0.078 1.77 0.93 0 .078 2.00 
1.84 1.0 0.078 1.35 1.0 0.056 3.21 
3. 34 1.0 0.045 3.44 1.0 0.045 2. 89 
3.34 1.0 0.045 3.44 1.0 0.045 2.89 
2.11 1.0 0.078 2.78 1.0 0.078 2.89 
3.34 1.0 0.045 3.44 1.0 0.045 2.89 
2.65 1.0 0.067 2.67 0.92 0.067 3.30 
2.92 1.0 0.056 3.83 1.0 0.078 3.08 
2.58 1.0 0.067 3.42 1.0 0.078 3.08 
2.92 1.0 0.056 3.83 1.0 0.078 3.08 
2. 76 0.95 0.045 2.85 0.95 0.045 3.22 
4.94 0.95 0.022 4.83 0.95 0.045 3.22 
1.49 0.95 0.067 1.77 0.95 0.078 2.11 
4.94 o·.95 0.022 4.83 0.95 0.045 3.22 

The thresholds for each lower-level incident cate­
gory were obtained for the 9 5 percent nominal DR and 
were applied to a higher-level incident category to yield 
appropriate values for the other measures of effective­
ness. The Mann- Whitney V-test was applied to establish 
the significance of the difference between MTTD of each 
two compared incident categories. Table 5 presents the 
results of this analysis. 

As it can be seen from this table, thresholds de­
veloped for ALL could be used during the RW period by 
all algorithms. On the other hand, when used during 
the RD period, the ALL thresholds yielded reduced DR 
(algorithms 7, 8, and 10) and also equal or reduced 
FAR. As far as the MTTD was concerned, the ALL 



thresholds yielded larger values, which were signifi­
cantly different, however, for algorithm 10 only. It 
was also indicated that during the NRD period, as well 
as during the NRW period, the ALL thresholds could be 
used quite effectively in algorithms 7 and 10. 

The RD thresholds were found to be generally inferior 
in terms of FAR to those developed for ALL when they 
were used during the RW, NRD, and NRW periods. 

Thresholds developed for the RD category were ap­
plied to both the RD-1 and RD-0 categories. In both 
cases these thresholds were found to be inferior to the 
thresholds representing the two categories. When RD-1 
thresholds were applied to the RD-0 category, FAR im­
proved but DR decreased for all algorithms. When RD-1 
thresholds were applied to the RD- 50-1 category, there 
was no change in DR and no significant difference in 
MTTD. Other threshold hierarchy relations could be 
easily obtained from Table 5. The few significant dif­
ferences that appeared in the threshold comparisons are 
shown below. 

Thresholds Compared 

RWon RDv. RD on RD 
RD on NRW v. NRW on NRW 
RD-50 on RD-50-1 v. RD-50-1 on RD-50-1 

FINDINGS, OBSERVATIONS, AND 
RECOMMENDATIONS 

Significant 
Difference 
(algorithm no.) 

7,8 
10 
7, 10 

From the data collected and the various analyses, the 
following ar.e the major findings. 

1. Algorithm 9, which was found to yield favorable 
results in previous studies (1), displayed a poor DR­
FAR relationship compared with algorithms 7, 8, and 10. 

2. For the RD period and for detection levels lower 
than 95 percent, no best algorithm with respect to FAR 
could be found. · 

3. For detection levels of 9 5 percent and above, 
algorithm 7 was found to have the lowest FAR for the 
RD period. 

4. No significant differences in MTTD among algo­
rithms were found at the 9 5 percent detection level at 
the 0.05 level of significance. 

5. In order to be detected, incidents that occurred 
on DL required less sensitive thresholds than those on 
NDL. 

6. For the most efficient algorithms, 7 and 10, for 
RD and NRD, respectively, no significant difference in 
MTTD was found for the 9 5 percent detection level at 
the 0.10 level of significance. 

7. For incidents occurring on DL and NDL during 
the RD period, algorithms 10 and 7, respectively, were 
found to be the most efficient as far as FAR was con­
cerned at the 9 5 percent detection level. 

8. No significant differences in MTTD among algo­
rithms were found to exist for AI and NAI on either DL 
or NDL, at the 9 5 percent detection level for the RD 
category. 

9. At the 9 5 percent detection level, thresholds de­
veloped for AI and NAI on DL are less sensitive to false 
alarms than those developed for the above incident data 
on NDL for all algorithms during the RD period. 

10. Thresholds developed for AI yielded lower FAR 
than thresholds developed for NAI for both DL and NDL 
at the 9 5 percent detection level and for the RD period. 

11. Thresholds developed at the 9 5 percent detection 
level for AI occurring on DL detected only 78 percent of 
the NAI on that lane, for algorithms 7 and 8, and all such 
incidents for algorithm 10. 
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12. Thresholds developed at the 9 5 percent detection 
level for a representative sample of incidents (ALL) 
could effectively be used during RW, NRD, and NRW 
periods. 

Based on the major findings of this study, the follow­
ing observations could be made. 

1. MTTD should not be a critical criterion for se­
lecting an operational algorithm because no significant 
differences in this parameter were found among the 
tested algorithms for desired detection levels. 

2. The DR-FAR relationship should be a critical cri­
terion in the process of selecting incident-detection 
algorithms. 

3. On the whole, algorithm 7 seemed to yield the 
most favorable results of all the algorithms tested in 
this study. 

4. Thresholds developed for accidents on DL could 
be used to guarantee the lowest FAR. 

5. The level of lateral detectorization is not a criti­
cal issue as far as detection time for incidents on vari­
ous lanes is concerned. 

6. If a high level of lateral detectorization (fully de­
tectorized lanes) exists, algorithms should be applied to 
each lane in the detection process to yield low FAR and 
high DR. 

7. The effort in developing thresholds for the RW, 
NRD, and NRW periods could be avoided by using thresh­
olds developed for a representative sample of incidents 
(ALL). 

8. Complicated algorithms are not necessarily the 
best ones. 

The following recommendations are made. 

1. Conduct an on-line evaluation of the above algo­
rithms. 

2. Conduct a discriminant analysis of traffic features 
to find the best combination of features to be used in an 
algorithm. 

3. Develop algorithms based on speed-related fea­
tures. 

4. Investigate traffic-feature characteristics in bot­
tlenecks during incidents to improve detection and false­
alarm rates. 

5. Because there are some differences between the 
results of this study and those of TSC, evaluating other 
non-pattern-recognition algorithms with the above data 
ought to be considered. 
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Part 2. On-Line Evaluation 
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Five algorithms were evaluated on-line by using the facilities of the Traf­
fic Systems Center of the Illinois Department of Transportation. Three 
of the algorithms developed by Technology Services Corporation (TSCJ, 
were of a pattern-recognition nature. The other two-a pattern-

. recognition and a probabilistic or Bayesian algorilhm- were developed 
locally. Thresholds for the features used in each of the pattern-recognition 
algorithms were developed by TSC. The thresholds for the probabilistic 
algorithm were developed by using accident data on U1e Eisenhower Ex­
pressway. The measures of effectiveness in the evaluation were detection 
rote, false-alarm rate, and mean-time-to-detect. The three TSC algorithms 
were evaluated twice on the Eisenhower Expressway at the 80 and 90 
percent levels of detection thresholds, and then problem areas showing 
high false-alarm rates were represented by the 50 percent level. The three 
TSC algorithms were then evaluated on a section of the Dan Ryan Ex­
pressway that was free of geometric problems, for comparison pur­
poses. Statistical analysis showed no difference in detection rate, false­
alarm rate, and mean-time-to-detect among the three TSC algorithms at 
any of the evaluated detection levels. Introduction of the 50 percent 
level improved certain measures of effectiveness. Algorithm 7, the best 
of the TSC algorithms, showed overall superiority to the two local 
algorithms. The false-alarm rate was shown to be related to geometric 
and other features of the problem areas and yielded algorithm 8, which 
uses a shockwave-suppressor mechanism and requires the least effort in 
developing appropriate thresholds. 

This paper discusses the on-line evaluation of five 
incident-detection algorithms that were all evaluated 
off-line in the preceding paper to obtain the optimal 
threshold sets used in the on-line evaluation. 

The specific goals of this research were 

1. To determine the on-line efficiency of algorithms 
proved effective in the off-line evaluation, 

2. To correlate algorithm efficiency parameters 
derived from the on-line evaluation with those derived 
from the off-line evaluation, and 

3. To evaluate combinations of thresholds with re­
spect to geometric conditions on the freeway. 

ALGORITHM DESCRIPTION 

Consider an n-lane freeway section of length L between 
two fully detectorized stations. At each station a set of 

5. A. R. Cook and D. E. Cleveland. Detection of 
Freeway Capacity-Reducing Incidents by Traffic­
Stream Measurements. TRB, Transportation Re­
search Record 495, 1974, pp. 1-11. 

6. C. L. Dudek, C. J. Messer, and N. B. Nuckles. 
Incident Detection on Urban Freeways. TRB, Trans­
portation Research Record 495, 1974, pp. 12-24. 
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for Automatic Incident Detection. CAESP Internal 
Rept., 1974. 
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havioral Sciences. McGraw-Hill, New York, 1956. 

flow characteristics for occupancy, volume, and speed 
is measured at specific time intervals. 

Suppose that at time t 0 an incident occurs at a certain 
point on one of the lanes in section L. A shock wave will 
develop and travel upstream of the incident with an in­
tensity that is dictated by the severity and lateral loca­
tion of the incident and by environmental and geometric 
conditions. At time to + dt an incident-detection algo­
rithm, by continuously measuring and comparing the 
flow characteristics upstream and downstream of the 
incident with predetermined thresholds, will detect the 
incident. 

This section describes the structure of the incident­
detection algorithms evaluated in this research. Of the 
five algorithms evaluated, three of the pattern­
recognition type were developed by TSC (2) and the 
other two, one pattern-recognition and one probabilistic 
(7), were developed locally in the course of this re­
search. 

The research effort of TSC included the development 
of 10 incident-detection algorithms that could be grouped 
into three categories. The first, comprising algorithms 
1-7, is composed of va riations on the classic California 
algorithm (2). The second consists of algorithms 8 and 
9, which are characterized by suppression of incident 
detection after a compression wave is detected. Finally, 
algorithm 10 represents an attempt to detect those in­
cidents that occur in light-to-moderate traffic but do not 
lower capacity below the volume of oncoming traffic. 

Of these 10 algorithms 3 were selected for evaluation, 
1 from each category. The algorithms selected (7, 8, 
and 10) were chosen for a number of reasons. Prelimi­
nary investigation by TSC had indicated algorithm 7 to 
be a superior form of the California algorithm. Algo­
rithm 8 is identical to algorithm 9 except for an added 
persistence check. According to TSC's preliminary in­
vestigation, algorithm 8 has a slightly lower FAR but a 
longer MTTD than algorithm 9. Although algorithm 10 
did not perform especially well in TSC's view, it was 
included in the on-line evaluation because it represents 
a first attempt to solve the problem of detecting incidents 


