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This paper considers issues relevant to two important spatial-choice 
modeling problems: the definition of alternatives and the modeling of 
dynamic behavior. The definition of alternatives may benefit from the 
development of a classification scheme that consists of a reasonably 
small number of categories. This approach could lead to more manageable 
data requirements and improved model specification through the use of 
a larger set of alternative-specific constants. Also, spatial alternatives 
often have characteristics that do not vary from individual to individual. 
Recognition of this can lead to computational efficiencies and possibly 
easier use of aggregate data in model estimation. Dynamic behavior 
is modeled by introducing the effects of previous choices and using an 
error-components structure in the utility functions for choice models. 
Four special cases of the dynamic model are considered. It is then 
possible to identify the assumptions necessary to apply existing choice 
methodologies to dynamic choice problems and to recommend further 
research on methodologies that require less restrictive assumptions. 

Several features of spatial choice problems have made 
the conceptual and empirical development of appropriate 
models challenging. This paper focuses on two of the 
more important features: the definitions of spatial alter­
natives and the treatment of the dynamic aspects of spa­
tial choice ( 1-3). These issues will be discussed in the 
context of the utility maximization approach to quantal 
choice problems (4, 5). 

Spatial choice prOblems apparently differ from the 
more commonly modeled mode choice problems in the 
identifiability and number of available alternatives. 
Available transportation modes are easily identified and 
few in number. Spatial alternatives (e.g., alternative 
shopping destinations) can be identified in several ways, 
ranging from individual spatial locations to fairly large 
geographic zones or other aggregation schemes. Also, 
in many urban areas, the number of alternatives can be 
very large. 

Another important characteristic of spatial alterna­
tives is that many of their objective characteristics do 
not vary for different individuals. That is, the charac­
teristics (such as travel times and costs of transporta­
tion modes) vary with an individual's location, but ob­
jective characteristics of spatial alternatives (such as 
the number of retail employees at a shopping destination) 
do not. This property can be used in the exploration of 
methods that make more efficient use of data in the 
estimation of spatial choice models. 

Dynamic considerations are especially important for 
short-term spatial choices, such as shopping travel. 
Although repeated observations of these choices can be 
obtained during a reasonably short time period, these 
problems have often been treated empirically in the same 
manner as longer-range choices (i.e., only a single cross 
section of observations has been used). By explicit con­
sideration of a time series of cross sections, the dynamic 
aspects of short-term spatial choices can be studied 
in detail. In addition, the consequences of improperly 
ignoring dynamic considerations in the development and 
application of spatial choice models can be identified. 

DEFINITION OF SPATIAL 
ALTERNATIVES 

Research relevant to definition of alternatives can be 
divided into two categories: (a) classification of alter­
natives and (b) data requirements for spatial choice 
models. In general, the definition of spatial alternatives 
is of both theoretical and practical importance. The 
validity of the assumptions made for particular model 
structures [e.g., the independence from irrelevant al­
ternatives property of the multinomial logit model (6)], 
is closely related to the definition of the alternativeS: 
In addition, specification of independent variables and 
the resulting data requirements are influenced by the 
definition of alternatives. 

Classification 

Choice models have been used most frequently to ex­
plain modal choice, in which the modal alternatives are 
fairly easily identified. For example, the classification 
of a particular mode as an automobile or bus is rela­
tively easy. Also, the total number of alternatives is 
small; often only two alternatives (automobile and tran­
sit) are considered. 

In contrast, there does not appear to be any natural 
method for classifying spatial alternatives, and the total 
number of alternatives can be quite large in many prob­
lems. Consequently, the actual definition of alternatives 
has been quite arbitrary and ad hoc, and often there has 
been no categorization of alternatives or only a very 
crude classification scheme. Some models, for example, 
have defined spatial alternatives to be the traffic zones 
established in metropolitan transportation studies and 
have made no attempt to classify alternatives, with the 
exception, perhaps, of the central business district 
(CED) (5, 7). Examples of more developed classification 
systems are the classification of grocery shopping des­
tinations by store type (8) and the classification of shop­
ping centers by distance-from home and floor area (9). 

Classification is important for two reasons. First, 
the spatial choice problem can be made more tractable 
by first assigning an individual to a broad category and 
then assigning a specific destination within that cate­
gory (9). For certain regional policy analyses where 
spatial detail is unnecessary, application of only the 
first step of this process may be sufficient. Second, 
even if the specific destinations are used directly, the 
classification approach allows the use of a fuller set of 
alternative-specific constants in the utility function of 
the choice model. The usual approach in specification 
of destination-choice models has been to exclude con­
stants (5) or to include constants for only special des­
tinations, such as the CBD (7). The classification ap­
proach allows the use of an alternative-specific con­
stant for each category. Since the use of constants has 
been shown to be important in the proper specification 
of choice models (10), the development and use of a 
classification scheme is important for improved model 
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specification as well as for problem simplification. 

Data Requirements 

The most common definitions of spatial alternatives in­
volve numerous destinations that are fairly small in 
geographic size. Consequently, in order to make the 
choice problem empirically tractable, it has been nec­
essary to limit the size of the choice set available to 
each individual or household. This has been done by 
either assigning a restricted choice set to each individ­
ual before estimation of the model (5, 7) or by limiting 
the number of destinations available- to all individuals by 
focusing on a limited geographical area. For example, 
the destination-choice project conducted by Northwestern 
University researchers (11) limited the available shop­
ping destination to a common set. In many applications 
the definitions of alternative destinations involve some 
sort of spatial aggregation (12-14). 

The necessity for limitingchoice sets can be illus­
trated by considering the data storage requirements for 
estimating a choice model. When every individual has 
the same number of alternatives, these requirements(,!) 
are 

S = N(a-l)v (I) 

where 

S = the number of spaces required to store the in-
dependent variables, 

N = sample size, 
a = the number of alternatives, and 
v = the number of independent variables. 

The nonlinear nature of the usual logit and probit ap­
proaches requires that all of the data be stored simul­
taneously. 

The independent variables include characteristics of 
the spatial alternatives themselves, characteristics of 
the individual, and the spatial relationships between the 
individual and the alternative (e.g., distance). When 
objective data are used, the characteristics of the spa­
tial alternative do not vary from individual to individual 
(e.g., the floor area of a shopping center is the same 
for everyone). In this case, if everyone has the same 
choice set, the actual storage requirements are 

S = (a-l)v, + N(a-l)v2 (2) 

where v1 is the number of independent variables that do 
not vary from individual to individual and V2 is the num­
ber of the remaining independent variables. A slight 
modification of existing logit and probit analysis com­
puter programs would result in the smaller storage re­
quirements of Equation 2. This would lead to greater 
statistical efficiency by allowing an increase in sample 
size and number of alternatives per individual or re­
duced cost for the same level of statistical efficiency. 

This modification has the potential of yielding sig­
nificant computational savings. For example, in a study 
of housing location choice, Friedman (15) developed a 
model that had nine communities as alternatives and nine 
independent variables. Of these variables, only one 
varied from individual to individual. Consequently, in 
many spatial choice problems, empirical tractability 
may not be as large a problem as commonly believed. 

For some problems, variables that vary among in­
dividuals may not enter directly into the model. For 
example, a market segmentation approach may result 
in separate models, which correspond to various com­
binations of spatial separation and individual character-

istics. In this case, v2 is zero and the problem becomes 
one of estimating the effects of the characteristics of 
the spatial alternatives on the aggregate shares. Es­
sentially, the situation is one of repeated observations 
of a single -choice situation. (Assuming each individual 
has the same choice set, each individual constitutes a 
repetition.) Although it was not used for a spatial choice 
problem, the random-coefficient logit model used to ex­
plain market shares of automobile models based on their 
characteristics is an example of the basic approach (16). 
Not only is there economy in computation requirements, 
but data requirements are drastically reduced as well. 
Only the aggregate shares and the characteristics of al­
ternatives are necessary. 

The ability to estimate behaviorally sound spatial 
choice models by using only characteristics of alterna­
tives and aggregate shares as input data is highly de­
sirable from a practical standpoint; however, the ex­
clusion of independent variables, which indicate the spa­
tial relationships between individuals and destinations 
and individual or household characteristics, may not be 
conceptually sound. In this case, it may still be pos­
sible to estimate models that have reduced data require­
ments by using an appropriate procedure for estimating 
disaggregate models from aggregate data. 

Suppose a particular choice model for estimating the 
probability that a given individual will select a particular 
alternative is 

(3) 

where X1 represents characteristics of alternatives that 
do not vary among individuals and X2 represents inde­
pendent variables that do vary among individuals. Then 
the aggregate share is given by 

Sharei = JX2 fi(Xi,X2 ) g(X2)dX2 (4) 

where g(X2) is the probability density function. 
In order to estimate the choice model by using ag­

gregate data, it is necessary for Equation 4 to result 
in the shares being a function of X1 and characteristics 
of the distributions of X2 (e.g., the means and higher 
moments). If the choice model is multinomial probit, 
the results of Bou the lier and Daganzo ( 1 7) suggest that 
the means and the variance -covariance matrix that cor­
respond to the variables in X2 for each alternative are 
sufficient when X2 can be approximated by a multivariate 
normal distribution. 

For other choice models, the integral in Equation 4 
can be analytically intractable. In these cases, either 
Monte Carlo integration techniques (18) or the approxi­
mation of f1 by a polynomial expansion, such as the 
Taylor series (12, 19), may yield similar data require­
ments for the estimation of the model by using aggre­
gate data. 

There are some potential implications for current 
practice and future research from these characteristics 
of spatial alternatives. More research on the classifica­
tion of alternatives into meaningful categories would be 
useful in the proper specification of spatial choice models 
and in the development of models for policy analysis at 
the regional level. That many of the objective 
characteristics of spatial alternatives do not vary from 
individual to individual immediately reduces the compu­
tational requirements for the estimation of choice models. 
Consequently, the use of much larger choice sets may be 
a possibility. There is also the possibility of estimating 
disaggregate models with aggregate data. The required 
data would be the aggregate shares for spatial alterna­
tives, the nonvarying characteristics, and information 
such as the first and second moments of the distributions 



of the independent variables, which vary among individ­
uals for each alternative. More research on the d.evelop­
ment of these procedures for models other than the pro­
bit model and on the efficiency and reliability of s uch 
methods may yield results that allow the development of 
practical models that have fairly moderate data require­
ments. 

DYNAMIC ASPECTS OF SPATIAL 
CHOICE 

Most spatial choices are repeated. This is especially 
relevant for short-run destination choices, such as shop­
ping travel. However, since most models have been 
estimated by using a single cross section of observa­
tions, the dynamic nature of the behavior is not empha­
sized. 

Dynamic spatial behavior was studied by Burnett (20). 
However, her approach considered only one spatial ar:­
ternative at a time. Modification of the usual utility 
maximization approach to choice behavior allows the de­
velopment of models that consider more than one alter­
native and the exploration of the consequences of using 
the assumptions behind static models in dynamic contexts. 

This can be seen by considering the typical approach. 
The utility for a given alternative can be expressed as 

where 

U1 = the utility of the i th alternative, 
X1 = the characteristics of the alternative, 

f3 = a vector of coefficient, and 
E 1 = an error term. 

(S) 

To simplify the discussion, variables that describe in­
dividuals will not be identified. A choice model results 
from the utility maximization assumption and from the 
assumption of a distribution for the E 1• 

The dynamic implications of Equation 5 are not clear. 
Certainly, if some of the independent variables change 
in the course of time, the resulting model will produce 
different selection probabilities. However, during short 
time periods, these variables are likely to be stable. 
In this case, any variation in an individual's choice over 
time is determined by E 1• If the errors are assumed to 
be the effects of excluded variables rather than pure ran­
domness, then they are unlikely to vary for short time 
periods for a given :individual, resulting in the predic­
tion of a canst.ant choice over time. Since this is clearly 
unrealistic for some types of spatial behavior (e.g., 
people do not necessarily limit themselves to one shop­
ping destination), it is necessary to assume random er­
ror terms or to respecify the model to consider dynamic 
behavior explicitly. 

A useful approach is to consider a specification anal­
ogous to the ones used in linear models that use a time 
series of cross-sectional dat.a (21, 22). 

A general form of such a model would be 

uits = Xits/3 + 1: 'Yijcj(t - I )s + µ;, + Ujts 
J 

(6) 

whe1·e the subscripts i and j i·efe1· to alternatives, t to 
a time period , and s to ai1 individual. C J(o-r)s is one if 
individuals chose alternative j in the previous time 
period and zero otherwise. Although the model could 
be made more general by considering choices in pre­
vious time periods, in linear models a single lag term 
has often been used. Finally, µ.i s is an error term that 
varies among individuals but not time periods and v;,, 
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is an error term that varies among both individuals and 
time periods. 

In addition to allowing the use of the time series of 
cross-sectional data, the revised specification intro­
duces two additional elements. First, the possibility 
that the choice in one period may influence the following 
choice is allowed. A positive coefficient for the lag term 
indicates an increased choice probability in the subse­
quent time period, and a negative coefficient indicates 
the opposite influence. Second, the use of a component 
structure for the error term allows the possibility that 
some of the unobserved effects may be constant across 
time periods for particular individuals. An example of 
such a situation is when the IJ.is represents the effects of 
unspecified characteristics of alternatives and the JJ;i, 

represents pure randomness in the choice process. For 
sufficiently short time periods, the unspecified character­
istics would probably remain fairly constant; th.erefore, 
the error components representation would be reason­
able. 

The discussion in this section is confined to fixed­
coefficient models. The development of dynamic choice 
models, analogous to the random-coefficient linear 
models (23), will not be considered. 

In order to estimate a model that results from Equa­
tion 6, the data required are observations of the X;is and 
the Ci,, for N individuals and T time periods. When one 
or more of the terms in the model is set equal to zero, 
several variations are possible. 

Case 1 

Case 1 is the ordinary 11tility-ma.x:imization model ap­
plied to the time-series dat.a: iii = 0 for all i, j and µ.is 

0 for all i, s. The basic assumption is that·a static 
choice model can be applied directly to the dynamic prob­
lem. In estimating the model, the observations for a 
given individual over time would be treated as indepen­
dent (i. e ., in the same way as an observation of a dif­
ferent individual that has similar characteristics is 
treated}. The standard st.atic model is a special case 
when only one time period is observed. If the variables 
in X vary over time, the estimation of a choice model 
from the repeated observations of a single individual is 
another special case. 

When the independent variables for the individuals do 
not vary over time, then the model becomes a choice 
experiment with repeated observations (4). Such choice 
problems have been treated in three ways: 

1. The use of a single time period is the special case 
just mentioned (models estimated from data from stan­
dard transportation surveys are examples of this 
approach), 

2. Actual observations of the repeated choices could 
be made (this would require travel-behavior diaries or 
recontact of a survey panel}, and 

3. Respondents could be asked to give their usual 
choices or the usual choice is constructed from reported 
choice frequencies in an attempt to capture the pre­
dominant pattern of repeated behavior (~. 

If the case 1 assumptions are valid, then either of 
the first two dat.a collection procedures will allow the 
estimation of consistent model coefficients. However 
it is conjectured that the use of the usual choice as the 
dependent variable does not result in consistent estima­
tion. This is based on an empirical example (24) in 
which models that used the usual behavior we.requite 
different from those that used actual choice b6havior. 
In addition, simulated data can be used to show that for 
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some simple binary-choice models, when usual choice 
is the dependent variable, coefficient estimates do not 
converge to finite values when the data were constructed 
by assuming a model with finite coefficients. More re­
search on the consequences of using the usual rather than 
actual choices would be useful in the determination of 
whether the apparent inconsistency is generally the case 
and the magnitude and direction of the bias if it is a 
problem. 

Case 2 

The key assumption in case 2 is that previous choices 
affect current choices: /J;, = 0 for all i, s. However, 
there is no constant component to the error term for a 
given individual. The effects of factors not explicitly 
included in the model are treated as completely random. 

Since previous behavior is explicitly considered, ob­
servations of more than one time period are necessary. 
However, since the error terms are independent across 
time periods, existing models (such as the multinomial 
logit model) could be used directly. 

A special case of this model occurs when the X(3 term 
is zero (i.e., current choice is only a function of previous 
choices). The moclel then yields the transition prob­
abilities of a Maxkov model of spatial choice (25, 26). 
In general, the model can be viewed as incorporating 
the effects of learning (2 7). 

Case 3 

Case 3 introduces the possibility that there may be un­
specified effects that are constant for individuals over 
time: 'Y ij = 0 for all i, j. Since it is impossible to clis­
tiuguish empirically be tween the two error components 
when only a single cross section of observations is made, 
the identification of the variance components specific to 
individuals requires more than one period of observa­
tion. Most of the research on linear models has been 
concerned with the development of estimates for models 
analogous to the case 3 model (28-33). 

This particular model illusl:ratesthe ambiguity of 
interpreting the selection probabilities estimated from 
a static model in a dynamic context. If the µ. terms are 
zero (case 1 model), then each individual has a prob­
ability of selecting a particular alternative for each time 
period as determined by the model. At the other ex­
treme, if the v component is zero, each individual makes 
a constant deterministic choice. The selection prob­
abilities from the model are the probabilities that in­
dividuals who have the same choice situation will make 
a particular constant choice. For example, in the mode 
choice case, the case 1 model gives a probability that 
an individual will use the bus on a particular day, and the 
extreme version of the case 3 model gives the probability 
that an individual who faces a particular choice situation 
will always choose the bus. The intermediate case is 
when both µ. and v are nonzero, in which case the selec­
tion probabilities for an individual lie between those es­
timated from the model and the deterministic situation. 

Estimation of case 3 models introduces correlations 
in individual behavior over time. Therefore, each time 
period does not constitute a completely independent ob­
servation. As a result, estimation of the model, as in 
case 1, does not appear to be valid. 

A possible estimation approach, which is analogous 
to that used in linear models, would be to explicitly 
identify the u terms. This is referred to as the fixed­
effect approach. This would result in a set of 
alternative-specific constants for each individual. Since 
this is undoubtedly unwieldy in practice, it may be pos­
sible to first classify the sample and have one set of 

constants for each category. Also, it might be nec­
essary to classify the alternatives, as suggested earlier, 
in the specification of manageable sets of constants. 
When this is done, standard choice models can be used 
directly. 

A conceptually more appealing approach is to deal 
directly with the more complex variance structure, the 
random-effects approach. This approach would be anal­
ogous to the work on correlated error terms among al­
ternatives (34, 35) (e.g., the development of the multi­
nomial pr obit model). Further, simulation and empiri­
cal work with linear models has indicated that models 
that deal directly with variance components perform 
better in small samples than do those that identify con­
stant terms (22, 36). This suggests that research on the 
estimation ofcase3 models may be very important. 

Case 4 

Case 4-the full model-does not appear to introduce any 
new considerations. However, note that,for linear 
models, this case is the most sensitive to incorrect as­
sumptions. That is, when a case 4 model is estimated 
as a case 2 model, inconsistent coefficients result. On 
the other hand, when a case 3 model is estimated as a 
case 1 model, the coefficient estimates are consistent 
but inefficient (21, 22). Further research could be useful 
in the determination of whether an analogous situation 
exists with respect to choice models. It could be the 
case that explicit consideration of the error components 
is especially important for case 4 models. 

This approach to dynamic spatial choice models is 
similar to the methodology developed by Heckman (37) 
to explain dynamic labor-force-participation decisions. 
The models tested the effects of personal, household, 
and economic characteristics as well as previous par­
ticipation in the labor force on women's decisions to 
work. Two variations of a generalization of the case 4 
model were used. The first explicitly considered the 
variance structure (random effects) and the second di­
rectly identified the error components that corresponded 
to individuals (fixed effects). The models described 
here involve a generalization of Heckman's approach from 
the binary to the multinomial case and also shift the 
emphasis to independent variables that describe the 
characteristics of alternatives. 

The specification of models that satisfy Equation 6 
can be viewed as a special case of specification analysis 
that involves the possible exclusion of independent vari­
ables (33). That is, the u;, can be treated as independent 
variables and the consequences of considering or not 
considering these components can be examined. In this 
regard, the recent work in specification analysis for 
choice models is relevant (38, 39). This analysis indi­
cates that exclusion of the ~ component can result in 
two sources of bias in the coefficient estimates: bias 
resulting from possible correlations between the error 
component and the other independent variables and bias 
resulting from changes in the distribution of the random 
component of the utility functions. 

The bias resulting from excluding µ;, can be illus­
trated by a special case of the binary probit model. As­
sume thatµ.;, is not correlated with the independent vari­
ables, which are further assumed not to vary over time 
for the individuals. In this case, Equation 6 applies to 
two alternatives and the µ. and v are independent normal 
variables that have expected values equal to zero. Let 
the variance ofµ. be cr2 and the variance of v be one-half. 
If the inverse standard normal function is applied to the 
observed proportion that each individual selects the first 
alternative, and this variable is used as the dependent 
variable and Xis the independent variable, then it can 



be shown that consistent estimates of (3 are obtained 
when ordinary or generalized least squares is applied 
(38). On the other hand, if the maximum-likelihood 
method is used, the resulting coefficients converge to 

(7) 

Therefore, the ratio of the regression estimators and the 
maximum-likelihood estimators yields information on 
<i, the variance of the error component that corresponds 
to individuals. This result follows from the fact that 
the µ are left-out variables that are uncorrelated with 
the observed variables and from the fact that uncorre­
lated, left-out variables result in the above differences 
between the regression and maximum-likelihood esti­
mators (38, 39). 

Further, the specification analysis approach allows 
explicit consideration of the distribution of µ;, in the 
development of random-effects models. Therefore, ini­
tial research on the development of dynamic choice 
models can be guided by the approach used in the analy­
sis of specification problems. 

The four cases of the dynamic choice model have pre­
sented a framework for discussing dynamic choice prob­
lems. It was noted that certain cases allow the use of 
existing choice models. In addition, further research on 
choice models to explicitly consider the variance struc­
ture in Equation 6 appears to be important to the develop­
ment of dynamic choice models. 

SUMMARY AND CONCLUSIONS 

The definition of spatial alternatives, the efficient use 
of both disaggregate and aggregate data sources, and 
the proper specification of models of dynamic behavior 
have been recognized as important issues. As in the 
case of mode-choice modeling, the ability to classify al­
ternatives into a reasonably small nurp.ber of categories 
would lead to models that are empirically more tractable. 
Further, classification allows the use of a larger set of 
alternative-specific constants, which may be important 
in the proper specification of choice models. Unlike 
the mode-choice case, however, many spatial choice 
models have subsets of independent variables that do 
not vary from individual to individual. Modification of 
existing programs to account for this feature and ex­
ploration of techniques for estimating choice models by 
using aggregate data would allow greater efficiencies in 
data collection, computation, and statistical accuracy. 

Dynamic choice behavior was considered by modifying 
the utility function in the choice model to include effects 
of past behavior and by introducing an error component 
that is constant for a given individual over time. Sev­
eral cases were considered. These are useful in under­
standing how previous models of spatial choice fit into 
a dynamic context, in exploring the consequences of im­
proper dynamic assumptions, and in indicating necessary 
research to develop dynamic choice methodology. 

Some of the cases allow direct use of existing choice 
methodology. The use of such methodology, which re­
quires the most careful consideration, is the case in 
which the error components that are constant for a given 
individual over time are explicitly specified as constant 
terms (fixed-effect approach). In order for such an ap­
proach to be empirically manageable, both individuals 
and alternatives should be classified into a reasonably 
small number of categories. Investigation of the sta­
tistical reliability of this approach in small samples by 
use of empirical and simulated data is an important 
area for further investigation. 

The analytical development of dynamic models that 
are derived from direct consideration of the components 
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of the variance structure (random-effects approach) is 
an area for longer-term research activity. In the de­
velopment of such models, the special features of spatial 
alternatives, which were discussed earlier, would have 
to be considered. Based on experience with linear 
models, this is the most desirable approach to the de­
velopment of dynamic spatial choice models. Investi­
gation of the small sample properties of such models is 
also important. 

Finally, the prediction accuracies of the dynamic 
choice models derived from future research should be 
assessed. This assessment would indicate the extent 
to which models that have less-restrictive assumptions 
improve on the prediction accuracies of existing choice 
models used in dynamic contexts. 
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